
L25GC: A Low Latency 5G Core Network based on
High-Performance NFV Platforms

Vivek Jain
∗
, Hao-Tse Chu

†
, Shixiong Qi

∗
, Chia-An Lee

†
, Hung-Cheng Chang

†
, Cheng-Ying Hsieh

†
,

K. K. Ramakrishnan
∗
, Jyh-Cheng Chen

†
∗
University of California, Riverside,

†
National Yang Ming Chiao Tung University

ABSTRACT
Cellular network control procedures (e.g., mobility, idle-active tran-

sition to conserve energy) directly influence data plane behavior, im-

pacting user-experienced delay. Recognizing this control-data plane

interdependence, L
2
5GC re-architects the 5G Core (5GC) network,

and its processing, to reduce latency of control plane operations and

their impact on the data plane. Exploiting shared memory, L
2
5GC

eliminates message serialization and HTTP processing overheads,

while being 3GPP-standards compliant. We improve data plane

processing by factoring the functions to avoid control-data plane

interference, and using scalable, flow-level packet classifiers for

forwarding-rule lookups. Utilizing buffers at the 5GC, L
2
5GC imple-

ments paging, and an intelligent handover scheme avoiding 3GPP’s

hairpin routing, and data loss caused by limited buffering at 5G

base stations, reduces delay and unnecessary message processing.

L
2
5GC’s integrated failure resiliency transparently recovers from

failures of 5GC software network functions and hardware much

faster than 3GPP’s reattach recovery procedure. L
2
5GC is built

based on free5GC, an open-source kernel-based 5GC implementa-

tion. L
2
5GC reduces event completion time by ∼50% for several con-

trol plane events and improves data packet latency (due to improved

control plane communication) by ∼2×, during paging and handover
events, compared to free5GC. L

2
5GC’s design is general, although

current implementation supports a limited number of user sessions.

CCS CONCEPTS
• Networks → Mobile networks; • Computer systems organi-
zation → Cellular architectures.

KEYWORDS
5G cellular networks, Cellular core, Low latency 5G core, NFV

ACM Reference Format:
Vivek Jain

∗
, Hao-Tse Chu

†
, Shixiong Qi

∗
, Chia-An Lee

†
, Hung-Cheng

Chang
†
, Cheng-Ying Hsieh

†
, K. K. Ramakrishnan

∗
, Jyh-Cheng Chen

†
. 2022.

L
2
5GC: A Low Latency 5G Core Network based on High-Performance NFV

Platforms. In ACM SIGCOMM 2022 Conference (SIGCOMM ’22), August 22–
26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3544216.3544267

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9420-8/22/08.
https://doi.org/10.1145/3544216.3544267

1 INTRODUCTION
Emerging applications such as the Internet of Things (IoT), con-

nected vehicles, etc. require low latency, ubiquitous network ac-

cess [55] and often rely on the cellular network (5G and beyond)

for network access. To truly deliver the low latency needed for

acceptable user quality of experience (QoE), both the access and

core part of cellular networks need to improve. With radio access

technology such as millimeter wave, the latency of access network

is being reduced (e.g., of the order of 1ms [28, 38]). Recent work [39]

shows that mmWave beam alignment and link acquisition can com-

plete within 1-10 ms., allowing a UE’s connection establishment

with gNodeB to complete quickly. However, the core network still

contributes significantly to the overall high latency observed in

cellular networks.

In traditional 4G cellular deployments, each cellular core com-

ponent was implemented on purpose-built hardware, typically dis-

tributed in cellular data centers [5]. The resulting complex control

plane procedures result in high latency because of the complex

protocols needed to ensure a consistent state among these entities.

In the 5G cellular ecosystem, cellular components are implemented

as software-based cloud-native services for deployment flexibility.

However, with control plane procedures in 5G Core (5GC) being

similar to the traditional 4G [49], it does not leverage the full benefit

of the softwarization of network functions (NFs).

The cellular core is expected to experience more control plane

traffic due to: i) the massive growth of cellular subscribers, includ-

ing IoT and machine to machine devices [31], ii) frequent handover
events because of reduced cell sizes. User event completion times,

such as a handover process that takes 1.9 seconds (as shown in [45])

can directly impact the delay and packet loss experienced by the

end-user data packets. Apart from the penalty due to traditional

cellular control plane core procedures, we recognize several addi-

tional issues (details in §2.3) that contribute to latency:

• The adoption of HTTP/REST for inter-NF communication, osten-

sibly to support the idea of ‘dis-aggregation’, suffers from overheads

of message serialization and TCP processing.

• Current implementations, driven by 3GPP standards (§5.2.1 of

[8]), organize forwarding (match-action) rules in a list and perform

an inefficient linear search to find the matching rule.

• Users may experience higher packet losses during handover due

to the current hairpin and daisy-chain routing, and limited buffer-

ing at the target gNB (5G base station).

• During failure, current 3GPP restoration process requires users to

re-initiate the connection establishment request and start over. This

directly impacts ongoing data connections (e.g., TCP experiences

spurious timeouts), affecting QoE.

143

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

https://doi.org/10.1145/3544216.3544267
https://doi.org/10.1145/3544216.3544267
https://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Jain et al.

To achieve the goals of both flexibility and performance beyond

current softwarized cellular core, we design L
2
5GC, an NFV-based,

low-latency 5GC network solution, which achieves significant im-

provement in both control and data plane while still being 3GPP-

compliant. We build our open-sourced NFV-based 5GC (details

in Appendix E) on top of ‘free5GC’ [14]. Our current implemen-

tation of L
2
5GC supports a limited number of user sessions, but

can be generalized subsequently. Building on free5GC, a complete

3GPP open-source implementation, helps L
2
5GC have a compre-

hensive implementation of most of the 3GPP specified [6, 7] con-

trol plane protocols and a reasonable implementation of all the

5GC NFs. L
2
5GC supports the commonly adopted approach of dis-

aggregating the core network NFs. The main distinction is in the

core network implementation enhancements we make. By exploit-

ing shared memory, L
2
5GC constructs an efficient, low latency 5GC

service, that retains the advantages of a microservice-based design

pattern, while eliminating many of the typical overheads that come

from having a general-purpose service interface between individual

microservices. L
2
5GC makes the following contributions:

(1) We exploit the flexibility and scalability of NFV platforms to

consolidate the control and data plane NFs on the same node, while

retaining the flexibility to have each NF separately implemented.

Consolidation on the same node helps to reduce the inter-NF com-

munication overheads.

(2)We rebuild the Service Based Interface (SBI), the N4 interface,

and the entire 5GC data plane by using shared memory-based

zero-copy mechanism to replace the kernel-based communication

channel between NFs, removing the extra processing for serializa-

tion and achieving high-speed inter-NF communication.

(3)We optimize the handover procedure to reduce the extra hairpin

and daisy chain routing, without changing the protocol specified by

3GPP. L
2
5GC implements smart buffering that is used both for the

optimized handover procedure and buffer packets to User Equip-

ments (UEs) that are idle.

(4)To support evolving 5G use cases that result in significant growth

of Packet Detection Rules (PDRs), we implement and compare

multiple approaches, including linear search, Tuple Space Search

(TSS) [57] and a PartitionSort [59] classifier (which we choose).

Thus, we achieve scalability and high data plane throughput.

(5) We mitigate delays from 5GC NF’s failure recovery by run-

ning lightweight replicas that do not consume any CPU when idle.

By leveraging [44, 56], we replicate the state of 5G NFs, ensuring

consistency while avoiding the 3GPP-specified UE re-attachment

procedure.

L
2
5GC’s evaluation results show significant performance im-

provement over the non-NFV-based free5GC [14]. We observe a

13× improvement in individual message exchange latency and up

to 51% reduction in overall event completion time. Importantly, the

reduction in control plane latency has a corresponding impact on

data plane performance. Data packet latency (also due to the im-

proved control plane) by ∼2×, during paging and handover events,

compared to free5GC. Even simple web page’s (with many large

images) loading time improves by 12.5% with L
2
5GC compared to

free5GC, thus directly improving user QoE. The data forwarding

in L
2
5GC can operate at a line rate for 64 byte packet traffic on a

10 Gbps link, 27× higher than free5GC’s kernel-based forwarding.

Data	plane

Data	
network

Control	plane

UPF

SMFAMF

AUSFNRF UDMPCF

UDRNSSF

N2 N4

N6

SBI	
interface

N3RAN
UEs

Figure 1: 5G core architecture

2 BACKGROUND AND MOTIVATION
2.1 5G cellular architecture
A typical cellular network consists of the Radio Access Network

(RAN), usually comprising the wireless channel, the cellular base

station and a backhaul network, all used to connect mobile devices

(i.e., UEs) to the core network. The core network is responsible for

connecting UEs to the Data Network, (typically IP network), and

provides the majority of the ‘cellular services’. A 3GPP-compliant

5G architecture is shown in Fig. 1. Unlike previous generation core

network, 5GC takes advantage of NFV to implement the core func-

tions in software rather than purpose-built hardware appliances [6].

We list a number of 3GPP abbreviation in Appendix D.

Control plane: 5GC utilizes a service-based architecture in the con-

trol plane (Fig. 1). By connecting control plane functions as various

cloud-native services in the form of a service mesh, 5GC greatly

improves the operability of inter-service communication over a

HTTP/REST API compared to inflexible point-to-point connected

approach.

Data plane processing: The Session Management Function (SMF)

dictates the data plane forwarding at User Plane Function (UPF) by

provisioning PDRs, which contain various information, e.g., packet
detection information (PDI), priority, and associated actions. The

UPF organizes PDRs in a list in descending order of their priority.

On arrival of a user packet, UPF performs a lookup to identify

the user session, and then the list of PDRs is traversed until the

highest precedence rule is found [23]. The data is carried over the

GTP tunnel between the gNB and UPF, and requires setting up the

unique tunnel endpoint identifier (TEID).

2.2 Related Work
There has been considerable recent research to improve the perfor-

mance and reliability of cellular networks.

• Reducing control plane latency: Mukhtiar et al. [27] propose
Neutrino, which seeks to optimize the cellular control plane latency

by using fast serialization techniques and reduces handover time

by maintaining user state replicas in a larger geographical area.

This may add overhead of replicating to all neighboring ‘regions’ in

what is already a heavyweight protocol state machine. L
2
5GC seeks

to eliminate the cost incurred due to serialization and it can comple-

ment the handover optimizations of [27]. Further, given that cellular

operator backhaul networks are based on metro area packet net-

works, L
2
5GC’s deployment strategy seeks to minimize handovers

144

L25GC: A Low Latency 5G Core Network based on High-Performance NFV Platforms SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

causing sessions to move to another 5GC through consolidation

and processing efficiencies since a 5GC is accessible over the metro

network without significant latency difference. With an edge cloud

having reasonable scalability in the number of sessions supported,

we resort to replication for failure recovery similar to [27, 44, 56].

However, Neutrino [27] focuses only on control events by replicat-

ing UE state consistently across multiple nodes bymirroring control

plane functions (which unfortunately consumes extra resources) at

the multiple nodes. In addition, Neutrino does not account for data

packets that get lost during failover, placing the burden on user

end-systems to retransmit these data packets, impacting QoE. In

contrast, L
2
5GC addresses both control and data plane resiliency.

• Optimizing 5GC SBI: Buyakar et al. [29] implements the 5GC’s

SBI with gRPC [2] instead of HTTP/REST. However, gRPC is built

on top of HTTP/2 [3] and uses protobuf [1] or JSON as the seri-

alizing structure. It still has overheads related to serialization and

expensive communication over kernel sockets. Our experiments

show that these are major sources of 5G control plane latency,

which L
2
5GC avoids.

• Cellular core availability: ECHO [51] proposes a distributed

state machine replication protocol for 4G. It replicates the EPC state

machines in an NFV environment to provide redundancy against

potential failures. L
2
5GC’s failure resiliency is similar to ECHO’s

design. Our emphasis, however, is on reducing control plane latency.

•Redesigning control plane procedures: There have been many

proposals [49, 50, 54] to redesign the cellular control plane protocol

and the core architecture. CleanG [49] proposes a scalable NFV-

based architecture to optimize the control plane and data plane

latency in cellular networks. It leverages the shared memory feature

of Data Plane Development Kit (DPDK) [12] to improve control

plane latency. However, CleanG’s focus is on having a substantially

new control plane protocol. Our focus here is on developing a

3GPP-compliant high-performance implementation.

• Leveraging client-side state: DPCM [45] proposes a client-side

solution that initiates and executes control operations in parallel by

leveraging the device side user state to reduce control plane latency,

and eliminating some 3GPP messages for authenticated UEs. We

believe, by incorporating DPCM’s client-side modifications, L
2
5GC

may further speed up the control plane processing. However, until

their security implications are proved, L
2
5GC conservatively seeks

to retain compatibility with the 3GPP-specified protocol.

Existing Open-Source Implementations:
There are several cellular core network implementations avail-

able as open-source [18, 20, 32]. OpenAirInterface [20] is a well

known open-source implementation, focused on an open-source

RAN. It also provides a 4G EPC implementation. The 5GC ver-

sion [21] is in the early stages, with a subset of NFs such as AMF,

SMF, and UPF being implemented. NextEPC [18] is another, more

complete 4G core network implementation. It has been known to

work well with commercial 4G small cells. Their subsequent 5GC

implementation, Open5GS [19], does not yet have all the features of

the 3GPP specifications. Travelping [25] is a Vector Packet Process-

ing based User Plane Gateway (UPG) [26] implementation, a key

component of the 5GC to achieve a high-performance data plane.

However, it is not yet a full-fledged 5GC implementation.

Our earlier work on a 5GC implementation, free5GC, provides a

complete Release 15 [6, 7] 3GPP-compliant 5GC implementation. It

includes additional features such as a full-fledged PCF, support for

Non-3GPP Interworking Function (N3IWF) [4], EAP-AKA’ authen-

tication, and packet buffering. These unique features significantly

extend its usage for either research and experimentation or for de-

velopment into a production environment. The support for N3IWF

and EAP-AKA’ authentication allows non-3GPP devices to access

free5GC, and thus L
2
5GC which is based on free5GC, without being

restricted to the licensed spectrum and production base stations.

For example, IoT devices connected to WiFi Access Points can ac-

cess free5GC via N3IWF, with EAP-AKA’ providing the necessary

authentication for these devices.

There are several consortium-based 5G frameworks, such as

Magma [16], SD-CORE [24], and Aether [11], that utilize open

source 5GC implementations. Many of them (especially those 3)

have considered using free5GC as their 5G core network.

Although free5GC provides a comprehensive 3GPP-based im-

plementation with substantial flexibility in organizing 5GC NFs,

its performance is limited by its kernel-based implementation, as

discussed next. L
2
5GC seeks to overcome them.

2.3 Challenges with existing Framework
We identify the following challenges to implement a low latency

5GC. Several control and data plane components contribute to

latency that ultimately impacts the user QoE:

Challenge 1. Control message processing: The number of con-

trol messages exchanged in 5G has in fact increased slightly, rel-

ative to 4G, to keep the user state consistent across multiple dis-

aggregated NFs [6]. The cost of exchanging these messages is high

because of several factors including message serialization, HTTP/

TCP overheads. The communication overheads will be even higher

if the NFs are placed across the nodes. This becomes a concern as

5G network deployments and applications evolve, e.g., supporting
IoT, which are likely to increase control plane traffic [31].

Challenge 2. Complex handover procedure: During a han-

dover process, the user experiences added delay, data loss, and

out-of-order delivery. The handover operation can take up to 1.9

seconds [45] to complete. This can affect data plane traffic. For

example, TCP-based data traffic can suffer from spurious timeouts,

which degrades application throughput. Further, UE handover may

be more frequent because of the smaller cell sizes Along with the

many control message exchanges, the 5G handover relies on direct

(X2) or indirect (S1) forwarding, which involves data packets being

buffered at the source gNB. When the UE synchronizes with the

target gNB they are re-routed to the target gNB. Unlike 4G base

stations, gNBs may be relatively small and have limited buffering ca-

pacity. Based on private conversations with major cellular operators

and an equipment manufacturer, we estimate the buffering capacity

at (macro cell) base stations to be about 2MB (∼1300 full MTU pack-

ets) per radio resource-connected UE. Thus, both data forwarding

techniques (i.e., X2 or S1) may have extra latency and suffer from

data loss. Further, the use of X2 handover is relatively small (or non-

existent). With the 3GPP-specified S1 handover, this results in more

traffic ‘hairpinning’ back to 5GC and then forwarded to target gNB.

Challenge 3. Expensive Rule Lookup: The cellular ecosystem
has evolved from providing traditional services (e.g., voice, SMS)

to enabling various packet-oriented services. Also, with the higher

145

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Jain et al.

UE3

UE1

UE2

Home gateway UPF-U

IMS session

Amazon shopping

WhatsApp video

Netflix stream

Voice

Online banking

IP flows

Internet session

PDR

PDR

PDR

PDR

PDR

PDR

Netflix streaming

QoS flow 1

QoS flow 2

QoS flow 3

QoS flow 4

gNB

Internet session

Figure 2: Multiple packet flows within a user session.

bandwidth available, fixed wireless access may be provided by

the 5G network. The definition of a UE will evolve from a single

user device to a home gateway (Fig. 2) that connects multiple end

devices, including cell phones, IoT devices and smart TV, etc. One

can think of the 5G home gateway as a single ‘virtual UE’, which

can simultaneously run multiple sessions for different types of

services, generating packets with different Quality of Service (QoS).

5GC provides a flexible QoS model where QoS is applied at the

granularity of subflows. That is, we have multiple IP-level flows

within a session [10]. As a result, the number of PDRs per user

session will likely grow much larger than the 2-4 rules currently

used primarily for UL and DL classification [43].

Moreover, as 5G networks evolve to become primarily packet-

oriented, there is a need for firewall and NAT functionality to be

included to secure the flows in a PDU session. Maintaining high

performance requires these functions to be tightly integrated into

the data plane. Vendors (e.g., Ericsson [36]) are integrating this

functionality in the 5G data plane. 3GPP defines a number of Infor-

mation Elements (IEs) in the PDR for match-action functionality,

including the Service Data Flow (SDF) filter, Ethernet Packet Filter,

etc [23]. Given the IEs supported by the PDR, NAT and firewall

rules can be integrated into the PDRs and maintain data plane per-

formance, as long as the increased number of rules are handled

efficiently. Some of the IEs can be further expanded to include ad-

ditional elements, e.g., the SDF filter can be expanded to IP 5 tuples

plus other fields. Thus, the complexity of the PDR’s IE structure

can potentially result in a large number of PDRs being scanned for

each data packet. Therefore, we need better approaches (instead of

a linear search of a list, as suggested in §5.2.1 of [8]) for looking up

PDRs applied for the flow. This problem is similar to the classical

packet classification problem, where studies [57] have shown that

linear search does not scale.

Challenge 4. NF resiliency and recovery: To recover from fail-

ure, the 3GPP restoration procedure requires additional control

messages for restoring the context of 5G sessions in various NFs.

Ongoing cellular connections have to wait for this context to be

restored before exchanging data. While this re-initiation of the

connection is an obvious, simple solution, it adds considerable de-

lay, and potential packet loss. This need for reattachment can be

avoided by replicating the primary NFs. Proactive replication of

state information is needed to switch over to the active standby,

upon failure of the primary. However, maintaining a strongly con-

sistent replica for such NFs can impact normal performance and

incur substantial (possibly wasteful) overheads. Although existing

techniques (e.g., packet replay with lazy checkpoint and full check-

pointing) work well in the NFV environment, 5GC poses significant

challenges because of the tight interdependence between the con-

trol and data planes, requiring substantial enhancements to their

design. Additionally, a constantly running replica consumes system

resources. We need a strategy to lower recovery times, coordinate

control plane state with the data plane, and ensure consistency

without consuming extra resources.

3 L25GC DESIGN AND IMPLEMENTATION
3.1 Overview: Design Goals and Approach
We seek to reduce control and data plane latency and achieve

high throughput by optimizing the processing and communication

among NFs implementing the 3GPP specified control and data plane

protocols. The fundamental idea behind the service-oriented archi-

tecture of 3GPP 5G specifications is to permit individual services to

be developed and scaled independently, following the microservice

design paradigm. However, in our view a service-based interface

should not mandate that it must only use HTTP and a REST API.We

believe having a straightforward API for communication between

microservices is desirable, but should be able to take advantage of

alternative ways of exchanging information in the case when the

microservices are co-resident on the same node. We believe our

design principles will be applicable for 5G and beyond:

Consolidating NFs on the same node: We take advantage of

system capabilities, including a shared memory space for data shar-

ing to avoid moving data between NFs, which also avoids the added

cost of serialization and de-serialization. This also allows us to mit-

igate network I/O latency and helps to overcome overheads that

occur with the SBI currently recommended. We take a fresh look at

deployment and scaling strategies in this context for 5GC (see §4).

Smart Buffering for Handover: A straightforward implemen-

tation of the 3GPP specification for handovers involves buffering

downlink packets at the source gNB, which may have limited re-

sources, especially with small cells. To address this issue, we utilize

the buffering functionality at UPF that is already in-place for pag-

ing operations without adding any additional control messages.

This has the added benefit of avoiding hairpin routing through the

source gNB.

Fast rule lookup: Instead of performing the linear search of PDRs,

we explore two alternatives: TSS, and PartitionSort. This reduces

the complexity of PDR lookup in the UPF.

Resiliency through state replication:We leverage the idea of

external synchrony (as used in [44, 52, 56]) to continue the spec-

ulative execution of user events while the state is replicated to a

standby. This allows us to avoid synchronous replication and have

5G control and data plane processing progress without reduction

in performance, while still providing consistency guarantees on a

failure of one or more NFs.

We built our framework on top of free5GC (its implementation

details are in Appendix B) and OpenNetVM (ONVM) [41, 60], a

high-performance NFV platform based on DPDK. The innovations

brought by L
2
5GC may also be applied to other NFV platforms with

similar capabilities.

146

L25GC: A Low Latency 5G Core Network based on High-Performance NFV Platforms SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

OpenNetVM

NF
Manager

Shared memory

Physical
NIC

AMF

RXTX

cGO shim

RX

Packet
Pool

UPF-U

RXTX

UPF-C

TXRX

ONVM NFlib

SMF

RXTX

cGO shim
NRF

RXTX

cGO shim

TXPDR

Notification
Queue

RX loop

BufferBufferBuffer

ONVM NFlib

Figure 3: Optimized 5GC architecture through shared-
memory communication: data and control plane

3.2 Consolidating NFs on same node
Tominimize communication overheads, we leverage software-based

5GCNFs, and run them on a commercial off-the-shelf (COTS) server

that has a sufficient number of CPU cores. With the development

of high-performance packet processing frameworks (e.g., DPDK,
OpenNetVM) and the evolution of virtualization technologies (e.g.,
single root input/output virtualization [34]), a COTS server can

host all 5GC NFs and provide accelerated data packet processing at

the same time.

Shared memory communication: To further reduce the packet

processing cost and to support fast communication between 5GC

NFs, L
2
5GC uses shared memory to achieve zero-copy packet pro-

cessing. As shown in Fig. 3, L
2
5GC runs an NF manager to handle

incoming packets, manage the shared memory, and facilitate zero-

copy communication between 5GC NFs. Each 5GC NF is assigned a

unique service ID and attached receive (Rx) and transmit (Tx) rings.

These ring buffers are shared with the manager used for packet

descriptors pointing to packets in shared memory. After processing,

the NF attaches the metadata to the packet to specify the action

(send to port/NF, drop) for that packet and puts it in the Tx ring for

the manager to process the action. To send the packets between

NFs, the source NF specifies the target NF’s id in the metadata.

The manager copies the descriptor of flat data structure into the

ring buffer of the target NF and thus mitigates serialization and

HTTP processing. We replace the SBI and N4 interfaces (shown in

Fig. 1) with our descriptor-based shared-memory approach, thus

eliminating considerable overhead. We utilize the clean abstraction

provided by OpenNetVM’s shared-memory [60] to implement se-

rialization and lock-free inter-process communication. To support

NFV-based components, we started from the Golang-based free5GC

and developed a generic cGO shim layer (shown in Fig. 3). This

allows Golang-based NFs to use DPDK functions and use ONVM

and shared memory.

Zero cost state update:We divide the data plane (i.e., UPF) into
a pair of NFs: UPF-C and UPF-U, to mitigate interference between

control and data plane processing. To avoid overheads for state

update and propagation across NFs, we ensure that forwarding

rules and state for the UPF are in a shared memory. Using shared

Hugepages (with DPDK), we maintain two hash tables for stor-

ing the pointer to a user session context. The keys for these two

tables are TEID and UE IP to differentiate UL and DL traffic, re-

spectively. Each user session context stores a number of different

rule sets in shared memory, e.g., PDRs and FARs, to control the

packet-forwarding behavior of the data plane.

Currently, our control plane implementation supports two users.

The data plane component (i.e., UPF) supports as many users as the

available system resources will support.

Security domain in L25GC: With potentially multiple services

(possibly developed by third parties) running in the cloud environ-

ment, security concerns such as eavesdropping and data tampering

may arise. It is necessary to isolate L
2
5GC from those other appli-

cations. We take advantage of the security domain design of [42].

L
2
5GC’s trust model assumes all of L

2
5GC’s NFs are trusted,

managed by the cellular operator. These NFs share a privatememory

pool not accessible by the other applications running on the same

node. At the startup of L
2
5GC, the NF manager (Fig. 3), which runs

as the DPDK primary process, creates a private shared memory pool

for NFs in L
2
5GC. This private shared memory pool is implemented

as hugepages in the Linux file systemwith a unique “shared data file

prefix” [13] specified during creation. NFs in L
2
5GC, which run as

DPDK secondary processes, use the same file prefix specified by the

NF manager to gain access to the private shared memory pool. For

multiple L
2
5GC instances on the same node managed by different

operators, each would have a unique file prefix to keep its shared

memory pool isolated from the others. Further enhancements to

the security domain design of L
2
5GC would be to add an admission

control mechanism for verifying NFs that seek access to the private

memory pool belonging to the cellular operator.

UPF

DN

S-gNB T-gNB

Buffer

UE

(a) 3GPP-based indirect forwarding and

buffering

UPF

DN

UES-gNB T-gNB

Buffer
…

(b) Direct forwarding with 5GC buffer-

ing, improving handover

Figure 4: Buffering during Handover: 3GPP vs. L25GC

3.3 Smart Buffering for Handover
L
2
5GC redesigns the 3GPP handover behavior. Instead of perform-

ing hairpin routing as shown in Fig. 4(a), L
2
5GC buffers the down-

link (DL) packets at the UPFwhich hasmore buffering, as in Fig. 4(b).

This results in several benefits: i) mitigation of packet loss at source

gNB, ii) avoids unnecessary packet processing (and delay) due to

hairpin routing.

L
2
5GC does not introduce any additional messages to enable

the buffering at UPF. However, it modifies the control plane (SMF)

behavior to provision the buffering rule at the UPF for a handover

event, which already utilizes the buffering capabilities for paging

events (idle-active transition). When a UE requests a handover, the

SMF sends a Packet Forwarding Control Protocol (PFCP) message

147

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Jain et al.

to UPF to allocate a new TEID for the target gNB. We leverage this

opportunity and piggyback an additional IE along with the original

PFCP message to update the PDR and FAR action to buffer the pack-

ets. The UPF buffers all the subsequent DL packets for the session

and forwards them to the target gNB once the handover completes.

To avoid interference from other sessions, L
2
5GC implements a

3GPP compliant session-based buffering. Our design also ensures

in-order delivery of data packets.

3.4 Fast Rule Lookup
Since the UPF-U requires a PDR lookup for each arriving packet to

determine its forwarding policy, the lookup speed directly impacts

the data plane performance. We examine different alternatives:

Linear Search (PDR-LL), TSS (PDR-TSS) and ParititionSort (PDR-PS)

for reducing the search complexity of large-scale PDR lookups in

UPF-U, which we see as being critical for future-proofing the 5GC.

Both PDR-TSS and PDR-PS have lower search complexity than

PDR-LL. PDR-TSS reduces the search complexity by partitioning

PDRs into multiple sub-tables based on tuples (e.g., PDI IE fields).

PDRs in the same sub-table have the same prefix bits in each tuple,

but their values can differ. Each sub-table is organized as a hash table

with𝑂 (1) complexity for the PDR lookup based on TSS traversal of

the tuple space (i.e., a group of sub-tables converted from the PDRs)

until a matching PDR is found. Compared to the linked list based

PDR-LL, the PDR-TSS search achieves less overhead when there

are a large number of PDRs. A linked list with𝑀 elements can be

converted into𝑁 tuples (𝑁 ≤ 𝑀). However, PDR-TSS does not guar-

antee optimal lookup performance since the number of partitioned

sub-tables has some variability. In the worst case, PDR-TSS can have

the same search complexity as PDR-LL. The variability in the search

overhead of PDR-TSS, combined with the need for software hashing

to look up a sub-table, can potentially result in high overhead.

PDR-PS reduces the search complexity by leveraging multidi-

mensional binary search. For a set of PDRs, PDR-PS stores sorted

PDRs in a multidimensional binary tree based on the values of the

tuples. PDR-PS can perform fast binary search among the sorted

PDRs compared to the in-order lookup of a linked list. Similar to

PDR-TSS, PDR-PS divides the PDRs into multiple groups and then

sort these groups to further reduce the complexity of the lookup.

Compared to PDR-TSS, PDR-PS does not rely on software hash-

ing during PDR lookup. With PartitionSort’s online ruleset parti-

tioning, PDR-PS eliminates randomness and results in fewer parti-

tioned rule sets, yielding more consistent performance [59].

In addition, L
2
5GC’s UPF-U seeks to meet important require-

ments of operators, e.g., avoiding DoS attacks [33]. PartitionSort

helps to avoid TSS’s vulnerability to DoS attack. Given the advan-

tages of PDR-PS, we use it in L
2
5GC for fast PDR lookup.We studied

other state-of-the-art alternatives, e.g., NeuroCuts [46], but lacking
production data-sets for learning, we seek to use the option with

the highest performance providing the needed flexibility. To ac-

commodate a packetized 5GC, we employ a number of PDI IEs (up

to 20) in the PDR to support rich functionality needed, including

firewalls, NATs, and per-flow QoS treatment (see Appendix. A for

more details).

3.5 Resiliency through state replication
In L

2
5GC, we have developed a thorough and novel resiliency

framework particularly suited for the cellular environment where

control and data plane traffic have substantial inter-dependency.

We avoid having the UE re-establish the connection after a failure.

3.5.1 Replication and failover. We provide two levels of resiliency

to support software failure (local resiliency) and node/link failure

(remote resiliency).

• Local resiliency: We maintain a local replica of each NF. Once

the replica NFs are initialized, they are kept in ‘freezed’ state, using

cgroup freezer subsystem consuming no CPU cycles until the NF
Manager issues a signal to wake up the NF. We use a no-replay

scheme to synchronize the active and standby NFs and ensure an

‘output commit’ property once the UE event is completed. The NF

(e.g., AMF) does not release any response unless the local replica is

synchronized. Since the NFs are on the same system, they take neg-

ligible time (less than 5µs) for synchronization. For failover, once

the NF Manager detects the failure of an active NF, it ‘unfreezes’

the standby, which is guaranteed to have a consistent checkpoint

of NF state.

• Remote resiliency: While software failures are easier to recover

with local resiliency, more importantly we address the case that

a serving node becomes unreachable (e.g., link/node failure). The

main feature of our resiliency design is to maintain external syn-

chrony during replication, i.e., allow strict state consistency without

impeding normal operation. We leverage both checkpointing and

packet replay (similar to [27, 44, 56]) but account for both control

and data packet recovery, to provide complete resiliency from node

and link failures. The resiliency procedure is as follows:

(1) The Counter at the load balancer (LB) node (in Fig. 5) attaches

a counter value to every outgoing message and maintains its copy

in buffer (PacketLogger). To avoid the impact of interference be-

tween control and data if the buffer overflows, L
2
5GC separates the

packet logger into four different queues for UL-control, UL-data,

DL-control, and DL-data packets. These buffered packets are re-

played to reconstruct the state at the replica when a failure occurs

and we need to recover the state updates lost between two consec-

utive checkpoints. The replica node checks the counter value of the

packet at the front of each of the four queues and picks from the

queue with a lowest counter value, so as to maintain the processing

order while replaying the packets.

(2) The local replica at the primary node, which is already in sync

with the primary copy, periodically sends the delta of state snapshot

(thus reducing the update size) to the remote replica. Both primary

and remote replicas maintain a record (counter) of the messages

that are processed and synchronized. By utilizing the local replica

for synchronization, our design ensures that normal operations are

not impeded. We chose periodic state sync over per UE event sync

(as done in Neutrino [27]) for two reasons: 1) to recover data packets

lost during a failure, and avoid having end-points to retransmit

the packets; and 2) the 5GC is expected to have a large number

of control plane events, increasing the frequency of event-based

checkpointing, which can degrade performance.

(3) Upon receiving the success ACK for state and counter sync

from the remote replica, the primary node notifies to the LB to

release the processed messages from its buffer.

148

L25GC: A Low Latency 5G Core Network based on High-Performance NFV Platforms SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

If a primary node fails, the remote replica is ‘unfreezed’ with the

last checkpointed state, and the remaining state is reconstructed

by replaying packets present in the LB node.

Figure 5: L25GC’s resiliency framework with cloud-native
deployment

3.5.2 Failure detector. The NF manager periodically (every few

milliseconds) determines the status of all the registered active NFs.

L
2
5GC also leverages REINFORCE’s method [44] of detecting node

and link failure, using the configuration of the simplified Seamless

BFD (S-BFD) [53] that has lower overhead for both link and node

failure detection.

4 L25GC DEPLOYMENT STRATEGY
An important reason to move to software-based NF components

for the 5GC is to improve scalability, and ease of deployment by

using modern cloud-native frameworks of NFV, Kubernetes and

Istio [30]. Our L
2
5GC design also adopts the same functional goals

as sought by 3GPP with the SBI in terms of vendor and implemen-

tation flexibility.

Scaling: A user session remains associated with a particular 5GC

instance (we term this a 5GC unit) assigned at the establishment, as

long as the user remains within the set of gNodeBs supported by the

5GC units instantiated in the same data center. A single 5GC unit

can serve a large set of UEs in a serving region. A serving region

can have multiple 5GC units. Our design assigns a UE session to a

particular 5GC unit. This allows us to limit excessive state migration.

Load is balanced by assigning new UE sessions to the appropriate

5GC unit based on its current load. Fig. 5 illustrates the affinity

of a UE (e.g., Blue UE) at time T1 and T2 to L
2
5GC unit on Node

2. The main feature of our approach is to have consolidated 5GC

unit instantiated as a service, rather than independent, individual

NFs. A 5GC unit serves a number of neighboring gNBs in a metro

area. Multiple 5GC units can be provisioned in the same data center

to handle increases in user sessions. We employ a UE-aware LB

(Fig. 5) to maintain the affinity of a UE to its serving 5GC unit. This

allows us to scale 5GC units including control plane NFs without

excessive overheads of moving user sessions and avoids the cost

incurred for migrating the user state between L
2
5GC units.

A single server can host multiple 5GC units. Network slices

can be supported by logically assigning different service IDs. We

leverage Receive Side Scaling [47] offered by modern NICs to seg-

regate incoming packets into different receive queues based on a

configurable hash. This allows received packet processing to be

load balanced across multiple cores running different 5GC units

and network slices.

Supporting Canary Rollouts:Our deployment strategy envisages

the adoption of canary deployment of the 5G NFs. This is similar

to the Istio service mesh, where Envoy proxies are configured to

support the canary rollout of a new version of a service [30]. With

the help of the NF manager, L
2
5GC seamlessly allows the gradual

roll out of a new version of a specific NF or a whole 5GC unit. The

manager identifies any NF with its NF ID, and when a new version

of the same service has started, it uses an instance ID to differentiate

between two instances. It can be configured with the percentage of

traffic to send to the particular version to support the principles of

a canary rollout.

Scheduling: All cellular core functions in our architecture can also

be containerized as cloud-native services and still utilize the shared

memory communication interface. The containerized service-chain

for the 5GC unit can be used with modern orchestration frame-

works. Further, by leveraging placement engines (e.g., Kubernetes

scheduler) that consider the affinity of the 5GC components, all the

containerized NFs of a 5GC unit can be deployed on the same node.

The design of such a placement engine is straightforward and only

requires knowledge of the available capacity of the system.

5 EVALUATION & ANALYSIS
We measure the performance improvements of L

2
5GC and com-

pare it with free5GC. We also compare L
2
5GC’s SBI approach with

alternatives for sharing data between NFs, such as FlatBuffers (Neu-

trino [27]) and Protobuf (Buyakar et al. [29]). We show the effective-

ness of L
2
5GC’s control plane components and overall control plane

latency reduction (§5.2); the improvement in data plane latency

and throughput (§5.3); the improvements in data plane latency as a

result of improved control plane processing (§5.4); finally, we show

the improvement due to L
2
5GC’s resiliency framework (§5.5).

5.1 Experiment Setup
Our evaluation testbed consists of three Intel

®
Xeon

®
CPU E5-2697

v3 @ 2.60GHz servers running Ubuntu 20.04 with kernel 5.4.0-33-

generic. Each server has an Intel 82599ES 10GDual Port NIC. Server-

1 and server-3 are configured as the RAN/UE and DN, respectively.

Server-2 runs the L
2
5GC core, including all the NFs in Fig. 1. We

use MoonGen [35] on server-1 and server-3 for generating uplink

and downlink traffic.

5.1.1 UE and RAN simulator. We implement a custom UE & RAN

simulator for generating user events, based on the New Genera-

tion Application Protocol (NGAP) specified by 3GPP. We focus on

four common UE events: i) UE registration, ii) Session request, iii)
Handover, and iv) Paging (Idle-active). Currently, our simulator

only implements the N1 & N2 interface of 5GC (i.e., UE to AMF)

over an SCTP socket. It does not implement the PHY channel (e.g.,
mmWave). But, simulating radio characteristics can easily be done

149

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Jain et al.

SharedMemory
FlatBuffers

ProtoBuf
JSON0

0.3
k

0.6
k

0.9
k

1.2
k

Ti
m

e
(µ

s)

72

373

833

1153
Protocol & Tx/Rx;
same node
Deserialization
Serialization

Figure 6: Serialization,
Deserialization, protocol
overheads

Establishment

Modification
Report0.0

0.5

1.0

1.5

2.0

La
te

nc
y

(m
s) 1.39

0.53

0.23

1.78

0.86

0.45

L25GC free5GC

Figure 7: Latency of single
control plane message be-
tween UPF/SMF

UE registration

Establishment
N2 handover

Paging0.0

0.1

0.2

0.3

La
te

nc
y

(s
)

0.136

0.077

0.132

0.027

0.234

0.151

0.219

0.054

0.240

0.156

0.222

0.056

L25GC
free5GC
ONVM UPF

Figure 8: Total control plane
latency for different UE events

Authentica
tion

Info
PostSmContexts

Request

UpdateSmContext

Request
SmPolicy

Context

Data

100

101

102

103

La
te

nc
y

(u
s)

77 69 80 88

1001 924 893 1130

L25GC free5GC

Figure 9: Communication speedup
over HTTP

by integrating a model (e.g., ns-3’s mmWave [48] model) with AMF

over the SCTP socket.

5.2 Control plane Evaluation
In this subsection, we first assess the performance improvement

from each control plane enhancement of L
2
5GC, and then present

overall improvement in control plane latency.

Improvement over HTTP: L25GC’s shared memory communica-

tion unsurprisingly reduces the latency significantly for messages

exchanged over the HTTP/REST interface (e.g., used for AMF-AUSF,

AMF-SMF communication) and PFCP (for SMF-UPF). Fig. 6 shows

the cost of message serialization during a message exchange over

the REST interface. We start two NFs on the same node and ex-

change a ‘PostSmContextsRequest’ message. Besides JSON (de facto

format for REST API), we use different serializing structures dis-

cussed in recent proposals such as FlatBuffers (Neutrino [27]) and

Protobuf (Buyakar et al. [29]) to compare against L
2
5GC. We ob-

served that even with optimized serializing structures such as Flat-

Buffers, there is still significant cost involved in serialization and

overhead of message copy, context switch and protocol stack pro-

cessing when services communicate over kernel sockets. L
2
5GC

completely mitigates these costs to achieve significant speedup for

typical control plane messages, as shown in Fig. 9 (log scale) shows

the speedup for selected control plane messages. We chose these

messages due to their importance and frequent usage. On average,

we observe a speedup of 13× over using the HTTP channel. While

it is not surprising, the latency saving with L
2
5GC’s shared memory

communication is crucial for this application.

Improvement over PFCP: We study the latency of UE-related

control planemessages that are frequently exchanged over the PFCP

channel between SMF andUPF-C for critical UE events, e.g., the PDU
session establishment and modification. The ‘SessionModification’

messagewith ‘UpdateFAR’ IE is used to change forwarding behavior.

Similarly, the ‘SessionReportRequest’ message notifies the SMF of

the reception of any DL packet, thus initiating paging when UE

is in sleep-mode. These messages influence control plane latency

and thereby the data plane latency since they control when data

packets can begin to flow after a state change. The comparison

between L
2
5GC and free5GC is shown in Fig. 7. L

2
5GC achieves

21% ∼ 39% latency reduction compared to free5GC for both the

session establishment and modification messages, benefiting from

utilizing the shared memory to support messaging over the N4

interface. Compared to in-kernel UDP socket messaging, the shared

memory consumes less overhead and helps speed up the control

plane messaging between the SMF and UPF-C.

Overall Control Plane Performance:We examine the overall re-

duction in control-plane latency for user events such as UE registra-

tion, PDU session request, N2 Handover (both L
2
5GC and free5GC

use our smart buffering and direct handover), and Paging. We begin

by running vanilla free5GC that uses the kernel-driver based UPF

for the data plane and compare with the “ONVM-UPF”. ONVM-UPF

runs the OpenNetVM-based data plane function (i.e., UPF) but the
rest of the NFs use the original free5GC implementation with the

REST-based control plane functions (thus only the SMF-UPF, or N4

interface, runs on OpenNetVM). We evaluated the control plane

operation latency with 1 and 2 users performing control plane tasks

simultaneously. We see no perceptible difference. We report the

average time for specific control procedures for each UE event in

Fig. 8 (labeled ONVM-UPF). Compared to vanilla-free5GC, ONVM-

UPF shows a slight improvement as it eliminates a data copy in the

SMF to UPF communication. Retaining the N4 interface’s use of

PFCP in our design of L
2
5GCmakes our UPF universally compatible

with any SMF implementation. Further, it helps when not all the

NFs are on the same node and the SMF and UPF are on different

devices. The reduction in latency primarily comes from reduced

communication latency, while the handler-processing latency is

common (and is a significant part of the latency) for both free5GC

and L
2
5GC. L

2
5GC has a substantially lower completion time (al-

most 2×) compared to free5GC, as shown in Fig. 8, because of the

efficient processing of the frequent control plane messages. With

the improved physical layer access latency (beam alignment and

link acquisition can be of the order of 1-10ms [39]), this reduction

in handover latency of L
2
5GC (of the order of 100 ms), is even

more significant and provides meaningful QoE improvement to

user applications (shown in §5.4.1).

5.3 Data plane Evaluation
We now demonstrate the data plane performance improvement

obtained from leveraging the benefits of NFV platform. We use

the MoonGen [35] traffic generator on server-1 and server-3 to

150

L25GC: A Low Latency 5G Core Network based on High-Performance NFV Platforms SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

68 128 256 512 1024
(a) packet size (Bytes)

0

3

6

9

12

Th
ro

ug
hp

ut
 (G

bp
s)

L25GC (UL)
free5GC (UL)

L25GC (DL)
free5GC (DL)

68 128 256 512 1024
(b) packet size (Bytes)

0

3

6

9

12

Th
ro

ug
hp

ut
 (G

bp
s)

L^25GC (DL - 2 core)
L^25GC (UL - 2 core)

L^25GC (DL - 1 core)
L^25GC (UL - 1 core)

free5GC (UL)
free5GC (DL)

10 20 30 40 50
(c) Rate (Kpps)

0

10
0

20
0

30
0

40
0

La
te

nc
y

(u
s)

L^25GC
free5GC

Figure 10: Data plane performance comparison between L25GC and free5GC with increasing packet sizes: Throughput with (a)
uni-direction traffic (UL only and DL only) and (b) bi-direction traffic; (c) Mean end-to-end latency.

2 20 40 60 80 100
(a) # of PDRs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
te

nc
y

(u
s)

PDR-LL
PDR-TSS_Best
PDR-PS

2 20 40 60 80 100
(b) # of PDRs

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (G

bp
s)

PDR-PS
PDR-LL
PDR-TSS_Best
PDR-TSS_Worst

Figure 11: PDR lookup comparison: (a) PDR lookup latency
with increasing # of PDR rules; (b) Throughput with increas-
ing # of PDR rules (Packet size 68 bytes)

generate UL and DL traffic. We also demonstrate the benefit of the

fast PDR lookup , with an increasing number of PDRs for a single

user session in L
2
5GC.

• Packet forwarding performance: Fig. 10(a) and 10(b) compare

the throughput between L
2
5GC and free5GC. With a packet size

of 68 bytes, L
2
5GC achieves 27× throughput improvement for uni-

directional traffic in both UL and DL traffic compared to free5GC

(Fig. 10(a)), demonstrating the performance benefits of a high per-

formance DPDK-based NFV platform (using one CPU core). The

free5GC’s throughput improves slightly at large packet sizes due to

a reduction (in proportion) in the fixed per-packet processing over-

head. When UPF-U is assigned two CPU cores, L
2
5GC’s throughput

improves by a factor of 4 over free5GC, even for 1024-byte packets.

We expect that by allocating a sufficient number of CPU cores to

the UPF-U as needed, the data plane throughput of L
2
5GC can be

further improved. Fig. 10(c) shows the mean end-to-end packet

latency. free5GC has high latency due to interrupt-based packet

processing in the kernel, even if the packet rate is relatively low. On

the other hand, L
2
5GC leverages DPDK’s poll-mode kernel bypass

technique to process packets in userspace without any data copies,

thus achieving much lower latency. L
2
5GC’s latency remains rela-

tively flat throughout the range we tested.

• Supporting 40Gbps links: To support 40 Gbps line rate on the

datapath, we need to increase the number of CPUs allocated to the

UPF.With 1 core assigned to UPF and NFmanager each, the UPF can

only achieve a forwarding rate of 10 GbpswithMTU size packets. To

saturate a 40Gbps link, we increased the number of CPUs assigned

to the UPF and NF manager (Rx and Tx) thread from 1 to 4. With 2

cores each to UPF and NF manager (Rx and Tx), the forwarding rate

goes up to 28 Gbps. With 4 cores each to the UPF and NF manager

(Rx and Tx) thread, we can comfortably operate at 40 Gbps.

• PDR lookup comparison:We compare the lookup performance

between PDR-TSS, PDR-PS, and PDR-LL. We extend ClassBench [58]

to generate PDRs (including a total of 20 PDI IEs Packet Detection In-

formation (PDI)) for evaluation. Two different scenarios of PDR-TSS
are studied: Best case (PDR-TSS_Best) and Worst case (PDR-TSS_
Worst). For PDR-TSS_Best, given 𝑁 PDR rules, all the 𝑁 PDRs are

inserted into a single sub-table. One hash table lookup finds the

target PDR. For PDR-TSS_Worst, each sub-table has only one PDR

inserted. Thus, it can take up to𝑁 sub-table lookups to find a match-

ing PDR. In PDR-TSS_Worst, we assume the match is in the last

sub-table. For PDR-LL, we assume the packet randomly matches a

PDRs in the second half of list.

Fig. 11(a) and 11(b) compare the PDR lookup latency and through-

put. We omit the case of “PDR-TSS_Worst” from Fig. 11(a) since

the latency goes up rapidly to 2.9𝑢𝑠 , out of the range of the graph

for just 100 rules. This poor performance is primarily because of

the penalty of software hashing, and having to go through a num-

ber of PDR sub-tables. However, despite the increased number of

PDRs, PDR-TSS_Best has a constant latency of ∼ 0.26𝑢𝑠 . It also

has a lower latency than PDR-LL, when there are more than 60

PDRs. With 2 PDRs per session, PDR-LL may be acceptable as its

throughput and latency are competitive. However, as we evolve to

a packet-oriented environment, concerns about throughput degra-

dation can be a significant issue as the number of PDRs per session

grows. Finally, PDR-PS achieves the best performance of all, in terms

of both latency and throughput.

• PDR update comparison: Updating the PDR table is also an

important consideration as it impacts events such as session mod-

ification, etc. We compare the PDR update performance between

the alternatives by measuring the average latency for a single PDR

update, and repeating it 50 times. PDR-TSS (1.41𝜇𝑠) and PDR-PS
(6.14𝜇𝑠) have a higher update latency than PDR-LL (0.38𝜇𝑠), but

151

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Jain et al.

0 3 6 9 12
(a) Time (second)

100
200
300
400

RT
T

(m
s)

L25GC free5GC

0 3 6 9 12
(b) Time (second)

50
140
230
320
410
500

cw
nd

 (#
pa

ck
et

s)

L25GC free5GC

0 3 6 9 12
(c) Time (second)

6
12
18
24
30

Go
od

pu
t (

M
bp

s)

L25GC free5GC

Figure 12: Impact of handovers on application: Round-trip delay (left), congestion window (middle), goodput (right).

the difference is not substantial. Therefore, we choose PDR-PS be-
cause of its reduced forwarding overhead and thereby the improved

throughput, as shown in Fig. 11(b).

5.4 Impact of control plane on Application
Performance (and data latency)

5.4.1 Control Plane Impact on Application Performance. We study

the impact of L
2
5GC’s control-plane improvements on the data

plane by evaluating the page load time (PLT) for a webpage on a

Firefox browser at the UE, as intermittent handovers occur. The

webpage contains a few high-resolution images (each ∼15MB),

javascript libraries, and CSS files, hosted on the DN node. We dis-

abled browser caching to avoid artificial speedup because of our

limited web content being cached, and used six parallel TCP con-

nections (Firefox’s default). We use the PLT reported by Firefox

Developer Tools (Network Monitoring) [17], as it reflects the delay

experienced by the user. We set the aggregate bottleneck bandwidth

as 30Mbps and round-trip delay (RTT) of 20ms.We useWireshark to

calculate goodput and RTT, and the ss utility to extract congestion

window (cwnd).
During a handover, DL packets are buffered at 5GC and ex-

perience an additional delay. free5GC incurs up to 463ms delay

(Fig. 12(a)), which is higher than the minimum retransmission time-

out (200ms) in Linux, leading to ∼1500 spurious retransmissions

out of ∼80K packets with the consequent reduction of each con-

nection’s cwnd. L25GC incurs at most 96ms of extra delay due to its

faster handover, and there are no timeouts (22 packets are retrans-

mitted, but none were dropped at the 5GC). The total PLT is ∼32
seconds with free5GC, while it is ∼28 secs. with L

2
5GC, a 12.5%

improvement in the user QoE illustrating the utility of L
2
5GC.

5.4.2 Impact on UDP streams. We study the impact of the control

plane on UDP streams by triggering two UE events (paging and

handover) separately, to demonstrate the impact of control plane

latency on the data plane’s latency. Packets are sent at a constant

rate of 10 Kpps for a UE session. To estimate the impact of buffering,

we use a buffer of 3K packets at the UPF.

Paging: Fig. 13 (Y-axis in log-scale), and Table 1 show the RTT expe-

rienced by packets (we measure RTT of packets sent from and ack’d.

Figure 13: Data plane latency during paging event

Table 1: Control and data plane behavior (paging event)

Base
RTT

Paging
time

RTT after
paging

Pkts experience
higher RTT

free5GC 116 us 59 ms 63 ms 608

L25GC 25 us 28 ms 30 ms 294

back to the generator). When data transfer stops, the UE goes into

the sleep state to save battery. Once the UPF receives a DL packet,

it initiates a paging event to wake up UE. Until the paging event

is completed, all the subsequent DL packets have to be buffered in

the 5GC. The longer it takes for the event to complete, the higher

the queuing and delay experienced by packets. In both free5GC

and L25GC, packets experience a higher delay for a period until

the queue drains after data starts flowing. The RTT goes up from

116 𝜇sec to 63 ms with free5GC. L
2
5GC is distinctively better than

free5GC both in terms of the base RTT and the RTT after paging.

With L
2
5GC, the base RTT goes from 25 𝜇sec (base RTT is 4× better

with L
2
5GC, because of its kernel bypass zero copy delivery and

user space processing) to 30 ms with L
2
5GC. In addition, paging in

L
2
5GC completes in about half the time, and less than half of the

packets experience an increased RTT compared to free5GC.

Handover (HO): Fig. 14 (log-scale Y-axis) and Table 2 show the RTT

experienced by data packets during the handover event.We perform

152

L25GC: A Low Latency 5G Core Network based on High-Performance NFV Platforms SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

two distinct experiments: expt. (i) uses a single UE session with one

flow; expt. (ii) uses multiple UE sessions sending data concurrently,

while one UE performs handover. In both experiments, the UE

initiates a handover request at 1 second and the UPF starts to buffer

packets and the SMF provisions PDR and FAR rules to buffer the

incoming packets at the UPF. In expt. (i), with the kernel-based

free5GC handover takes longer, resulting in more DL packets being

buffered (864 packets more than L
2
5GC). Packets experience an

increased data plane RTT of 242ms for free5GC compared to 132ms

for L
2
5GC. For expt. (ii), the handover time for kernel-based free5GC

is quite a bit more than L
2
5GC. Moreover, since multiple flows are

being forwarded by the UPF, it results in an increased RTT of 305ms

(free5GC) for all the data packets, compared to 137ms (L
2
5GC).More

packets see this buffering delay (1313 packets more for free5GC

than L
2
5GC). Up to 43 packets are dropped in free5GC, (0 in L

2
5GC)

even with a 3K buffer.

Estimating Smart Buffering benefit: We assess the benefit of

our smart handover approach compared to 3GPP’s hairpin routing,

for packet drops (𝑁𝑑𝑟𝑜𝑝) and one-way delay (𝑡𝑂𝑊𝐷), UPF to UE:

𝑁𝑑𝑟𝑜𝑝 = 𝐷𝐿𝑟𝑎𝑡𝑒 × 𝑡𝐻𝑂 −𝑄𝑙𝑒𝑛𝑔𝑡ℎ (1)

𝑡𝑂𝑊𝐷 =

{
𝑡𝐻𝑂 + 𝑡𝑈𝑃𝐹,𝐺𝑁𝐵𝑡 L25GC
𝑡𝐻𝑂 + 𝑡𝑈𝑃𝐹,𝐺𝑁𝐵𝑠 + 𝑡𝐺𝑁𝐵𝑠 ,𝑈 𝑃𝐹 + 𝑡𝑈𝑃𝐹,𝐺𝑁𝐵𝑡 3GPP

(2)

•Packet Drop:We evaluate two cases: case (i) allocating equal buffers

(500 pkts) at gNB (at the 𝐺𝑁𝐵𝑠 for 3GPP handover) and UPF (our

smart handover), and case (ii) allocating higher buffering at UPF

(1500 pkts), with 𝐺𝑁𝐵𝑠 (500 pkts) (likely more common). We use

the handover time (𝑡𝐻𝑂) measured, 130 ms as in Table 2, and DL

data rate of 10 Kpps. In case (i), 3GPP’s routing and L
2
5GC’s direct

handover both experience a similar packet loss of ∼800 packets dur-
ing the handover (based on Eq. 1). In case (ii), the UPF sees no packet

Figure 14: Data plane latency during handover (HO) event
(log-scale Y-axis)

Table 2: Control and data plane behavior (HO event)

Base
RTT

HO
time

RTT after
handover

#Pkts experie-
nce higher RTT

#Pkts
Dropped

free5GC (expt. i) 118 us 227ms 242ms 2301 0

L25GC (expt. i) 24us 130ms 132ms 1437 0

free5GC (expt. ii) 425us 231ms 305ms 3092 43

L25GC (expt. ii) 39us 132ms 137ms 1779 0

loss due to increased buffer size, while 𝐺𝑁𝐵𝑠 still experiences a

similar loss of ∼800 packets for 3GPP handover.

•One-Way Delay: The 3GPP-based forwarding requires packets to

traverse back to 5GC before being forwarded to the target gNB,

resulting in additional delay. We assume the propagation delay to

be 10𝑚𝑠 from UPF to gNBs (𝑡𝑈𝑃𝐹,𝐺𝑁𝐵𝑠
etc.) and use handover time

as in Table 2. Using Eq. 2, the 3GPP handover sees an additional

overall delay of 20 ms than L
2
5GC’s smart buffering approach.

The increase in the RTT, during paging and handover events

(among others) may affect higher layer protocols, as seen in §5.4.1,

(e.g., potential TCP spurious timeouts) degrading the overall user

QoE. The latency reduction by 2×with L
2
5GCmitigates this impact.

Further, the gNB is likely to have less buffering (e.g., small cells),

resulting in packet drops, thereby wasting processing throughout

the entire data path (5GC, gNB). The smart buffering in L
2
5GC’s

UPF mitigates this, with more buffering (while being cognizant of

buffer-bloat [37]), without additional control plane messaging.

5.5 Impact of Failure recovery
We evaluate the efficiency of the resiliency framework of L

2
5GC and

free5GC by showing the impact of failure, both on the control and

data planes (e.g.,when the failure occurs as UE undergoes handover).
We compare L

2
5GC’s resiliency (failover) with the standard 3GPP

approach that requires the UE to reattach to an alternate 5GC

through the target gNB, using the free5GC implementation. We

use the topology shown in Fig. 5, with three instances of L
2
5GC

(primary, local and remote replicas). We use flent [40] for TCP

based data transfer (bandwidth limited to 30Mbps to a single UE).

We highlight the penalties from the failure, even with a modest

transfer rate. The 3GPP approach to reattach discards all the data

packets when 5GC fails. On the other hand, during the failure,

L
2
5GC buffers the data and control packets in its replay buffer (in

separate queues, so control packets are not dropped if the replay

buffer overflows).

5.5.1 Impact on Control Plane. We consider the case when there

is a failure occurring while there is an ongoing handover event.

L
2
5GC potentially makes the failure entirely transparent to the user.

With L
2
5GC, we use a probe agent at the LB node to detect that

the 5GC instance is unreachable. It takes less than 0.5ms for the

probe agent for the detection of the failure. For the 3GPP case, it is

necessary to notify the UE of the failure, and initiate a reattach. For

this experiment, we assume that the failure detection time for the

free5GC/3GPP option is also 0.5ms before the reattach is initiated.

Even with a failure, the handover procedure in L
2
5GC only takes

a few additional milliseconds, taking 134 ms, instead of 130 ms

(without failure). It is substantially faster than 3GPP’s reattach-

based approach, which takes 401 ms for completing the handover

in the presence of a failure. Breaking down the additional operations

performed during failure, L
2
5GC consumes 2 ms for re-routing, and

3 ms for the state re-construction using packet replay, with some

overlap between the two.

5.5.2 Impact on Data Plane. With the 3GPP’s reattach, all incoming

packets (∼121 packets) are dropped during failure. With the result-

ing retransmit timeout (potentially multiple timeouts because of the

long delay to reattach), the receiving UE does not receive packets

153

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Jain et al.

0 3 6 9 12 15
(a) Time (second)

150
300
450
600
750

RT
T

(m
s)

5 60
10

L25GC
free5GC

0 3 6 9 12 15
(b) Time (second)

3

13

23

Go
od

pu
t (

M
bp

s)

L25GC
free5GC

Figure 15: 5GC failover: data plane performance

0 3 6 9 12 15
(a) Time (second)

200
400
600
800

RT
T

(m
s)

4 60
100

L25GC
free5GC

0 3 6 9 12 15
(b) Time (second)

3

13

23

Go
od

pu
t (

M
bp

s)

L25GC
free5GC

Figure 16: 5GC failover during handover: Control and data
plane impact

for an interval, and has to reattach to a backup 5GC after notifica-

tion. TCP also sees a drop in throughput as the sender’s congestion

window (cwnd) drops. The larger RTT is shown in Fig. 15(a), and

the degraded goodput in Fig. 15(b). In contrast, L
2
5GC seamlessly

synchronizes the control and forwarding state with the remote

replica. The replay buffer queues incoming packets (in 4 queues:

control and data, for UL and DL, separately), thus avoiding data

loss. L
2
5GC’s LB node replays the buffered data packets to the

replica. TCP maintains its high throughput throughout (Fig. 15(b)).

A small number of packets experience slightly increased RTT due

to re-routing and packet replay (see zoomed inset in Fig. 15(a)).

5.5.3 5GC Failure Recovery: ongoing control event plus data transfer.
We initiate a handover during an ongoing TCP transfer and then

fail the links to the primary 5GC unit (at 4.5 seconds in Fig. 16(a)),

disrupting both control and data flow to/through it. We assume

that half of the handover is executed prior to the failure. The result

shows that L
2
5GC’s resiliency framework transparently handles the

5GC failure and still maintain regular control and data plane per-

formance (as in §5.4.1). During handover, both L
2
5GC and free5GC

buffer incoming DL packets. However, L
2
5GC also buffers control

(handover) and data packets in its packet replay buffer (at the LB).

When the 5GC fails partway through the handover, L
2
5GC seam-

lessly replays the control packets and forward the buffered data

packets with minimal overhead. Data packets experience a slightly

higher RTT (highlighted in the zoomed inset of Fig. 16(a)). On the

other hand, the 3GPP-standard based approach waits to reattach

after failure, resulting in all buffered packets being lost and requir-

ing retransmission, thus degrading goodput (see Fig. 16(b)). (as in

§5.5.2). Without the control and data plane coupling of L
2
5GC (e.g.,

as in Neutrino [27]), even if the control plane state is synchronized,

we will continue seeing data packet loss and reduced throughput.

6 CONCLUSION
L
2
5GC creates a low latency 5GC framework by exploiting the

advantages of high-performance NFV-based platforms. Compared

to the 3GPP-based free5GC, L
2
5GC has better performance of both

the control plane and data planes. L
2
5GC consolidates the 5GC NFs

on the same node. It simplifies the SBI and N4 interfaces based

on the userspace shared memory available in a OpenNetVM-based

NFV platform, fundamentally reducing the latency of the 5G control

plane. Compared to free5GC, L
2
5GC reduces the latency of several

control plane events by up to 51% on average. Due to tight inter-

dependence between the control and data planes, L
2
5GC’s faster

handover completion avoids spurious timeouts and retransmission

of data packets. Thus, L25GC improves user QoE (PLT) by 12.5% for a

browser accessing even a simple web page (but with many images).

In addition to improving control plane performance, L
2
5GC im-

proves the data plane performance by leveraging DPDK’s userspace

packet processing. L
2
5GC achieves 27× and 15× improvement in

the throughput and latency compared to free5GC. Since cellular

networks are evolving and will likely have a large number of PDRs,

L
2
5GC accommodates this by implementing an advanced PDR

lookup mechanism and speeds up lookup latency by 20× com-

pared to the linear search recommended by 3GPP. Additionally,

L
2
5GC supports smart buffering for handover, avoiding the hairpin

routing through the ‘old’ source base station. The paging latency

in L
2
5GC sees at least a 2× reduction compared to free5GC. Our

experiments show seamless continued data plane operation dur-

ing failure restoration of 5GC NFs. We have released L
2
5GC as

open-source on Github, to further research on high performance

NFV-based cellular cores for 5G and beyond. The code is available

at: https://github.com/nycu-ucr/l25gc.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We thank the US NSF for their generous support through grant

CRI-1823270. This research was also sponsored in part by the

OUSD(R&E)/RT&L andwas accomplished under Cooperative Agree-

ment Number W911NF-20-2-0267. The views and conclusions con-

tained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or

implied, of the ARL and OUSD(R&E)/RT&L or the U.S. Government.

The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright

notation herein. This work was also supported in part by the Min-

istry of Science and Technology of Taiwan under grant numbers

MOST 111-2218-E-A49-023, 110-2224-E-A49-002, and 108-2221-E-

009-042-MY3. We thank our shepherd, Prof. Barath Raghavan, and

the reviewers for their valuable suggestions and comments.

We thank Han-Sing Tsai and Yu-Sheng Liu of National Yang

Ming Chiao Tung University, Taiwan, for their tremendous help in

setting up L
2
5GC for the artifact evaluation, and the reviewers of

the artifact evaluation committee for their efforts.

154

https://github.com/nycu-ucr/l25gc

L25GC: A Low Latency 5G Core Network based on High-Performance NFV Platforms SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES
[1] 2008. Protocol Buffers. https://developers.google.com/protocol-buffers. [online].

[2] 2016. gRPC: A high performance, open source universal RPC framework. https:

//grpc.io/. [online].

[3] 2018. gRPC on HTTP/2 Engineering a Robust, High-performance Protocol.

https://grpc.io/blog/grpc-on-http2/. [online].

[4] 2022. 3GPP TS 24.502: Access to the 3GPP 5GCore Network (5GCN) via non-3GPP

access networks. https://www.etsi.org/deliver/etsi_ts/124500_124599/124502/15.

00.00_60/ts_524502v150000p.pdf. [online].

[5] 2022. 3GPP TS23.401: General Packet Radio Service (GPRS) enhancements

for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ac-

cess. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.

aspx?specificationId=849. [online].

[6] 2022. 3GPP TS23.501 Section 4.2: Architecture reference model.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.

aspx?specificationId=3144. [online].

[7] 2022. 3GPP TS23.502: System architecture for the 5G System (5GS).

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.

aspx?specificationId=3145. [online].

[8] 2022. 3GPP TS29.244 Section 5.2.1: Interface between the Control Plane and the

User Plane nodes . https://www.etsi.org/deliver/etsi_ts/129200_129299/129244/

15.05.00_60/ts_129244v150500p.pdf. [online].

[9] 2022. 3GPP TS29.501: Principles and Guidelines for Services Defini-

tion. https://www.etsi.org/deliver/etsi_ts/129500_129599/129501/15.00.01_60/ts_

129501v150001p.pdf. [online].

[10] 2022. 5G NR QoS Architecture, QoS Attribute and QoS Flow. https://www.

techplayon.com/5g-nr-qos-architecture-qos-attribute-and-qos-flow/. [online].

[11] 2022. Aether. https://opennetworking.org/aether/

[12] 2022. Data Plane Development Kit. https://www.dpdk.org/. [online].

[13] 2022. DPDK’s Multi-process Support. https://doc.dpdk.org/guides/prog_guide/

multi_proc_support.html. [online].

[14] 2022. free5GC. https://www.free5gc.org/. [online].

[15] 2022. Go Developer Survey. https://blog.golang.org/survey2020-results. [on-

line].

[16] 2022. Magma: AModern Mobile Core Network Solution. https://magmacore.org/

[17] 2022. Mozilla firefox: Network Monitor. https://developer.mozilla.org/en-US/

docs/Tools/Network_Monitor. [online].

[18] 2022. NextEPC. https://nextepc.org/. [online].

[19] 2022. Open5GS. https://open5gs.org/. [online].

[20] 2022. OpenAirInterface. https://openairinterface.org/. [online].

[21] 2022. OpenAirInterface 5G CN. https://openairinterface.org/oai-5g-core-

network-project/. [online].

[22] 2022. OpenAPI Generator. https://OpenAPITools.org. [online].

[23] 2022. Packet detection rule specification. https://www.etsi.org/deliver/etsi_ts/

129200_129299/129244/15.05.00_60/ts_129244v150500p.pdf. [online].

[24] 2022. SD-core. https://opennetworking.org/sd-core/

[25] 2022. Travelping Homepage. https://www.travelping.com/. [online].

[26] 2022. User Plane Gateway (UPG) based on VPP. https://github.com/travelping/

upg-vpp. [online].

[27] Mukhtiar Ahmad, Syed Usman Jafri, Azam Ikram, Wasiq Noor Ahmad Qasmi,

Muhammad Ali Nawazish, Zartash Afzal Uzmi, and Zafar Ayyub Qazi. 2020. A

Low Latency and Consistent Cellular Control Plane. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication.

[28] NGMNAlliance. 2022. 5Gwhite paper. https://www.ngmn.org/work-programme/

5g-white-paper.html. [online].

[29] Tulja Vamshi Kiran Buyakar, Harsh Agarwal, Bheemarjuna Reddy Tamma, and

Antony A Franklin. 2019. Prototyping and load balancing the service based

architecture of 5G core using NFV. In IEEE Conference on Network Softwarization.
[30] Lee Calcote and Zack Butcher. 2019. Istio: Up and Running: Using a Service Mesh

to Connect, Secure, Control, and Observe. O’Reilly Media.

[31] Cisco. 2022. Cisco annual internet report (2018–2023) white pa-

per. https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html.

[32] Marius Corici, Fabricio Gouveia, Thomas Magedanz, and Dragos Vingarzan. 2010.

Openepc: A technical infrastructure for early prototyping of ngmn testbeds. In

International Conference on Testbeds and Research Infrastructures. Springer.
[33] Levente Csikor, Dinil Mon Divakaran, Min Suk Kang, Attila Kőrösi, Balázs

Sonkoly, Dávid Haja, Dimitrios P Pezaros, Stefan Schmid, and Gábor Rétvári. 2019.

Tuple space explosion: A denial-of-service attack against a software packet clas-

sifier. In Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies. 292–304.

[34] Yaozu Dong, Zhao Yu, and Greg Rose. 2008. SR-IOV Networking in Xen: Archi-

tecture, Design and Implementation.. InWorkshop on I/O Virtualization, Vol. 2.
[35] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and

Georg Carle. 2015. Moongen: A scriptable high-speed packet generator. In

Proceedings of the 2015 Internet Measurement Conference. 275–287.

[36] Telefonaktiebolaget LM Ericsson. 2022. Integrated Packet Core Firewall. https:

//www.ericsson.com/en/core-network/5g-core/packet-core-firewall. [online].

[37] Jim Gettys. 2011. Bufferbloat: Dark buffers in the internet. IEEE Internet Comput-
ing 15, 3 (2011), 96–96.

[38] GSMA Intelligence. 2014. Understanding 5G: Perspectives on future technological

advancements in mobile. White paper (2014), 1–26.
[39] Haitham Hassanieh, Omid Abari, Michael Rodriguez, Mohammed Abdelghany,

Dina Katabi, and Piotr Indyk. 2018. Fast millimeter wave beam alignment. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. 432–445.

[40] Toke Høiland-Jørgensen, Carlo Augusto Grazia, Per Hurtig, and Anna Brunstrom.

2017. Flent: The flexible network tester. In Proceedings of the 11th EAI International
Conference on Performance Evaluation Methodologies and Tools. 120–125.

[41] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM: High

Performance and Flexible Networking Using Virtualization on Commodity

Platforms. In 11th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14). USENIX Association, Seattle, WA, 445–458. https:

//www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang

[42] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM: High

Performance and Flexible Networking Using Virtualization on Commodity

Platforms. In 11th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14). USENIX Association, Seattle, WA, 445–458. https:

//www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang

[43] Jain et al. 2022. Evolving to 6G: Improving the Cellular Core to lower control

and data plane latency. In 1st International Conference on 6G Networking (6GNet
2022). IEEE.

[44] Sameer G. Kulkarni, Guyue Liu, K. K. Ramakrishnan, Mayutan Arumaithurai,

Timothy Wood, and Xiaoming Fu. 2020. REINFORCE: Achieving Efficient Failure

Resiliency for Network Function Virtualization-Based Services. IEEE/ACM Trans-
actions on Networking 28, 2 (2020). https://doi.org/10.1109/TNET.2020.2969961

[45] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A control-plane perspective

on reducing data access latency in LTE networks. In Proceedings of the 23rd
Annual International Conference on Mobile Computing and Networking. 56–69.

[46] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural packet classification.

In Proceedings of the ACM Special Interest Group on Data Communication. 256–269.
[47] Srihari Makineni, Ravi Iyer, Partha Sarangam, Donald Newell, Li Zhao, Ramesh

Illikkal, and Jaideep Moses. 2006. Receive side coalescing for accelerating TCP/IP

processing. In International Conference on High-Performance Computing. Springer.
[48] Marco Mezzavilla, Sourjya Dutta, Menglei Zhang, Mustafa Riza Akdeniz, and

Sundeep Rangan. 2015. 5G mmWave module for the ns-3 network simulator. In

Proceedings of the 18th ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems. 283–290.

[49] Ali Mohammadkhan, K. K. Ramakrishnan, and Vivek A Jain. 2020.

CleanG—Improving the Architecture and Protocols for Future Cellular

Networks With NFV. IEEE/ACM Transactions on Networking 28, 6 (2020).

[50] MehrdadMoradi, Yikai Lin, ZMorleyMao, Subhabrata Sen, andOliver Spatscheck.

2018. SoftBox: A customizable, low-latency, and scalable 5G core network archi-

tecture. IEEE Journal on Selected Areas in Communications 36, 3 (2018), 438–456.
[51] Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman, Thomas Karagian-

nis, Jakub Kocur, and Jacobus Van der Merwe. 2018. ECHO: A reliable distributed

cellular core network for hyper-scale public clouds. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking. 163–178.

[52] Edmund B Nightingale, Kaushik Veeraraghavan, Peter M Chen, and Jason Flinn.

2008. Rethink the sync. ACM Transactions on Computer Systems 26, 3 (2008).
[53] C. Pignataro, D. Ward, and N Akiya. 2016. Seamless Bidirectional Forwarding

Detection (S-BFD). RFC 7881, https://datatracker.ietf.org/doc/html/rfc7881.

[54] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia Ratnasamy,

and Scott Shenker. 2017. A high performance packet core for next generation

cellular networks. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. 348–361.

[55] Mahadev Satyanarayanan. 2017. The emergence of edge computing. (2017).

[56] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Kr-

ishnamurthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Rat-

nasamy, Luigi Rizzo, and Scott Shenker. 2015. Rollback-Recovery for Middle-

boxes. SIGCOMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 227–240. https:

//doi.org/10.1145/2829988.2787501

[57] Venkatachary Srinivasan, Subhash Suri, and George Varghese. 1999. Packet classi-

fication using tuple space search. In Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication. 135–146.

[58] David E Taylor and Jonathan S Turner. 2007. Classbench: A packet classification

benchmark. IEEE/ACM transactions on networking 15, 3 (2007), 499–511.

[59] Sorrachai Yingchareonthawornchai, James Daly, Alex X Liu, and Eric Torng.

2016. A sorted partitioning approach to high-speed and fast-update OpenFlow

classification. In 2016 IEEE 24th International Conference on Network Protocols.
[60] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire

Todeschi, K. K. Ramakrishnan, and TimothyWood. 2016. OpenNetVM: A platform

for high performance network service chains. In Proceedings of the 2016 workshop
on Hot topics in Middleboxes and Network Function Virtualization. 26–31.

155

https://developers.google.com/protocol-buffers
https://grpc.io/
https://grpc.io/
https://grpc.io/blog/grpc-on-http2/
https://www.etsi.org/deliver/etsi_ts/124500_124599/124502/15.00.00_60/ts_524502v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/124500_124599/124502/15.00.00_60/ts_524502v150000p.pdf
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=849
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=849
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3145
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3145
https://www.etsi.org/deliver/etsi_ts/129200_129299/129244/15.05.00_60/ts_129244v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/129200_129299/129244/15.05.00_60/ts_129244v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129501/15.00.01_60/ts_129501v150001p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129501/15.00.01_60/ts_129501v150001p.pdf
https://www.techplayon.com/5g-nr-qos-architecture-qos-attribute-and-qos-flow/
https://www.techplayon.com/5g-nr-qos-architecture-qos-attribute-and-qos-flow/
https://opennetworking.org/aether/
https://www.dpdk.org/
https://doc.dpdk.org/guides/prog_guide/multi_proc_support.html
https://doc.dpdk.org/guides/prog_guide/multi_proc_support.html
https://www.free5gc.org/
https://blog.golang.org/survey2020-results
https://magmacore.org/
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://nextepc.org/
https://open5gs.org/
https://openairinterface.org/
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-core-network-project/
https://OpenAPITools.org
https://www.etsi.org/deliver/etsi_ts/129200_129299/129244/15.05.00_60/ts_129244v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/129200_129299/129244/15.05.00_60/ts_129244v150500p.pdf
https://opennetworking.org/sd-core/
https://www.travelping.com/
https://github.com/travelping/upg-vpp
https://github.com/travelping/upg-vpp
https://www.ngmn.org/work-programme/5g-white-paper.html
https://www.ngmn.org/work-programme/5g-white-paper.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.ericsson.com/en/core-network/5g-core/packet-core-firewall
https://www.ericsson.com/en/core-network/5g-core/packet-core-firewall
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://doi.org/10.1109/TNET.2020.2969961
https://datatracker.ietf.org/doc/html/rfc7881
https://doi.org/10.1145/2829988.2787501
https://doi.org/10.1145/2829988.2787501

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Jain et al.

APPENDICES
Appendices are supportingmaterial that has not been peer-reviewed.

A INFORMATION ELEMENTS IN PACKET
DETECTION RULE (PDR)

Table. 3 shows PDI IEs used in packet classification in UPF.

Table 3: Information elements in PDR

Packet Detection Rule ID

Precedence

OuterHeaderRemoval

Forwarding Action Rule ID

QoS Enforcement Rule ID

Usage Reporting Rule ID

Packet

Detection

Information

Source Interface

Local F-TEID

Tunnel Endpoint Identifier

IPv4

IPv6

CHOOSE ID

UE IP

IPv4

IPv6

Network instance

Application ID

QoS Flow ID

SDF Filter

Length of Flow Description

Source IP

Destination IP

Source Port

Destination Port

Protocol

Type of Service

Security Parameter Index

Flow Label

SDF Filter ID

B IMPLEMENTATION DETAILS OF FREE5GC
The 3GPP specifications and several implementations have divided

the cellular core network into two separate subsystems, for the

control plane and the data plane. We describe the free5GC Kernel-

based (non-NFV) implementation.

Control plane functions: All control plane components are im-

plemented as microservices. These microservices interact using a

REST API over HTTP/2 on a SBI. 3GPP specifies RESTful interfaces

and datatypes for each component as an OpenAPI specification.
1

free5GC uses these OpenAPI specifications and OpenAPI Gener-

ator
2
to generate client and server interfaces for each of the 5GC

control NFs. Golang [15] is used to implement these services. The

RESTful APIs are implemented on top of Golang’s inbuilt HTTP/2

server that utilizes the underlying kernel TCP stack. The user event

procedure handlers are implemented according to the 3GPP speci-

fications, with all of the essential control plane functions, such as

AMF, SMF, AUSF, UDR, PCF. They communicate based on the 3GPP

specifications. For example, the source function has to perform

1
The OpenAPI Specification [9] is a set of YAML files that represents a language-

agnostic interface to RESTful APIs.

2
OpenAPI Generator [22] is a tool to create API client libraries and server stubs from

OpenAPI 2.0 and 3.x specification.

service discovery for a target function. Further, the control plane

function, SMF, provides UPF the forwarding rules over a PFCP chan-

nel, running over a UDP socket. Subscriber information is stored

in a MongoDB database, and accessed through the UDR NF.

Data plane functions: The data plane functions have two sub-

components: i) control plane listener, ii) user data handler. The

SMF (part of the control plane) provides UPF the forwarding rules

over a PFCP channel running on top of a UDP socket. Based on

3GPP specifications, the control function sends the PFCP message,

a type-length-value (TLV) encoded message. For user data handling,

the kernel-based free5GC leverages the gtp5g kernel module that

performs GTP encapsulation and decapsulation to implement the

data plane forwarding functionality. This allows us to avoid packet

copying to the user space. Further, the rules from PFCP messages

are conveyed to the kernel driver using Linux’s netlink capabilities.

At first look, this is an intuitive and straightforward 3GPP-based

implementation, providing flexibility. But it results in significant

performance penalties, as we mentioned in the challenges described

in §2. By carefully understanding the causes for performance degra-

dation, we evolved from the strict implementation of the 3GPP

specification in a kernel-based environment to the NFV-based 5GC

in L
2
5GC. Our optimizations improve both the control plane com-

munication channel and at the same time substantially improves

the data plane throughput.

C IMPACT OF CONTROL PLANE ON
ONGOING TCP CONNECTION

We study the impact of the control plane procedure on the data

plane by assessing ongoing TCP connections’ behavior during han-

dover. This experiment demonstrates that the control plane proce-

dure completion time directly impacts the ongoing data plane and

severely impacts QoE. We simulate a scenario where UE launches

10 TCP connections (equivalent to launching a few apps on a Smart-

phone) and undergo handovers every few seconds (representing

mobility, e.g., UE traveling in a bus). These handovers are even

more frequent because of small cells. We choose TCP since many

user applications are built on reliable transport that require a timely

response for continuous operation. We use flent to generate TCP

traffic from server to client, with the aggregate bottleneck band-

width as 100Mbps and RTT as 50ms.

During handover, all incoming DL packets are buffered at 5GC

until handover is finished and experience an additional queuing

delay. This results in increase in RTT (up to 130ms for L
2
5GC and

328ms for free5GC), as shown in Fig. 17(a). However, in case of

free5GC, upon not increasing the response, TCP senders falsely

imply this delay as incipient congestion and result in the expiration

of retransmission timeout (RTO), the minimum RTO in Linux is

200ms. As a result, TCP senders spuriously retransmit all the packets

(60 packets every handover) after RTO expiration and reduce their

sending rate by lowering their congestion window (cwnd), Fig. 17(b).
This causes frequent jitters in the application and affect overall

goodput (Fig. 17(c)). Consequently, L
2
5GC allows 442MB of data

transfer compared to free5GC, which only transfers 416MB for

the runtime of the experiment. These spurious timeouts do not

appear in L
2
5GC because of our fast handover completion time,

thus sustaining a good QoE.

156

L25GC: A Low Latency 5G Core Network based on High-Performance NFV Platforms SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

0 5 10 15 20 25 30
(a) Time (second)

0
75

150
225
300

RT
T

(m
s)

L25GC free5GC

0 5 10 15 20 25 30
(b) Time (second)

0
75

150
225
300

cw
nd

 (#
pa

ck
et

s)

L25GC free5GC

0 5 10 15 20 25 30
(c) Time (second)

0
20
40
60
80

100

Go
od

pu
t (

M
bp

s)

L25GC free5GC

Figure 17: Impact of repeated Handover on data plane

D ABBREVIATIONS
Tables 4 lists various abbreviations based on 3GPP specification.

Table 4: Abbreviations table (general)

Abbreviation Full form

5GC 5G Core Network

3GPP 3rd Generation Partnership Project

AMF Access and Mobility Management Function

AUSF Authentication Server Function

N3IWF Non-3GPP Interworking Function

NSSF Network Slice Selection Function

PCF Policy Control Function

SMF Session Management Function

UDM Unified Data Management

UDR Unified Data Repository

UPF User Plane Function

DL Downlink

DN Data Network

DPDK Data Plane Development Kit

EPC Evolved Packet Core

FAR Forwarding Action Rule

GTP GPRS Tunnelling Protocol

IE Information Elements

LB Load Balancer

NF Network Function

NFV Network Functions Virtualization

NGAP New Generation Application Protocol

PDR Packet Detection Rules

PDR-LL PDR Linear Search Algorithm

PDR-PS PDR Partition Sort Algorithm

PDR-TSS PDR Tuple Space Search Algorithm

PDU Packet Data Unit

PFCP Packet Forwarding Control Protocol

QoS Quality of Service

RTT Round-Trip Delay

SBI Service-Based Interface

SDF Service Data Flow

RAN Radio Access Network

TEID Tunnel Endpoint Identifier

UE User Equipment

UP Uplink

E ARTIFACT APPENDIX
Abstract
We have released our implementation of L

2
5GC and other artifacts

in a Github repository. It contains the scripts for setting up the

environment, our UE RAN simulator to generate various UE-related

events, and a number of plotting scripts useful to generate the

results presented in §5.

Scope
The scope of the artifact is to make implementation of L

2
5GC

publicly available for the community and industry to experiment

with L
2
5GC. It also includes the steps to setup and reproduce the

experiment results presented in §5.

Contents
The artifact consists of the complete source code and all the neces-

sary scripts for setting up L
2
5GC and free5GC:

• Source code for L
2
5GC, free5GC with gtp5g kernel driver (for

free5GC based UPF), ONVM based UPF (onvm-upf)

• test-script3.0.5: simulator for generating UE-events

• Scripts to build and run L
2
5GC and free5GC

• Scripts to generate GTP encapsulated data plane pcap traces

• Misc. scripts for environment clean up and plotting results

Hosting
L
2
5GC is publicly available at https://github.com/nycu-ucr/l25gc

(commit hash 74cb035). The “README.md” covers the details

about the artifact and includes steps for setting up the environ-

ment and reproducing the results presented in this paper.

Requirements
Hardware Dependencies: The node to run L

2
5GC needs to have

at least 12 CPU cores and two DPDK-compatible NICs. This can

achieve the demonstrated performance.

Software Dependencies: This artifact requires Ubuntu 20.04 with

Linux kernel version 5.4, OpenNetVM v20.05. We use Moongen as

the traffic generator running on another node, using pcap traces

available with this artifact.

More details can be found in the artifact documentation.

157

https://github.com/nycu-ucr/l25gc

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 5G cellular architecture
	2.2 Related Work
	2.3 Challenges with existing Framework

	3 L25GC Design and Implementation
	3.1 Overview: Design Goals and Approach
	3.2 Consolidating NFs on same node
	3.3 Smart Buffering for Handover
	3.4 Fast Rule Lookup
	3.5 Resiliency through state replication

	4 L25GC Deployment Strategy
	5 Evaluation & Analysis
	5.1 Experiment Setup
	5.2 Control plane Evaluation
	5.3 Data plane Evaluation
	5.4 Impact of control plane on Application Performance (and data latency)
	5.5 Impact of Failure recovery

	6 Conclusion
	Acknowledgments
	References
	A Information Elements in Packet Detection Rule (PDR)
	B Implementation details of free5GC
	C Impact of control plane on ongoing TCP connection
	D Abbreviations
	E Artifact Appendix

