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Abstract—Most CPU power management techniques for web
search assume that the time budget for a query is given a
priori. However, determining the time budget on a per query
granularity is challenging, because a difficult trade-off between
the search latency, quality and power consumption has to be
made. In this paper, we present Cottage, a coordinated time
budget assignment framework between the aggregator and
Index Serving Nodes (ISNs), which employs two distinct dis-
tributed search latency and quality predictors. The prediction
results are integrated at a centralized optimizer for selecting
the proper search time budget, while cutting off slow and low
quality ISNs. Cottage also accelerates slow ISNs that have a
high quality contribution, thus improving search quality. The
implementation results on the Solr search engine show that
Cottage outperforms state-of-the-art approaches with a 54%
latency reduction and 41.3% less consumed power. In addition,
the P@10 search quality with Cottage can still be as good as
0.947.

Keywords-selective search; time budget; distributed predic-
tion; power management;

I. INTRODUCTION

With the extraordinary jump in the number of web search
requests processed in data centers, distributed search has
become the standard to scale up a search engine’s capacity.
Distributed search [1], [2] typically employs a partition-
aggregate architecture, in which the requests at an aggregator
are broadcast to all Index Serving Nodes (ISNs) [3], [4] for
retrieving the most relevant results. In exhaustive search [5],
we have to wait for the responses from all ISNs to guarantee
the search quality. This significantly degrades a search
engine’s response time, as the search latency depends on the
slowest ISN’s, which can be a much longer than that of the
others [6], [7]. It is challenging to select the most appropriate
group of ISNs for a web search in order to achieve a good
query response time, quality, and energy efficiency. This
becomes even harder when the search requests exhibit high
variability in latency and quality.

In order to meet tight latency constraints, the utilization of
each ISN server of search engines is typically kept low [8],
[9], [10]. However, lightly loaded ISN servers waste a lot
of energy in the data center. This has prompted a number
of research efforts [11], [12], [9], [13] to save energy for
latency-critical search engines. They either slow down the

ISNs or put them to sleep, if there is a slack in meeting
the time budget. The main challenge is that search request
latencies have both short and long term variations and a
request’s computation requirement (i.e., total CPU cycles)
cannot be predicted accurately [9], [13]. We propose a neural
network (NN) model to predict the search latency at an ISN,
similar to [14]. But, we also predict the quality in this paper
using a separate NN model because we wish to reduce the
latency, without sacrificing quality. If we assume that the
aggregator of the search engine sends the top-K final results
to the client, an ISN’s quality is defined by the number of
documents it reports that will be included in the final top-K
results.

To achieve a balance between energy savings and meet-
ing the deadline, previous research work assumed that
the latency deadline (time budget) for a search query is
given [13], [11], [12]. However, our paper addresses the
fundamental question of how to determine this time budget,
given a certain quality constraint, as demanded by the users.
We propose to minimize the time budget and save power
by identifying and excluding slow ISNs from the search
operation. However, cutting down some ISNs may incur a
loss of quality. If there are some slow ISNs that greatly
contribute to the quality, we propose frequency boosting
so that they can finish earlier and the time budget can be
reduced. This reduction in the search time will automatically
reduce energy consumption. Hence, we explore the trade-off
between latency, quality and power consumption to arrive at
an optimal time budget for each query at the aggregator.

There has also been considerable research in the informa-
tion retrieval area to improve a distributed search engine’s
response time. Aggregation polices assume a stable request
pattern during a short time period and try to find an optimal
ISN cutoff for a set of queries [6], [15]. Selective search
[16], [17] is a widely used technique that leverages a Central
Sample Index (CSI) [18] at the aggregator to exclude ISNs
with low quality contribution. As the quality prediction for
ISNs can not be 100% accurate, it often needs a second
cutoff prediction [19]. In this paper, we propose Cottage (i.e.,
coordinated time budget assignment), a coordinated frame-
work integrating the prediction and decision making at
both the aggregator and the ISNs on a per-query basis.
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Figure 1. Partition-aggregate architecture of web search.

Cottage is scalable because we let each ISN predict its
processing time and quality contribution to the top- K ranked
results independently. Since the global view of query latency
and quality across all ISNs is needed for the time budget
determination, the latency prediction results at the ISNs are
sent back to the aggregator and used by our centralized
optimization algorithm to determine the cutoff time.

In this paper, two separate NN models with distinct query
features are developed at the ISN for quality and latency
prediction. All our query features are based on the term
statistics [20], which are calculated during the indexing
phase. The prediction accuracy of our quality model is
95.7% while only taking 80 microseconds for the inference.
Similarly, the latency prediction has a high accuracy of 87%
with negligible overheads.

With latency and quality predictions, the aggregator first
ranks the ISNs based on their predicted quality for top-
K results and cuts off those ISNs with zero contribution
to the top-K results. In order to consider high quality, but
slow ISNs, the remaining select ISNs are re-ranked based on
their latencies when using the highest CPU frequency. We
select this boosted latency as our search query’s deadline.
The aggregator’s ability to find the right balance between
quality and latency (because it has the visibility across
all ISNs) enables us to find a far superior, coordinated
decision compared to previous works. Moreover, in the high-
bandwidth and low latency data center environments of
today, the overhead for Cottage coordination between the
ISNs and the aggregator is negligible.

Implementation results on the Solr search engine show
that Cottage outperforms state-of-the-art frameworks, such
as the CSI based Rank-S [17] or the distributed design of
Taily [21]. Our average query latency on the Wikipedia and
Lucene traces is 2.41 times shorter compared with exhaus-
tive search, while searching 2.67 times fewer documents and
having 41.3% less power consumption. At the same time,
we achieve a good P@10 search quality [22] of 0.947. In
summary, we make the following contributions:

e We propose a coordinated framework between the
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Figure 2. The latency and quality contribution of search queries exhibit
high variations.

aggregator and ISNs, on a per query granularity, to
achieve a good balance between the search latency,
quality and energy efficiency.

Two separate neural network models are designed, with
distinct query features, to predict each ISN’s quality,
and latency.

Slow ISNs are cut off and a frequency boosting tech-
nique is designed to speed up slow ISNs that have high
quality contributions.

A centralized algorithm at the aggregator is proposed
to determine a query-specific time budget, considering
both the quality and latency predictions across the ISNs.
Our Cottage framework is implemented in a real testbed
using representative query traces to prove the superior-
ity of our technique.

II. BACKGROUND AND MOTIVATION

A distributed search engine typically employs a partition-
aggregate architecture [23] as shown in Fig. 1. A search
request arriving at the aggregator is broadcast to all the
ISNs, as the index is partitioned [24]. On receiving a search
request, an ISN server retrieves the relevant documents for
the query and only sends back the top-K scored results to
the aggregator. Finally, all the ISNs’ responses are merged
and ranked at the aggregator. The quality of search result
is usually measured by the Precision@K (e.g., P@10) [22]
metric, where K is the number of top ranked documents. In
Fig. 1, we observe that a search query’s overall latency on
the client side is determined by the slowest ISN (straggler),
if an exhaustive search is adopted [19].

A. Quality and Latency Variation

An ISN cutoff algorithm in aggregation policies usually
configures the same time budget for all the queries during an
epoch, according to the search history in the past [25]. How-
ever, it is well known that search request latencies on ISNs
exhibit high variance [20], [26], due to queuing as well as
variance in the number of retrieved documents. In Fig. 2 (a),
we plot the latency histogram of 10K search requests from a
representative Wikipedia query trace [27], measured on our
experimental testbed using exhaustive search. The ISN index
is from a complete dump of the Wikipedia database on Dec.
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Figure 3.

2018, with 34 million documents. Although the latency for
35.6% of the requests (shown in Fig. 2 (a)) are in the range
of 5Sms to 10ms, the remaining requests’ latencies fall in 12
different latency bins, shown on the X-axis, thus exhibiting
a long tail. With such a high variability in query processing,
cutting off the tail latency at a specific/premature point may
hurt the search quality. Hence, the goal of our research is
to design an optimal cut-off time that satisfies the quality
requirement of the client.

In addition to the request latency, the quality contribution
of an ISN to the P@10 search results can vary a lot as
well. Fig. 2 (b) reports the P@10 search results of the 10K
requests from the Wikipedia query trace. We measure the
number of ISNs that will contribute at least one document
to the P@10 results for a specific query. Although we have a
total 16 ISNs in our experiment, there are always some ISNs
that don’t contribute any documents to the P@ 10 results for a
given query. The Y-axis in Fig. 2 (b) is the count of queries
that have a certain number of ISNs with non-zero quality
contribution. We see that 3.48K of queries only need the
results of 8 (out of 16) ISNs. Thus, it is safe to cut off the
remaining ISNs’ responses, assuming that each ISN’s quality
contribution can be precisely predicted on a per-query basis.

B. Research Motivation

We first consider the case of exhaustive search. In Fig. 3
(a), the quality and latency result for the query “Canada”
on a Solr search engine with 16 ISNs is given. Exhaustive
search has a 100% P@10 search quality, but the time
budget on it has to be 28ms since we have to wait for the
results from the slowest ISN-1. Aggregation policies [25],
[6] cut off ’long-tail servers’ and aim at finding the optimal
average response time for most queries during a short time-
epoch. However, each ISN’s quality contribution to the top-
K search results is not factored. The results of aggregation
policy are presented in Fig. 3 (b), which show that the strag-
glers (colored grey, ISNs 1, 7, 13) are removed. Fig. 3 (b)
assumes that a time budget of 12ms produces the best latency
improvement for most of the queries during a short time
period. Excluding ISNs-1, 13 (with high quality contribution

115

Deadline

28 »s
3 2 o n
E > 0E
g's 153
el :
3 108
5 -

|
0 I 0
135 7 9 111315 135 7 9 111315
ISN IDs ISN IDs
(c) Selective Search (d) Cottage

(Precision = 1.0) (Precision = 1.0)

The policy comparison between exhaustive search, aggregation policy, selective search and Cottage.

120
100
[72]

£ 80
3 60
[

40
20

Late

o

97
86 76
70 65 o5
““llllisl40
12 14 16 18 2 22 24 27
CPU Frequency (GHz)

Figure 4. Search requests can be easily accelerated at ISNs by adjusting
the CPU frequency.

to the top-10 search results) will severely deteriorate the
search quality, by 20%.

Let us now look at selective search frameworks [18],
[16], [17], which only gather responses from a subset of
ISNs to reduce the resource usage of a distributed search
engine. They usually don’t consider the query latency on
ISNs while optimizing the search efficiency. In Fig. 3 (c),
ISN-4, 5, 7, 9, 10, 11, 12, 14, 15 will be cut off in the
selective search design. But the query “Canada” still has a
long overall latency when the low quality ISNs are excluded
from the final search results. Our design of Cottage as shown
in Fig. 3 (d) aims to consider both the latency and quality
when assigning a query’s time budget at the aggregator.
Cottage retains the ISNs with a long latency but a high
quality contribution, instead of directly dropping them off
in the aggregation policy. In the literature, pruning [28] or
parallelization [29] on an ISN is utilized to accelerate the
request processing. In this paper, we propose CPU frequency
scaling [30] to speed up the search request, as it doesn’t hurt
the search quality. In Fig. 4, we report the query’s latency
variation for different CPU frequencies. All the results are
measured on a 12-core Intel Xeon E5-2697 CPU. The results
demonstrate that a query’s latency decreases by 2.43 times
(i.e., from 97ms to 40ms) when we boost the CPU frequency
from 1.2 GHz to 2.7 GHz.

When we look carefully at the Fig. 3 (d), the overall search
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Figure 5. The Cottage framework needs the coordination between

aggregator and ISN servers for quality prediction, latency prediction and
time budget determination.

latency can continue to reduce if more ISNs are accelerated,
with the slowest ISN being accelerated the most. The time
budget chosen would have to be limited by the highest
available frequency on a CPU to avoid having a time budget
that is too small that results in some ISN responses missing
their deadlines and thus hurt the search quality. In Cottage,
we carefully select the time budget such that all the ISNs
with high quality contributions can be properly accelerated
to meet their deadlines.

III. COTTAGE DESIGN

The framework of Cottage has three major estimation
tasks: quality (contribution to the P@10 result) prediction,
latency prediction (including request queuing) and time
budget determination, all on a per query basis. The first two
predictions are conducted at the ISN level and become the
inputs to our algorithm for determining the time budget at
the aggregator.

A. Overview

The primary goal of Cottage is to reduce a search system’s
tail latency and resource consumption with negligible quality
loss. To achieve this optimization goal at the granularity
of an individual query, both local information at an ISN
and global statistics across ISNs have to be gathered. We
propose a coordinated design between the aggregator and
ISNs, where each ISN reports its quality and service time
prediction for a query. Then, the aggregator gathers this
information and assigns an appropriate time budget for the
query to have the optimal responsiveness and quality.

The overview of Cottage’s design is shown in Fig. 5.
Whenever a search request arrives at the aggregator, Cot-
tage will first broadcast the request to all the ISNs (step 1 in
the figure), as in exhaustive search. Step 2 is the prediction
of an ISN’s quality contribution to the P@10 result for a
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given query, for which we develop a NN model, described
in Section III-B. In addition to the quality prediction, at
step 2 each query’s service time has to be predicted as well.
Cottage employs a separate NN model with a number of
different query features for precisely estimating each query’s
service time at the current CPU frequency. In step 3 of Fig. 5,
the ISNs send both the quality and latency prediction results
back to the aggregator for time budget determination. Step 4
is the latency and quality optimization by using a centralized
optimizer at the aggregator. The major goal in this step is
to assign a dynamic time budget (i.e., deadline) for each
query. The process of determining the time budget is further
described in Section III-D.

The aggregator broadcasts the assigned time budget to
all the ISNs in step 5 of Fig. 5. Similar to prior power
management schemes [30], [14], the ISN completes the
search process within its given time budget in step 6. Finally,
in step 7, the ISN responses are integrated at the aggregator
and the search results from stragglers are dropped. For
example, in Fig. 5, only ISN-2 and ISN-3 will send their
responses to the aggregator, since ISN-1 and ISN-4 have a
low quality contribution or an excessively large predicted
latency. Thus, the tail latency for the parallel request across
the ISNs are reduced. The communication delay between the
aggregator and ISN is relatively small, since the data center
network round trip times are kept low (typically a few micro
seconds) [31], compared to the tens of milliseconds service
time of the search application. Although our framework
is described based on search engines in this paper, it can
be easily extended to other distributed applications that
employ a partition-aggregate architecture. In our framework,
the placement of centralized optimization and distributed
predictions naturally fits in a partition-aggregate architecture.
We just need to have the appropriate set of features for the
predictions and train new neural network models.

B. Quality Prediction

State-of-the-art shard ranking algorithms [16], [17], [18]
are centralized designs implemented at the aggregator. The
only distributed scheme we are aware of, Taily [21], assumes
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Table I
FEATURES FOR QUALITY PREDICTION

Feature Name Example for “Tokyo”
First quartile score 2.46
Arithmetic average score 4.88
Median score 7.16
Geometric average score 3.91
Harmonic average score 2.2
Third quartile score 4.72
K™ score 11.08
Max score 14.46
Score variance 8.22
Posting list length 5975

a Gamma distribution for a query’s scores against all the
relevant documents at an ISN. Instead, we develop a novel
NN model with carefully selected features to predict each
query’s quality contribution on an ISN. With better predic-
tion accuracy, Cottage avoids inappropriately dropping an
ISN’s response that would be able to eventually contribute
to the final P@10 result for a client.

Let us assume that the aggregator of the search engine
sends the top-K final results to the client. Then, an ISN’s
quality is defined by the number of documents it reports
that will be included in the final top-K results. If we can
infer a search query’s dynamic score histogram, it is then
easy to predict an ISN’s quality on a per-query basis. In
Fig. 6, we present the histogram (the blue bars) of relevant
scores on ISN-1 for a specific query. Documents without any
relevant query terms are ignored. This observation motivated
the design of Taily [21] to dynamically predict a query’s
score distribution by assuming that the score distribution
follows a Gamma distribution [32], [21]. At runtime they
predict the parameters of the Gamma distribution according
to static query term statistics which are obtained during
the indexing phase. However, a query’s scores typically
do not perfectly fit a Gamma distribution, thus resulting
in an inaccurate ISN cutoff. In Fig. 6, we also plot the
fitted Gamma distribution (the red line). We observe that the
P(X > K'™) from the Gamma distribution is not quite the
same as the distribution shown in the histogram. It has the
potential for us to improperly cutoff some ISNs that would
significantly contribute to the top-K results. Thus, search
quality will suffer.

Cottage proposes a NN model to predict each query’s
quality contribution. In the model, we predict the number of
documents at an ISN that will be included in the correspond-
ing top-K results. Table I lists all the features used in our
neural network model. Our design is based on the premise
that we can utilize the query’s aggregated statistics, such as
the arithmetic average score and max. score, to capture the
score distribution. By training the model with a large amount
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Figure 7. The prediction accuracy and inference time for quality prediction.

of observed samples from the past, we can accurately predict
a query’s quality when observing similar score distributions.
The different score percentiles, as listed in Table I row 2 to
10, can be easily obtained from index term statistics [20],
[26], [29]. Although two queries might have the same score
distribution, their quality contribution might be different as
the number of documents they have to search are different.
Thus, the posting list length (i.e., document count) becomes
our last, but very important, query feature in Table 1. If
personalized search is adopted by the service provider, the
document scores will also be determined by customized
term weights besides the term itself. Typically, we will give
personalized term-weights for each person based on the user
profile. In such a case, our prediction features have to be
extended to include user-profile related features. Similar to
prior work [19], [17], [21], [16], we first design our scheme
on a search architecture, without personalization, but we plan
to extend our scheme to personalized search in the future.

For model training, we select a NN model with 5-hidden
layers as it maintains a good balance between accuracy
and inference time. Each hidden layer has 128 neurons
and uses the ReLU activation function [33]. The model
is trained by the Adam optimization algorithm [34] with
sparse categorical cross-entropy loss function. Fig. 7 gives
the prediction accuracy and inference time of our quality
prediction. Based on the query features listed in Table I,
we can see that the accuracy of quality prediction (left-hand
side Y-axis of Fig. 7(a)) improves when we train the model
over more iterations to reduce the value of loss function
(right hand side Y-axis of the same figure). We reach a point
of diminishing improvement after 600 training iterations.
The accuracy and inference time results on different ISNs
are presented in Fig. 7(b). Each ISN has a separate neural
network model trained with its own index data. We can
observe that our quality predictor achieves an average of
94.71% accuracy (left-hand side Y-axis) across ISNs. In
addition to the prediction accuracy, the inference time for
each query may be another important metric. The good
news is that the inference time for our quality prediction
is negligible, and is at most only 41 usecs., compared to the
tens of milliseconds for a query’s service time [29].
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Table II
FEATURES FOR LATENCY PREDICTION

Feature Name Example for ‘“Toyota”
Posting list length 20742
Documents ever in top-K 85
Number of local 3084
score maxima

Number of local score

maxima which is larger 2639
than mean score

Number of max score 1
Query length 1
Documents in 5% of max 199
score

Documents in 5% of K" 100
score

Arithmetic average score 9.34
Geometric average score 9.05
Harmonic average score 8.68
Max score 14.81
Estimated max score 1131
Score variance 5.99
IDF 6.81

C. Latency Prediction

In web search, the documents on a query’s posting list
are scored one by one to find the most relevant search
results. Intuitively, a query’s service time at an ISN server
is roughly proportional to the length of its posting list [35].
However, the adoption of dynamic pruning techniques such
as MaxScore [36] and WAND [3] in search engines makes it
difficult for a linear predictor to achieve perfect prediction
accuracy. Some documents on the posting list with a low
probability of being in the top-K results are also skipped
in such dynamic pruning strategies [4], [20]. In Cottage,
we design a separate NN model with a distinct set of
query features to accurately predict a request’s service time.
Although a neural network based service time prediction
has been used in prior works [20], [26], [29], the effect
of frequency scaling and request queuing have not been
considered. We believe these significantly affect a query’s
latency [12], [30].

The query features for service time prediction are given in
Table II. The features, Posting List Length and Documents
Ever in Top-K, describe the potential number of documents
that will be traversed by the dynamic pruning strategies.
Then, we also use the features from rows four to six in
Table II to estimate the number of local peaks on the score
distribution. In a nutshell, existing pruning strategies seek to
keep the up-to-date highest scores and skip documents with
low predicted scores. A local peak (or maxima) on the score
distribution promises a potential high score and we have to
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prediction.

fully search its document. The remaining query features in
Table II, such as Documents in 5% of Max Score and Score
Variance, represent the aggregated statistics of the score
distribution. The Estimated MaxScore is an approximation
of the max. score based on the algorithm in [37]. If a query
phrase has multiple terms, we can use the MAX or SUM
operator to aggregate all query terms’ feature values. In our
experiments, we choose the MAX operator to calculate the
phrase features.

Similar to the quality prediction, we utilize a NN model
with 5-hidden layers for the latency prediction. The only
difference is that the latency predictor has more neurons on
the output layer due to the higher variability of a query’s
service time. By using the query features from Table II, our
latency predictor has the best performance when we train
it for 60 iterations as shown in Fig. 8(a). After the 60th
iteration, its prediction accuracy flattens out at 87%. Let
us examine the detailed prediction accuracy and inference
time results in Fig. 8(b). An average of 87.23% queries
in Fig. 8(b) (left-hand side Y-axis) can have an accurate
latency prediction. Compared with the quality predictor, the
latency predictor’s accuracy on average is lower because a
search request’s latency is more easily affected by system
conditions (e.g., operating system scheduler and context
switches). Finally, we report the model inference time on
various ISNs in Fig. 8(b) (right-hand side Y-axis). A search
request’s inference time on average is as little as 70.25
microseconds. Compared to the quality predictor, the higher
prediction overhead for the latency predictor is due to having
more input neurons (i.e., query features) and output neurons
(i.e., possible latency values) in our model. But, its overhead
is still only 0.15% of a query’s service time [29].

ISN servers can select different CPU frequencies to
change a search request’s processing speed. In Cottage, all
the predicted service times are conditioned by the default
frequency faefquie. Thus, the request R;’s service time .S;
at the current frequency f becomes:

Si - SiPredict * fdefault/f (1)

where SPredict js the predicted service time at the default

frequency fqefaur from our NN model. Here, we assume
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that a search request’s work is compute intensive and its ser-
vice time is inversely proportional to the selected frequency
f- Besides the selected CPU frequency, the request’s queuing
also significantly affects a query’s service time. For latency
prediction, Cottage will return a request’s equivalent latency
[30], [13], [12] to the aggregator, which considers both the
service time and queuing time. The definition for the N*"
request’s equivalent latency Sy is:

N
Sy = (Z SzPTediCt * fdefault)/f @)
i=1
D. Time Budget Determination

The optimizer for time budget determination in Cot-
tage needs the two predictors described above: for the quality
contribution and for the latency. As shown in Fig. 9, both
the Quality-K (black bar) and Quality-K/2 (blue bar),
(both related to the left-hand side Y-axis) are used by
our algorithm. The Quality-/K/2 prediction is the number
of documents that an ISN will contribute to the top-K/2
client-side results. Similarly, Cottage obtains each ISN’s
predicted latency under the current CPU frequency f (yellow
line) and the highest CPU frequency (green line), (both
using right-hand side Y-axis). The boosted latency is the
shortest time that an ISN server can finish a request through
frequency boosting. With the aforementioned quality and
latency predictions, our algorithm dynamically assigns a
minimal time budget to the parallel search requests such
that the latency and search efficiency are optimized with
negligible quality loss.

The details of the time budget determination algorithm
is shown in Algorithm 1. I is the set of ISNs for a search
engine. Each ISN I; has four prediction results: the quality-
K Q¥ quality-K/2 Q*/2, latency under current frequency
Levwrrent and latency under highest frequency LP°°%t¢d. In
the first stage of the algorithm (line 3-11), all the ISNs
are ranked by the Quality-K predictions. To improve the
search efficiency, the ISNs with zero Quality-K are cut off
and removed from the ISN set I. Specifically, the ISN-4,
9, 12, 14 on the example of Fig. 9 are cut off. In line 12
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Algorithm 1: Time Budget Determination

1 I: set of ISNs associated with quality and latency
predictions < QK7 QK’/Q’Lcurrent7 Lboosted >
T time budget
sort (I, QF)
j=0,N = I.size()
while j < N do
if 1;.Q% equals O then
drop ISN I;
remove I; from I
end
J=7+1
end
DescSort (I,
T = Io.LbOOStEd
Jj=0,N = ILsize()
while j < N do

[N G R- N7 I RO )

Lboosted )

16 | if 1;.Q%/? # 0 then
17 T = Ij.LbOOStad
18 break

19 end

20 j=7+1

21 end

of Algorithm 1, Cottage re-ranks the remaining ISNs by
the descending order of boosted latency because we want
to find the shortest time budget to meet quality constraints.
In Fig. 9, the re-sorted ISN list is <7, 1, 13, 2, 6, 5, 15,
16, 3, 8, 10, 11>. Then, the lines 13-21 of Algorithm 1
try every ISN’s boosted latency as the time budget from the
beginning to the end of ISN set I, until an ISN j has a
quality contribution to the top-K/2 results. We select ISN
7’s boosted latency as the final time budget 7'. The time
complexity of our algorithm is O(nlg(n)), in which n is the
number of ISNs. However, commercial search engines like
Facebook’s Unicorn [38] employ query rewriting techniques
to limit their searching to only a few hundred ISNs. For this
range, our optimizer can scale well.

Fig. 9 gives an example to explain our algorithm. Since
ISN-7 has the longest boosted latency of 18 milliseconds,
its latency can be the initial time budget. However, we
observe that most of other ISNs have a much shorter current
latency and boosted latency than 18 milliseconds. Because
the ISN-7 doesn’t contribute any documents to the most
important top-K/2 results [22], we believe it is reasonable
to sacrifice a little bit of the bottom K /2 result’s quality
for a better response time. The overall latency of the entire
search engine would deteriorate significantly if we retained
ISN-7, even though we have already got most of the relevant
results without ISN-7. In Cottage, we choose the ISN-1’s
boosted latency of 16 milliseconds as the time budget, and
exclude ISN-7 from the final search results. Because ISN-
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Figure 10. On both query traces, Cottage reduces the average client-side latency by 54%.

1 contributes one document to the most important top-K/2
results, we have to keep ISN-1 and cannot reduce the time
budget further. Compared with the previous selective search
schemes [16], [17], [19] which only consider the quality con-
tributions, Cottage’s algorithm reduces the tail latency to 16
ms. On the other hand, existing aggregation polices [6], [25],
[15] cut off ISN-1 because of its higher search latency, thus
ignoring its significant quality contribution. Our algorithm
achieves a proper balance between the search quality and
latency. After determining the time budget, ISN-1 and ISN-
13 will boost their current CPU frequency as their predicted
latency at the current frequency is larger than the given time
budget.

IV. IMPLEMENTATION

We implemented our framework on the well-known Solr
search engine. In Solr, the application instance can work as
the aggregator or as an ISN server. On a search request’s
arrival, if there are multiple destination shards, the Solr
instance works as an aggregator and distributes the search
request to multiple ISNs. Our centralized optimizer is im-
plemented after the aggregator broadcasts the request to all
of its destinations. As the Solr search engine already has
multiple rounds of communications between the aggrega-
tor and ISNs with components that implement the logic
for handling a search query, the gathering of quality and
latency predictions in Cottage are implemented by adding
an additional query component to minimize the overhead. If
a search request’s destination matches a Solr instance’s 1D,
then it is viewed as a local request and the Solr instance
works as an ISN server. At the ISN, the logic of Cottage is
implemented before the ISN begins to process the query.
In Cottage, we use the Keras API of TensorFlow [39] to
achieve the neural network prediction models.

In our experiments, the client machine and the search
engine server is connected by a 1G Ethernet link. The
Solr search engine is deployed on a platform with a 24
core Intel Xeon ES5-2697 CPU, 128G memory running
the CentOS 7 operating system. We utilize the Advanced
Configuration and Power Interface (ACPI) to update the
CPU core’s frequency during runtime. Our CPU frequency
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can be selected in the range from 1.2 GHz to 2.7 GHz.
The search engine node supports per core frequency scaling.
For simplicity, we take the maximum frequency (2.7 GHz)
as the boosted frequency. On the client side, we wrote a
Python program to replay our real search query traces. The
Wikipedia [27] and the Lucene nightly benchmark [9] query
traces are used. For the server, a 16-ISNs Solr search engine
is deployed with the index derived from a dump of entire
English Wikipedia web pages on December 1st, 2018. A
total of 34 millions documents are included in our index.

V. EVALUATION RESULTS

We compare Cottage with the baseline policy of exhaus-
tive search as well as the state-of-the-art schemes such
as Rank-S [17] and Taily [21]. For the baseline, a search
request will be executed on every ISN of the distributed
search engine. In exhaustive search, the aggregator sends
search responses to the client only when it receives the
response from the slowest ISN. Rank-S is a centralized
design in which each ISN’s quality contribution is estimated
by using a CSI. In our experiments, every ISN’s index is
sampled at 1% to form the CSI at the aggregator. Rank-
S uses the fixed threshold for all requests to cutoff low
quality ISNs. Cottage is also compared with a distributed
design, Taily. The major feature of Taily is that it uses a
Gamma distribution for the scores to infer each ISN’s quality
contribution.

A. Overall Latency

The overall latency results for the Wikipedia and Lucene
query traces running for 1000 seconds, are presented in
Fig. 10. In Fig. 10 (a) for the Wikipedia trace, the requests’
overall latency (black line) using exhaustive search varies in
the range of 4ms to 65ms. The overall latency of Taily (red
dots) is similar to exhaustive search most of the time. This is
because Taily only cuts off the ISNs without any contribution
to the top-10 results, and ignores the latency dimension.
Thus sometimes a low quality ISN may have a large latency
(e.g., the query made around the 780th second). We plot the
corresponding average and 95th percentile tail latencies in
Fig. 10 (b). Taily only marginally improves upon exhaustive
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search, with the average request latency only reducing by
1.16% and the 95th tail latency by 1.2%.

In Fig. 10 (a) and (b), Rank-S (blue line) has better
performance than Taily. It improves the average request
latency by 11.12% (from 17.26ms with exhaustive search to
15.34ms). The improvement of 95th tail latency is similar.
However, due to the sampling design of Rank-S, we only
know the relative importance between ISNs, without any
knowledge of their contributions to the P@ 10 results. Thus,
Rank-S may wrongly cutoff more ISNs and thus produce a
better overall latency, but at the cost of quality. Among all
the compared frameworks, our design, Cottage, achieves the
smallest request latency in Fig. 10 (a). Fig. 10 (b) shows
that Cottage reduces the average latency of requests in the
Wikipedia trace by 54% compared to exhaustive search.
Additionally, we improve the request’s 95th tail latency by
2.6 times, from 39ms in exhaustive search, to 15ms. Further,
Fig. 10 (c) and (d) plot the latency results with the Lucene
query trace. Cottage has a 2.29 times better average latency
and 2.74 times better 95th tail latency than exhaustive search,
respectively with the Lucene query trace. The major reason
for our latency reduction is because of the cutting off of
the latency tail when it has a low quality contribution, and
accelerating the ISNs that have a long latency, but have a
high quality contribution.

B. P@10 Quality

Besides the request’s latency, the P@10 quality is another
very important performance metric for a search engine. We
reiterate that P@10 denotes the probability that an ISN’s
search result is selected as one of the top-10 query responses,
returned to the client by the aggregator. With the same
experiment setup above, we measure the search requests’
P@10 quality for both the Wikipedia and Lucene traces.
The average P@10 quality results for 1000 seconds are
reported in Fig. 11. Since every document in the entire data
collection will be retrieved in exhaustive search, its P@10
search quality is always 1. In Fig. 11, Cottage achieves an
average P@10 search quality of 0.947 on the Wikipedia
trace due to its accurate per query quality prediction. We
also have a good P@10 quality of 0.955 on the Lucene
trace. In Cottage, we exclude the ISNs with low quality
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Figure 12. Latency and quality distributions of Cottage on the Wikipedia
trace.

contributions but having an extremely long latency for
improved search response times. Although the P@10 search
quality is sacrificed to a limited extent, it is reasonable to
trade-off around 5% of the search quality for at least 2.17
times improvement in search latency. On the same figure, the
search quality of Taily on the Wikipedia trace is 0.887 and
its quality result on the Lucene trace is 0.878. Our design has
at least 6% better search quality than that of Taily. Finally,
Rank-S has the worst search quality results because of its
sampling design at the aggregator. In Rank-S, we only have
the relative rankings between ISNs based on the centralized
index samples. It is inevitable that cutoff of an ISN can be
imperfect. Its average P@10 quality is at most 0.709 and
25.13% worse than Cottage on the same trace.

Next, we plot the latency and P@10 quality results
together in Fig. 12. Every dot in the two figures represent
one query from the Wikipedia query trace. In Fig. 12 (a) and
(b), we observe that most of the queries on Cottage (green
dots) stay at the top-left of the figure, which means that
Cottage keeps a good search quality while keeping the
overall latency small. However, the queries of Taily (red
dots) in Fig. 12 (a) and the queries of Rank-S (blue dots) in
Fig. 12 (b) scatter across the entire range of quality. Their
optimizations are at the cost of poor search quality.

C. Energy Efficiency

We now evaluate the number of active ISNs for a query
after cutting off the slow ISNs, not contributing to the
query’s search quality. Fewer active ISNs means better
resource usage and energy efficiency. Fig. 13 shows the
average number of ISNs selected for a search request using
1000 seconds of the Wikipedia and Lucene traces. Since
exhaustive search doesn’t cut off any ISNs, its selected
number of ISNs is always 16 (i.e., all the ISNs in our
experimental setup). On both query traces, Cottage needs
at most only 6.81 out of 16 ISNs to achieve a search quality
of 0.947 as shown in Fig. 11. Our scheme enables the search
engine to use a minimal number of ISNs for a high quality
search result. By comparison, Taily retrieves results from
an average of 13 ISNs. Our scheme, Cottage, needs results
from almost 7 fewer ISNs than Taily (Fig. 13), but has 8%
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better P@10 quality than Taily, as seen in Fig. 11. This is
because of the more accurate neural network based quality
prediction. Similarly, the number of selected ISNs on Rank-
S is around 11 on both query traces, which is 61% higher
than that of Cottage.

With fewer ISNs and documents searched, the power
consumption of the entire search engine per query will also
reduce. However, the boosted frequencies of some slow
ISNs (e.g., ISNs 1 and 13 in Fig. 9) with high quality
contribution could increase the overall power consumption.
Fig. 14 compares the overall average power consumption of
different approaches, as well as the case when the search
engine is idle. As all the 16 ISNs of our Solr search engine
are deployed on the same physical server, we measure the
CPU chip’s package power (including the L1 cache) on
different ISN selection schemes to compare their energy
efficiency. The CPU power is measured by using the Intel
Running Average Power Limit (RAPL) interface, which
reads the counters on the CPU sensor. As shown in Fig. 14,
the power consumption of exhaustive search is around 36 W
for both traces, as all the ISNs are active throughout the 1000
seconds experiment. Taily reduces the CPU power to around
25W because it cuts out some low quality ISNs. On average,
it saves a search engine’s power consumption by 31.12%
compared with the baseline exhaustive search. Similarly,
Rank-S has an average of 24W CPU power consumption
which is around 66% of exhaustive search. Finally, Cottage
consumes the least amount of CPU power among all the
compared approaches. It has an average of only 21W power
consumption. This is in spite the frequency boosting of
the slow ISNs that contribute significantly to the search
quality. The power saving of our approach compared with
exhaustive search is 41.3%, a significant reduction. Note that
the platform’s idle power is already 14.53W, so we add only
6.5W of additional power consumption. Cottage’s savings
come from the fact that it needs the least number of active
ISNs and searches the fewest documents for a good search
quality result.

D. Impact of Different Components

We now show how the accurate predictions and co-
ordinated design (between the aggregator and ISNs) in
Cottage contribute to its significant improvement in search
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latency, quality and energy efficiency. To achieve this goal,
two variants of Cottage are implemented. The first variant,
Cottage-without ML, utilizes the Gamma distribution based
prediction of Taily to estimate each ISN’s quality contribu-
tion, instead of using the Machine Learning (ML) model.
By doing this, we can quantify the importance of accu-
rate quality prediction. Then, the second variant Cottage-
ISN removes the integration of the aggregator and ISNs.
In Cottage-ISN, we let each ISN make the optimization
decision independently, without the global visibility from
the aggregator. Comparing Cottage-ISN with the complete
Cottage, the impact of our coordinated design between the
aggregator and ISNs can be evaluated.

With the same Wikipedia and Lucene query traces, we
plot the latency, quality, active ISNs and searched docu-
ment comparison results in Fig. 15. Similar to previous
research [17], [19], [21], we utilize the performance metric
of Crps [21] to quantify the searched documents. Crpg is
the number of documents across all the used ISNs to search
for the top-10 results for a given query (fewer the better).
Besides the Cottage variants, the results for exhaustive
search and Taily are also presented in the same figure.
As shown in Fig. 15 (a), the average query latencies are
reduced to 12-13ms for Cottage-ISN compared with the 15-
17ms average latencies for the baseline exhaustive search.
Although the average latency of Cottage-ISN is better than
that of Taily, it has 1.9 times higher latency than the
complete design of Cottage which exploits the coordination
between the aggregator and ISNs. This proves that the
coordinated design in Cottage significantly reduces a search
query’s latency. By comparing Cottage with Cottage-without
ML, we find that the more accurate quality prediction in
Cottage also contributes slightly to the latency improvement,
as it reduces the latency further by about 0.8ms compared
with the Cottage-without ML.

Next, we show the P@10 quality results in Fig. 15 (b).
Having a precise quality prediction, the P@10 qualities
in Cottage and Cottage-ISN are as high as 0.947-0.967.
However, the search quality deteriorates to around 0.85
if we use an inaccurate distribution-based prediction for
the quality contribution, as in Cottage-without ML. It is
essential to have an accurate neural network model for
quality predictions when improving a search engine’s effi-
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ciency. Finally, we compare the resource usage of different
schemes, in terms of the active ISNs (Fig. 15 (c)) and
searched documents (Fig. 15 (d)). In Cottage-without ML
and Taily, the number of selected ISNs for a query is
around 13 and the corresponding searched documents are
0.25-0.27M. When we have a ML model in Cottage and
Cottage-ISN for better predictions, the resource usage for a
query reduces significantly. Fig. 15 (c¢) and (d) show that
the accurate quality prediction in Cottage produces 43%
additional reduction in active ISNs, as well as a 48% smaller
value for Crps.

VI. RELATED WORK

To improve the energy efficiency of data centers, most of
the existing work on server power management is based on
DVES or Sleep states techniques. Pegasus [11] proposes a
feedback based DVFS scheme to save server power. Simi-
larly, TimeTrader [12] considers both the network slack and
server slack to save power for latency-critical applications.
Rubik [13] is a fine grain DVFS scheme which leverages
a service time distribution to select frequency for critical
requests. Both Rubik and Gemini [14] use an analytical
model to capture the request arrival variation. Gemini, on
the other hand, adopts neural network models to utilize the
per query service time variation. PowerNap [8] is a sleep-
based technique that dynamically switches the server state
between a minimal power consumption “nap” state and a
high performance active state, to accommodate workload
variations. Based on PowerNap, DreamWeaver [40] coa-
lesces requests across multiple cores so that some cores can
enter deeper sleep states. However, all these papers assume
that the time budget or the deadline for a query is known.
How to determine the time budget and to optimize it is the
subject of our paper. Reducing the time for each query will
improve the energy consumption.

There has been a lot of research done in the informa-
tion retrieval area to improve a distributed search engine’s
response time [25], [15], [6]. Selective search [18], [16],
[17], [41], [19] estimates the relevance of each ISN for a
specific query and only chooses the most promising ISNs
to search. CORI [42] represents each ISN by the number
of documents containing the query terms and ranks ISNs

#ofISNs
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The impacts of Machine Learning (ML) based predictions and coordinated design in Cottage.

based on their tf-idf scores. ReDDE [18] has a CSI at
the aggregator. On every request arrival, it is first looked
up at the CSI to get the top-K results. Then, ISNs are
ranked according to their contributions to the top-K sample
results. Rank-S [17] also uses the CSI but ranks the ISNs
in a different approach. Specifically, they first utilize the
matched documents from the CSI to form a tree structure.
The matched documents for a given query are leaves of the
tree from left to right in descending order of scores [17].
Every leaf node’s score is normalized by considering the
original score as well as its distance to the left-most leaf
node in the tree. A ISN’s final quality estimation is the
summation of all its documents’ normalized scores. Kim
et al. [41] proposed a shard ranking algorithm considering
each ISN server’s system load. While all these works focus
on the ISN ranking and have a fixed ISN dropping threshold,
QR [19] develops a machine learning based model to predict
the cutoff assuming the existence of a perfect ISN ranking.
Additionally, it extends the resource selection algorithm to
the search type of recall-driven. One major drawback of
the previous CSI based frameworks is their poor scalability.
Taily [21], which we compare against, avoids the CSI design
and makes the cutting off decision at ISNs independently. It
assumes that each ISN’s score follows a Gamma distribution.

VII. CONCLUSION

It is challenging to select the most appropriate group of
ISNs in a web search in order to achieve a good query
response time, search quality, and system efficiency. This
becomes harder when search requests exhibit high variance
in latency and quality. In this paper, we present Cottage,
a coordinated framework between the aggregator and ISNs
for latency and quality optimization in distributed search.
Cottage properly coordinates the predictions on individual
ISNs with full index information, and the time budget
optimization in the aggregator which has global visibility.
Our quality and latency predictions are enhanced by two
separate neural network models that have high prediction
accuracy. Cottage’s optimization algorithm considers each
ISN’s quality contribution and latency, while achieving
a good balance between the search latency, quality and
efficiency. Implementation results with real query traces
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show that Cottage can reduce the average query latency
by 54% while searching nearly 2.67 times fewer documents
compared to exhaustive search, while still achieving a good
P@10 search quality of 0.947. The average power consump-
tion of Cottage is only 41.3% of the exhaustive search and
better than other existing techniques.
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