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Abstract—Graph neural networks (GNNs) have emerged as
a powerful tool for modeling graph data due to their ability to
learn a concise representation of the data by integrating the node
attributes and link information in a principled fashion. However,
despite their promise, there are several practical challenges that
must be overcome to effectively use them for node classification
problems. In particular, current approaches are vulnerable to
different kinds of biases inherent in the graph data. First, if the
class distribution is imbalanced, then the GNNs’ loss function is
biased towards classifying the majority class correctly rather than
the minority class, which hurts the performance of the latter class.
Second, due to homophily effect, the learned representation and
subsequent downstream tasks may favor certain demographic
groups over others when applied to social network data. To
mitigate such biases, we propose a novel framework called
Fairness-Aware Cost Sensitive Graph Convolutional Network
(FACS-GCN) for classifying nodes in networks with skewed class
distributions. Our approach combines a cost-sensitive exponential
loss with an adversarial learning component to alleviate the
ill-effects of both biases. The framework employs a stagewise
additive modeling approach to ensure there is no significant loss
in accuracy when imparting fairness into the GNN. Experimental
results on 6 benchmark graph data demonstrate the effectiveness
of FACS-GCN against comparable baseline methods in terms of
promoting fairness while maintaining a high model accuracy on
the majority of the datasets.

Index Terms—Fairness; Graph neural networks

I. INTRODUCTION

Node classification is the task of categorizing the nodes in a
network into their respective labels. It can be applied to many
applications, from spam [1] and financial fraud [2] detection
to customer churn [3] and recidivism [4] prediction. Classical
techniques for node classification include label propagation
[5], matrix alignment [6], and Iterative Classification Algo-
rithms (ICA) [7] [8]. More recently, neural network methods
inspired by deep learning such as Deepwalk [9], Graph-
Sage [10], and Graph Convolutional Networks (GCN) [11]
have become increasingly popular to address the node classifi-
cation problem. GCN achieves state-of-the-art performance by
employing a message-passing paradigm [11] to aggregate the
feature representation of each node along with its neighbors
to create a new and more concise feature embedding.

Despite the growing success of graph neural networks
(GNNs), there are several practical limitations that could hin-
der their use in real-world applications. For example, the social

implications of their prediction results are not fully accounted
by conventional GNNs. In particular, fairness has become a
growing topic of concern, as current GNNs may discriminate
against certain demographic groups in the population [12]. For
example, consider the application of GNNs to professional
networking sites. As certain professions could be dominated
by individuals from a particular demographic group, this will
likely be reflected in the link structure of the network due
to the so-called homophily effect [13]. As a result, methods
such as GNN may further reinforce this demographic-based
segregation, which leads to inequalities observed in other
protected groups. Protected groups here refer to the collection
of individuals who have been traditionally marginalized and
may potentially be re-victimized by the unfair algorithmic
decisions. Such groups are typically defined based on certain
sensitive attributes such as race, gender, and age. To date,
several metrics have been developed, such as Statistical Parity
[14] and Equality of Opportunity [15] to assess fairness in the
algorithmic decisions. As conventional GNNs are oblivious to
the presence of such attributes, the key challenge here is to
impart fairness into current GNN implementations.

There have been several recent efforts to overcome this
limitation [16]–[18]. For example, FairGNN [16] employs an
adversarial learning technique to remove the potential biases
present in the learned representation of GNNs. However,
current approaches are limited in two ways. First, they are not
designed to handle the imbalanced class distribution of the
network data, in which a subset of the target class of interest
(e.g., spammer or customer churn) occurs less frequently than
other classes. This presents a major challenge to current GNNs
as their loss functions are not designed to handle bias due to
such skewed class distribution. Second, the improved fairness
often comes at the expense of sacrificing the classification
accuracy. The problem is further compounded by the fact that
current GNNs are limited to shallow network architectures due
to the over-smoothing effect [19], which causes degradation of
their model performance beyond 2 or 3 layers. To address
the over-smoothing problem, Sun et al. [20] proposed the
AdaGCN framework, which combines GCN with AdaBoost
[21] to enable better aggregation of the node representation,
allowing the network to have deeper architectures to achieve
better performance. However, none of the existing fairness-
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aware GNN methods are designed to take advantage of such
deeper networks to compensate for the loss in model accuracy
when incorporating fairness into their GNN framework. As
boosting and AdaGCN employs an exponential loss, a key
question here is: How to incorporate fairness and handle
class imbalanced in GNNs with exponential loss?

To overcome these challenges, we propose a novel GNN
framework called FACS-GCN (Fairness Aware Cost Sensitive
Graph Convolutional Network), which employs a cost sensitive
exponential loss function to handle the imbalanced classes as
well as an adversarial learning technique to mitigate biases
against the protected groups. FACS-GCN is composed of three
main components: (1) a generator that uses a cost-sensitive
version of AdaGCN [20] to learn the feature embedding of the
nodes, (2) a discriminator that plays the role of an adversary
attempting to uncover the protected attribute value of a node
given its feature embedding, and (3) a forward stagewise
additive modeling component for node classification. Together,
the adversarial learning implemented using the cost-sensitive
generator and discriminator will create to an unbiased feature
representation to be utilized by the node classifier to generate
fair and accurate predictions.

In summary, our contributions in this paper are as follows:
• We present a novel GNN framework based on cost-

sensitive exponential loss to help improve the joint rep-
resentation learning and node classification for networks
with an imbalanced class distribution.

• We develop a fairness-aware framework that combines
adversarial learning with a forward stagewise additive
modeling to handle the trade-off between maximizing
fairness and accuracy.

• We perform extensive experiments on numerous real
world datasets to demonstrate efficacy of our framework.

II. RELATED WORK

There has been extensive research on the development of
node classification techniques for network data [6]–[8]. This
includes random-walk based approaches such as label propa-
gation [5], which infer the label of a node by aggregating the
labels of its neighbors, and matrix factorization [6] methods,
which seeks to find a decomposition of the adjacency and node
feature matrices in a way that can be used to infer the node
labels. A survey of prior research on node classification can
be found in [22], [23]. More recently, graph neural network
(GNN) methods such as DeepWalk [9], graph convolutional
networks (GCNs) [11], and their variants [10], [20], have
grown in popularity due to their ability to learn a latent
representation of the nodes that can be provided to a fully-
connected network to perform node classification.

There have also been growing interests to extend the GNN
framework to address the imbalanced class distribution. For
example, Distance-wise Prototypical GNN (DPGNN) [24]
uses prototype-driven training to handle the trade-off the
training loss for the majority and minority classes. In con-
trast, Dual-Regularized GCN (DR-GCN) [25] uses a class-
conditional adversarial training and a latent distribution regu-

larization to reconcile the loss function between the two classe
while GraphSMOTE [26] creates synthetic nodes for the mi-
nority class to balance the skewed distribution. However, none
of these approaches have been used for fairness-aware node
classification and remain susceptible to the over-smoothing
problem [19]. Furthermore, methods such as GraphSMOTE
would modify the network, which might have legal implica-
tions in terms of fairness.

Algorithmic fairness has emerged as a topic of growing con-
cern among machine learning researchers. Numerous prepro-
cessing [27]–[30], in-processing [31]–[34], and postprocessing
[15], [35], [36] methods have been developed to address this
challenge. The issue of fairness will likely be more pronounced
in network data due to the homophily effect, which leads to
biased predictions [16]. There has been some recent attempts
to incorporate fairness into GNNs for representation learning
and link prediction problems. For example, Masrour et al. [37]
presented an approach called FLIP for fair link prediction to
alleviate the filter bubble problem. FairDrop [18] generates
a fair random copy of the adjacency matrix by reducing the
number of edges between nodes sharing the same sensitive
attribute. FairWalk [38] modifies the random walk algorithm to
generate a fair node representation. For node classification, Dai
et al. [16] proposed FairGNN to debias the node classification
results through adversarial learning while Agarwal et al. [17]
proposed NIFTY (uNIfying Fairness and stabiliTY) which
enforces fairness and stability by introducing an objective
function that maximizes the agreement between the original
graph, its counterfactual and the noisy views. However, none
of the methods are designed to also handle the imbalanced
class distribution as well as over-smoothing effect that hinders
the applicability of GNN to real-world networks.

III. PRELIMINARIES

Consider an attributed network N = (V,E,X, Y ), where
V is the set of nodes, E ⊆ V × V is the set of edges,
X ∈ R|V |×d is the feature matrix containing the attributes
of all the nodes in V , and Y is the class label of the nodes.
The feature matrix X can be divided into submatrices Xp

and Xu, where Xp refers to the protected attributes and
Xu corresponds to the unprotected attributes. For brevity, we
assume a binary classification problem, though in principle,
the proposed methodology can be extended to a multi-class
setting. The class label of each node v is represented by
a 2-dimensional vector, yv = [−1, 1] for the positive class
or yv = [1,−1] for the negative class. Furthermore, we
assume the 2-dimensional vector yv can be mapped to its
corresponding label as follows:

c(yv) =

{
1 if yv = [1,−1]
2 if yv = [−1, 1]

(1)

Let A denote the adjacency matrix representation of E and
Ã = A + I , where I is the identity matrix. The normalized
adjacency matrix is given by Â = D̃− 1

2 ÃD̃− 1
2 , where D̃ is

the degree matrix of Ã.
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Fig. 1. A schematic illustration of the proposed FACS-GCN architecture.

A. AdaGCN

AdaGCN [20] is a forward stagewise additive modeling
framework designed to boost the performance of GCN by
overcoming the over-smoothing problem when the number of
graph convolutional layers increases. Specifically, the frame-
work combines GNN with AdaBoost [21] by considering each
GNN as a weak learner that can be stacked together to form
a ‘stronger’ classifier, i.e., f (l)(X) = f (l−1)(X) + h(l)(X) =∑

l h
(l)(X), where f (l)(X) is the resulting classifier after

combining l weak learners. Inspired by AdaBoost [5], [21],
AdaGCN minimizes the following exponential loss function:

argminh(x)EY |x

(
exp

[
− 1

2
Y T (f l−1(x) + h(l)(x))

]∣∣∣∣x)
s.t. h

(l)
1 (x) + h

(l)
2 (x) = 0 (2)

where h(l)(x) = [h
(l)
1 (x);h

(l)
2 (x)] corresponds to the weak

learner trained in layer l.
Minimizing the exponential loss given in (2) with respect

to h
(l)
k will lead to the following solution [39]:

h
(l)
1 (x) =

1

2
log

[
p
(l)
1 (x)

p
(l)
2 (x)

]
, h

(l)
2 (x) =

1

2
log

[
p
(l)
2 (x)

p
(l)
1 (x)

]
, (3)

where p
(l)
k (xv) = Softmax

[
g
(l)
θ

(
c(yv) = k

∣∣xv

)]
is the proba-

bilistic output of some graph neural network g used to train
the weak learner h

(l)
k . AdaGCN employs the following 2-

layer fully-connected network to generate the output g(l)θ (X) ∈
R|V |×2 for its weak learner:

g
(l)
θ (X) = ReLU(ÂlXθ1)θ2 (4)

where l is the index of a layer, Âl =
∏l

i=1 Â is the l-hop
normalized adjacency matrix, θ1 ∈ Rd×H is the input-to-
hidden weight matrix, and θ2 ∈ RH×2 is the hidden-to-output
weight matrix (assuming a binary class problem). For brevity,

we denote θ = (θ1, θ2) as the neural network parameters.
g
(l)
θ (X) enables the weak learner to extract a representation

of the nodes based on their current embedding as well as those
from their l-th hop neighbors.

The graph neural network g
(l)
θ (X) is trained to minimize

the following weighted cross-entropy loss function:

LP =
∑
v∈V

w(l)
v [yv log(p

(l)
1 (xv) + (1− yv) log(1− p

(l)
1 (xv))]

(5)
where yv is the true class of node v, pl1(xv) is the conditional
probability of class 1 for node v, and w

(l)
v is the corresponding

node weight. Similar to AdaBoost, the node weights are
initialized to have uniform weights. As each weak learner
makes its predictions, the weights are updated iteratively in
a stage-wise fashion allowing the next weak learner to focus
more on previously misclassified nodes. The formula to update
the weights is as follows:

wv ← wv · exp
[
− 1

2
y⊤v log p(l)(xv)

]
, v = 1, ...., V (6)

The weights are then normalized to sum up to 1. After
successively training all L weak learners, the final prediction
for every node xv is computed as follows:

ŷv = f (l)(xv) =
L∑

l=0

h
(l)
k (xv) (7)

B. Generative Adversarial Networks

Generative Adversarial Networks (GAN) is a deep-learning-
based approach for generative modeling. It consists of two
parts: a generator G, which will generate synthetic samples
from an input noise z and a discriminator D, whose goal is
to distinguish between the synthetic and real samples. GAN
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has been widely-used for adversarial learning and is trained to
solve the following objective function:

min
θ

max
ϕ

V (Gθ, Dϕ) = Ex∼pX
[log(Dϕ(x))]

+ Ez∼p(z)[log(1−Dϕ(Gθ(z))](8)

IV. PROPOSED FACS-GCN FRAMEWORK

Our proposed framework extends the AdaGCN framework
to mitigate the biases due to both imbalanced class distribu-
tion and discrimination against individuals belonging to the
protected groups. FACS-GCN uses a cost-sensitive version
of AdaGCN to handle the skewness of class distribution
with an adversarial learning component to debias the learned
embedding from discriminating against certain demographic
groups. The framework consists of the following two major
components:

• A cost-sensitive classifier to predict the class of the nodes.
• An adversarial learning component to generate fair rep-

resentation of the nodes.
We will describe each component in more details below.

A. Node Classification for Imbalanced Class Distribution

To handle the bias due to skewness of the class distribu-
tion, we design the following cost-sensitive exponential loss
function for FACS-GCN:

min
h(x)

EY |x

[
e−

1
2Y

TR+f(l)(x)I(c(Y ) = 1)

+ e−
1
2Y

TR−f(l)(x)I(c(Y ) = 2)

]
(9)

where Y ∈ R2 is the true class of node x, f (l)(x) ∈ R2 is the
predicted output given by Equation (7) while R+ and R− are
the reward matrices, which are defined as follows:

R+ =

[
R11 R12

R12 R11

]
, R− =

[
R22 R21

R21 R22

]
where R11, R22 > R12, R21 ≥ 0. Intuitively, the main
diagonal of each matrix represents the reward for correct
classification while the antidiagonal corresponds to the “re-
ward” for misclassification. If R11 > R22, then there will
be a higher reward for classifying the positive class (i.e.,
c(Y ) = 1) correctly than the negative class (i.e., c(Y ) = 2).
We use a reward matrix instead of a cost matrix due to
the form of the exponential loss used by AdaGCN. Given
the 2-dimensional vector form of Y used by AdaGCN, as
shown in Equation (1), minimizing the exponential loss would
require a matrix R whose main diagonal must have higher
values for correct classification than its antidiagonal values
for incorrect classification, which is why R is interpreted as
a reward matrix. The reward matrices will allow the user
to determine how much ’attention’ should be given to the
correct prediction of the positive class in order to boost its
performance (assuming the positive class is the minority class
of interest). If both reward matrices are identity matrices,
then the loss function reduces to Equation (2), which is the
exponential loss used in AdaGCN.

Theorem 1: Given the forward stagewise additive model
f (l)(x) = f (l−1)(x) + h(l)(x), the weak learner h(l)(x) that
minimizes the exponential loss given in (9) is:

h
(l)
1 (x) =

1

Z
log

(R11 −R12)p
(l)
1 (x)

(R22 −R21)p
(l)
2 (x)

h
(l)
2 (x) =

1

Z
log

(R22 −R21)p
(l)
2 (x)

(R11 −R12)p
(l)
1 (x)

(10)

where h
(l)
1 (x)+h

(l)
2 (x) = 0 and Z = R11+R22−R12−R21.

Proof: Let Y = [y1, y2] and h(l)(x) = [h
(l)
1 (x), h

(l)
2 (x)]. The

exponential loss in Equation (9) can be expressed as follows:

eAI(c(y) = 1)p(c(y) = 1|x) + eBI(c(y) = 2)p(c(y) = 2|x),

where

A = −1

2
R11h

(l)
1 (x)−1

2
R12h

(l)
2 (x)+

1

2
R12h

(l)
1 (x)+

1

2
R11h

(l)
2 (x)

B =
1

2
R22h

(l)
1 (x)+

1

2
R21h

(l)
2 (x)−1

2
R21h

(l)
1 (x)−1

2
R22h

(l)
2 (x)

By using the Lagrange multiplier method, the Lagrangian
of the optimization problem is given by:

L = eAI(c(y) = 1)p(c(y) = 1|x) + eBI(c(y) = 2)p(c(y) = 2|x)
− λ(h

(l)
1 (x) + h

(l)
2 (x))

= eAp(c(y) = 1|x) + eBp(c(y) = 2|x)− λ(h
(l)
1 (x) + h

(l)
2 (x))

Let p(c(y) = 1|x) = P1 and p(c(y) = 2|x) = P2. Taking the
partial derivative of L with respect to h

(l)
1 (x) and setting it to

zero yields the following:

(
R12 −R11

2
)eAP1 + (

R22 −R21

2
)eBP2

= (
R11 −R12

2
)eAP1 + (

R21 −R22

2
)eBP2

After some manipulation, the preceding equation simplifies
to the following form: eA

eB
= (R21−R22)P2

(R12−R11)P1
, or equivalently,

eA−B = (R21−R22)P2

(R12−R11)P1
. By replacing A and B into the ex-

pression and noting that h(l)
1 (x) + h

(l)
2 (x) = 0, the expression

reduces to the following form:

e(R12+R21−R11−R22)h
(l)
1 (x) =

(R21 −R22)P2

(R12 −R11)P1

(R12 +R21 −R11 −R22)h
(l)
1 (x) = log

(R21 −R22)P2

(R12 −R11)P1

Thus, we have:

h
(l)
1 (x) =

1

(R11 +R22 −R12 −R21)
log

(R11 −R12)P1

(R22 −R21)P2

h
(l)
2 (x) =

1

(R11 +R22 −R12 −R21)
log

(R22 −R21)P2

(R11 −R12)P1

The proof follows by replacing Z with R11+R22−R12−R21.

FACS-GCN predicts the node v to be from the positive
class if h1(xv) > h2(xv). Otherwise, it is predicted to be
from the negative class. The weak learner derived from the
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cost-sensitive exponential loss function allows the class with
higher reward to increase its chance of being predicted, thus
addressing the class imbalanced problem.

Once h(l) is calculated, the node weights are updated
before training the next weak learner. The weights are updated
according to the formula shown below:

wv ← wv ·

[
e−

1
Z Y ⊤

v R1 log(β·P l(xv))I(c(Y ) = 1)

+ e−
1
Z Y ⊤

v R2 log(β·P l(xv))I(c(Y ) = 2)

]
(11)

where β is a 2× 2 matrix defined as follows:[
R11 −R12 0

0 R22 −R21

]
The proof for the weight update formula is omitted due to

lack of space. As shown in Equation (11), the node weights
are affected by the reward matrices, allowing the misclassified
nodes of the higher reward to have a larger weight than other
types of misclassified nodes. This strategy enables the next
weak learner to concentrate more on the inaccurately classified
higher reward nodes by using the weighted cross entropy
formula in (5). This helps to alleviate the bias in the loss
function due to skewness in the class distribution. Once all the
weak learners are computed, the final prediction is obtained
by adding the predictions from all the weak learners together,
as shown in Equation (7).

B. Adversarial Learning for Fairness

FACS-GCN employs adversarial learning to ensure fairness
towards the protected attribute groups. The adversarial learning
component consists of a generator and a discriminator. The
goal of the discriminator is predict the node’s protected
attribute. The discriminator is optimized by the following loss:

LD = − 1

|V |
∑
v∈V

[XP
v log(P̂v) + (1−XP

v )log(1− P̂v)] (12)

Intuitively, if the discriminator is unable to predict the
protected attribute accurately, this implies that the bias towards
the protected attribute would have been eliminated from the
learned embedding. Therefore, the classification of the node
will be fair. In our case, we choose a two-layer GCN as our
discriminator to optimize the loss function.

Our generator’s goal is to create an embedding that can
fool the discriminator and produce a high node classification
accuracy. To accomplish this goal, g(l)θ (X) optimizes a new
loss function LT , which is defined as the following:

LT = (1− α)LP − αLD (13)

LP is used to maximize the weighted conditional probability
used in the node classifier and LD is used to minimize
performance of the discriminator at a point where it’s random
guessing the protected attribute. α acts as a hyper-parameter

Algorithm 1: FACS-GCN Algorithm

1 Input: Feature matrix X , normalized adjacency matrix
Â, number of layers L, reward matrices R1 and R2.

2 Output: Weak learners, {h(1)
θ , h

(2)
θ , · · · , h(L)

θ }
Initialize the nodes to have uniform weights,
∀v : wv = 1

|V |
Initialize f (−1) to vector of zeros
for l = 0 to L do

for i = 0 to max epoch do
Compute g

(l)
θ (X) Compute the total loss LT using

Equation (13) Update network parameters θ by
backpropagation

end for
Compute h(l) using Equation (3)
Set f (l)(x) = f (l−1)(x) + h(l)(x)
Update the nodes weight wv using Equation (11)
Renormalize the weights: ∀v : wv ← wv∑

v∈V wv

end for

TABLE I
SUMMARY DESCRIPTION OF DATASETS.

Dataset |V | |E| |X| % Protected Class skew
Tagged 71127 71265 58 0.519:0.481 0.383:0.617
Recidivism 18877 403978 18 0.942:0.058 0.376:0.624
Facebook 1045 53498 55 0.342:0.658 0.318:0.682
Credit 30000 198989 12 0.532:0.468 0.221:0.779
Pokec-n 66569 729129 265 0.513:0.487 0.064:0.936
German 1000 24970 28 0.690:0.310 0.300:0.700

that controls the trade-off between maximizing fairness and
accuracy. Once LT is optimized, g

(l)
θ (X) will produce an

embedding that is fairer than before. This embedding will
then be passed to the discriminator and will be optimized
simultaneously for each epoch, as demonstrated in Algorithm
1. FACS-GCN is trained end-to-end using Adam as our
optimizer.

V. EXPERIMENTAL EVALUATION

This section describes the experiments performed to demon-
strate the effectiveness of FACS-GCN. The code is available
at https://github.com/frsantosp/FACS-GCN.

A. Data Description

We have performed our experiments on the following 6 real-
world network datasets. Table I summarizes the characteristics
of each dataset.

• Tagged [40]: This is a benchmark social spammer dataset
obtained from LINQS1 website. The classification task is
to predict whether an individual is a spammer or non-
spammer using gender as protected attribute.

• Facebook [41]: This benchmark network dataset of Face-
book social circles was obtained from Stanford Network
Analysis Project (SNAP). The target class to be predicted

1https://linqs-data.soe.ucsc.edu/public/social spammer/
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corresponds to education level while the protected at-
tribute is gender.

• Recidivism [42]: The dataset contains information about
defendants who were granted bail in U.S. states court
between 1990 and 2009. The target class corresponds to
bail or no bail, with race as protected attribute.

• Credit Defaulter [43]: This dataset contains individuals
whose links are established based on similarity of their
spending and payment patterns. The task here is to predict
whether an individual will default on their credit card
payments using age as the protected attribute.

• German Credit [44]: This network data corresponds
to clients of a bank, whose links are generated based
on similarity of their credit accounts. The task here is
to predict the credit risk of the clients using gender as
protected attribute.

• Pokec-n [41]: The data is from a social networking
website in Slovakia. The task here is to predict whether an
individual likes sports or not using gender as the protected
attribute.

Note that the Recidivism, Credit Defaulter, and German Credit
data were used in [17] to evaluate the performance of the
NIFTY algorithm while Pokec-n was used in [16] to evaluate
the performance of their fairness-aware method.

B. Experimental Evaluation

We compared FACS-GCN against the following baselines:
• GCN [11]: A graph neural network that uses a ’message-

passing’ technique for a certain number of layers. In this
experiment, we used a GCN with two hidden layers.

• AdaGCN [20]: A boosting-like method for GCN, where
each weak learner l is trained to extract information for
a node using its l-th hop neighbors.

• GraphSage [10]: This approach uses an aggregator func-
tion to create a new embedding of a node by con-
catenating the representation of its neighbors. For our
experiments we use a 2-layer GraphSage implementation

• FairGNN [16]: This approach uses an adversarial debi-
asing approach to generate a fair representation of the
nodes in a network when some of the sensitive attribute
values are unknown.

• NIFTY [17]: This approach aims to enforce network
stability by randomly perturbing the node attributes and
edges as well as counterfactual fairness by perturbing the
sensitive attributes. Their objective is to maximize the
agreement between the original and perturbed graphs.

Given the skewed class distribution, we compute the overall
area under ROC (AUC) score to evaluate the predictive accu-
racy of each method. We also use the following difference in
equality of opportunity [15] as our fairness criterion:

∆EO = |P (ŷ = 1|Y = 1, Xp = 0)−P (ŷ = 1|Y = 1, Xp = 1)|

The smaller are their differences, the more fair are the classifi-
cation results.To verify that the cost-sensitive approach used by
FACS-GCN helps to promote more accurate classification for

the positive examples, we also assess the recall performance
of the classifier:

Recall =
# True Positives

# True Positives + # False Negatives
(14)

All the baselines are trained using the hyperparameters
suggested by their authors. For AdaGCN and FACS-GCN,
we have implemented a two-layer GCN with 32 hidden
dimensions as its weak learner. We set the number of weak
learners to be 5. A two-layer GCN with 32 hidden dimensions
was also implemented for all other baseline methods. Each
method was trained for 1000 epochs. The experiments for
FACS-GCN, FairGCN, and Nifty were repeated 5 times with
different seeds.

C. Experimental Results

Performance Comparison. There is often a trade-off be-
tween maximizing model accuracy and achieving fairness. A
model that focuses on achieving fairness may often sacrifice
its AUC. Thus, the comparison of model performance should
consider both its AUC and fairness metric in concert, as
illustrated in Figure 2, which plots the fairness metric, ∆EO,
on the x-axis and AUC on the y-axis. The ideal situation is to
have the ∆EO to be 0 and AUC to be 1. Thus, the closer the
result is to the upper left corner, the better is the model.

For the 3 datasets shown in first row in fig. 2, FACS-GCN
performed better than all other baselines as it is closer to the
upper left corner than other method. Our method promotes a
better AUC than the other fairness baselines and achieves it
with a comparable or better ∆EO on Pokec, Recidivism and
Tagged datasets than other methods. This demonstrates the
effectiveness of FACS-GCN to achieve fairness without sac-
rificing its AUC, especially when compared against FairGNN
and NIFTY, two competing fairness-aware GNN methods. In
the bottom row, for the German and Credit datasets, our model
achieves ∆EO to be 0 tying FairGCN and beating NIFTY,
though it suffers in terms of AUC. For facebook, our model
beats all the baselines in terms of AUC but has lower ∆EO,
showing again the trade-off between AUC and fairness.

For their 1-to-1 comparison, Table II shows the win-loss
comparison between the methods. The results suggest that
FACS-GCN is superior in terms of AUC than the other
fairness methods, beating them on majority of the datasets.
with comparable performance to GCN. In terms of ∆EO,
FACS-GCN outperforms the baselines in at least 4 datasets,
which shows its effectiveness in terms of achieving fairness.

D. Ablation Study

Ablation studies were conducted to understand the effect of
the adversarial loss, the cost sensitive method and the effects
of over-smoothing. The ablation studies were performed on
the Tagged dataset.

Effects of Adversarial and Cost Sensitive Learning. To
measure the effects of the adversarial learning, we set α to
0. As shown in Table III, the model without the adversarial
learning shows an increase in ∆EO for both FACS-GCN
and AdaGCN. FACS-GCN without Adversarial compared to
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Fig. 2. Comparison of area under ROC (AUROC) and equality of opportunity (EO) metrics for various methods on 6 real-world datasets.

TABLE II
WIN-LOSS DRAW COMPARISON BETWEEN FACS-GCN AND OTHER

BASELINE METHODS IN TERMS OF THEIR AUC AND ∆EO .

AUC GCN GraphSage FairGNN NIFTY FACS-GCN
GCN - 2-4 6-0 4-2 3-3
GraphSage 4-2 - 5-1 4-2 4-2
FairGNN 0-6 1-5 - 0-6 1-5
NIFTY 2-4 2-4 6-0 - 2-4
FACS-GCN 3-3 2-4 5-1 4-2 -

∆EO GCN GraphSage FairGNN NIFTY FACS-GCN
GCN - 4-2 3-3 4-2 1-5
GraphSage 2-4 - 3-3 3-3 1-5
FairGNN 3-3 3-3 - 1-5 1-1-4
NIFTY 2-4 3-3 5-1 - 2-4
FACS-GCN 5-1 5-1 4-1-1 4-2 -

Fig. 3. Effect of over-smoothing as number of layers increases for the Tagged
dataset. FairGNN performance drops significantly compared to FACS-GCN.
Performance drop in GCN is not as significant for the given dataset.

FACS-GCN showed an increase by more than 20% in ∆EO

and its AUC also increased. To measure the effects of cost
sensitive learning, the reward matrices were set to identity

matrices, which reduces to AdaGCN. For a fair comparison,
α was set to 0.75 for both FACS-GCN and AdaGCN. The
difference in AUC for both model are minimal but there is a
6% difference in the recall, showing us it does give the positive
class a better classification than without the cost sensitive
learning. α was then set to 0 and the cost sensitive showed a
even bigger effect by increasing recall by more than 15%.

Over-smoothing Effects. In Figure 3, we plotted GCN,
FairGNN and FACS-GCN and we then plot the AUC as the
layers increase. As shown in the figure, FACS-GCN does not
suffer from oversmoothing as it is able to maintain or increase
its AUC as layers are added. The same cannot be said about
FairGNN as it decreases after 3 layers, dropping to 0.5 AUC
by the fifth layer. As for GCN, the performance drop was
observed from 2 to 3 layers but somewhat stabilizes after that.

TABLE III
RESULTS OF ABLATION STUDIES.

AUC Recall ∆EO

AdaGCN 0.718±0.004 0.314±0.003 0.116±0.008
FACS no-adv 0.712±0.012 0.467±0.005 0.235±0.004
AdaGCN-adv 0.681±0.003 0.139±0.004 0.060±0.014
FACS-GCN 0.687±0.001 0.201±0.020 0.013±0.008

VI. CONCLUSION

This paper presents a novel graph neural network framework
called FACS-GCN to alleviate two types of biases present
in real-world network data. The framework employs a cost-
sensitive exponential loss approach to overcome the class
imbalance problem as well as an adversarial learning strategy
to debias the algorithm from discriminating against certain
protected groups. By leveraging the AdaGCN framework, we
demonstrate that FACS-GCN can overcome the oversmoothing
problem, thereby reducing the accuracy loss when imparting
fairness into the learning framework. Experimental results on
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6 benchmark network datasets validated the effectiveness of
the proposed framework.
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[41] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[42] K. Jordan and T. Freiburger, “The effect of race/ethnicity on sentencing:
Examining sentence type, jail length, and prison length,” Journal of
Ethnicity in Criminal Justice, vol. 13, pp. 1–18, 11 2014.

[43] I.-C. Yeh and C.-h. Lien, “The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card
clients,” Expert systems with applications, vol. 36, no. 2, pp. 2473–2480,
2009.

[44] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

Authorized licensed use limited to: Michigan State University. Downloaded on December 11,2022 at 21:02:44 UTC from IEEE Xplore.  Restrictions apply. 


