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ABSTRACT Recent trends for vehicular localization in millimetre-wave (mmWave) channels include em-
ploying a combination of parameters such as angle of arrival (AOA), angle of departure (AOD), and time
of arrival (TOA) of the transmitted/received signals. These parameters are challenging to estimate, which
along with the scattering and random nature of mmWave channels, and vehicle mobility lead to errors in
localization. To circumvent these challenges, this paper proposes mmWave vehicular localization employing
difference of arrival for time and frequency, with multiuser (MU) multiple-input-multiple-output (MIMO)
hybrid beamforming; rather than relying on AOD/AOA/TOA estimates. The vehicular localization can
exploit the number of vehicles present, as an increase in the number of vehicles reduces the Cramér-Rao
bound (CRB) of error estimation. At 10 dB signal-to-noise ratio (SNR) both spatial multiplexing and
beamforming result in comparable localization errors. At lower SNR values, spatial multiplexing leads to
larger errors compared to beamforming due to formation of spurious peaks in the cross ambiguity function.
Accuracy of the estimated parameters is improved by employing an extended Kalman filter leading to a root
mean square (RMS) localization error of approximately 6.3 meters.

INDEX TERMS Hybrid beamforming, localization, mmWave, MU-MIMO, V2V.

I. INTRODUCTION
Next generation vehicles are required to be fully connected
and communicate with each other and the transport infras-
tructure. These connections will increase safety and deliver
intelligent services, with a vision of fully autonomous ve-
hicles in the future. Vehicles will require cellular networks
with high throughput speeds to share their location, speed,
and other sensor information with low latency. The Third
Generation Partnership Project (3GPP) release 16 shows the
fifth-generation (5G) network operating between 0.5 GHz-
100 GHz would facilitate such data transfer for transporta-
tion from vehicle-to-vehicle (V2V) [1], [2]. Millimetre-wave
(mmWave) frequencies can support high peak data rates of
several gigabits per second required for various automated
functions such as localization [3].

Current mmWave localization techniques are applicable
to static channels, and the transmitter (Tx)-receiver (Rx)

mobility is not quantified. Most techniques require robust
beam switching/control strategies for accurate estimation of
the angle of departure (AOD)/angle of arrival (AOA). Beam-
tracking becomes challenging due to more vehicles requiring
robust, fast beam switching techniques. Joint time difference
of arrival (TDOA)/frequency difference of arrival (FDOA)
estimation under these conditions are potential candidates for
localization estimates.

This paper aims to apply the joint TDOA/FDOA approach
with multiuser (MU) multiple-input multiple output (MIMO)
hybrid beamforming (HB) for vehicle localization at mmWave
frequencies. The Fisher information matrix (FIM) is used to
access the data quality among multiple vehicles to manage the
mmWave channel and optimize the emitter vehicle location
subject to communication constraints. Channel sounding is
assumed for HB to determine the channel state information
(CSI), and joint spatial division multiplexing is employed to
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determine the precoding and coding weights for the selected
system configuration.

The main contributions in this paper are enumerated:
� We derive a closed-form expression of Cramér-Rao

Bound (CRB) of the parameter estimation and ana-
lyze the accuracy of cross ambiguity function (CAF)
for TDOA/FDOA localization in beamforming (BF)
and spatial multiplexing (SM) modes. CRB estimation
indicates that increasing the number of vehicles re-
duces the estimation error. Therefore, localization with
TDOA/FDOA estimation can accordingly exploit the
number of vehicles present in V2V channels. Results
show that higher accuracy is achieved in BF than in SM.

� We propose a TDOA/FDOA estimation approach with
MU-MIMO HB considering dual mobility of the Tx and
Rx and achieving a root mean square (RMS) localization
error of 6.3 m.

The rest of the paper is organized as follows. Section II un-
dertakes a literature review to detail the existing mmWave and
TDOA/FDOA localization techniques and their limitations.
Section III details the localization with MU-MIMO HB and
investigates the performances for BF and SM. In Section IV,
CRB and CAF are estimated, following which emitter lo-
calization is undertaken; accuracy is improved by employing
extended Kalman filtering. Concluding remarks are drawn in
Section V.

I. II. LITERATURE REVIEW FOR LOCALIZATION
A. CURRENT MMWAVE LOCALIZATION TECHNIQUES
The early work to obtain position and orientation in the con-
text of mmWave technologies involves estimation and track-
ing of the AOA through beam-switching, user localization
through hypothesis testing, and measurement of the received
signal strength [4]–[7]. Various techniques employed for mas-
sive MIMO mmWave localization include estimating various
parameters such as joint delay, AOA, and AOD, including
hybrid techniques based on linearization and nonparametric
kernel-based probabilistic models [8]–[12].

The large bandwidths in mmWave lead to much better
temporal resolution, thus potentially improving the position
estimates. More antenna elements in antenna arrays lead to
smaller beamwidth with higher accuracy and resolution for
the angular estimation. To leverage these characteristics, re-
cent trends have focused on estimating position and orien-
tation with a combination of AOA, AOD, and time of ar-
rival (TOA). The CRB bounds of position and orientation
for uniform linear arrays are derived in [13] by employing
signals from a single transmitter (Tx), in line-of-sight (LOS),
non-line-of-sight (NLOS), and obstructed-line-of-sight condi-
tions for downlink localization. The closed-form of FIM is
derived by employing geometric relationships for the channel,
position, and orientation. For the non-uniform arrays, CRBs
of position and orientation are given in [14]. For an indoor
channel employing BF and SM, CRBs for TOA and AOA are
derived in [15] using the CAF. The CRBs are compared for BF

and SM for the single-user (SU)-MIMO case. In [13]–[15], it
is further shown that the position and orientation estimates can
benefit from NLOS components. However, the effects of Tx
location, mobile terminal, and points of incidence of NLOS
components are not analyzed for the presented results. The
effects of NLOS components on position and orientation are
given in [16]. It is shown that for sufficiently high temporal
and spatial resolution, NLOS components provide position
and orientation information which can increase the estimation
accuracy. However, the accuracy depends on the number of
NLOS paths that are not guaranteed in outdoor mmWave
channels.

The aforementioned techniques are applied to static chan-
nels or when the Tx-Rx mobility is not quantified or de-
pends on robust beam switching/control strategies for accu-
rate AOD/AOA estimation. Most of the techniques apply to
SU-MIMO, which does not leverage multiple vehicles present
in a given area of interest. On the contrary, beam-tracking
becomes onerous because more vehicles require robust, fast
beam switching techniques. As a result, accurate AOD/AOA
estimation becomes challenging and is prone to errors as
Tx/Rx is mobile.

For the dynamic scenarios present in V2V channels, the
Doppler shift measurements can provide additional Fisher
information for localization [17]. One such technique is local-
ization of the Tx with TDOA and FDOA estimation, which is
employed in a wide range of applications for military, security
and civilian use [18].

B. COMPARISON OF EXISTING TDOA/FDOA TECHNIQUES
This section examines some of the main localization tech-
niques based on TDOA/FDOA estimation. Localization based
on TDOA estimation is suitable for high-bandwidth applica-
tions such as radars and mmWave V2V communication, while
FDOA estimation can exploit the Doppler shifts in V2V com-
munication [19], [20]. Localization with joint TDOA/FDOA
estimation is a two-stage process. The first stage employs
CAF to simultaneously estimate TDOA/FDOA from an emit-
ter using maximum-likelihood methods [21]–[24]. Multiple
TDOA/FDOA measurements are employed in the second
stage to estimate the emitter location [25]. In [20], the ap-
proach aims to improve localization accuracy by nearing the
CRB limits targeted at UAV applications by fusion of mea-
surements when the likelihood of only one TDOA measure-
ment is present; a likely scenario in a highly dynamic 3D
UAV channel environment. Further, the Gaussian mixture
presentation of measurements-integrated track splitting [26]
filter is extended to adapt to the UAV channel for adequate
tracking of the mobile emitter. Other techniques include re-
ducing the computational requirements with algebraic [27],
[28], and numerical solutions [29]. Techniques in the sec-
ond stage include localization using satellites [30] and fixed
sensor networks [31]. The two-stage localization accuracy
depends on the signal-to-noise ratio (SNR), resulting in higher
localization errors at low SNRs. On the other hand, single-
stage techniques may be employed to reduce such errors in
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FIGURE 1. Emitter localization in V2V.

localization. Single-stage techniques known as direct position
determination enable emitter localization directly from the
CAF [32], [33].

The mentioned TDOA/FDOA based techniques either im-
prove localization accuracy or reduce the computational re-
quirements. However, the techniques are applied in simplistic
or other scenarios not applicable to mmWave V2V channels.

III. LOCALIZATION WITH MU-MIMO HB
A. MU-MIMO HB LOCALIZATION
A 2-D geometrical scenario is given in Fig 1. The aim is to
determine the location of the emitter vehicle E, using signals
received by multiple user vehicles addressed as users. Hence-
forth each user is given as Ua, a ∈ [1, V ], where V is the total
number of users. Since the CAF operates only on two received
signals simultaneously, the users need to be paired. The as-
sumption is made that the two users are time and frequency
synchronized with each other, although not synchronized in
any way with E.

Consider the mth pair of users Ua and Ub where a, b ∈
[1, V ], a �= b and m ∈ [1, M]. The TDOA τambm and FDOA
fambm between the signals received by these users can be
jointly estimated by the CAF. If the down-converted complex
baseband signals received by Ua and Ub are ram (t ) and rbm (t )
respectively, then CAF for the mth pair is [21]:

CAF
(
τambm , fambm

)
=

∫ T

0
ram (t ) r∗

bm

(
t + τambm

)
e− j2π fambm t dt (1)

where T is the integration time and ‘∗’ is the complex con-
jugate. The parameters τambm and fambm are required to be
searched that cause simultaneously |CAF(τambm , fambm )| to
peak. Due to different geometry between E and the various
users, and the users having different quality of data, selecting
a pair of users can be crucial in determining the location ac-
curacy. Various strategies exist for user pairing. This could be
based on whether the pairs share information or not; or given
a set of users how to optimally choose pairing [34]. Ideally
a complete set of users could be employed which although
results in excessive data volume, can be alleviated as mmWave
enables high-data rates. The emitter vehicle E employs a HB
Tx where precoding is applied to both digital baseband and
analog RF domains as in Fig. 2 [35]–[41]. The subscript a
indicates for the Ua user where:

NUa : is the number of signal streams

FIGURE 2. MU-MIMO hybrid beamforming.

FBBa : is the digital precoder
NT : number of antenna elements in the Tx array
NT

RFa
: number of Tx RF chains/transceivers

FRFa : analog precoder of size NT × NT
RFa

Nds: number of data streams
NRa : number of antenna elements Rx array
NR

RFa
: number of Rx RF chains/transceivers

WRFa : analog coder of size NRa × NR
RFa

WBBa : digital coder of size NR
RFa

× NUa

The HB architecture can be partitioned into virtual sectors
where each Ua has multiple signal streams NUa , one FBBa ,
and a number of RF chains/transceivers NT

RFa
. This can be a

fully connected or a partially connected architecture. A fully
connected architecture is given in Fig. 2, where each RF chain
is connected to all antenna elements in the Tx array. This
full-connected scheme provides full beamforming gain per RF
chain but with a high complexity of NT × NT

RFa
RF paths. For

the partially-connected architecture, each of the RF chains
is connected to NT /NT

RFa
antenna elements in the Tx array.

This partially-connected architecture leads to lower hardware
complexity of RF paths at the cost of 1/ NT

RFa
BF gain. In both

cases, the number of data streams NdS that is transmitted for a
user are given by NT

RFa
. Joint spatial division multiplexing can

be employed to determine FBBa and FRFa precoding weights
for the selected system configuration [41]–[43]. Each user Rx
array is composed of NRa number of antenna elements, an
analog coder WRFa , NR

RFa
number of RF chains, and the digital

coder WBBa resulting back in NUa signal streams.
In high or sufficient SNR conditions, SM can be employed

wherein multiple data streams are transmitted to each user.
However, low SNR/cell edge conditions only allow a sin-
gle data stream using the BF mode transmission. The down-
converted complex baseband signal as received by Ua at time
t, after propagating through the SM-MIMO channel is given
by:

ra (t ) = αa

Nds∑
ds=1

xds (t − τa) e j(2π fda t+θa,ds) + wa (t ) (2)

where the symbols are:
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αa:
√

Pa/Nds
where, Pa is the signal power received,

xds: signal envelope of a randomly modulated symbol trans-
mitted in a single data stream,

τa: signal delay,
fda : Doppler shift,
θa,ds: random phase offset in one data stream, assumed to

be uniformly distributed over [0, 2π ],
wa: white, zero-mean complex Gaussian noise,
ds: data stream number.

B. CRB FOR MULTIPLE USER PAIRS
For a total of M pairs, the estimation parameter vector that is
required to be estimated by the mth pair of users is:

φm = [
τambm , fambm

]T
. (3)

The maximum likelihood estimator φ̂m of the TDOA and
FDOA are determined by solving the following optimization
problem [21]:

φ̂m = arg max
τambm , fambm

∣∣CAF
(
τambm , fambm

)∣∣ . (4)

The FIM for φm is given by [21]:

J (φm) =
∣∣∣∣∣

T B3

0.3025γm 0

0 BT 3

0.3025γm

∣∣∣∣∣ (5)

where γm is the effective SNR given by:

γm = 2
γamγbm

1 + γam + γbm

. (6)

In (6) γam and γbm are the SNRs in the respective user Rxs
with the noise bandwidth B. The TDOA accuracy improves
for larger signal bandwidths and FDOA accuracy improves
for larger integration periods.

The FIM of JM (φ), for all the combined M user pairs where
φ = [φT

1 , φT
2 . . . φT

M ]T has a block structure, and is given by
[34]:

JM (φ) =

∣∣∣∣∣∣∣∣∣∣∣

J (φ1) I (φ12) · · · I (φ1M )

I (φ21) J (φ2)
. . . I (φ2M )

...
. . .

. . .
...

I (φM1) I (φM2)
. . . J (φM )

∣∣∣∣∣∣∣∣∣∣∣
(7)

where I (φmn) is the cross-term FIM between mth and nth user
pair. The cross-terms increase the computational requirement
in the network. Since some users may be paired with more
than one pair, their communication needs careful considera-
tion to avoid a collision. When no user information is shared
among other pairs the cross-term FIMs I (φmn) are zero and
the FIM reduces to:

JM (φ) =

∣∣∣∣∣∣∣∣∣∣

J (φ1) 0 · · · 0

0 J (φ2)
. . . 0

...
. . .

. . .
...

0 0 J (φM )

∣∣∣∣∣∣∣∣∣∣
. (8)

FIGURE 3. Probability density function values for squared envelop of a
sum of random phase vectors for different data streams.

Although the FIM in (8) requires fewer computations than
(7), it may yield higher localization errors due to fewer entries
in the FIM. The dividend for sharing information between
pairs needs careful consideration due to the increase in com-
putation, network capacity, and latency. In this paper, it is
assumed that no information is shared between any user pairs.

C. SPATIAL MULTIPLEXING AND BEAMFORMING
SM is likely to be employed in high SNR conditions to
improve the network capacity wherein the channel can sup-
port multiple data streams to each user. SM increases the
number of xds(t ) that are demodulated for each user since
ds ∈ {1, Nds} where ds > 1 for SM. Accordingly, for SM the
resulting CAF in (1) is dependent on more than one xds(t )
in (2) for each user. Accurate estimation of φ̂m for ds > 1 is
therefore dependent on the random nature of θi,ds in (2) and
how coherent is the summation of all xds(t ) present in the data
stream. This can result in spurious peaks rather than a single
peak for a given CAF, thereby reducing the accuracy of φ̂m.
Therefore, even in the absence of noise and high SNR con-
ditions, the peak of the CAF may not correspond to the true
TDOA/FDOA, thereby reducing the accuracy of localization.
If xds(t ) are assumed as unit vectors, then amplitude (A) of the
squared envelope of a sum of these unit vectors, with random
phases has a probability density function given by [44]:

p (A) =
{

1
Nds−1 exp

(
− A+1

Nds−1

)
I0

(
2
√

A
Nds−1

)
; A ≥ 0

0; otherwise.
(9)

where I0(.) is the first-order modified Bessel function, and
Nds > 2. For Nds = 2 p(A) is very high → ∞ [44]. Fig. 3
indicates the probability of all xds(t ) in the data stream being
summed up coherently. The probability of three xds(t ) being
coherently summed up is given by Nds = 3 and A = 9 which
is p(A) = 0.0164. This reduces to 0.004 for four xds(t ) i.e., at
Nds = 4 and A = 16. Likewise the probability of more than
four xds(t ) coherently summing up is even lower. Therefore,
the likelihood of CAF having spurious peaks increases for
SM which has more than one xds(t ) in one data stream. In
comparison, in BF the CAF output estimates are based on a
single xd (t ) for each user. Therefore, even in the presence of
noise and low SNR conditions the peak of the CAF is more
likely to correspond to the true TDOA/FDOA.
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IV. EMITTER LOCALIZATION
A. MMWAVE 3D STATISTICAL SPATIAL CHANNEL MODEL
The mmWave channel simulator employed in this paper is
based on a 3D statistical spatial channel model for urban
LOS and NLOS channels developed from extensive 28 GHz,
60 GHz, 73 GHz, and 140 GHz ultra-wideband propagation
measurements in the cities of New York City and Austin,
USA [45], [46]. The model generates channel impulse re-
sponses that match measured field data at a wide range of
distances from 10–10000 m and over local areas based on the
time cluster-spatial lobe modeling framework. The approach
extends the 3GPP model through the directional RMS lobe
angular spreads and is consistent with the 3GPP modeling
framework. Based on the 3D statistical channel model in [45],
[46], a MATLAB-based statistical simulator, NYUSIM, has
been developed by New York University [47] that can generate
3D AOD and AOA power spectra along with omnidirectional
and directional power delay profiles that match measured field
results [48]. 3GPP assumes an unrealistically large number
of strong eigenvalues of the channel matrix, which are not
found in mmWave channels [49]. Accordingly, NYUSIM is
employed in this paper to simulate the MIMO channel for
more realistic results [50].

NYUSIM employs spatial consistency to simulate the time-
variant channel along the user trajectory. Due to the high cor-
relation of a wireless channel over a distance of 10–15 m, in-
corporating spatial consistency is required to accurately repre-
sent the consecutive and spatially correlated channel evolution
along the user movement in a local area. The channel update
has two parts viz., large-scale parameters such as shadow fad-
ing, LOS/NLOS condition, and small-scale parameters such
as the power, delay, phase and angles of each multipath com-
ponent. The large-scale parameters are updated by using a
spatially-correlated map, and the small-scale parameters are
updated by a geometry-based reflection surface [48].

B. ESTIMATING CRB
From (8), for a constant bandwidth B and integration time
T, the effective SNRs γm were obtained for 100 repetitive
runs with NYUSIM to simulate the CRB of φm for BF and
SM. The simulation specifications are given in Table I. BF
corresponds to one data stream and SM corresponds to two
or four data streams. The user positions were obtained from
NYUSIM randomly in the distance interval [10, 500] m from
E for each simulation run as given in Fig. 4 for 10 user pairs.

A vehicle-mounted base station (VMB) was assumed for
E . VMBs offer advantages such as real-time communication,
employing massive MIMO technology and dynamic caching;
and therefore, proposed as a suitable option for mmWave
V2V communication [51]. The extremely high frequencies
(mmWave/THz) in these bands on interest motivate design of
VMBs as compact size arrays with very fine pencil beams. At
E, NT = 256 and for users NRa = 4, meaning that at most 64
users can be simultaneously supported by E which can form
at most 32 user pairs. In addition, the user can receive at most

TABLE I mmWave Channel Specifications

FIGURE 4. Random user positions in the interval [10, 500] m from E.

FIGURE 5. The normalized CRBs of φm.

four different data streams from E. Thus, 10, 20, and 30 user
pairs and 1, 2, 4 data streams in the channel simulations were
chosen.

The normalized CRBs of φm for various number of user
pairs and data streams are plotted in Fig. 5, indicating that
BF has a lower CRB than SM. This agrees with the earlier
analysis for BF and SM provided by (9) and Fig. 3. SM with
four data streams with 10 pair of users produce the worst
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TABLE II MmWave Signal Parameters

performance. The yellow bar for SM, Nds = 4 with 10 user
pairs is 0 dB and therefore not visible. Furthermore, Fig. 5
shows that increasing the number of user pairs lowers the
CRB for both BF and SM. Therefore, the high number of users
likely to be present in V2V communication with MU-MIMO
HB can be leveraged.

C. ESTIMATING φ̂m

TDOA and FDOA i.e., τambm and fambm are estimated by
integrating the received signals of a pair of users from the
same E and calculating CAF given in (1). The estimated τambm

and fambm give the largest absolute value of CAF in (4). The
channel specifications are listed in Table I. The parameters of
the transmitted signals are given in Table II. The normalized
absolute CAF values with Nds = 1, 2 and 4 at 10 dB and −20
dB SNR are shown in Figs. 6 and 7, respectively. It can be
observed that the estimated τambm and fambm for BF and SM
are almost identical at 10 dB SNR. As SNR decreases, the
estimation performance degrades, especially for the SM case.
At −20 dB SNR the twin peaks for the CAF are visible for
Nds ≥ 2, indicating the formation of spurious peaks, which
reduces the accuracy of TDOA/FDOA estimation.

D. LOCALIZATION PERFORMANCE
For the two-stage localization on estimating τambm and fim jm
from the CAF matrix, the location of E can be calculated by
solving a system of non-linear equations which [52]:

τambm (xe, ye) = 1

c

(√(
xm,1 − xe

)2 + (
ym,1 − ye

)2

−
√(

xm,2 − xe
)2 + (

ym,2 − ye
)2

)
(10)

fambm (xe, ye) = fc

c

⎛
⎝vx,1

(
xm,1 − xe

) + vy,1
(
ym,1 − ye

)
√(

xm,1 − xe
)2 + (ym.1 − ye)2

−vx,2
(
xm,2 − xe

) + vy,2
(
ym,2 − ye

)
√(

xm,2 − xe
)2 + (

ym,2 − ye
)2

⎞
⎠
(11)

where xm,1, ym,1 and xm,2, ym,2 are the location of the user
pairs. xe, ye is the location of E to be estimated; fc, v are the
carrier frequency and user velocity, respectively.

FIGURE 6. CAF with 1, 2, 4 data streams with 10 dB SNR.

TABLE III Spatial Consistency Settings

Ten user pairs with Nds = 1, 2 and 4 data streams were
used to estimate the location of the E. By setting the re-
ceived SNR as 10 dB, the estimated τambm and fambm are
almost identical for three different number of data streams,
thus outputting an identical estimated location of E. The
mmWave channel simulator NYUSIM provides time-variant
channel conditions in spatial consistency mode to update the
user location and channel condition. The spatial consistency
parameters and user velocity settings for NYUSIM are given
in Table III.
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FIGURE 7. CAF with 1, 2, 4 data streams with −20 dB SNR.

Channel snapshots were generated every one meter, and
a 15 m moving trajectory of the emitter was simulated for
16 users (corresponding to 8 user pairs). The median value
of the estimated location obtained from 8 user pairs were
used as the final estimated location of E at each time in-
stance. The 15 estimated locations along the 15 m trajec-
tory are plotted in Fig. 8, where most localization errors are
within 15 m. In addition, there is no spatial correlation be-
tween two consecutive estimations. To further improve the
localization performance and take spatial correlation into ac-
count, an extended Kalman filter was applied in the following
section.

E. REDUCING LOCALIZATION ERRORS WITH KALMAN
FILTERING
In addition to θa,ds and the number of xds(t ), another factor
on which CAF depends is the received signal power αa in (2).
This can vary significantly due to scattering behavior of the
mmWave channel leading to an increase in localization errors.
The effect can be observed by the signal power received even
for a slow-moving Tx. The power received for a Tx with

FIGURE 8. Estimated locations of E (without Kalman filtering).

FIGURE 9. Signal power received.

a velocity of 5 m/s is shown in Fig. 9, wherein the power
received varies about 4.6 dB between 2 m and 3 m.

Kalman filters employ a series of measurements observed
over time, containing statistical noise and other inaccura-
cies, and produce estimates of unknown variables that tend
to be more accurate than those based on a single measure-
ment alone [53]. The extended Kalman filter [54] can be
employed for non-linear state-space models. In addition, the
extended Kalman filter is highly accurate in estimation per-
formance and has low computational complexity compared
to, for example, particle filters and the unscented Kalman
filter. Additionally, the performance of the EKF and the par-
ticle filter was found to be similar in [55]. The accuracy
of localization in mmWave channels can be improved by
employing extended Kalman filter to the estimated channel
parameters, such as signal strength, DOA, and TOA [7],
[56]. The state of the system is the position of E(x, y) (ide-
ally, it is (0, 0)), and the measurements are the TDOA and
FDOA of each user pair. The state dynamics can be written
as [57]:

xk = Axk−1 + wk, (12)

where xk is the state vector of the position and velocity of
the emitter (i.e., (xe, ye, vx,e, vy,e)). To model the change in
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the emitter state vector caused by the constant velocity of the
emitter, the transition matrix A is given by [57]:⎡

⎢⎢⎣
1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

wk is the process noise and is given by:[
dt
2

2
wa,x

dt
2

2
wa,y dt wa,x dt wa,y

]t

where wa,x and wa,y are the random Gaussian accelerations in
the x and y directions, respectively. In this study, it is assumed
that the random accelerations in the x and y directions have a
mean of 0 and a standard deviation of σw = 9 m/s2 .

An extended Kalman filter includes two processing steps:
prediction and update. The prediction step predicts the next
state and covariance matrix based on the current state and
current covariance matrix. It uses the defined transition matrix
and process noise covariance matrix, given by [57]:

x̃k = Ax̃k−1 (13)

P̃k = AP̃k−1AT + Q (14)

where Q is the noise covariance matrix, i.e., E [wkw
T
k ]. The Q

matrix is given by [57]:

Q =

⎡
⎢⎢⎢⎣

T 4

4 0 T 3

2 0

0 T 4

4 0 T 3

2
T 3

2 0 T 2

2 0

0 T 3

2 0 T 2

2

⎤
⎥⎥⎥⎦ σ 2

w (15)

assuming the random acceleration in the x and y direction
(wa,x and wa,y) are uncorrelated. The P matrix was initial-
ized as the identity matrix since no prior knowledge of the
accuracy of the initial estimate of the emitter position and
velocity was assumed. The second step updates (or refines) the
predicted state based on the measurements conducted at each
time instance. The EKF observation model describes how the
measured TDOA and FDOA are related to the position and
velocity of the user. The relationship is provided in (18),
(19). The user state is refined using the observation model
(and the measured TDOA and FDOA). The Kalman gain is
expressed as:

K = PHT (
HPHT + R

)−1
(16)

where R is the uncertainty matrix of the TDOA and FDOA
measurements. R is calculated from the variance of the mea-
surement error between the ideal TDOA, FDOA and the mea-
sured TDOA, FDOA. H is the Jacobian matrix of the mea-
surements with respect to the predicted state x̃k , given by:

H =
[

∂τi j
∂x

∂τi j
∂y

∂ fi j
∂x

∂ fi j
∂y

]
. (17)

FIGURE 10. Estimated locations of E after applying EKF.

FIGURE 11. Close up simulation plot.

The updated x̂k can be estimated by:

x̂k = x̃k + Kvk (18)

where vk is the difference between the measured TDOA and
FDOA and the values of TDOA and FDOA predicted using
the updated x̃k in (13), (14).

Pk = (I − KH ) Pk−1. (19)

For Tx mobility, a geometry-based channel evolution for
the LOS path was employed. The emitter moved towards the
east at 5 m/s from [0, 0]. Each Rx was located from 10 to
50 m away from E at 10 m/s in an arbitrary direction. 16
Rxs were simulated, forming eight user pairs. The updated
Kalman filter with emitter mobility was applied, resulting
in a RMS error of 6.5 m as shown in Fig. 10. The cor-
responding close up plot is depicted in Fig. 11. Note that
the channel measurements used to characterize the localiza-
tion performance with the Kalman filter and obtain Figs. 10
and 11 are identical to the channel measurements used for
emitter localization without the Kalman filter, used to create
Fig. 8.

F. DISCUSSION
Joint TDOA/FDOA estimation under the challenging condi-
tions in V2V channels are potential candidates for localization
estimates. The effects on various precoders or other non-ideal
conditions such as imperfect CSI on accurate TDOA/FDOA
estimation and localization could be an area for future work,
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TABLE IV MIMO Localization Methods

∗Given as probability of sub-meter accuracy.

along with strategies that could enable integration of the
AOA/AOD estimates. Since all users have to transmit their
received signals to a site which could be one of the users
or a dedicated base station in the network, this site handles
a large amount of computations. Strategies need to be in place
for reducing and balancing the computational load on the
network. In case of data loss, the system localization pro-
cessing will result in poor stability and increase in latency.
To circumvent these issues distributed data compression could
be employed to reduce the amount of data transmission, and
distributed computations to reduce the computational load on
site [58].

The existing MIMO localization methods together with
this work are listed in Table IV. The localization errors are
indicated as mean, RMS, position error bound (PEB) and
probability of sub-meter accuracy.

V. CONCLUSION
This paper has proposed a joint TDOA/FDOA estimation ap-
proach with MU-MIMO HB for mmWave V2V localization.
At 10 dB SNR both SM and BF result in comparable local-
ization errors. At lower SNR values, SM leads to larger errors
compared to BF due to spurious peaks in the CAF. Due to
the non-linear nature of the involved state-space models, the
accuracy of estimation and tracking can be improved by em-
ploying an extended Kalman filter, resulting in a localization
RMS error of ∼6.3 m. The proposed technique resulted in
a smaller user range error than the broadcasting GPS signal
standard of ≤7.8 m with a 95% probability given by the US
government [59].

Further efforts to improve the localization accuracy could
look into the optimal user pairing strategy. Due to different
propagating conditions, users will have different data quality
as the geometry between users and the emitter plays a key
role in determining the location accuracy. Pairing strategies
and the trade-off in terms of accuracy and timeline require-
ments could be quantified. Strategies for optimal pairing and
network load balancing could be employed with machine

learning/AI and integrated to improve localization accuracy
further.
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