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Figure 1: Soft shadows (leftmost), cube map reflections for dining and gallery scenes [McG17] (middle two), and omnidirectional soft
shadows (rightmost) rendered by improved view independent rendering (iVIR).

Abstract
This paper describes improvements to view independent rendering (VIR) that make it much more useful for multiview effects.
Improved VIR’s (iVIR’s) soft shadows are nearly identical in quality to VIR’s and produced with comparable speed (several
times faster than multipass rendering), even when using a simpler bufferless implementation that does not risk overflow. iVIR’s
omnidirectional shadow results are still better, often nearly twice as fast as VIR’s, even when bufferless. Most impressively, iVIR
enables complex environment mapping in real time, producing high-quality reflections up to an order of magnitude faster than
VIR, and 2-4 times faster than multipass rendering.

CCS Concepts
• Computing methodologies → Rendering; Graphics processors; Point-based models;

1. Introduction

Computer graphics hardware has had difficulty with real-time ren-
dering of multiview effects such as soft shadows, object reflections
and depth of field, because they require multiple model traversals.
Hardware ray tracing can now also produce these effects, but still
struggles to sample them adequately [HAM19].

View-independent rasterization (VIR) renders multiview effects
by using points as a display primitive, avoiding the complexity of
multiple rendering passes [MWH17]. For every frame, it carefully
transforms input triangles into a point cloud specialized to the cur-
rent set of views. It then uses these points to render views in par-
allel, with an order of magnitude fewer passes over the geometry.
Unfortunately, it requires use of a fixed-size point buffer, risking
overflow. More importantly, it struggles in applications with dis-

parate views that increase point cloud size (e.g., omnidirectional
shadows and environment maps), and in applications with heavy
shader loads (e.g., environment maps and depth of field).

This short paper presents our improvements to VIR, including:

• Better sampling efficiency: We introduce uniform sampling of
triangles, per-triangle perspective correction and detailed meth-
ods for stochastic culling. For environment mapping, we also
dynamically resize cube map buffers to eye resolution.

• Better practicality: When shader loads are small (e.g. soft and
omnidirectional shadows), these efficiencies enable use of frag-
ment rather than compute shaders fed by a point buffer, avoiding
overflow concerns. In addition, with the new per-triangle per-
spective correction, projections can vary across views.

• Broader application: We use improved VIR (iVIR) not only for
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soft shadows, but unlike VIR, also for omnidirectional soft shad-
ows and dynamic cube-mapped reflections. When rendering:

– soft shadows, iVIR is more practical than VIR without signif-
icantly changing quality or speed. iVIR does not raise buffer
overflow concerns and supports variable projections (e.g. for
directional or spot lights). iVIR, VIR and multiview render-
ing (MVR) quality is nearly identical, while iVIR’s speed re-
mains similar to VIR’s and several times faster than MVR’s.

– omnidirectional soft shadows, iVIR has the same practical
advantages as when rendering soft shadows, while also gen-
erating imagery 1.8× times faster than VIR and 1.5× times
faster than MVR.

– cube-mapped reflections, iVIR generates imagery of similar
quality to VIR and MVR, but does so up to 19× faster than
VIR and up to 3.5× faster than MVR.

2. Related Work

Rendering realistic imagery requires accurate simulation of light
flow. However, accurate sampling of the light flow integral [Kaj86]
can be difficult [LAC∗11]. With rasterization hardware, the fastest
way to sample the integral is often MVR: storing many views
in off-screen buffers and combining them. However, MVR re-
mains slow, often requiring sparse sampling and filtering to reduce
noise [SAC∗11,HZP07,HZP06,HREB11,UKS∗20,DSNS10]. But
even the best of these techniques struggles when generating more
than 32 views. Ray-tracing hardware has recently enabled hybrid
rasterization-ray tracing pipelines for computing effects includ-
ing shadows, reflections and refractions [SAGC∗12, BBHW∗19].
These techniques rely on stochastic sampling making them prone
to noise, and require post-filtering resulting in blurry reflections.

2.1. Shadows and Shadow Mapping

Computer graphics renders “hard” shadows cast by point lights and
the more realistic “soft shadows” are cast by area light sources.
Shadow mapping [HH97] and shadow volume [AMA02] soft
shadow solutions exist. The shadow mapping algorithm can be
quite accurate, but is too slow for real-time use [ESAW16]. The
shadow volume algorithm can be fairly fast, but is relatively com-
plex and somewhat inaccurate. Many faster but more approxi-
mate techniques have also been introduced [HLH∗03, AHL∗06].
One example is percentage-closer soft shadows (PCSS), which
adaptively filters hard shadow boundaries to produce penumbrae
[RSC87, Fer05].

These algorithms work well for directional lights, which emit
light only toward a small part of the environment around the light.
However, in reality most light sources emit light in many direc-
tions. To generate omnidirectional shadows for a point light, we
can create six separate shadow buffers, each defined by a face in a
cube around the light, and use shadow mapping with each of those
buffers [Ger04, Kas13]. To implement omnidirectional soft shad-
ows, we must generate these six depth maps for each sample of the
omnidirectional light source.

2.2. Reflections and Environment Mapping

Reflections can be achieved using ray tracing [Whi79], but ray-
traced reflections can alias, particularly during animation. Avoid-
ing aliasing either requires more samples and rays, or hybridized
solutions using rasterized reflections [AMN19, BBHW∗19].

The best-known rasterized solution is environment mapping,
an MVR technique that turns images of the environment around
the reflective object into texture maps that are accessed using
view-dependent lookups. Several variations differ in the map-
ping between the rectangular textures and the reflective surface
[BN76,Wil83,MIL84,HS98,ED08]. Perhaps the most widely used
is cube mapping [Gre86], because it is a good fit to rectangular ras-
terization windows, permitting interactive reflections. Environment
mapping produces convincing reflections in real time, but works
best when the scene is static. In dynamic scenes, textures must be
updated each frame. Moreover, when reflected objects are nearby,
different reflective objects will “see” different views of that object,
and cannot share one environment map. These shortcomings can
require extensive multiview rendering in each frame.

2.3. Points and VIR rendering

To avoid rasterization’s limitations for multiview rendering, VIR
relies on points [LW85]. Triangles often outnumber pixels in to-
day’s applications, leading many to argue that points are a better
rendering primitive [GP11]. Yet points are not used widely, since
their discontinuity can create “holes” when views change. To avoid
this, point renderers use dense point clouds that render slowly, or
sparse clouds with complex reconstruction that again render slowly
(e.g., [RGK∗08]), or simply produce low-quality imagery.

To improve point rendering and support multiview rendering,
VIR [MWH17] exploits rasterization hardware, which efficiently
transforms triangles into points. For each frame, VIR generates a
cloud of points customized to the current set of views in real time. It
then renders the cloud in parallel into multiple views, reducing the
number of geometry passes by a factor of ten. To accomplish this,
for any triangle visible in at least one view, the geometry shader
computes specialized viewing and projection matrices that center
the triangle, orient it parallel to the view plane, and achieve a water-
tight sampling rate. It then applies the matrices to the triangle and
rasterizes it to generate points. Next, the fragment shader writes
each point to a buffer. When all points have been generated, the
compute shader passes over this buffer, transforming and project-
ing each point into multiple views.

3. Improving View Independent Rasterization

We improve on Marrs et al.’s VIR [MWH17] to increase its practi-
cality and efficiency, allowing broader application. These improve-
ments include more efficient uniform sampling of triangles, per-
triangle perspective correction that increases both sampling par-
simony and rendering flexibility, and detailed stochastic culling,
again improving sampling efficiency and speed. These efficiency
improvements also often allow the use of a much more practical
bufferless implementation, which relies only on fragment shaders
rather than compute shaders fed by an intermediate point buffer
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that might overflow. We highlight each of these improvements in
this section with italics.

3.1. Watertight and Efficient Point Sampling

To produce the points that represent a triangle, iVIR rasterizes it in
a view-independent fashion, with each fragment becoming a point.
The primary function of the geometry shader is to set the triangle
up for view-independent rasterization, producing points at a desired
sampling rate.

iVIR begins by ensuring that the triangle is front-facing in at
least one off-screen (e.g. shadow or reflection) view. If so, like VIR,
iVIR centers the triangle in the viewport, and aligns it parallel to
the view plane. To achieve this, the geometry shader computes and
applies the Talign transformation matrix unique to each triangle, as
shown in Eq. 1.

Talign =

⎡⎢⎢⎣
ux̂ uŷ uẑ −(û · c⃗)
vx̂ vŷ vẑ −(v̂ · c⃗)
nx̂ nŷ nẑ −(n̂ · c⃗)
0 0 0 1

⎤⎥⎥⎦ (1)

where û, v̂ and n̂ are the mutually orthogonal vectors forming the
basis frame of a triangle; n̂ is the triangle unit normal vector; and
the vector c⃗ contains the coordinates of the triangle centroid. Any
point on the triangle can be used to locate the frame, as long as the
triangle lies completely inside the viewing volume after transfor-
mation with Talign. Applying the Talign matrix places the camera at
the origin, looking down the negative z-axis toward the triangle.

Marrs et al.’s VIR computed the watertight multiview sampling
rate smv by assuming that the eye, off-screen, and point-sampling
views were all perspective, using the same fields of view. Unfor-
tunately, point sampling in perspective leads to sampling ineffi-
ciencies, with points spread unevenly across each triangle due to
perspective distortion. Moreover, these assumptions reduce render-
ing flexibility. We address these problems by using orthogonal pro-
jection in the point-sampling view, resulting in uniform sampling
across the triangle.

Figure 2: Reverse projection of a pixel area around the closest
point on the polygon from the eye.

Use of different (orthogonal and perspective) projections in the
eye, off-screen and point-sampling views means that distance alone
cannot indicate the required sampling rate. iVIR finds ρmv, the
maximum point density needed on the triangle’s surface, as illus-
trated in Figure 2. For each triangle t, we first find the closest point

on the triangle from a given view v [Ebe99]. This point has the
highest sample density on the triangle for that view. We compute
the area of a reverse-projected pixel centered on that point areaP,v,t
by reverse-projecting its corners onto the polygon in model space.
Across all views, the maximum multiview sampling density ρmv is
given by the Eq. 2, and the orthogonal scaling factor Sortho is given
by Eq. 3.

ρmv = ∀v∈V max(ρmv,
areat

areaP,v,t
) (2)

Sortho =

√︃
ρortho
ρmv

(3)

where V is the set of all view centers of destination views, areat is
the area of the triangle in model space, and ρortho is the sampling
density for VIR’s orthographic projection, which depends on the
chosen viewing volume. Note that while VIR used a global worst-
case calculation of perspective distortion to conservatively increase
sampling rate and ensure watertight sampling, iVIR’s method de-
scribed here implicitly includes a much more efficient per-triangle
perspective correction, which also improves rendering flexibility.

Figure 3: A perceptual comparison of iVIR with and without
stochastic culling. Red indicates a more perceivable difference.
HDR-VDP2 shows little or no difference.

To ensure the current triangle will be sampled at this rate, we
simply scale it by Sortho. We define iVIR coordinate space as world
space coordinates, transformed by Talign, and scaled by orthogonal
scaling factor Sortho, as shown in the Eq. 4. We apply this composite
transform to each triangle vertex. Because of the reverse projection
of pixel area on the triangle around the point with highest sample
density, our orthogonal sampling implicitly includes per-triangle
perspective correction.

Tivir = scale(Sortho)∗Talign (4)

3.2. Stochastic Culling

To improve speed further, we stochastically cull (and avoid gener-
ating points for) triangles that span less than 1/10th of a pixel in
VIR’s point generation view. The smaller the area of the triangle
At , the more likely it will be culled, with probability Pc = 1−10At .
Stochastic culling breaks our watertight guarantee, but we have not
yet observed any “holes” resulting in practice, and we estimate their
probability to be extremely unlikely: less than one chance in a mil-
lion for shadows; even lower for reflections. For example, Figure 3
shows a perceptual comparison of improved VIR with and without
culling using HDR-VDP2 [MKRH11]; cool heatmap colors indi-
cate little or no difference. Across this same range of models, we
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(a) MVR (b) Marrs et al.’s VIR (c) MVR vs Marrs et al.’s VIR (d) iVIR (e) MVR vs iVIR

Figure 4: Soft shadows generating 128 depth maps, rendered using (a) MVR, (b,c) Marrs et al.’s VIR, and (d,e) iVIR. MVR takes 57ms,
VIR takes 10.4ms and iVIR takes 16.6ms using bufferless and 9.8ms with buffered implementation. (c,e) HDR-VDP2 imagery are compared
against MVR, with red indicating that differences are very perceivable, and blue rarely perceived.

found that stochastic culling is most beneficial when subpixel tri-
angles are common. This replicates Marrs et al’s [MWH17] finding
that for large triangles (spanning dozens of pixels or more), VIR is
less efficient than standard rasterization.

4. Soft Shadow using iVIR

We demonstrate the practicality and potential of improved VIR
with soft shadows. Below, we offer comparisons to both high qual-
ity and high-speed shadow algorithms, as well as a comparison to
Marrs et al.’s implementation [MWH17].

GPU Performance of iVIR [with stochastic culling] Soft Shadows for 128 Views

Models
(# tris)

Improved VIR Marrs et al.’s VIR
MVR
time#points

pt gen
time

Bufls
time

Bufd
time

#points
pt gen
time

total
time

Tree House
(151.8K)

245.5K
[194.1K]

0.69
3.33
[1.82]

3.81
[3.50]

253K
[203.7K]

0.67
4.01
[3.77]

7.33

Dragon
(883.3K)

693.7K
[482.1K]

4.67
16.73
[10.86]

9.79
[8.83]

935.1K
[810.4K]

4.08
10.39
[9.73]

57.01

Buddha
(1.1M)

569.5K
(130.5K)

5.35
20.64
[9.01]

9.70
[7.75]

617.2k
[252.1K]

4.65
9.24
[7.58]

69.33

Lucy
(2.0M)

1.0M
(125.9K)

9.85
38.35
[14.05]

15.92
[12.21]

1.1M
[298.6K]

8.28
14.75
[11.38]

122.3

Table 1: Soft shadow performance of iVIR, VIR, and MVR for dif-
ferent models ranging from 150k to 2M triangles generating 128
depth buffers of 10242 resolution. All GPU times are measured in
milliseconds (ms). Fastest times highlighted in blue and the results
using stochastic culling are in brackets ([]).

4.1. High Quality Comparision

As an evaluation platform, we used OpenGL 4.5 on a PC with an
Intel i7-8700K @ 3.70 GHz CPU and an NVIDIA 1080Ti GPU,
running Windows 10 OS. We rendered multiple dynamic scenes,
rotating around themselves, while lights remained stationary, cast-
ing moving shadows. We used 32-bit unsigned depth buffers, with
a resolution of 10242. For each light source sample, we set field of
view to 45o.

Like Marrs et al., we produced 128 views in four passes (32 per
pass, the warp size of our GPU). As a high quality comparison, we
used multiview rendering MVR, which used 128 passes to create
128 standard shadow maps [Wil78]. To compare the performance
of these methods, we averaged GPU run-time and the number of
points generated over 1000 frames of execution.

Table 1 shows results for several models [McG17]. The leftmost

column shows the number of triangles per model. The adjacent four
show improved iVIR’s point cloud size, the time required to gen-
erate that point cloud, and total time to generate point cloud and
construct depth maps (with results including stochastic culling in
brackets) for bufferless and buffered implementation. For compar-
ison, the next three columns reports the Marrs et al.’s point cloud
size, the time required to generate that point cloud, and the total
time to generate point cloud and construct depth maps (with re-
sults including stochastic culling in the brackets). The last column
reports the total time taken by MVR to make depth maps. The il-
lumination technique is the same for iVIR, VIR, and MVR, we do
not include it. iVIR renders these dynamic, complex soft shadows
up to 3.4 times faster than MVR without stochastic culling, and up
to 7 times faster with it.

Our improvements had minimal impact on iVIR’s performance
and image quality producing nearly identical soft shadows as VIR
at similar speed. While our orthogonal projection sampling gen-
erated fewer points than Marrs et al.’s sampling rate, it required
more time to do so, particularly in models with more triangles. For
example, when generating 128 views for a model with 2 million
triangles, orthogonal projection sampling generated 126K points in
9.85ms, whereas Marrs et al.’s sampling generated 299kK points in
8.28 ms.

Figure 4 shows soft shadows generated by iVIR, VIR and MVR.
Though iVIR is faster than MVR, its visual quality is quite sim-
ilar to high quality MVR and VIR, and stable under animation.
iVIR includes the hallmarks of high quality shadows, such as soft
penumbras and contact hardening (sharper shadows closer to the
light). Because iVIR and MVR both use shadow mapping and dif-
fer only in how they generate depth buffers, both suffer the same
artifacts (e.g. “peter panning” and acne). Note that the breaks in the
dragon’s shadow with iVIR are smaller than in MVR; iVIR’s view
independent samples silhouettes more densely than view dependent
MVR.

4.2. High Speed Comparison

To evaluate the use of iVIR in a more practical, real time setting, we
compare iVIR to percentage-closer soft shadows (PCSS) [Fer05].
We generated soft shadows using 16 views in 2.6 ms and compared
it to an image generated by PCSS with 96 samples per pixel (32
blockers and 64 filter samples), in 2.5 ms. The resulting images are
shown in Figure 5 along with their perceptual comparison against a
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reference 128-view MVR solution using HDR-VDP2 [MKRH11].
The image generated by iVIR has less error than PCSS, especially
at the region where the rods cast shadows on the dragon.

(a) PCSS (b) MVR vs PCSS (c) iVIR (d) MVR vs iVIR

Figure 5: Soft shadow rendered by (a) PCSS (32 blocker and 64
PCF samples) and (c) iVIR (16 views). (b) and (d) are the HDR-
VDP2 perceptual comparison of PCSS and iVIR against 128-view
MVR respectively. PCSS takes 2.5 ms, whereas iVIR takes 2.6 ms
delivering better quality.

5. Environment Mapping using iVIR

In this section, we describe our application of iVIR to environment
mapping. We first emphasis on iVIR’s ability to adapt to different
off-screen view resolution, and continue examining the speed and
image quality of our iVIR-based implementation to VIR and MVR

5.1. Adapting iVIR to Environment Mapping

iVIR samples a triangle by reverse-projecting a pixel area on the
view plane on to the triangle, making it adaptive to the off-screen
view resolution. Thus, reducing the required point density and ul-
timately, point cloud size. We adjust the sizes of these off-screen
views in every frame by projecting the corners of reflective object’s
bounding box on the eye’s view.

We experimented with both bufferless implementation in which
the fragment shader writes points directly to the off-screen views,
and compute implementation where we store point in a point buffer
for processing in compute. While both of them produced identical

Scene
#Refl
Objs

(#tris)

Improved VIR Marrs et al.’s VIR
MVR
timeiVIR

(#points )
Bufferless
tot time

Buffered
tot time

VIR
(#points )

Total
Time

Dining
Scene

1
(1.57M)

1.46
(1.28M)

2.68 2.60
13.34
(15.07M)

17.01 3.94

8
(1.92M)

4.30
(3.82M)

16.69 11.63
98.91
(40.42M)

199.95 21.31

16
(2.34M)

8.43
(5.57M)

43.84 24.17
204.51
(63.37M)

495.35 48.06

20
(2.39M)

10.30
(5.60M)

56.53 29.65
206.61
(66.88M)

570.10 60.30

Gallery
Scene

1
(1.01M)

1.13
(352.53K)

2.20 2.00
8.73
(10.26M)

11.40 3.44

8
(1.09M)

3.37
(859.33K)

17.12 8.94
34.33
(17.63M)

68.25 28.64

16
(1.19M)

6.27
(995.82K)

38.88 17.35
61.46
(23.72M)

191.46 58.20

20
(1.24M)

7.90
(1.06M)

50.90 21.46
63.86
(25.49M)

227.04 74.49

Table 2: Environment mapping performance table comparing iVIR,
VIR and MVR for the dining and gallery scenes with 1-20 reflective
objects and 1.5M and 1.0M non-reflective triangles, respectively.
All GPU times are measured in milliseconds (ms). Fastest times
are highlighted in blue, and slowest in red.

imagery, bufferless implementation was consistently less than half
as fast. Schutz et al. [SKW21] reported similar results.

Unlike soft shadows, environment mapping requires multiple
storage buffers to store point data. The buffer must contain point
center, normal, material data, and it’s optionally visibility infor-
mation in each of cubemap’s faces. We currently use 3 buffers:
point center in a vector3 buffer, normal and any materials are in
a uvec4 buffer,and the visibility string is in two 64-bit unsigned
integer buffers.

The compute shader processes all points in the storage buffers,
and writes the point into that view’s off-screen buffer. Our cube
maps used 32-bit unsigned integer buffers, with a maximum adap-
tive resolution of 5122. The compute shader cannot use Z-buffering
hardware, with its guarantee of atomic data access by parallel
threads. Instead, we use atomic operations on integer buffers. Each
off-screen buffer pixel is a 32-bit unsigned integer with the 13
most significant bits used for storing the depth of the point, and
the remaining 19 bits for storing the color (6-7-6 bit of red, green,
and blue). High quality environment maps require filtering to accu-
rately represent reflections. Unfortunately, hardware filtering sup-
port such as mipmapping is not available to compute shaders. Thus,
for each off-screen view, we carry an image pass to copy it in a
mipmapped buffer.

5.2. Results

We used the same testing configuration as discussed in 4.1. For
testing, we used a dining scene and gallery scene [McG17], shown
in Figure 6. Scenes were dynamic, with the eye revolving around
the scene, and all the reflective objects moving in a periodic fash-

MVR

MVRMVR
VIR

VIRVIR
VIR

VIRVIR
iVIR

iVIRiVIR
iVIR

iVIRiVIR

MVR

MVR

MVR
VIR

VIR

VIR
VIR

VIR

VIR
iVIR

iVIR

iVIR
iVIR

iVIR

iVIR

Figure 6: Environment cubemapped reflections rendered by MVR
(leftmost column), VIR (next two columns, with HDR-VDP2 per-
ceptual comparison), and iVIR (last two columns). All HDR-VDP2
imagery compare against MVR, with red indicating that differences
are very perceivable, and blue rarely perceived.
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#light
samples

iVIR Marrs et al.’s VIR
MVR
time#points

Bufferless
tot time

Buffered
tot time

#points
total
time

1 10.94M 2.46 4.03 14.31 M 4.75 2.16
5 11.43M 4.86 5.86 14.83 M 7.11 7.22

10 11.69M 7.88 7.98 15.03 M 8.98 15.15
20 11.74M 20.32 30.74 15.07 M 36.97 29.74

Table 3: Omnidirectional soft shadow performance results com-
paring iVIR, VIR, and MVR for the dining scene with 1.4M trian-
gles. As the number of light samples varies, we report total time (in
ms) and point cloud size. Fastest times are in blue, slowest in red.

ion. We used a physically-based rendering shader using roughness
and metallic textures [PJH16]. In our buffered implementation, our
cube maps used 32-bit unsigned integer buffers, with a maximum
adaptive resolution of 5122.

Table 2 shows results for the dining and gallery scenes [McG17].
The leftmost column is the name of the scene, and the adjacent
column to it shows the number of reflective objects in the scene
and the corresponding triangles per scene. The adjacent three show
improved VIR’s point generation time (with number of points in
parentheses), total rendering time to generate cubemaps for buffer-
less, and compute iVIR. For comparison, the next two column re-
ports Marrs et al.’s point generation time (with number of points in
parentheses), total rendering time to generate cubemaps. The last
column reports MVR total time to generate cubemaps. The deferred
shading pass is the same for iVIR, VIR, and MVR, we do not in-
clude it. The bufferless version of iVIR is 1.5× faster than MVR,
while the compute version of iVIR is up to 3.5× faster thanMVR.

Figure 6 shows environment mapped reflection generated by im-
proved VIR and MVR. The first column shows reflections by MVR,
the next two column shows reflection by VIR and the HDR-VDP2
[MKRH11] visual difference between VIR and MVR, and the last
column shows reflection by iVIR and its visual difference between
MVR. The first two rows shown the dining scene, while the last
two show the gallery. First, in the red boxes of the second row,
note the window’s reflection on the sphere: iVIR shows window
blinds, while MVR and VIR shows the view outside the window.
Because iVIR renders at adaptive resolution and with conservative
rasterization a point smaller than the buffer pixel size occupies the
entirety of the pixel, while in VIR and MVR the buffer resolution
is set to 5122 and mipmapped. The RMSE measure between iVIR
and MVR are 0.358 and 0.490 for dining and gallery scene respec-
tively, and for VIR and MVR are 0.307 and 0.374 for dining and
gallery scene respectively (note that the minor differences outside
of reflections are due to different anti-aliasing techniques used for
iVIR and VIR (FXAA), and MVR (MSAA)). iVIR is similar in
quality to VIR while generating 95% less points and is 10× faster
using bufferless, and 19× faster using compute.

6. Omnidirectional Soft Shadows using iVIR

We further gauge our improvements by applying iVIR to omnidi-
rectional soft shadows, and comparing results with VIR and MVR.
We used the same testing configuration described in 4.1. Figure 7
shows that these three algorithms produce imagery of similar qual-

(a) MVR (b) Marrs et al.’s VIR (c) iVIR

Figure 7: Omnidirectional soft shadows rendered using (a) MVR,
(b) VIR, and (c) iVIR. The omnidirectional light is spherical, with
20 samples on its surface. In this figure only, the light is shown in
cyan and twice its actual size for illustrative purposes.)

ity. Table 3 shows rendering times for the dining scene with 1.4M
triangles. The leftmost column shows the number of light sam-
ples on a spherical omnidirectional light. The next column shows
iVIR’s point cloud size. The third and fourth show the total time
for iVIR to generate point clouds and make shadow cube maps
using bufferless and buffered implementations, respectively. The
next two columns report VIR’s point cloud size and total rendering
time, while the last column reports MVR’s total time. iVIR gener-
ated 22% fewer points than VIR, and its bufferless version is 1.8×
faster than VIR and 1.46× faster than MVR.

7. Conclusions, Limitations, and Future Work

This paper describes iVIR, an improved version of to Marrs et al.’s
VIR. Marrs et al. demonstrated only an application of VIR to soft
shadows. iVIR allows not only a more practical soft shadow im-
plementation of similar speed and quality, but unlike VIR also en-
ables real-time omnidirectional soft shadows and complex reflec-
tions with cube mapping. iVIR’s environment mapping implemen-
tation is particularly impressive, rendering high-quality reflections
3.5× faster than MVR, and 19× faster than VIR.

Yet iVIR does have limitations. Its stochastic triangle culling
breaks the guarantee of watertight sampling, though we could not
see holes in our testing. Also, iVIR can exaggerate fine (single
pixel or smaller) detail, because it uses conservative rasterization
and when environment mapping, coarse cube map textures adapted
to the resolution of the eye’s view. In the near term, we will miti-
gate this problem by culling points that lie outside of triangles, and
by being less aggressive in coarsening cube map textures. Longer
term, we plan to apply iVIR to defocus blur and light field displays,
and to study global probabilistic limits for potential holes resulting
from stochastic culling.
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