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ABSTRACT
Current information retrieval (IR) systems still face plenty of chal-
lenges when applied in addressing complex search tasks (CSTs) that
trigger multi-round search iterations. Existing relevance-oriented
optimization algorithms and metrics are limited in helping users
�nd documents that are useful for completing CSTs, rather than
merely topically relevant. To address this gap, our work aimed
to characterize CSTs from a process-oriented perspective and de-
velop a state-based adaptive approach to simulating and evaluating
search path recommendations. Based on the data collected from
80 journalism search sessions, we �rst extracted intention-based
task states from participants’ annotations to characterize temporal
their temporal cognitive changes in searching and validated the
state labels with expert assessments. Built upon the state labels and
state distribution patterns, we then developed a simulated adaptive
search path recommendation approach, aiming to help users �nd
needed useful documents quicker. The results demonstrate that 1)
di�erent types of CSTs can be di�erentiated based on their distinct
state distribution and transition patterns; 2) After a small number of
iterative training, our adaptive recommendation algorithm can con-
sistently outperform the best possible performance from individual
participants in terms of the useful-based search e�ciency across
all CSTs. Going beyond traditional static viewpoint of task facets
and relevance-focused evaluation approach, our work characterizes
CSTs with a dynamic perspective and develops a domain-speci�c
adaptive search algorithm that can help users �nd useful docu-
ments quicker and learn from online search logs. Our �ndings can
facilitate future exploration of adaptive search path adjustments
for similar types of CSTs in other domains and work task scenarios.
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1 INTRODUCTION
Current search technologies and digital libraries still face plenty
of challenges when applied in addressing complex search tasks that
trigger multi-round interactions between users and information
(e.g., �nding useful information for applying for PhD programs or
deciding investment portfolios) [8, 35, 36, 44]. Part of the complexity
of this problem is re�ected in the cognitive variation, transitions
of sub-goals, as well as signi�cant behavioral changes during the
process of search interactions. In prolonged search sessions, while
most of explicit behavioral variations (e.g., query reformulation,
search result browsing, changes of eye �xations) can be directly
observed and recorded, the implicit change in users’ search task
states (e.g., exploration, know-item focused search, learning and
evaluation) is di�cult tomonitor or predict. Learning about changes
in task states would allow researchers to better understand 1) how a
user navigates through an evolving problem space via information
searching and 2) how the dynamic nature of a complex search task
is manifested through search processes [23]. Also, with respect to
practical applications, it is believed that the knowledge about users’
cognitive variations in search interactions can help tailor search
paths to adaptively supporting task performances.

A large body of existing interactive information retrieval (IR)
research have conceptualized tasks as static problems or prede�ned
goals that motivate users interact with search systems. Empiri-
cal studies built upon this static de�nition have explored multiple
facets of search tasks (e.g., task complexity, task topic) and their
associations with search actions. However, as a search session pro-
ceeds, the impacts of prede�ned facets on users’ sub-goals and local
search steps gradually fade away [22]. With very little research
exploring the dynamic nature of complex search tasks, it is unclear
how these tasks are unfolded during search interactions, and how
we can adaptively improve and optimize search recommendations
according to task state transitions. Consequently, an unfortunately
signi�cant proportion of search interactions is repetitive, ine�-
cient, or unpleasant. Left unchecked, this problem has far-reaching
e�ects on people’s productivity, learning performance, as well as
the quality of critical decision-making.

To address this research gap, we re-conceptualize complex search
tasks from a process-oriented perspective and de�ne them as search
tasks that involve uncertain, broad solution space and evolve over
time during search processes. Built upon this de�nition, we char-
acterize the dynamic nature of complex search tasks and utilize
explict search interaction signals and the knowledge of task states
in building state-aware adaptive search recommendations, with
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the goal of helping users �nd necessary useful information quicker.
Speci�cally, we aim to answer three research questions:
• RQ1: How do users’ task states vary during search interactions
in complex search tasks of di�erent types?

• RQ2: How can we leverage task state information and user inter-
action signals in developing adaptive search supports for users
engaging in complex search tasks?
In interactive IR community, many researchers have explored

user traits, search task characteristics [14, 20], as well as their asso-
ciations with search sessions in varying study settings. Although
the theoretical contributions are clearly conveyed, the practical
value of the knowledge about users and their tasks often remains
unclear without a series of evaluations of the performance of the
algorithms or systems that actually utilize the knowledge. In our
research, we learn the knowledge about users’ task states and state
transitions from the empirical evidences collected in user studies
and then apply the knowledge in simulating adaptive search rec-
ommendations and evaluating the e�ects of usefulness-oriented
recommendations on multiple facets of search interactions. Our
study has following two main contributions:
• This study proposes a novel framework that characterizes the
dynamic nature of complex search tasks and empirically demon-
strates how the knowledge about users’ evolving task states can
be leveraged in building adaptive search path recommendations
and improving users’ search e�ciency.

• Going beyond traditional relevance-centric measures, our evalu-
ation experiment focuses on the extent to which the simulated
search paths could help users gather needed amount of useful
pages sooner. This usefulness-oriented approach echoes the ac-
tual need of users (�nding useful information for task completion,
instead of gathering topically relevant documents) and has the
potential to achieve better task performance and user satisfaction.
This article is structured as follows. We start by introducing

the background and reviewing related works, with the goal of
clarifying the rationale and motivations behind our study. Then,
this article explains the user study design and experimental setup.
Next, we present the results and explain how our results answer the
proposed research questions. After that, we discuss the connections
between our �ndingswith that of previous research and explains the
knowledge gaps addressed by this study. We conclude by discussing
the contributions and limitations of our study.

2 RELATEDWORKS
This section covers three topics of research that are directly related
to our research questions: Complex Search Tasks, Process Models of
Search Tasks, and Adaptive Search Recommendations.

2.1 Complex Search Tasks
Task complexity is a critical task facet in IIR research. Researchers
from information seeking and IR communities have developed mul-
tiple frameworks to describe complex search tasks and examine the
impacts of task complexity on various aspects of search interactions.
For instance, Byström and Järvelin explored multiple task levels and
investigated howwork task complexity a�ects people’s interactions
with information sources. Built upon Bloom et al. [4]’s taxonomy,

Kelly et al. [16] explored the cognitive aspect of task complexity
and classi�ed search tasks into di�erent categories according to
the level of complexity of associated learning goals. Urgo et al. [42]
expanded on Kelly et al. [16]’s typology of task complexity and
integrated knowledge dimension with learning dimension in the
context of complex task design and learning assessments. Capra
et al. [5] studied the extent to which prior determinability of task
outcomes is indicative of task complexity.

The existing frameworks discussed above de�ne complex search
tasks from a static perspective and focus on the prede�ned aspects
of search tasks (e.g. complexity of learning goals, pre-determinability
of task outcomes), without explaining the dynamic dimensions.
Thus, it is not clear how the nature of a complex search task is
manifested during the process of search interactions.

To address this gap and e�ectively support complex search tasks,
some latest works in IIR research have identi�ed states or stages as
essential, dynamic components of a task and studied how users’ in-
formation seeking intentions and encountered search problems vary
across di�erent stages of task-based search interactions [13, 23].
Given the knowledge learned about state transition patterns, we
could describe the dynamic nature of complex search tasks within
search sessions and di�erentiate tasks of di�erent types based on
the actual process of performing tasks, rather than prede�ned static
characteristics (e.g., task goal, task product, task topic). This re-
search direction emphasizes the value of understanding task pro-
cesses and o�ers a new perspective for conceptualizing complex
search tasks. However, it is still unclear how the process-oriented
dynamic frameworks could be applied in producing adaptive search
supports for users engaging in complex search tasks.

2.2 Process Models of Search Tasks
There has been increasing recognition that information seeking
under search tasks of varying types should be construed as sessions
or episodes, rather than a set of individual single-query-single-
response segments [3]. During these sessions, users often issue
several queries, review multiple search engine result pages (SERPs),
and engage in a number of di�erent behaviors in interactions, with
the ultimate goal of completing a search task as well as the asso-
ciated work task. Thus, learning the features of a search session
would allow us to better understand the nature of the associated
search task and inform the design of adaptive IR systems.

To develop a �ne-grained model for characterizing whole session
IIR, recent IIR research have explored users’ information seeking
goals or intentions in local search steps as well as the search prob-
lems they encountered at di�erent moments of search [23, 30, 32,
33]. In addition, researchers have also developed a series of clas-
si�ers for predicting intentions and in-situ problem types based
on observable search behaviors [29, 34]. These studies enriched
our understanding about multidimensional transitions in task pro-
cesses. Nevertheless, how the knowledge about these changes could
be applied in supporting users is still an open question to the IIR
community.

To support model training and scalable application, researchers
have also developed a variety of formal models to depict and op-
timize search processes from di�erent perspectives. For instance,
Fuhr [10] extended the classic Probability Ranking Principle (PRP)



from traditional IR to IIR with the development of the IIR-PRP
model, which de�nes search sessions as situation transition pro-
cesses. The IIR-PRP model is a critical step towards building a
computational model for supporting the functional design of IR sys-
tems. Inspired by Microeconomics theory, Azzopardi [1] developed
a search economy model to determine and describe optimal search
behavior in interactive sessions. Zhang and Zhai [53] proposed
a novel formal model that frames the task of an IR system as to
select a sequence of “interface cards" to present to and support the
user and enables adaptive optimization of navigational interfaces
in an IR system. Despite the computational bene�ts, these formal
models abstract out a variety of user traits via making simpli�ed
assumptions and do not have e�ective representations of task states
and task-based document usefulness.

2.3 Adaptive Search Recommendations
Given the dynamic nature of task-based search interactions, IIR
researchers have explored several ways to characterize the sequence
and transitions of users’ search phases and tactics. One widely-
used approach is to simplify the process by making it memoryless
(assuming that the current state is dependent only on its previous
state) [9, 27, 41]). In IIR context, this assumption is reasonable in
the sense that users’ often decide their search tactics in local, small
steps (i.e. query segments), rather than making global search plans
beforehand [39, 49]. This is known as the Markov Property [12]. A
Markov Decision Process (MDP) is a stochastic decision process
that has the Markov property.

Developing adaptive recommendations is not new in IR [51, 54].
For instance, Luo et al. [27] applied partially observable MDP frame-
work in characterizing and optimizing task-based search processes.
Speci�cally, they proposed four hidden decisionmaking states based
on users’ query term selection and page visiting behaviors. The
four states were de�ned by two dimensions: (1) relevance dimen-
sion: whether the user thinks the returned documents are relevant.
Luo et al. [27] argued that if the set of previously retrieved docu-
ments leads to at least one satis�ed (SAT) click (dwell time longer
than 30s on the clicked page) [6], then the current state is likely
to be relevant. (2) exploration dimension: whether the user would
like to explore another subtopic or keep searching within the cur-
rent information patch. If the newly added query term(s) appear
in previously retrieved documents, then it means the user stays at
the same sub information need and thereby is likely to continue
exploitation. Within the reinforcement learning framework, Luo
et al. [27] mathematically modeled dynamics in search sessions and
simulated optimized ranking based on the estimated states in the
interaction process. Similarly, Zhai [50] proposed a game-theoretic
framework of text retrieval, which frames IR process as a cooper-
ative game between a user and search engine. The optimization
goal of this cooperative game is to help the user complete their
search task with minimum overall e�ort (e.g., number of steps,
dwell time needed) and minimum operating cost for the search
engine. Losada et al. [26] applied multi-armed bandits model in
pooling-based evaluation and proposed a novel formal adjudication
method that can optimize the number of judgments required to
identify a prede�ned number of relevant documents and thereby
reduce the cost of evaluation. Wei et al. [46] focused on the issue

of learning to rank and developed a MDP-based learning model,
namely MDPRank, aiming to optimize relevance-based measures.

The aforementioned research jointly o�er a starting point for
applying state-based approach in addressing IR research problems.
One major limitation of their works is that we do not know what
exactly users were trying to accomplish at di�erent moments and
to what extent can we help users �nd documents that are actually
useful for accomplishing the goal or task, rather than just topically
relevant. Therefore, we still need a dynamic state-based framework
which can (1) clarify the connection between how people search (i.e.
behaviors) and why people search in such ways (e.g. motivations,
intentions, in-situ problems and supports needed) and then (2)
leverage the knowledge about the how (i.e. user interactions) and
why (intention-based task states) parts learned from authentic users
in developing usefulness-oriented adaptive recommendations.

3 METHODOLOGY
To answer the two RQs, we analyzed search behavior and user an-
notation data collected through a controlled lab study, information
seeking intention (ISI) study. The ISI study looked at users’ local
intentions and search activities in di�erent steps of the search ses-
sion. Our goal is to leverage the knowledge about intention states
extracted from user annotation data in developing and evaluating
adaptive recommendations to support users engaging in CSTs. Full
descriptions about the user study procedure were reported sepa-
rately in our previously published preliminary works [23]. This
section aims to provide enough methodological details for read-
ers to properly assess the validity of our research design without
covering redundant contents published before.

3.1 Complex search tasks and participants
In the ISI study, we recruited 40 undergraduate students majoring
in journalism at Rutgers university, with the goal of minimizing the
potential e�ects of disparate knowledge backgrounds on the study.
To simulated search scenarios of varying types, we developed four
tasks within the journalism domain to encourage realistic, com-
plex searches: copy editing (CPE), story pitch (STP), relationships
(REL), and interview preparation (INT). The four types of complex
search tasks are designed based on two task facets extracted from
Li and Belkin [18]’s classi�cation scheme: Product and Goal. In
terms of task product, an intellectual task encourages participants
to develop new ideas. A factual task is a search for known or ob-
jective information. Tasks with speci�c goals have goals that are
unambiguous and quanti�able. Tasks with amorphous goals have
no predetermined strategy, target, or result. In ISI study, each par-
ticipant was instructed to complete two search tasks of varying
types, using Latin Square design (pairing CPE with INT and STP
with REL to ensure tasks o�er a balanced perspective of topics and
facet values). We had eight task-topic combinations (i.e., four task
types and two topics: Coelacanths and Methane Clathrates) in total.
The descriptions of assigned search tasks are provided in Table 2.

3.1.1 Information seeking intentions and study procedure. The study
began by introducing participants to the features o�ered by the
browser plug-in through a tutorial and asking participants to com-
plete a demographic survey. Participants were given the choice to
explore anywhere on the web as long as searches were performed



Table 1: Tasks assigned in the ISI study.

Task Type Task Descriptions
Copy Edit-
ing/CPE
(Factual Spe-
ci�c)

Assignment: You are a copy editor at a newspaper and you have only 20 minutes
to check the accuracy of six italicized statements in the excerpt of a piece of
news story below. Task: Please �nd and save an authoritative page that either
con�rms or discon�rms each statement.

Story
Pitch/STP
(Factual Amor-
phous)

Assignment: You are planning to pitch a science story to your editor and need
to identify interesting facts about the coelacanth ("see-la-kanth"), a �sh that dates
from the time of dinosaurs and was thought to be extinct. Task: Find and save
Web pages that contain the six most interesting facts about coelacanths and/or
research about their preservation.

Relationship/REL
(Intellectual
Amorphous)

Assignment: You are writing an article about coelacanths and conservation
e�orts. You have found an interesting article about coelacanths but in order to
develop your article you need to be able to explain the relationship between key
facts you have learned. Task: In the following, there are �ve italicized passages,
�nd an authoritative Web page that explains the relationship between two of the
italicized facts.

Interview
Prepara-
tion/INT
(Intellectual
Amorphous)

Assignment: You are writing an article that pro�les a scientist and their research
work. You are preparing to interview Mark Erdmann, a marine biologist, about
coelacanths and conservation programs. Task: Identify and save authoritative
Web pages for the following: Identify two (living) people who likely can provide
some personal stories about Dr. Erdmann and his work. Find the three most
interesting facts about Dr. Erdmann’s research. Find an interesting potential
impact of Dr. Erdmann’s work.

on the browser with the plug-in turned on in order to record their
search actions and allow participants to easily save webpages. Prior
to beginning a search, participants went through the task descrip-
tion and were given up to 20 minutes to complete the �rst task by
performingWeb searches and saving relevant pages and documents.

Then, participants were asked to read the explanatory infor-
mation about the intention annotation task and how to annotate
information seeking intentions. Researchers utilized the search
intention typology developed by Rha et al. [32] that is based on
a subcategory of the classi�cation scheme of dynamic intentions
proposed by Xie [49]. For each participant, the entire search session
was divided into separate query segments and replayed: during
every query statement, participants were asked to select any num-
ber of intentions from the typology. Note that A query segment
starts with a query, includes searching and browsing activities as-
sociated with the query, and ends before the next query. Query
segment serves as the basic unit of analysis for both task state
distribution analysis (RQ1) and the simulation of adaptive search
recommendations (RQ2).

During each round of annotation, participants could select as
many intentions as desired that applied to a given segment. The
intention selection process was repeated for every query segment.
The same procedure was used to complete the second task and
the study concluded with an exit interview that provided open-
ended questions for participants to o�er insight into their search
experience. The entire study procedure lasted about two hours.

3.2 Temporal Variations in Task States
Tasks of di�erent types could be identi�ed and disambiguated based
on the temporal transitions within search sessions. To answer RQ1
and describe the connection between task states and search inter-
actions, we examined the distribution of di�erent task states across
di�erent moments and stages of complex search tasks.

For state identi�cation, we employed K-modes clustering analysis
for extracting clusters out of users’ annotations. K-modes clustering
as a unsupervised learning method extended the traditional K-
means paradigm to cluster categorical data. In the intention study

(ISI) dataset, task states are represented by the clusters of intention
vectors (each of the vectors consists of twenty individual intentions
as separate elements). It is worth noting that clustering algorithm
itself did not generate meaningful state type or label. After the valid
clusters were captured, we interpreted each cluster and de�ne labels
or names of task states based on the most frequent information
seeking intention(s) in the corresponding clusters. After clustering,
we also recruited two external assessors (PhD students majoring
in IR) to do external assessments for the clusters, aiming to ensure
that the states we obtained through clustering analysis is not only
mathematically valid, but also meaningful to human assessors.

3.3 Experimental Setup
To answer RQ2 and examine the practical value of state-based
framework, we employ Q-learning algorithm and simulate query
segment recommendations based on users’ task states and estimated
rewards (i.e. useful pages retrieved). Then, we evaluate our model
by comparing the performance of simulated search path with that
of the average performance of participants’ original search sessions
and measuring the extent to which the simulated recommendations
can reduce the e�orts (i.e. number of query segments or steps
needed) of completing assigned tasks.

The ISI study dataset, consisting of 80 sessions and 693 unique
query segments, has following three characteristics that enable us to
simulate and evaluate Q-learning-based adaptive recommendations:
(1) ISI study has speci�ed task completion requirements for all four
tasks, which allows us to properly de�ne rewards and determine
the termination point for each iteration of learning and simulation;
(2) ISI study involves four task types and two di�erent topics, which
enables us to test the state-based Q-learning approach in a variety
of contexts; (3) A relatively small amount of states (four intention-
based task states from the answer to RQ1) allows us to update the
entire policy of Q-learning algorithm in a more e�cient manner.

In following subsections, we introduce key components of our
model: states, actions, rewards and evaluation measures. Then, we ex-
plain how the Q-learning simulation model operates on our dataset.

3.3.1 States and Actions. A Q-learning algorithm is trained to de-
cide actions based on current state as well as the value of state-
action pair [38]. In this work, we employ the task states reported
in our response to RQ1 as the states in simulation. In the iterative
learning process, the evolving Q-learning algorithm selects and
evaluates di�erent actions.

We de�ne actions as rules (e.g., distinct ranking algorithms, di�er-
ent combinations of parameters, and weights) of selecting a speci�c
search path (i.e., query segment) from a �nite set of available op-
tions under a given task state. The output of Q-learning algorithm
is a policy that de�nes the value of all state-action pairs (i.e., the
estimated reward a user can obtain through taking a speci�c action
under a given state). An optimized policy can determine the optimal
action given a user’s task state and recommend a query segment
extracted from the collection of all search interactions. Possible
actions of our algorithm are de�ned based on following query-level
behavioral features which do not rely on relevance feedback:
• Query similarity = (number of overlapped unique terms be-
tween two adjacent queries)/(number of total unique terms from
the two queries)



• Number of pages clicked within the query segment
• Average dwell time on content page
• Dwell time on search engine result page (SERP)

To better utilize interaction signals, we also take into considera-
tion content page clicking patterns and extract related features using
Word Embedding technique. Speci�cally, we employWord2vec algo-
rithm (in this case, continuous bag-of-words algorithm, or CBOW)
for producing "word embeddings" with the unique content pages
or URLs clicked in all query segments. We de�ne each URL as a
“word” and a query segment consisting of multiple clicked URLs
as a “sentence”. Using CBOW technique, each URL can be turned
into a unique vector that includes multiple dimensions. In Nat-
ural Language Processing (NLP) tasks, Word2vec technique can
"understand" the semantic di�erence between words and group
words with similar meanings together [7, 40]. In this study, similar
or adjacent URLs (e.g., visited content pages that are frequently
“co-clicked” or close to each other in multiple query segments) will
get high weight values on same dimensions. Applying word embed-
ding technique here can help us turn unique page clicking patterns
into behavioral features for training models and may allow us to
automatically separate highly useful pages from less useful pages.
Therefore, we add the trained weights of dimensions from CBOW
algorithm to the query segment ranking function. Since we are deal-
ing with a relatively small dataset, we set the number of dimensions
to 5 for the hidden layer of CBOW Neural Network.

Inspired by the model setups in previous reinforcement-learning-
based IR studies [27], we rank every quali�ed query segment (i.e.
query segment under the same topic and state) based on a linear
combination of the weighted ranks of the query segment generated
according to the value of di�erent features. Given a de�ned action,
the query segment which achieves the highest total weighted rank
(smallest rank value) will be ranked on the top and thus will be
selected as the recommended search path. Based on this de�nition,
we can obtain di�erent actions or rules of ranking by manipulating
the weights of one or more features. The Q-learning recommen-
dation process can be described as a "guessing game": Based on
the knowledge learned from previous actions and feedback, the
algorithm seeks to guess the "best action" that can maximize the
chance of obtaining highest rewards under a given state.

To create a relatively broad action space for training, we begin
with the "baseline action" which assigns the same weight to all
features and then change the weight of one feature at a time by
increasing the weight of the feature by a factor of G = 1, 2, 3, 4, 5.
At the same time, we evenly decrease the weights of other features.
We repeat this process for all features (four behavioral features
and �ve Word2vec dimensions), which generates 37 unique actions
in total. During the training and learning process, using di�erent
actions may lead to di�erent query segment recommendations and
thereby produce di�erent rewards for the user.

3.3.2 Rewards. Reward operationalization is key to the iterative
training and optimization. Since our ultimate goal is to support
users engaging in complex search tasks, we de�ne rewards of query
segments based on their actual contributions to completing the task
at hand. In our lab studies, we asked participants to search for
information and bookmark pages that are useful for completing
the tasks we assigned to them. To accurately measure the reward

associated with di�erent bookmarked pages and query segments,
we annotated bookmarked pages and determined their respective
rewards under a certain task context based on the extent to which
they meet the requirements stated in our task descriptions.

Speci�cally, for example, in the copy editing (CPE) task, we asked
participants to search for and bookmark pages that either con�rm
or discon�rm one of the six statements we provided in task descrip-
tions. Therefore, we annotated all bookmarked pages under this
task and represent each bookmarked page with a vector consisting
of six elements, corresponding to the six statements in CPE task.
If a page con�rms the �rst two of the six task statements, then
we represent the page using vector E = {1, 1, 0, 0, 0, 0}. If another
bookmarked page con�rms the last statement, then the page can
be represented using the vector E = {0, 0, 0, 0, 0, 1}. Thus, the total
reward from these two pages can be represented by the sum vector
E = {1, 1, 0, 0, 0, 1}. As the simulated search sessions proceed, we
add the vectors of all bookmarked pages together and terminate
a simulated session when all element values are larger than zero
(which means all statements are con�rmed or discon�rmed by at
least one unique statement). Similarly, for the interview preparation
(INT) tasks, we apply the same annotation and reward calculation
methods and use corresponding reward vectors in training.

The story pitch (STP) and relationship (REL) tasks havemore sub-
jective and �exible criteria of search task completion. Speci�cally,
the STP task asked participants to bookmark pages that contain
six most interesting facts about coelacanths or methane clathrates.
In REL task, participants were asked to �nd an authoritative web
page that explains the relationship between two of the �ve listed
facts. For these two tasks, we de�ne the task completion (or simu-
lation termination) point based on users’ bookmarking behavior:
for the STP task, we terminate a simulated search session once the
algorithm collects six unique bookmarked pages within the session.
With respect to the REL task, we end a simulated session once the
algorithm �nds a potentially authoritative content page that was
bookmarked by at least two di�erent participants.

3.3.3 Q-learning Process. Suppose there is a target user DC that
the interactive search system is trying to help. The target user DC
initializes the search process with a starting task state B1. Given
the knowledge of the user’s task state, the search system goes back
to the Q function, �nds the corresponding state, and locates the
current best available action 01 under the given state. Q function
de�nes the mapping from states to actions and determines the
selection of action as it shows the expected value of the total reward
starting from the current state. The actions are evaluated based
on a weighted sum of the expected values of the rewards from all
future search iterations starting from the current state. Note that
at the initial state we may start the simulation process with a set of
arbitrarily de�ned values of Q function for all state-action pairs.

Within the Q-learning framework, besides the immediate reward
obtained, the response from search environment also includes the
next state of the information searching episode. To keep the iterative
simulation process moving forward in a reasonable way, we add
a function 5BC0C4_CA0=B8C8>= which selects the next state B1 based
on the state transition probabilities we extracted from authentic
search sessions in the ISI dataset. The selected action 01 and the



obtained reward A1 through taking 01 under the task state B1 are
used to update the values in Q function and improve the policy.

After that, another round of iteration starts, with the target user
DC moving to a new task state B2. Similar to the previous round, the
system will go back to the Q function again and select an action
based on the current new state B2. The action will point to another
potentially good search path B?= from a user D= . Again, to keep
the iterative simulation going, D= ’s task state B= is assumed to be
determined by the function 5BC0C4_CA0=B8C8>= based on the corre-
sponding state transition probabilities. The selected action 0= and
the received reward A= through taking 0= under the task state B=
will be utilized to update the values in Q function and further im-
proving the policy (i.e., mapping current state to a potentially better
action). We terminate a simulation episode and start another new
simulation episode (initialized with a randomly selected state and
query segment) once the current accumulated useful information
fully satis�es all requirements of the search task at hand.

During each round of simulation, the value function of state-
action pairs is updated as follows [38]:

&=4F (BC ,0C )  & (BC ,0C ) +U ⇤ (AC +W ⇤<0G0& (BC+1,0) �& (BC ,0C ))
(1)

where AC is the reward the target user obtained when moving
from BC to BC+1, and U 2 (0, 1) is the learning rate.<0G0& (BC+1,0) is
the estimate of optimal future value within the MDP. The discount
factor W 2 (0, 1) assigns higher value for the rewards received
earlier than those received later.

Note that within the current greedy version of Q-learning frame-
work, it is likely that the algorithm keeps repeating a local opti-
mal action without exploring any alternative, potentially better
actions. To address this problem, we will apply a n-greedy policy
here (n = 0.15). n-greedy policy allows the Q-learning algorithm
to (1) select an action with 1-n probability that gives maximum
expected reward in a given state or (2) select a random action with
n probability [48]. The parameter n enables us to adjust the balance
between exploitation (i.e. keep using a known action that gives local
maximum reward) and exploration (i.e. go beyond local optimal
action and investigate broader solution space under uncertainty).

Algorithm1 presents the Q-learning process for a given task in
one round of iteration. It usually takes a relatively large amount
of iterations (e.g., over 100 iterations) for a Q-learning algorithm
to converge to good performance (in this case, a smaller number
of steps for completing a task). In each round of iteration, we run
ten episodes. This is because we have ten unique search sessions
under each task-topic combination. In each simulated episode, we
use a starting state of an authentic search session as the initial state.
We terminate an Q-learning iteration and start a new iteration
process once we exhaust all ten starting states. This simulation
setup ensures that the simulated episodes and authentic search
sessions share the same starting point and thereby allows us to
reasonably compare the performance of simulated sessions with
that of participants’ actual search sessions.

3.3.4 Model Evaluation. To evaluate simulated search sessions,
we employ multiple evaluation measures which address di�erent
aspects of task-based search interactions.

Algorithm 1: Q-learning process for each iteration.
1 Input: Set of all query segments" ; States (8 associated with each segment;

prede�ned task) ; Set of all authentic search sessions under the task) : (⇢)
Output: Number of steps for completing the search task) ; Initialization;

2 Group query segments into di�erent subsets"(8 by state (8 ;
3 foreach authentic search session< in (⇢) do
4 Take the �rst state (0 of the session< as the initial state for simulation;
5 while Task requirement is NOT satis�ed do
6 Take 02C8>== according to the current state (8 and

& {BC0C4,02C8>=}E0;D4B ;
7 foreach query segment B?8 in"(8 do
8 Calculate the weight of each feature according to the 02C8>== ;
9 Calculate the weighted rank value of B?8 under each feature;

10 Calculate the total weighted rank value for B?8 ;
11 end
12 Take the top ranked B? as the simulated search path for the current

state;
13 Receive the reward A8 (remove the reward from repeated pages);
14 Update the policy/Q-table& according to A8 under (8 and 02C8>== ;
15 Move to the next state according to the state transition function

5BC0C4_CA0=B8C8>= ;
16 end
17 Calculate the number of steps used in the simulated session<

0
;

18 end
19 Calculate the average number of steps used for all simulated sessions;
20 Save the updated policy& for the next iteration of training;
21 Terminate current iteration;

• Number of query segments. Number of steps or query seg-
ments is the main measure for our evaluation. Using rewards
manually annotated based on users’ bookmarked pages to iter-
atively update the algorithm, we aim to reduce the steps (i.e.,
query segments) needed for completing the search task at hand
and improve the e�ciency of search.
We evaluate the e�ectiveness of our model by comparing the

number of steps in simulated search sessions with two baselines:
• average number of steps in original search sessions.
• average number of steps for reaching the completion point,
which refers to the actual number of steps each user took for
satisfying the speci�ed task requirements under a given task.
The second measure was computed at that point in original

search sessions where pages containing enough answers to the
search task had been retrieved and displayed to the user. In other
words, the task-based reward requirement is satis�ed from the "in-
formation supply" side: the values in all elements of the correspond-
ing task-based cumulative vector are greater than zero, regardless
of users’ knowledge states (e.g. whether a user fully understood the
information presented on a visited page). Thus, number of steps
needed for actual completion is essentially the minimal number of
query segments users took for presenting "just enough” relevant
information within a search session. This minimal path length for
task completion varies across di�erent task types and thus were op-
erationalized using di�erent vectors. Note that the minimal-length
or truncated search sessions may still contain irrelevant or unsat-
isfactory results as it was di�cult for individual users to ensure
that every step can contribute to task completion when searching
under a unfamiliar topic. Also, users often continue searching for
information when the task requirements were already met. This
may be because they were not sure whether the task goals were
actually accomplished or if all requirements were met. Given the
feedback from post-search interview and the speci�c prede�ned



task goals, it is very unlikely that participants continued search-
ing simply because they wanted to explore more and not for the
purpose of �nishing the search task sooner.

4 RESULTS
4.1 RQ1: Temporal variations in task states
To answer RQ1, we identi�ed four states and interpreted each ex-
tracted task state based on the most frequent information seeking
intentions annotated within the query segments under the corre-
sponding state. To test the validity of the task states extracted by
K-modes clustering algorithm with Elbow method, the two invited
expert assessors did manual task state annotation. Based on the
results from clustering and assessors’ annotations, we calculated
the Cohen’s Kappa coe�cients ^ for all three pairs:
• Annotator A and annotator B: 0.782
• Annotator A and clustering algorithm: 0.716
• Annotator B and clustering algorithm: 0.744

The Cohen’s Kappa agreements exceed 0.65 in all pairs, indi-
cating substantial agreement [17]. This result shows that the task
states identi�ed through clustering is meaningful and can be used
for addressing RQ1 and RQ2. To better illustrate the meaning of the
task state, we list the most frequent information seeking intentions
with associated percentages under each state (see Table 2). For in-
stance, in the Exploratory state, the percentage of the intention of
identifying something to start searching is 100%, indicating that
this intention occurred in all query segments under this state.

Table 2: Intention states from ISI dataset.

Task state Frequency Interpretation
Exploitation 54.3%, 376 query

segments
The two most frequent intentions are �nd speci�c
information (39.4%) and identify something more to
search (40.4%). Meanwhile, the intention of identify-
ing something to start searching never appears. Un-
der this state, users are likely to have a certain topic
in mind and they try to follow the current explored
search path, keep exploiting the associated informa-
tion patches and search for more relevant pages or
other information items.

Known-item 18.2%, 126 query
segments

The two most frequent intentions are �nd speci�c
information (100%) and obtain speci�c information
items (100%). In this state, users may have well-
de�ned information need(s) or goals in mind to guide
their search sessions. These speci�c targets may come
from previous interactions and are not necessarily in
users’ minds when search sessions are initiated.

Exploratory 16.6%, 115 query
segments

The most frequent intention in this state is identify
something to start searching (100%). In this state, users
may try to adopt new search strategies, explore un-
known subtopics, or open new search paths.

Learn and Evalu-
ate

10.9%, 76 query
segments

In this state, most intentions under the Evaluate cat-
egory (above 60%) and the intentions of learning do-
main knowledge and keeping useful links (both above
80%) occurred frequently.

To answer RQ1, we analyzed how the relative frequencies of dif-
ferent task states vary across di�erent stages of search. Comparing
the temporal variations of the relative frequencies of intention-
based task states can illustrate how the di�erence between search
tasks of di�erent types is manifested at cognitive level.

The frequency densities of intention states are presented in Fig-
ure 1. In these �gures, each dot represents a unique query segment
occurring at a particular point of the associated search session. To
capture the temporal changes in task state, we employed query

percent to characterize the sequential aspect of sessions. Query
percent here equals to =/# , where n represents the n-th query seg-
ment within a session, and N is the total number of query segments
within the search session. Query percent was measured at the end
of each query segment and shows the stage a user was in within
a task-based search session. For instance, in a four-query search
session, the query percent value of the �rst query segment is 0.25,
whereas in a �ve-query search session, the query percent value of
the �rst segment is 0.2. Using query percent measure allows us to
reasonably compare search sessions of varying lengths.

Figure 1: Frequency density of intention states at di�erent
search stages measured by query percent.

Overall, participants tended to use more queries in the fac-
tual speci�c task (i.e., copy editing) compared to the three goal-
amorphous tasks. In the two cognitively challenging, intellectual-
amorphous tasks, the density plot peak points of known-item state
and learn-and-evaluate state show up at early stages of search
sessions (query percent < 0.3). This result indicates that in these
two tasks, participants frequently searched for easily accessible,
known items and sought to evaluate information at the beginning
of search sessions. In contrast, in the two factual tasks, the curves of
frequency density distribution are relatively �at and the density plot
peak points appear a bit later compared to the two intellectual tasks.
In addition, in the two intellectual amorphous tasks, due to the lack
of clear information cues, participants tended to do exploratory
search at early stages, with the peak point of exploratory-state
frequency density plot occurring around the 0.25 point.

In addition to the temporal changes in task states within search
sessions, we also investigated the transition patterns between dif-
ferent task states in search tasks of varying types. Overall, we found
that the process of doing a complex search task is often nonlinear,



and that the di�erence in task type can be inferred based on the
variations of task state transition probabilities. For example, our re-
sults demonstrate that participants engaging with goal amorphous
tasks were motivated to do more open-ended, exploratory search
(i.e., 50% chance of remaining in and repeating the exploratory
state). In contrast, in factual speci�c tasks (e.g., copy editing task),
participants usually search for known information items more fre-
quently and spent much less time in learning and evaluation. More
detailed results regarding state transition probabilities in di�erent
task types are reported in our preliminary work [23].

Next section presents our simulation of state-aware adaptive
recommendations (RQ2), which was built upon the descriptive
results regarding temporal state distributions from RQ1.

4.2 RQ2: Simulated Adaptive Recommendations
Aligned with RQ2, the main goal of our state-based search simula-
tion is to reduce steps (query segments) needed for completing the
given task (satis�cing all the requirements speci�ed in task descrip-
tions) and thereby improving the e�ciency of search interaction.

Recall that in the ISI user study, participants were asked to
search for information that might be useful for completing the
prede�ned task. Participants were not required or encouraged to
do anything beyond the search task requirements. However, we
observed varying levels of divergence between the length of origi-
nal search session and the length of actual completion sessions in
all task-topic combinations: participants tended to continue their
search processes and issue more queries when they already met the
requirements of task completion, due to four possible reasons: 1)
participants were not sure if the bookmarked pages include enough
information for meeting the minimum requirement of search tasks;
2) there was still plenty of time left before the ongoing search
session hit the prede�ned termination point (20 minutes), which
encourages the participant to revisit the bookmarked pages and
verify the saved information; 3) in intellectual amorphous tasks,
due to the di�culty of search tasks and the ambiguity of search
goals, participants might need to explore more pages and learn
more about the associated topic(s) in order to fully understand the
information gathered in previous query segments; 4) part of the
useful information on bookmarked pages (which was captured and
included in manual reward annotation) was missed by participants
in their original search sessions. Consequently, they might continue
searching for this part of information (e.g. for con�rming some of
the statements in task description) that was already presented in
their previously bookmarked pages. For instance, on a Google books
page, a participant might be searching for information about the
size of Coelacanth (which can be inferred based on the query stored
in the URL). However, the participant might not notice that the
bookmarked Google books page also contains useful information
about the process of discovering Coelacanth in Indonesia (which
comes from another statement that needs con�rmation).

As it is explained in Methodology section, for every task-topic
pair (e.g. CPE-Coelacanth), in each iteration, we run ten episodes
or sessions of simulation and use the starting states from all ten
authentic search sessions as the initial states of our ten simulated
sessions. For evaluation, we compare the average number of steps
in every round of iteration with the average numbers of steps from
both the actual completion baseline and original sessions.

Figure 2 includes the performance of simulated search sessions in
copy editing (CPE) tasks. We observe that the state-based simulated
search path outperforms both original session and actual comple-
tion baselines before the 75th iteration in both topics. At the last
two iterations, the simulated search path statistically signi�cantly
outperforms both baselines (t-test, p-value < 0.01) by reducing two
to four steps on average for search task completion. This result
indicates that through learning the connection between rewards re-
ceived and the context of recommendation (i.e., state-action pairs),
our state-based Q-learning algorithm �nds shorter search paths for
�nding enough useful documents and completing CPE tasks.

Regarding the story pitch (STP)-Coelcantah task, participants’
average number of steps needed for completing the task is 2.583,
which does not leave much room for Q-learning improvement.
Nevertheless, our state-based model still achieves slightly better
performances than the actual completion baseline, with the number
of steps being reduced by 0.1 to 0.48 steps on average after the 60th
iteration. Compared to the STP-Coelacanth task, STP-Methane-
Clathrates task appeared to be more di�cult, with participants
taking signi�cantly more steps for �nding and saving pages that
contain six most interesting facts about the topic. This hypothesis is
partially con�rmed by our data about participants’ post-search task
perception: According to the ratings, STP-Coelacanth has a lower
average level of perceived di�culty (Mean di�culty_Coelacanth =
1.2, Mean di�culty_Methane Clathrates = 2.1; p<0.05) and a higher
level of perceived task success (Mean perceived success_Coelacanth
= 6.5, Mean perceived success_Methane Clathrates = 4.8; p<0.05). As
a result, in the Methane Clathrates task, the Q-learning algorithm
achieves a much higher improvement and reduces the average
length of session by 2 to 3.6 steps after the 60th training iteration.

Compared to the two factual tasks (CPE and STP), the two in-
tellectual tasks placed greater challenges on both participants and
Q-learning algorithm. As a result, the simulated sessions achieve
relatively smaller improvement in search e�ciency and takes more
rounds of learning iteration to converge to a better performance
(except for the REL-Mathane-Clathrates task where the simulation
algorithm signi�cantly improves the performance of search interac-
tion by reducing 3.7 steps on average after the 100th iteration). This
may be because these two intellectual amorphous tasks required
participants to engage in more high-level cognitive activities (e.g.,
examine the relationship between two facts, prepare useful materi-
als for di�erent aspects of an interview). Thus, participants were
not able to gather all needed information and save useful pages
within only one or two queries. This heightened requirement at
cognitive level also makes it di�cult for our Q-learning algorithm
to identify potentially e�cient search paths with high rewards and
thereby limits the performance of simulated search episodes. In
the REL-Coelacanth and two INT tasks, the �nal improvements
achieved in the last two rounds of iterations range from 0.9 to 1.7
query segments. In addition, compared to CPE and STP tasks, in the
two intellectual amorphous tasks, it takes more rounds of iterations
for the algorithm to converge to good-performing policies.

Table 3 compares the results from the last two rounds of Q-
learning iterations for each task-topic combination and that of the
two baselines, namely actual completion session and original search
session. The results demonstrate that the Q-learning algorithm sig-
ni�cantly outperforms the two baselines to di�erent extents in all



Figure 2: Number of steps needed for task completion. dashed line: average number of steps needed for actual completion (all
needed information collected for ful�lling the task requirement); solid line: average number of steps in original sessions.

Table 3: Search e�ciency: average number of steps.

Task-Topic Simulated Actual Original
CPE-C (factual speci�c) 2.05** 4.18 8.5
CPE-MC (factual speci�c) 2.45** 6.4 12.1
STP-C (factual amorphous) 2.05* 2.583 3
STP-MC (factual amorphous) 2.1** 5.727 7.8
REL-C (intellectual amorphous) 2.21** 3.1 7.9
REL-MC (intellectual amorphous) 2.3** 5.8 7.6
INT-C (intellectual amorphous) 4.75** 6.88 14.1
INT-MC (intellectual amorphous) 4.2** 5.81 8.3

Note: C: Coalacanth; MC: Methane Clathrates; Signi�cant values indicate whether the predictor is
signi�cantly better than the best baseline (i.e., actual completion baseline)
(⇤ : ? < .05, ⇤⇤ : ? < .01). Statistically signi�cant results are boldfaced.

task types. The simulated sessions consisting of query segments
from di�erent users reduce the number of steps needed for task
completion and improve the e�ciency in collecting useful docu-
ments. Due to the cognitive challenges behind the two intellectual
amorphous tasks, our Q-learning algorithm achieves signi�cant but
smaller improvements compared to the performances in CPE and
STP-Methane-Clathrates tasks. This may be because there were less
high-reward search paths available in associated solution spaces
and thus longer search sessions became inevitable. Nevertheless, in
general, we are still able to support users and improve their search
e�ciency in REL and INT tasks after more rounds of iterations.

5 DISCUSSION
The contribution of our work is unique in 1) understanding the
distribution of intention-based task states across varying task types,
and 2) simulating and developing an usefulness-oriented dynamic
approach for recommending search paths extracted from a collec-
tive solution space. Regarding the RQs, we have following answers.

The �nding related to RQ1 extend the existing descriptive and
computational models of task-based search process [2, 10, 43] by
revealing the temporal cognitive changes in users’ exploration of

uncertain, evolving task-related informational solution space. Ex-
tracting and validating states based on users’ segment-level annota-
tions enabled us to collect direct empirical evidences on task-related
variations at cognitive level and thereby better understand stepwise
motivations behind the transition of search tactics [11, 49].

Then, to answer RQ2, we simulated state-aware adaptive rec-
ommendations using embedding techniques and reinforcement
learning approach and evaluated their contributions in producing
usefulness-focused search recommendations. Speci�cally, we built
a Q-learning algorithm based on the knowledge we learned about
state transitions and applied themodel in simulating search sessions.
Q-learning as a Reinforcement Learning method enabled us to run
adaptive, step-by-step learning and utilize task state information
and interaction signals in deciding the strategies of selecting query
segments for recommendation. Our results demonstrate that the
simulated search episodes can improve usefulness-oriented search
e�ciency to varying extents in di�erent types of tasks.

As always, there are lessons learned from this study, limits to our
work, as well as needs for future research e�orts. A key implication
is that Q-learning algorithm as a reinforcement learning method
�ts well with the research problem of developing state-based adap-
tive supports. Di�ering from traditional ML methods, Q-learning
algorithm allows systems to learn continuously when new data
streams keep �owing in and enables IR systems to iteratively up-
date themselves according to the changing rewards associated with
di�erent ways of recommendations [45]. Thus, with a recommen-
dation model built upon Q-learning algorithm, we would be able to
support users in an online fashion.

The �exibility of Q-learning is not unconditional. To facilitate
policy updates, we need to have clear de�nitions and measures
regarding the bene�ts associated with each unit of action. In this
study, we clearly de�ned the requirements of search task completion



and represented the actual contribution of each bookmarked page
using a unique vector. However, it is very di�cult, if not entirely
impossible, to accurately measure the "bene�t” associated with each
action in naturalistic search tasks. This is because (1) many search
tasks in natural contexts are open-ended in nature and have no clear
task completion point (e.g., �nd useful information about treating
COVID patients); (2) users’ perceived bene�ts in search sessions
are very subjective and are often signi�cantly a�ected by the gap
between remembered utility and experienced utility [15, 21]; (3)
Overall, users’ perceived level of search success and actual search
performance are not always aligned with each other. Smith and
Rieh [37] argued that people often confuse the feeling of being able
to �nd information with their own actual knowledge. Therefore, to
develop generalizable intelligent search supports, researchers need
to further explore how to build reliable and reproducible usefulness-
based benchmark collections for task-based IR evaluations [28].

Moreover, the �ndings reported here from a journalism search
study need to be tested based on the datasets collected under dif-
ferent domains, task contexts and study settings. It is also critical
to investigate how user traits (e.g., existing belief [47], knowledge
state [52], emotional state [25]) a�ect task progresses and user inter-
actions at multiple levels, and how users evaluate their search gains,
e�orts and experiences di�erently under varying search states [24].
To address this issue, researchers need to design reliable measures
that can capture the nature of these factors in various scenarios.
For instance, in Web search, it is often di�cult to di�erentiate the
impact of topic knowledge from that of topic-independent search
skills. In particular, how to accurately measure a user’s level of
search skills is still an open question [19, 31].

6 CONCLUSION
In summary, this work aimed to: 1) enhance our knowledge about
the dynamic nature of CSTs, especially in terms of task state distri-
butions; 2) leverage the knowledge learned about task states and
state transition patterns in developing a computational model that
produces useful adaptive search recommendations.

As a general matter, these goals were largely met. Our work
connects the theoretical frameworks of search processes with the
computational models of interactive IR and illustrates an innovative
analytical approach that is both theoretically meaningful and prac-
tically applicable to the anatomy of and support for CSTs. Also, the
Q-learning-based recommendation algorithm demonstrated here
can potentially be applied in real-time search supports for CSTs
from varying information-intensive decision-making scenarios.

Beyond simulations and experiments, a more complete develop-
ment of state-aware, adaptive IR systems would require 1) a more
psychologically realistic model of task processes built upon deeper
knowledge about users’ cognitive abilities, knowledge states, as
well as systematic biases, 2) a comprehensive recommendation
algorithm that incorporates more task features and user charac-
teristics as parameters, 3) evaluation metrics that are more closely
associated with users’ in-situ and whole-session experiences, and
4) robust task-aware, usefulness-based benchmark collections. Be-
sides, with respect to system design, future research also needs
to explore new a�ordances and innovative interaction modalities
in order to support more sophisticated intentions, task states as

well as the associated search tactics that are not well supported by
current IR systems and query-driven interaction paradigm.
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