
Cottage: Coordinated Time Budget Assignment for Latency, Quality and Power

Optimization in Web Search

Liang Zhou, Laxmi N. Bhuyan, K. K. Ramakrishnan

Computer Science and Engineering Department

University of California Riverside, USA

lzhou008@ucr.edu, {bhuyan, kk}@cs.ucr.edu

Abstract—Most CPU power management techniques for web
search assume that the time budget for a query is given a
priori. However, determining the time budget on a per query
granularity is challenging, because a difficult trade-off between
the search latency, quality and power consumption has to be
made. In this paper, we present Cottage, a coordinated time
budget assignment framework between the aggregator and
Index Serving Nodes (ISNs), which employs two distinct dis-
tributed search latency and quality predictors. The prediction
results are integrated at a centralized optimizer for selecting
the proper search time budget, while cutting off slow and low
quality ISNs. Cottage also accelerates slow ISNs that have a
high quality contribution, thus improving search quality. The
implementation results on the Solr search engine show that
Cottage outperforms state-of-the-art approaches with a 54%
latency reduction and 41.3% less consumed power. In addition,
the P@10 search quality with Cottage can still be as good as
0.947.

Keywords-selective search; time budget; distributed predic-
tion; power management;

I. INTRODUCTION

With the extraordinary jump in the number of web search

requests processed in data centers, distributed search has

become the standard to scale up a search engine’s capacity.

Distributed search [1], [2] typically employs a partition-

aggregate architecture, in which the requests at an aggregator

are broadcast to all Index Serving Nodes (ISNs) [3], [4] for

retrieving the most relevant results. In exhaustive search [5],

we have to wait for the responses from all ISNs to guarantee

the search quality. This significantly degrades a search

engine’s response time, as the search latency depends on the

slowest ISN’s, which can be a much longer than that of the

others [6], [7]. It is challenging to select the most appropriate

group of ISNs for a web search in order to achieve a good

query response time, quality, and energy efficiency. This

becomes even harder when the search requests exhibit high

variability in latency and quality.

In order to meet tight latency constraints, the utilization of

each ISN server of search engines is typically kept low [8],

[9], [10]. However, lightly loaded ISN servers waste a lot

of energy in the data center. This has prompted a number

of research efforts [11], [12], [9], [13] to save energy for

latency-critical search engines. They either slow down the

ISNs or put them to sleep, if there is a slack in meeting

the time budget. The main challenge is that search request

latencies have both short and long term variations and a

request’s computation requirement (i.e., total CPU cycles)

cannot be predicted accurately [9], [13]. We propose a neural

network (NN) model to predict the search latency at an ISN,

similar to [14]. But, we also predict the quality in this paper

using a separate NN model because we wish to reduce the

latency, without sacrificing quality. If we assume that the

aggregator of the search engine sends the top-K final results

to the client, an ISN’s quality is defined by the number of

documents it reports that will be included in the final top-K
results.

To achieve a balance between energy savings and meet-

ing the deadline, previous research work assumed that

the latency deadline (time budget) for a search query is

given [13], [11], [12]. However, our paper addresses the

fundamental question of how to determine this time budget,

given a certain quality constraint, as demanded by the users.

We propose to minimize the time budget and save power

by identifying and excluding slow ISNs from the search

operation. However, cutting down some ISNs may incur a

loss of quality. If there are some slow ISNs that greatly

contribute to the quality, we propose frequency boosting

so that they can finish earlier and the time budget can be

reduced. This reduction in the search time will automatically

reduce energy consumption. Hence, we explore the trade-off

between latency, quality and power consumption to arrive at

an optimal time budget for each query at the aggregator.

There has also been considerable research in the informa-

tion retrieval area to improve a distributed search engine’s

response time. Aggregation polices assume a stable request

pattern during a short time period and try to find an optimal

ISN cutoff for a set of queries [6], [15]. Selective search

[16], [17] is a widely used technique that leverages a Central

Sample Index (CSI) [18] at the aggregator to exclude ISNs

with low quality contribution. As the quality prediction for

ISNs can not be 100% accurate, it often needs a second

cutoff prediction [19]. In this paper, we propose Cottage (i.e.,

coordinated time budget assignment), a coordinated frame-

work integrating the prediction and decision making at

both the aggregator and the ISNs on a per-query basis.

113

2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

DOI 10.1109/HPCA53966.2022.00017

2
0
2
2
 I

E
E

E
 I

n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 H

ig
h
-P

er
fo

rm
an

ce
 C

o
m

p
u
te

r
A

rc
h
it

ec
tu

re
 (

H
P

C
A

)
| 9

7
8
-1

-6
6
5
4
-2

0
2
7
-3

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/H

P
C

A
5
3
9
6
6
.2

0
2
2
.0

0
0
1
7

978-1-6654-2027-3/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

Broadcast
Request

Request

Merge & Rank
Results

ResponseAggregator

ISN-1

To
p-
K

ISN-1

To
p-
K

ISN-2

To
p-
K

ISN-2

To
p-
K

ISN-3

To
p-
K

ISN-3

To
p-
K

ISN-4

To
p-
K

ISN-4

To
p-
K

P@KP@K

Broadcast
Request

Request

Merge & Rank
Results

ResponseAggregator

ISN-1

To
p-
K

ISN-2

To
p-
K

ISN-3

To
p-
K

ISN-4

To
p-
K

P@K

Figure 1. Partition-aggregate architecture of web search.

Cottage is scalable because we let each ISN predict its

processing time and quality contribution to the top-K ranked

results independently. Since the global view of query latency

and quality across all ISNs is needed for the time budget

determination, the latency prediction results at the ISNs are

sent back to the aggregator and used by our centralized

optimization algorithm to determine the cutoff time.

In this paper, two separate NN models with distinct query

features are developed at the ISN for quality and latency

prediction. All our query features are based on the term

statistics [20], which are calculated during the indexing

phase. The prediction accuracy of our quality model is

95.7% while only taking 80 microseconds for the inference.

Similarly, the latency prediction has a high accuracy of 87%

with negligible overheads.

With latency and quality predictions, the aggregator first

ranks the ISNs based on their predicted quality for top-

K results and cuts off those ISNs with zero contribution

to the top-K results. In order to consider high quality, but

slow ISNs, the remaining select ISNs are re-ranked based on

their latencies when using the highest CPU frequency. We

select this boosted latency as our search query’s deadline.

The aggregator’s ability to find the right balance between

quality and latency (because it has the visibility across

all ISNs) enables us to find a far superior, coordinated

decision compared to previous works. Moreover, in the high-

bandwidth and low latency data center environments of

today, the overhead for Cottage coordination between the

ISNs and the aggregator is negligible.

Implementation results on the Solr search engine show

that Cottage outperforms state-of-the-art frameworks, such

as the CSI based Rank-S [17] or the distributed design of

Taily [21]. Our average query latency on the Wikipedia and

Lucene traces is 2.41 times shorter compared with exhaus-

tive search, while searching 2.67 times fewer documents and

having 41.3% less power consumption. At the same time,

we achieve a good P@10 search quality [22] of 0.947. In

summary, we make the following contributions:

• We propose a coordinated framework between the

(a) Latency Variability (b) P@10 Source Variability

Figure 2. The latency and quality contribution of search queries exhibit
high variations.

aggregator and ISNs, on a per query granularity, to

achieve a good balance between the search latency,

quality and energy efficiency.

• Two separate neural network models are designed, with

distinct query features, to predict each ISN’s quality,

and latency.

• Slow ISNs are cut off and a frequency boosting tech-

nique is designed to speed up slow ISNs that have high

quality contributions.

• A centralized algorithm at the aggregator is proposed

to determine a query-specific time budget, considering

both the quality and latency predictions across the ISNs.

• Our Cottage framework is implemented in a real testbed

using representative query traces to prove the superior-

ity of our technique.

II. BACKGROUND AND MOTIVATION

A distributed search engine typically employs a partition-

aggregate architecture [23] as shown in Fig. 1. A search

request arriving at the aggregator is broadcast to all the

ISNs, as the index is partitioned [24]. On receiving a search

request, an ISN server retrieves the relevant documents for

the query and only sends back the top-K scored results to

the aggregator. Finally, all the ISNs’ responses are merged

and ranked at the aggregator. The quality of search result

is usually measured by the Precision@K (e.g., P@10) [22]

metric, where K is the number of top ranked documents. In

Fig. 1, we observe that a search query’s overall latency on

the client side is determined by the slowest ISN (straggler),

if an exhaustive search is adopted [19].

A. Quality and Latency Variation

An ISN cutoff algorithm in aggregation policies usually

configures the same time budget for all the queries during an

epoch, according to the search history in the past [25]. How-

ever, it is well known that search request latencies on ISNs

exhibit high variance [20], [26], due to queuing as well as

variance in the number of retrieved documents. In Fig. 2 (a),

we plot the latency histogram of 10K search requests from a

representative Wikipedia query trace [27], measured on our

experimental testbed using exhaustive search. The ISN index

is from a complete dump of the Wikipedia database on Dec.

114

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

(a) Exhaustive Search
(Precision = 1.0)

(b) Aggregation Policy
(Precision = 0.8)

(c) Selective Search
(Precision = 1.0)

(d) Cottage
(Precision = 1.0)

28 28 Accelerate

Cutoff

Figure 3. The policy comparison between exhaustive search, aggregation policy, selective search and Cottage.

2018, with 34 million documents. Although the latency for

35.6% of the requests (shown in Fig. 2 (a)) are in the range

of 5ms to 10ms, the remaining requests’ latencies fall in 12

different latency bins, shown on the X-axis, thus exhibiting

a long tail. With such a high variability in query processing,

cutting off the tail latency at a specific/premature point may

hurt the search quality. Hence, the goal of our research is

to design an optimal cut-off time that satisfies the quality

requirement of the client.

In addition to the request latency, the quality contribution

of an ISN to the P@10 search results can vary a lot as

well. Fig. 2 (b) reports the P@10 search results of the 10K

requests from the Wikipedia query trace. We measure the

number of ISNs that will contribute at least one document

to the P@10 results for a specific query. Although we have a

total 16 ISNs in our experiment, there are always some ISNs

that don’t contribute any documents to the P@10 results for a

given query. The Y-axis in Fig. 2 (b) is the count of queries

that have a certain number of ISNs with non-zero quality

contribution. We see that 3.48K of queries only need the

results of 8 (out of 16) ISNs. Thus, it is safe to cut off the

remaining ISNs’ responses, assuming that each ISN’s quality

contribution can be precisely predicted on a per-query basis.

B. Research Motivation

We first consider the case of exhaustive search. In Fig. 3

(a), the quality and latency result for the query “Canada”

on a Solr search engine with 16 ISNs is given. Exhaustive

search has a 100% P@10 search quality, but the time

budget on it has to be 28ms since we have to wait for the

results from the slowest ISN-1. Aggregation policies [25],

[6] cut off ’long-tail servers’ and aim at finding the optimal

average response time for most queries during a short time-

epoch. However, each ISN’s quality contribution to the top-

K search results is not factored. The results of aggregation

policy are presented in Fig. 3 (b), which show that the strag-

glers (colored grey, ISNs 1, 7, 13) are removed. Fig. 3 (b)

assumes that a time budget of 12ms produces the best latency

improvement for most of the queries during a short time

period. Excluding ISNs-1, 13 (with high quality contribution

Figure 4. Search requests can be easily accelerated at ISNs by adjusting
the CPU frequency.

to the top-10 search results) will severely deteriorate the

search quality, by 20%.

Let us now look at selective search frameworks [18],

[16], [17], which only gather responses from a subset of

ISNs to reduce the resource usage of a distributed search

engine. They usually don’t consider the query latency on

ISNs while optimizing the search efficiency. In Fig. 3 (c),

ISN-4, 5, 7, 9, 10, 11, 12, 14, 15 will be cut off in the

selective search design. But the query “Canada” still has a

long overall latency when the low quality ISNs are excluded

from the final search results. Our design of Cottage as shown

in Fig. 3 (d) aims to consider both the latency and quality

when assigning a query’s time budget at the aggregator.

Cottage retains the ISNs with a long latency but a high

quality contribution, instead of directly dropping them off

in the aggregation policy. In the literature, pruning [28] or

parallelization [29] on an ISN is utilized to accelerate the

request processing. In this paper, we propose CPU frequency

scaling [30] to speed up the search request, as it doesn’t hurt

the search quality. In Fig. 4, we report the query’s latency

variation for different CPU frequencies. All the results are

measured on a 12-core Intel Xeon E5-2697 CPU. The results

demonstrate that a query’s latency decreases by 2.43 times

(i.e., from 97ms to 40ms) when we boost the CPU frequency

from 1.2 GHz to 2.7 GHz.

When we look carefully at the Fig. 3 (d), the overall search

115

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

ISN-1 ISN-2 ISN-3 ISN-4

Request

Optimizer

Aggregator

Broadcast
Request

Time
Budget

Aggregate
Response

Response

Figure 5. The Cottage framework needs the coordination between
aggregator and ISN servers for quality prediction, latency prediction and
time budget determination.

latency can continue to reduce if more ISNs are accelerated,

with the slowest ISN being accelerated the most. The time

budget chosen would have to be limited by the highest

available frequency on a CPU to avoid having a time budget

that is too small that results in some ISN responses missing

their deadlines and thus hurt the search quality. In Cottage,

we carefully select the time budget such that all the ISNs

with high quality contributions can be properly accelerated

to meet their deadlines.

III. COTTAGE DESIGN

The framework of Cottage has three major estimation

tasks: quality (contribution to the P@10 result) prediction,

latency prediction (including request queuing) and time

budget determination, all on a per query basis. The first two

predictions are conducted at the ISN level and become the

inputs to our algorithm for determining the time budget at

the aggregator.

A. Overview

The primary goal of Cottage is to reduce a search system’s

tail latency and resource consumption with negligible quality

loss. To achieve this optimization goal at the granularity

of an individual query, both local information at an ISN

and global statistics across ISNs have to be gathered. We

propose a coordinated design between the aggregator and

ISNs, where each ISN reports its quality and service time

prediction for a query. Then, the aggregator gathers this

information and assigns an appropriate time budget for the

query to have the optimal responsiveness and quality.

The overview of Cottage’s design is shown in Fig. 5.

Whenever a search request arrives at the aggregator, Cot-

tage will first broadcast the request to all the ISNs (step 1 in

the figure), as in exhaustive search. Step 2 is the prediction

of an ISN’s quality contribution to the P@10 result for a

Kth Score

Figure 6. Histogram of query scores and its fitted Gamma distribution.

given query, for which we develop a NN model, described

in Section III-B. In addition to the quality prediction, at

step 2 each query’s service time has to be predicted as well.

Cottage employs a separate NN model with a number of

different query features for precisely estimating each query’s

service time at the current CPU frequency. In step 3 of Fig. 5,

the ISNs send both the quality and latency prediction results

back to the aggregator for time budget determination. Step 4

is the latency and quality optimization by using a centralized

optimizer at the aggregator. The major goal in this step is

to assign a dynamic time budget (i.e., deadline) for each

query. The process of determining the time budget is further

described in Section III-D.

The aggregator broadcasts the assigned time budget to

all the ISNs in step 5 of Fig. 5. Similar to prior power

management schemes [30], [14], the ISN completes the

search process within its given time budget in step 6. Finally,

in step 7, the ISN responses are integrated at the aggregator

and the search results from stragglers are dropped. For

example, in Fig. 5, only ISN-2 and ISN-3 will send their

responses to the aggregator, since ISN-1 and ISN-4 have a

low quality contribution or an excessively large predicted

latency. Thus, the tail latency for the parallel request across

the ISNs are reduced. The communication delay between the

aggregator and ISN is relatively small, since the data center

network round trip times are kept low (typically a few micro

seconds) [31], compared to the tens of milliseconds service

time of the search application. Although our framework

is described based on search engines in this paper, it can

be easily extended to other distributed applications that

employ a partition-aggregate architecture. In our framework,

the placement of centralized optimization and distributed

predictions naturally fits in a partition-aggregate architecture.

We just need to have the appropriate set of features for the

predictions and train new neural network models.

B. Quality Prediction

State-of-the-art shard ranking algorithms [16], [17], [18]

are centralized designs implemented at the aggregator. The

only distributed scheme we are aware of, Taily [21], assumes

116

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

Table I
FEATURES FOR QUALITY PREDICTION

Feature Name Example for “Tokyo”

First quartile score 2.46

Arithmetic average score 4.88

Median score 7.16

Geometric average score 3.91

Harmonic average score 2.2

Third quartile score 4.72

Kth score 11.08

Max score 14.46

Score variance 8.22

Posting list length 5975

a Gamma distribution for a query’s scores against all the

relevant documents at an ISN. Instead, we develop a novel

NN model with carefully selected features to predict each

query’s quality contribution on an ISN. With better predic-

tion accuracy, Cottage avoids inappropriately dropping an

ISN’s response that would be able to eventually contribute

to the final P@10 result for a client.

Let us assume that the aggregator of the search engine

sends the top-K final results to the client. Then, an ISN’s

quality is defined by the number of documents it reports

that will be included in the final top-K results. If we can

infer a search query’s dynamic score histogram, it is then

easy to predict an ISN’s quality on a per-query basis. In

Fig. 6, we present the histogram (the blue bars) of relevant

scores on ISN-1 for a specific query. Documents without any

relevant query terms are ignored. This observation motivated

the design of Taily [21] to dynamically predict a query’s

score distribution by assuming that the score distribution

follows a Gamma distribution [32], [21]. At runtime they

predict the parameters of the Gamma distribution according

to static query term statistics which are obtained during

the indexing phase. However, a query’s scores typically

do not perfectly fit a Gamma distribution, thus resulting

in an inaccurate ISN cutoff. In Fig. 6, we also plot the

fitted Gamma distribution (the red line). We observe that the

P (X > Kth) from the Gamma distribution is not quite the

same as the distribution shown in the histogram. It has the

potential for us to improperly cutoff some ISNs that would

significantly contribute to the top-K results. Thus, search

quality will suffer.

Cottage proposes a NN model to predict each query’s

quality contribution. In the model, we predict the number of

documents at an ISN that will be included in the correspond-

ing top-K results. Table I lists all the features used in our

neural network model. Our design is based on the premise

that we can utilize the query’s aggregated statistics, such as

the arithmetic average score and max. score, to capture the

score distribution. By training the model with a large amount

(a) Training (b) Accuracy and Inference time

0

0.4

0.8

1.2

1.6

2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

Lo
ss

A
cc

ur
ac

y

Iterations

Accuracy Loss

0

10

20

30

40

84

88

92

96

100

2 4 6 8 10 12 14 16

In
fe

re
nc

e
Ti

m
e

(ȝ
s)

A
cc

ur
ac

y
(%

)

ISN ID

Accuracy Inference Time

Figure 7. The prediction accuracy and inference time for quality prediction.

of observed samples from the past, we can accurately predict

a query’s quality when observing similar score distributions.

The different score percentiles, as listed in Table I row 2 to

10, can be easily obtained from index term statistics [20],

[26], [29]. Although two queries might have the same score

distribution, their quality contribution might be different as

the number of documents they have to search are different.

Thus, the posting list length (i.e., document count) becomes

our last, but very important, query feature in Table I. If

personalized search is adopted by the service provider, the

document scores will also be determined by customized

term weights besides the term itself. Typically, we will give

personalized term-weights for each person based on the user

profile. In such a case, our prediction features have to be

extended to include user-profile related features. Similar to

prior work [19], [17], [21], [16], we first design our scheme

on a search architecture, without personalization, but we plan

to extend our scheme to personalized search in the future.

For model training, we select a NN model with 5-hidden

layers as it maintains a good balance between accuracy

and inference time. Each hidden layer has 128 neurons

and uses the ReLU activation function [33]. The model

is trained by the Adam optimization algorithm [34] with

sparse categorical cross-entropy loss function. Fig. 7 gives

the prediction accuracy and inference time of our quality

prediction. Based on the query features listed in Table I,

we can see that the accuracy of quality prediction (left-hand

side Y-axis of Fig. 7(a)) improves when we train the model

over more iterations to reduce the value of loss function

(right hand side Y-axis of the same figure). We reach a point

of diminishing improvement after 600 training iterations.

The accuracy and inference time results on different ISNs

are presented in Fig. 7(b). Each ISN has a separate neural

network model trained with its own index data. We can

observe that our quality predictor achieves an average of

94.71% accuracy (left-hand side Y-axis) across ISNs. In

addition to the prediction accuracy, the inference time for

each query may be another important metric. The good

news is that the inference time for our quality prediction

is negligible, and is at most only 41 µsecs., compared to the

tens of milliseconds for a query’s service time [29].

117

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

Table II
FEATURES FOR LATENCY PREDICTION

Feature Name Example for “Toyota”

Posting list length 20742

Documents ever in top-K 85

Number of local

score maxima
3084

Number of local score

maxima which is larger

than mean score

2639

Number of max score 1

Query length 1

Documents in 5% of max

score
199

Documents in 5% of Kth

score
322

Arithmetic average score 9.34

Geometric average score 9.05

Harmonic average score 8.68

Max score 14.81

Estimated max score 1131

Score variance 5.99

IDF 6.81

C. Latency Prediction

In web search, the documents on a query’s posting list

are scored one by one to find the most relevant search

results. Intuitively, a query’s service time at an ISN server

is roughly proportional to the length of its posting list [35].

However, the adoption of dynamic pruning techniques such

as MaxScore [36] and WAND [3] in search engines makes it

difficult for a linear predictor to achieve perfect prediction

accuracy. Some documents on the posting list with a low

probability of being in the top-K results are also skipped

in such dynamic pruning strategies [4], [20]. In Cottage,

we design a separate NN model with a distinct set of

query features to accurately predict a request’s service time.

Although a neural network based service time prediction

has been used in prior works [20], [26], [29], the effect

of frequency scaling and request queuing have not been

considered. We believe these significantly affect a query’s

latency [12], [30].

The query features for service time prediction are given in

Table II. The features, Posting List Length and Documents

Ever in Top-K, describe the potential number of documents

that will be traversed by the dynamic pruning strategies.

Then, we also use the features from rows four to six in

Table II to estimate the number of local peaks on the score

distribution. In a nutshell, existing pruning strategies seek to

keep the up-to-date highest scores and skip documents with

low predicted scores. A local peak (or maxima) on the score

distribution promises a potential high score and we have to

(a) Training (b) Accuracy and Inference Time

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Lo
ss

A
cc

ur
ac

y

Iterations

Accuracy Loss

0

20

40

60

80

75

79

83

87

91

95

2 4 6 8 10 12 14 16

In
fe

re
nc

e
Ti

m
e

(ȝ
s)

A
cc

ur
ac

y
(%

)

ISN ID

Accuracy Interence Time

Figure 8. The prediction accuracy and inference time for latency
prediction.

fully search its document. The remaining query features in

Table II, such as Documents in 5% of Max Score and Score

Variance, represent the aggregated statistics of the score

distribution. The Estimated MaxScore is an approximation

of the max. score based on the algorithm in [37]. If a query

phrase has multiple terms, we can use the MAX or SUM

operator to aggregate all query terms’ feature values. In our

experiments, we choose the MAX operator to calculate the

phrase features.

Similar to the quality prediction, we utilize a NN model

with 5-hidden layers for the latency prediction. The only

difference is that the latency predictor has more neurons on

the output layer due to the higher variability of a query’s

service time. By using the query features from Table II, our

latency predictor has the best performance when we train

it for 60 iterations as shown in Fig. 8(a). After the 60th

iteration, its prediction accuracy flattens out at 87%. Let

us examine the detailed prediction accuracy and inference

time results in Fig. 8(b). An average of 87.23% queries

in Fig. 8(b) (left-hand side Y-axis) can have an accurate

latency prediction. Compared with the quality predictor, the

latency predictor’s accuracy on average is lower because a

search request’s latency is more easily affected by system

conditions (e.g., operating system scheduler and context

switches). Finally, we report the model inference time on

various ISNs in Fig. 8(b) (right-hand side Y-axis). A search

request’s inference time on average is as little as 70.25

microseconds. Compared to the quality predictor, the higher

prediction overhead for the latency predictor is due to having

more input neurons (i.e., query features) and output neurons

(i.e., possible latency values) in our model. But, its overhead

is still only 0.15% of a query’s service time [29].

ISN servers can select different CPU frequencies to

change a search request’s processing speed. In Cottage, all

the predicted service times are conditioned by the default

frequency fdefault. Thus, the request Ri’s service time Si

at the current frequency f becomes:

Si = SPredict
i ∗ fdefault/f (1)

where SPredict is the predicted service time at the default

frequency fdefault from our NN model. Here, we assume

118

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

Figure 9. An example (with K = 20) for time budget determination in
Cottage.

that a search request’s work is compute intensive and its ser-

vice time is inversely proportional to the selected frequency

f . Besides the selected CPU frequency, the request’s queuing

also significantly affects a query’s service time. For latency

prediction, Cottage will return a request’s equivalent latency

[30], [13], [12] to the aggregator, which considers both the

service time and queuing time. The definition for the N th

request’s equivalent latency S∗

N is:

S∗

N = (
N∑

i=1

SPredict
i ∗ fdefault)/f (2)

D. Time Budget Determination

The optimizer for time budget determination in Cot-

tage needs the two predictors described above: for the quality

contribution and for the latency. As shown in Fig. 9, both

the Quality-K (black bar) and Quality-K/2 (blue bar),

(both related to the left-hand side Y-axis) are used by

our algorithm. The Quality-K/2 prediction is the number

of documents that an ISN will contribute to the top-K/2
client-side results. Similarly, Cottage obtains each ISN’s

predicted latency under the current CPU frequency f (yellow

line) and the highest CPU frequency (green line), (both

using right-hand side Y-axis). The boosted latency is the

shortest time that an ISN server can finish a request through

frequency boosting. With the aforementioned quality and

latency predictions, our algorithm dynamically assigns a

minimal time budget to the parallel search requests such

that the latency and search efficiency are optimized with

negligible quality loss.

The details of the time budget determination algorithm

is shown in Algorithm 1. I is the set of ISNs for a search

engine. Each ISN Ij has four prediction results: the quality-

K QK , quality-K/2 QK/2, latency under current frequency

Lcurrent and latency under highest frequency Lboosted. In

the first stage of the algorithm (line 3-11), all the ISNs

are ranked by the Quality-K predictions. To improve the

search efficiency, the ISNs with zero Quality-K are cut off

and removed from the ISN set I . Specifically, the ISN-4,

9, 12, 14 on the example of Fig. 9 are cut off. In line 12

Algorithm 1: Time Budget Determination

1 I: set of ISNs associated with quality and latency

predictions < QK , QK/2, Lcurrent, Lboosted >
2 T : time budget

3 Sort(I, QK)

4 j = 0, N = I.size()
5 while j < N do

6 if Ij .Q
K equals 0 then

7 drop ISN Ij
8 remove Ij from I
9 end

10 j=j+1

11 end

12 DescSort(I, Lboosted)

13 T = I0.L
boosted

14 j = 0, N = I.size()
15 while j < N do

16 if Ij .Q
K/2 �= 0 then

17 T = Ij .L
boosted

18 break

19 end

20 j=j+1

21 end

of Algorithm 1, Cottage re-ranks the remaining ISNs by

the descending order of boosted latency because we want

to find the shortest time budget to meet quality constraints.

In Fig. 9, the re-sorted ISN list is <7, 1, 13, 2, 6, 5, 15,

16, 3, 8, 10, 11>. Then, the lines 13-21 of Algorithm 1

try every ISN’s boosted latency as the time budget from the

beginning to the end of ISN set I , until an ISN j has a

quality contribution to the top-K/2 results. We select ISN

j’s boosted latency as the final time budget T . The time

complexity of our algorithm is O(nlg(n)), in which n is the

number of ISNs. However, commercial search engines like

Facebook’s Unicorn [38] employ query rewriting techniques

to limit their searching to only a few hundred ISNs. For this

range, our optimizer can scale well.

Fig. 9 gives an example to explain our algorithm. Since

ISN-7 has the longest boosted latency of 18 milliseconds,

its latency can be the initial time budget. However, we

observe that most of other ISNs have a much shorter current

latency and boosted latency than 18 milliseconds. Because

the ISN-7 doesn’t contribute any documents to the most

important top-K/2 results [22], we believe it is reasonable

to sacrifice a little bit of the bottom K/2 result’s quality

for a better response time. The overall latency of the entire

search engine would deteriorate significantly if we retained

ISN-7, even though we have already got most of the relevant

results without ISN-7. In Cottage, we choose the ISN-1’s

boosted latency of 16 milliseconds as the time budget, and

exclude ISN-7 from the final search results. Because ISN-

119

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

(a) Wikipedia for 1000s (b) Wikipedia Avg. and 95th (c) Lucene for 1000s (d) Lucene Avg. and 95th

Exhaustive Rank-STaily

0

10

20

30

40

50

0 200 400 600 800 1000

La
te

nc
y

(m
s)

Time (s)

0

10

20

30

40

50

Average 95th

La
te

nc
y

(m
s)

0

10

20

30

40

0 200 400 600 800 1000

La
te

nc
y

(m
s)

Time (s)

0

10

20

30

40

Average 95th

La
te

nc
y

(m
s)

CottageCottage

Figure 10. On both query traces, Cottage reduces the average client-side latency by 54%.

1 contributes one document to the most important top-K/2
results, we have to keep ISN-1 and cannot reduce the time

budget further. Compared with the previous selective search

schemes [16], [17], [19] which only consider the quality con-

tributions, Cottage’s algorithm reduces the tail latency to 16

ms. On the other hand, existing aggregation polices [6], [25],

[15] cut off ISN-1 because of its higher search latency, thus

ignoring its significant quality contribution. Our algorithm

achieves a proper balance between the search quality and

latency. After determining the time budget, ISN-1 and ISN-

13 will boost their current CPU frequency as their predicted

latency at the current frequency is larger than the given time

budget.

IV. IMPLEMENTATION

We implemented our framework on the well-known Solr

search engine. In Solr, the application instance can work as

the aggregator or as an ISN server. On a search request’s

arrival, if there are multiple destination shards, the Solr

instance works as an aggregator and distributes the search

request to multiple ISNs. Our centralized optimizer is im-

plemented after the aggregator broadcasts the request to all

of its destinations. As the Solr search engine already has

multiple rounds of communications between the aggrega-

tor and ISNs with components that implement the logic

for handling a search query, the gathering of quality and

latency predictions in Cottage are implemented by adding

an additional query component to minimize the overhead. If

a search request’s destination matches a Solr instance’s ID,

then it is viewed as a local request and the Solr instance

works as an ISN server. At the ISN, the logic of Cottage is

implemented before the ISN begins to process the query.

In Cottage, we use the Keras API of TensorFlow [39] to

achieve the neural network prediction models.

In our experiments, the client machine and the search

engine server is connected by a 1G Ethernet link. The

Solr search engine is deployed on a platform with a 24

core Intel Xeon E5-2697 CPU, 128G memory running

the CentOS 7 operating system. We utilize the Advanced

Configuration and Power Interface (ACPI) to update the

CPU core’s frequency during runtime. Our CPU frequency

can be selected in the range from 1.2 GHz to 2.7 GHz.

The search engine node supports per core frequency scaling.

For simplicity, we take the maximum frequency (2.7 GHz)

as the boosted frequency. On the client side, we wrote a

Python program to replay our real search query traces. The

Wikipedia [27] and the Lucene nightly benchmark [9] query

traces are used. For the server, a 16-ISNs Solr search engine

is deployed with the index derived from a dump of entire

English Wikipedia web pages on December 1st, 2018. A

total of 34 millions documents are included in our index.

V. EVALUATION RESULTS

We compare Cottage with the baseline policy of exhaus-

tive search as well as the state-of-the-art schemes such

as Rank-S [17] and Taily [21]. For the baseline, a search

request will be executed on every ISN of the distributed

search engine. In exhaustive search, the aggregator sends

search responses to the client only when it receives the

response from the slowest ISN. Rank-S is a centralized

design in which each ISN’s quality contribution is estimated

by using a CSI. In our experiments, every ISN’s index is

sampled at 1% to form the CSI at the aggregator. Rank-

S uses the fixed threshold for all requests to cutoff low

quality ISNs. Cottage is also compared with a distributed

design, Taily. The major feature of Taily is that it uses a

Gamma distribution for the scores to infer each ISN’s quality

contribution.

A. Overall Latency

The overall latency results for the Wikipedia and Lucene

query traces running for 1000 seconds, are presented in

Fig. 10. In Fig. 10 (a) for the Wikipedia trace, the requests’

overall latency (black line) using exhaustive search varies in

the range of 4ms to 65ms. The overall latency of Taily (red

dots) is similar to exhaustive search most of the time. This is

because Taily only cuts off the ISNs without any contribution

to the top-10 results, and ignores the latency dimension.

Thus sometimes a low quality ISN may have a large latency

(e.g., the query made around the 780th second). We plot the

corresponding average and 95th percentile tail latencies in

Fig. 10 (b). Taily only marginally improves upon exhaustive

120

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

Figure 11. The average P@10 search quality results on Wikipedia and
Lucene query traces.

search, with the average request latency only reducing by

1.16% and the 95th tail latency by 1.2%.

In Fig. 10 (a) and (b), Rank-S (blue line) has better

performance than Taily. It improves the average request

latency by 11.12% (from 17.26ms with exhaustive search to

15.34ms). The improvement of 95th tail latency is similar.

However, due to the sampling design of Rank-S, we only

know the relative importance between ISNs, without any

knowledge of their contributions to the P@10 results. Thus,

Rank-S may wrongly cutoff more ISNs and thus produce a

better overall latency, but at the cost of quality. Among all

the compared frameworks, our design, Cottage, achieves the

smallest request latency in Fig. 10 (a). Fig. 10 (b) shows

that Cottage reduces the average latency of requests in the

Wikipedia trace by 54% compared to exhaustive search.

Additionally, we improve the request’s 95th tail latency by

2.6 times, from 39ms in exhaustive search, to 15ms. Further,

Fig. 10 (c) and (d) plot the latency results with the Lucene

query trace. Cottage has a 2.29 times better average latency

and 2.74 times better 95th tail latency than exhaustive search,

respectively with the Lucene query trace. The major reason

for our latency reduction is because of the cutting off of

the latency tail when it has a low quality contribution, and

accelerating the ISNs that have a long latency, but have a

high quality contribution.

B. P@10 Quality

Besides the request’s latency, the P@10 quality is another

very important performance metric for a search engine. We

reiterate that P@10 denotes the probability that an ISN’s

search result is selected as one of the top-10 query responses,

returned to the client by the aggregator. With the same

experiment setup above, we measure the search requests’

P@10 quality for both the Wikipedia and Lucene traces.

The average P@10 quality results for 1000 seconds are

reported in Fig. 11. Since every document in the entire data

collection will be retrieved in exhaustive search, its P@10

search quality is always 1. In Fig. 11, Cottage achieves an

average P@10 search quality of 0.947 on the Wikipedia

trace due to its accurate per query quality prediction. We

also have a good P@10 quality of 0.955 on the Lucene

trace. In Cottage, we exclude the ISNs with low quality

(a) Cottage v.s. Taily (b) Cottage v.s. Rank-S

Figure 12. Latency and quality distributions of Cottage on the Wikipedia
trace.

contributions but having an extremely long latency for

improved search response times. Although the P@10 search

quality is sacrificed to a limited extent, it is reasonable to

trade-off around 5% of the search quality for at least 2.17

times improvement in search latency. On the same figure, the

search quality of Taily on the Wikipedia trace is 0.887 and

its quality result on the Lucene trace is 0.878. Our design has

at least 6% better search quality than that of Taily. Finally,

Rank-S has the worst search quality results because of its

sampling design at the aggregator. In Rank-S, we only have

the relative rankings between ISNs based on the centralized

index samples. It is inevitable that cutoff of an ISN can be

imperfect. Its average P@10 quality is at most 0.709 and

25.13% worse than Cottage on the same trace.

Next, we plot the latency and P@10 quality results

together in Fig. 12. Every dot in the two figures represent

one query from the Wikipedia query trace. In Fig. 12 (a) and

(b), we observe that most of the queries on Cottage (green

dots) stay at the top-left of the figure, which means that

Cottage keeps a good search quality while keeping the

overall latency small. However, the queries of Taily (red

dots) in Fig. 12 (a) and the queries of Rank-S (blue dots) in

Fig. 12 (b) scatter across the entire range of quality. Their

optimizations are at the cost of poor search quality.

C. Energy Efficiency

We now evaluate the number of active ISNs for a query

after cutting off the slow ISNs, not contributing to the

query’s search quality. Fewer active ISNs means better

resource usage and energy efficiency. Fig. 13 shows the

average number of ISNs selected for a search request using

1000 seconds of the Wikipedia and Lucene traces. Since

exhaustive search doesn’t cut off any ISNs, its selected

number of ISNs is always 16 (i.e., all the ISNs in our

experimental setup). On both query traces, Cottage needs

at most only 6.81 out of 16 ISNs to achieve a search quality

of 0.947 as shown in Fig. 11. Our scheme enables the search

engine to use a minimal number of ISNs for a high quality

search result. By comparison, Taily retrieves results from

an average of 13 ISNs. Our scheme, Cottage, needs results

from almost 7 fewer ISNs than Taily (Fig. 13), but has 8%

121

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

Figure 13. The average number of selected ISNs for a query.

better P@10 quality than Taily, as seen in Fig. 11. This is

because of the more accurate neural network based quality

prediction. Similarly, the number of selected ISNs on Rank-

S is around 11 on both query traces, which is 61% higher

than that of Cottage.

With fewer ISNs and documents searched, the power

consumption of the entire search engine per query will also

reduce. However, the boosted frequencies of some slow

ISNs (e.g., ISNs 1 and 13 in Fig. 9) with high quality

contribution could increase the overall power consumption.

Fig. 14 compares the overall average power consumption of

different approaches, as well as the case when the search

engine is idle. As all the 16 ISNs of our Solr search engine

are deployed on the same physical server, we measure the

CPU chip’s package power (including the L1 cache) on

different ISN selection schemes to compare their energy

efficiency. The CPU power is measured by using the Intel

Running Average Power Limit (RAPL) interface, which

reads the counters on the CPU sensor. As shown in Fig. 14,

the power consumption of exhaustive search is around 36W

for both traces, as all the ISNs are active throughout the 1000

seconds experiment. Taily reduces the CPU power to around

25W because it cuts out some low quality ISNs. On average,

it saves a search engine’s power consumption by 31.12%

compared with the baseline exhaustive search. Similarly,

Rank-S has an average of 24W CPU power consumption

which is around 66% of exhaustive search. Finally, Cottage

consumes the least amount of CPU power among all the

compared approaches. It has an average of only 21W power

consumption. This is in spite the frequency boosting of

the slow ISNs that contribute significantly to the search

quality. The power saving of our approach compared with

exhaustive search is 41.3%, a significant reduction. Note that

the platform’s idle power is already 14.53W, so we add only

6.5W of additional power consumption. Cottage’s savings

come from the fact that it needs the least number of active

ISNs and searches the fewest documents for a good search

quality result.

D. Impact of Different Components

We now show how the accurate predictions and co-

ordinated design (between the aggregator and ISNs) in

Cottage contribute to its significant improvement in search

Figure 14. The power consumption on the Wikipedia and Lucene traces.

latency, quality and energy efficiency. To achieve this goal,

two variants of Cottage are implemented. The first variant,

Cottage-without ML, utilizes the Gamma distribution based

prediction of Taily to estimate each ISN’s quality contribu-

tion, instead of using the Machine Learning (ML) model.

By doing this, we can quantify the importance of accu-

rate quality prediction. Then, the second variant Cottage-

ISN removes the integration of the aggregator and ISNs.

In Cottage-ISN, we let each ISN make the optimization

decision independently, without the global visibility from

the aggregator. Comparing Cottage-ISN with the complete

Cottage, the impact of our coordinated design between the

aggregator and ISNs can be evaluated.

With the same Wikipedia and Lucene query traces, we

plot the latency, quality, active ISNs and searched docu-

ment comparison results in Fig. 15. Similar to previous

research [17], [19], [21], we utilize the performance metric

of CRES [21] to quantify the searched documents. CRES is

the number of documents across all the used ISNs to search

for the top-10 results for a given query (fewer the better).

Besides the Cottage variants, the results for exhaustive

search and Taily are also presented in the same figure.

As shown in Fig. 15 (a), the average query latencies are

reduced to 12-13ms for Cottage-ISN compared with the 15-

17ms average latencies for the baseline exhaustive search.

Although the average latency of Cottage-ISN is better than

that of Taily, it has 1.9 times higher latency than the

complete design of Cottage which exploits the coordination

between the aggregator and ISNs. This proves that the

coordinated design in Cottage significantly reduces a search

query’s latency. By comparing Cottage with Cottage-without

ML, we find that the more accurate quality prediction in

Cottage also contributes slightly to the latency improvement,

as it reduces the latency further by about 0.8ms compared

with the Cottage-without ML.

Next, we show the P@10 quality results in Fig. 15 (b).

Having a precise quality prediction, the P@10 qualities

in Cottage and Cottage-ISN are as high as 0.947-0.967.

However, the search quality deteriorates to around 0.85

if we use an inaccurate distribution-based prediction for

the quality contribution, as in Cottage-without ML. It is

essential to have an accurate neural network model for

quality predictions when improving a search engine’s effi-

122

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

(a) Latency (b) Quality (c) Active ISNs (d) CRES

Exhaustive CottageExhaustive Cottage Cottage-without ML Cottage-ISN TailyExhaustive Cottage Cottage-without ML Cottage-ISN Taily

Figure 15. The impacts of Machine Learning (ML) based predictions and coordinated design in Cottage.

ciency. Finally, we compare the resource usage of different

schemes, in terms of the active ISNs (Fig. 15 (c)) and

searched documents (Fig. 15 (d)). In Cottage-without ML

and Taily, the number of selected ISNs for a query is

around 13 and the corresponding searched documents are

0.25-0.27M. When we have a ML model in Cottage and

Cottage-ISN for better predictions, the resource usage for a

query reduces significantly. Fig. 15 (c) and (d) show that

the accurate quality prediction in Cottage produces 43%

additional reduction in active ISNs, as well as a 48% smaller

value for CRES .

VI. RELATED WORK

To improve the energy efficiency of data centers, most of

the existing work on server power management is based on

DVFS or Sleep states techniques. Pegasus [11] proposes a

feedback based DVFS scheme to save server power. Simi-

larly, TimeTrader [12] considers both the network slack and

server slack to save power for latency-critical applications.

Rubik [13] is a fine grain DVFS scheme which leverages

a service time distribution to select frequency for critical

requests. Both Rubik and Gemini [14] use an analytical

model to capture the request arrival variation. Gemini, on

the other hand, adopts neural network models to utilize the

per query service time variation. PowerNap [8] is a sleep-

based technique that dynamically switches the server state

between a minimal power consumption “nap” state and a

high performance active state, to accommodate workload

variations. Based on PowerNap, DreamWeaver [40] coa-

lesces requests across multiple cores so that some cores can

enter deeper sleep states. However, all these papers assume

that the time budget or the deadline for a query is known.

How to determine the time budget and to optimize it is the

subject of our paper. Reducing the time for each query will

improve the energy consumption.

There has been a lot of research done in the informa-

tion retrieval area to improve a distributed search engine’s

response time [25], [15], [6]. Selective search [18], [16],

[17], [41], [19] estimates the relevance of each ISN for a

specific query and only chooses the most promising ISNs

to search. CORI [42] represents each ISN by the number

of documents containing the query terms and ranks ISNs

based on their tf-idf scores. ReDDE [18] has a CSI at

the aggregator. On every request arrival, it is first looked

up at the CSI to get the top-K results. Then, ISNs are

ranked according to their contributions to the top-K sample

results. Rank-S [17] also uses the CSI but ranks the ISNs

in a different approach. Specifically, they first utilize the

matched documents from the CSI to form a tree structure.

The matched documents for a given query are leaves of the

tree from left to right in descending order of scores [17].

Every leaf node’s score is normalized by considering the

original score as well as its distance to the left-most leaf

node in the tree. A ISN’s final quality estimation is the

summation of all its documents’ normalized scores. Kim

et al. [41] proposed a shard ranking algorithm considering

each ISN server’s system load. While all these works focus

on the ISN ranking and have a fixed ISN dropping threshold,

QR [19] develops a machine learning based model to predict

the cutoff assuming the existence of a perfect ISN ranking.

Additionally, it extends the resource selection algorithm to

the search type of recall-driven. One major drawback of

the previous CSI based frameworks is their poor scalability.

Taily [21], which we compare against, avoids the CSI design

and makes the cutting off decision at ISNs independently. It

assumes that each ISN’s score follows a Gamma distribution.

VII. CONCLUSION

It is challenging to select the most appropriate group of

ISNs in a web search in order to achieve a good query

response time, search quality, and system efficiency. This

becomes harder when search requests exhibit high variance

in latency and quality. In this paper, we present Cottage,

a coordinated framework between the aggregator and ISNs

for latency and quality optimization in distributed search.

Cottage properly coordinates the predictions on individual

ISNs with full index information, and the time budget

optimization in the aggregator which has global visibility.

Our quality and latency predictions are enhanced by two

separate neural network models that have high prediction

accuracy. Cottage’s optimization algorithm considers each

ISN’s quality contribution and latency, while achieving

a good balance between the search latency, quality and

efficiency. Implementation results with real query traces

123

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

show that Cottage can reduce the average query latency

by 54% while searching nearly 2.67 times fewer documents

compared to exhaustive search, while still achieving a good

P@10 search quality of 0.947. The average power consump-

tion of Cottage is only 41.3% of the exhaustive search and

better than other existing techniques.

ACKNOWLEDGMENT

We thank the US NSF for their generous support through

grants CCF-1815643 and CNS-1763929.

REFERENCES

[1] R. Baeza-Yates, A. Gionis, F. P. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri, “Design trade-offs for search
engine caching,” ACM Trans. Web, vol. 2, no. 4, pp. 20:1–
20:28, Oct. 2008.

[2] B. B. Cambazoglu, V. Plachouras, and R. Baeza-Yates,
“Quantifying performance and quality gains in distributed
web search engines,” in Proceedings of the 32nd International
ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’09. ACM, 2009, pp. 411–
418.

[3] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien, “Efficient query evaluation using a two-level retrieval
process,” in Proceedings of the Twelfth International Confer-
ence on Information and Knowledge Management, ser. CIKM
’03. ACM, 2003, pp. 426–434.

[4] S. Ding and T. Suel, “Faster top-k document retrieval using
block-max indexes,” in Proceedings of the 34th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’11. ACM, 2011, pp. 993–
1002.

[5] L. Zhou, L. N. Bhuyan, and K. K. Ramakrishnan, “Swan: A
two-step power management for distributed search engines,”
in Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design, ser. ISLPED ’20. ACM,
2020, p. 67–72.

[6] J.-M. Yun, Y. He, S. Elnikety, and S. Ren, “Optimal aggre-
gation policy for reducing tail latency of web search,” in
Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser.
SIGIR ’15. ACM, 2015, pp. 63–72.

[7] X. Bai, I. Arapakis, B. B. Cambazoglu, and A. Freire,
“Understanding and leveraging the impact of response latency
on user behaviour in web search,” ACM Trans. Inf. Syst.,
vol. 36, no. 2, pp. 21:1–21:42, Aug. 2017.

[8] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap:
Eliminating server idle power,” SIGARCH Comput. Archit.
News, vol. 37, no. 1, pp. 205–216, Mar. 2009.

[9] M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini,
and K. S. McKinley, “Exploiting heterogeneity for tail latency
and energy efficiency,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. ACM, 2017, pp. 625–638.

[10] D. Wong and M. Annavaram, “Knightshift: Scaling the en-
ergy proportionality wall through server-level heterogeneity,”
in Proceedings of the 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, ser. MICRO-45.
IEEE Computer Society, 2012, p. 119–130.

[11] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis, “Towards energy proportionality for large-
scale latency-critical workloads,” in Proceeding of the 41st
Annual International Symposium on Computer Architecuture,
ser. ISCA ’14. IEEE Press, 2014, p. 301–312.

[12] B. Vamanan, H. B. Sohail, J. Hasan, and T. N. Vijaykumar,
“Timetrader: Exploiting latency tail to save datacenter energy
for online search,” in 2015 48th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2015, pp.
585–597.

[13] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez,
“Rubik: Fast analytical power management for latency-critical
systems,” in Proceedings of the 48th International Symposium
on Microarchitecture, ser. MICRO-48. ACM, 2015, p.
598–610.

[14] L. Zhou, L. N. Bhuyan, and K. Ramakrishnan, “Gemini:
Learning to manage cpu power for latency-critical search
engines,” in 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 2020, pp.
637–349.

[15] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Ry-
balkin, and C. Yan, “Speeding up distributed request-response
workflows,” in Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, ser. SIGCOMM ’13. ACM, 2013,
p. 219–230.

[16] P. Thomas and M. Shokouhi, “Sushi: Scoring scaled samples
for server selection,” in Proceedings of the 32Nd International
ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’09. ACM, 2009, pp. 419–
426.

[17] A. Kulkarni, A. S. Tigelaar, D. Hiemstra, and J. Callan,
“Shard ranking and cutoff estimation for topically partitioned
collections,” in Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, ser.
CIKM ’12. ACM, 2012, pp. 555–564.

[18] L. Si and J. Callan, “Relevant document distribution estima-
tion method for resource selection,” in Proceedings of the 26th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, ser. SIGIR ’03.
ACM, 2003, pp. 298–305.

[19] H. R. Mohammad, K. Xu, J. Callan, and J. S. Culpepper,
“Dynamic shard cutoff prediction for selective search,” in The
41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, ser. SIGIR ’18. ACM,
2018, pp. 85–94.

[20] C. Macdonald, N. Tonellotto, and I. Ounis, “Learning to
predict response times for online query scheduling,” in Pro-
ceedings of the 35th International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser.
SIGIR ’12. ACM, 2012, pp. 621–630.

124

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

[21] R. Aly, D. Hiemstra, and T. Demeester, “Taily: Shard selec-
tion using the tail of score distributions,” in Proceedings of
the 36th International ACM SIGIR Conference on Research
and Development in Information Retrieval, ser. SIGIR ’13.
ACM, 2013, pp. 673–682.

[22] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay,
“Accurately interpreting clickthrough data as implicit feed-
back,” SIGIR Forum, vol. 51, no. 1, pp. 4–11, Aug. 2017.

[23] S. J. Chen, X. Wang, Z. Qin, and D. Metzler, “Parameter
tuning in personal search systems,” in Proceedings of the 13th
International Conference on Web Search and Data Mining,
ser. WSDM ’20. ACM, 2020, p. 97–105.

[24] A. Kulkarni and J. Callan, “Document allocation policies for
selective searching of distributed indexes,” in Proceedings of
the 19th ACM International Conference on Information and
Knowledge Management, ser. CIKM ’10. ACM, 2010, p.
449–458.

[25] C. Chou, L. N. Bhuyan, and S. Ren, “Tailcut: Power reduction
under quality and latency constraints in distributed search
systems,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), June 2017, pp.
1465–1475.

[26] S. Kim, Y. He, S.-w. Hwang, S. Elnikety, and S. Choi,
“Delayed-dynamic-selective (dds) prediction for reducing ex-
treme tail latency in web search,” in Proceedings of the
Eighth ACM International Conference on Web Search and
Data Mining, ser. WSDM ’15. ACM, 2015, pp. 7–16.

[27] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia
workload analysis for decentralized hosting,” Comput. Netw.,
vol. 53, no. 11, pp. 1830–1845, Jul. 2009.

[28] N. Tonellotto, C. Macdonald, and I. Ounis, “Efficient and
effective retrieval using selective pruning,” in Proceedings of
the Sixth ACM International Conference on Web Search and
Data Mining, ser. WSDM ’13. ACM, 2013, pp. 63–72.

[29] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L.
Cox, and S. Rixner, “Predictive parallelization: Taming tail
latencies in web search,” in Proceedings of the 37th Interna-
tional ACM SIGIR Conference on Research & Development
in Information Retrieval, ser. SIGIR ’14. ACM, 2014, pp.
253–262.

[30] L. Zhou, C.-H. Chou, L. N. Bhuyan, K. K. Ramakrishnan,
and D. Wong, “Joint server and network energy saving in
data centers for latency-sensitive applications,” in 2018 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2018, pp. 700–709.

[31] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats,
“Timely: Rtt-based congestion control for the datacenter,” in
Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, ser. SIGCOMM ’15. ACM,
2015, pp. 537–550.

[32] E. Kanoulas, K. Dai, V. Pavlu, and J. A. Aslam, “Score
distribution models: Assumptions, intuition, and robustness to
score manipulation,” in Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’10. ACM, 2010, p.
242–249.

[33] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Proceedings of the 27th
International Conference on International Conference on Ma-
chine Learning, ser. ICML’10. Omnipress, 2010, p. 807–814.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning Rep-
resentations (ICLR), 2015.

[35] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates, “A
pipelined architecture for distributed text query evaluation,”
Inf. Retr., vol. 10, no. 3, pp. 205–231, Jun. 2007.

[36] H. Turtle and J. Flood, “Query evaluation: Strategies and
optimizations,” Inf. Process. Manage., vol. 31, no. 6, p.
831–850, Nov. 1995.

[37] C. Macdonald, I. Ounis, and N. Tonellotto, “Upper-bound
approximations for dynamic pruning,” ACM Trans. Inf. Syst.,
vol. 29, no. 4, pp. 17:1–17:28, Dec. 2011.

[38] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu,
T. Jackson, S. Kunnatur, S. Lassen, P. Pronin, S. Sankar,
G. Shen, G. Woss, C. Yang, and N. Zhang, “Unicorn: A
system for searching the social graph,” Proc. VLDB Endow.,
vol. 6, no. 11, pp. 1150–1161, Aug. 2013.

[39] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine
learning,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’16.
USENIX Association, 2016, pp. 265–283.

[40] D. Meisner and T. F. Wenisch, “Dreamweaver: Architectural
support for deep sleep,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ser. ASPLOS
XVII. ACM, 2012, pp. 313–324.

[41] Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat, “Load-
balancing in distributed selective search,” in Proceedings of
the 39th International ACM SIGIR Conference on Research
and Development in Information Retrieval, ser. SIGIR ’16.
ACM, 2016, pp. 905–908.

[42] J. P. Callan, Z. Lu, and W. B. Croft, “Searching distributed
collections with inference networks,” in Proceedings of the
18th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, ser. SIGIR
’95. ACM, 1995, p. 21–28.

125

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 11,2022 at 06:53:45 UTC from IEEE Xplore. Restrictions apply.

