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ABSTRACT

Cellular network control procedures (e.g., mobility, idle-active tran-
sition to conserve energy) directly influence data plane behavior, im-
pacting user-experienced delay. Recognizing this control-data plane
interdependence, L25GC re-architects the 5G Core (5GC) network,
and its processing, to reduce latency of control plane operations and
their impact on the data plane. Exploiting shared memory, L25GC
eliminates message serialization and HTTP processing overheads,
while being 3GPP-standards compliant. We improve data plane
processing by factoring the functions to avoid control-data plane
interference, and using scalable, flow-level packet classifiers for
forwarding-rule lookups. Utilizing buffers at the 5GC, L5GC imple-
ments paging, and an intelligent handover scheme avoiding 3GPP’s
hairpin routing, and data loss caused by limited buffering at 5G
base stations, reduces delay and unnecessary message processing.
L25GC’s integrated failure resiliency transparently recovers from
failures of 5GC software network functions and hardware much
faster than 3GPP’s reattach recovery procedure. L?5GC is built
based on free5GC, an open-source kernel-based 5GC implementa-
tion. L25GC reduces event completion time by ~50% for several con-
trol plane events and improves data packet latency (due to improved
control plane communication) by ~2X, during paging and handover
events, compared to free5GC. L25GC’s design is general, although
current implementation supports a limited number of user sessions.
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1 INTRODUCTION

Emerging applications such as the Internet of Things (IoT), con-
nected vehicles, etc. require low latency, ubiquitous network ac-
cess [55] and often rely on the cellular network (5G and beyond)
for network access. To truly deliver the low latency needed for
acceptable user quality of experience (QoE), both the access and
core part of cellular networks need to improve. With radio access
technology such as millimeter wave, the latency of access network
is being reduced (e.g., of the order of 1ms [28, 38]). Recent work [39]
shows that mmWave beam alignment and link acquisition can com-
plete within 1-10 ms., allowing a UE’s connection establishment
with gNodeB to complete quickly. However, the core network still
contributes significantly to the overall high latency observed in
cellular networks.

In traditional 4G cellular deployments, each cellular core com-
ponent was implemented on purpose-built hardware, typically dis-
tributed in cellular data centers [5]. The resulting complex control
plane procedures result in high latency because of the complex
protocols needed to ensure a consistent state among these entities.
In the 5G cellular ecosystem, cellular components are implemented
as software-based cloud-native services for deployment flexibility.
However, with control plane procedures in 5G Core (5GC) being
similar to the traditional 4G [49], it does not leverage the full benefit
of the softwarization of network functions (NFs).

The cellular core is expected to experience more control plane
traffic due to: i) the massive growth of cellular subscribers, includ-
ing IoT and machine to machine devices [31], ii) frequent handover
events because of reduced cell sizes. User event completion times,
such as a handover process that takes 1.9 seconds (as shown in [45])
can directly impact the delay and packet loss experienced by the
end-user data packets. Apart from the penalty due to traditional
cellular control plane core procedures, we recognize several addi-
tional issues (details in §2.3) that contribute to latency:
® The adoption of HTTP/REST for inter-NF communication, osten-
sibly to support the idea of ‘dis-aggregation’, suffers from overheads
of message serialization and TCP processing.

e Current implementations, driven by 3GPP standards (§5.2.1 of
[8]), organize forwarding (match-action) rules in a list and perform
an inefficient linear search to find the matching rule.

e Users may experience higher packet losses during handover due
to the current hairpin and daisy-chain routing, and limited buffer-
ing at the target gNB (5G base station).

o During failure, current 3GPP restoration process requires users to
re-initiate the connection establishment request and start over. This
directly impacts ongoing data connections (e.g., TCP experiences
spurious timeouts), affecting QoE.
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To achieve the goals of both flexibility and performance beyond
current softwarized cellular core, we design L25GC, an NFV-based,
low-latency 5GC network solution, which achieves significant im-
provement in both control and data plane while still being 3GPP-
compliant. We build our open-sourced NFV-based 5GC (details
in Appendix E) on top of ‘free5GC’ [14]. Our current implemen-
tation of L25GC supports a limited number of user sessions, but
can be generalized subsequently. Building on free5GC, a complete
3GPP open-source implementation, helps L25GC have a compre-
hensive implementation of most of the 3GPP specified [6, 7] con-
trol plane protocols and a reasonable implementation of all the
5GC NFs. L25GC supports the commonly adopted approach of dis-
aggregating the core network NFs. The main distinction is in the
core network implementation enhancements we make. By exploit-
ing shared memory, L5GC constructs an efficient, low latency 5GC
service, that retains the advantages of a microservice-based design
pattern, while eliminating many of the typical overheads that come
from having a general-purpose service interface between individual
microservices. L25GC makes the following contributions:

(1) We exploit the flexibility and scalability of NFV platforms to
consolidate the control and data plane NFs on the same node, while
retaining the flexibility to have each NF separately implemented.
Consolidation on the same node helps to reduce the inter-NF com-
munication overheads.

(2) We rebuild the Service Based Interface (SBI), the N4 interface,
and the entire 5GC data plane by using shared memory-based
zero-copy mechanism to replace the kernel-based communication
channel between NFs, removing the extra processing for serializa-
tion and achieving high-speed inter-NF communication.

(3) We optimize the handover procedure to reduce the extra hairpin
and daisy chain routing, without changing the protocol specified by
3GPP. L25GC implements smart buffering that is used both for the
optimized handover procedure and buffer packets to User Equip-
ments (UEs) that are idle.

(4) To support evolving 5G use cases that result in significant growth
of Packet Detection Rules (PDRs), we implement and compare
multiple approaches, including linear search, Tuple Space Search
(TSS) [57] and a PartitionSort [59] classifier (which we choose).
Thus, we achieve scalability and high data plane throughput.

(5) We mitigate delays from 5GC NF’s failure recovery by run-
ning lightweight replicas that do not consume any CPU when idle.
By leveraging [44, 56], we replicate the state of 5G NFs, ensuring
consistency while avoiding the 3GPP-specified UE re-attachment
procedure.

L25GC’s evaluation results show significant performance im-
provement over the non-NFV-based free5GC [14]. We observe a
13X improvement in individual message exchange latency and up
to 51% reduction in overall event completion time. Importantly, the
reduction in control plane latency has a corresponding impact on
data plane performance. Data packet latency (also due to the im-
proved control plane) by ~2X%, during paging and handover events,
compared to free5GC. Even simple web page’s (with many large
images) loading time improves by 12.5% with L25GC compared to
free5GC, thus directly improving user QoE. The data forwarding
in L25GC can operate at a line rate for 64 byte packet traffic on a
10 Gbps link, 27x higher than free5GC’s kernel-based forwarding.
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Figure 1: 5G core architecture

2 BACKGROUND AND MOTIVATION
2.1 5G cellular architecture

A typical cellular network consists of the Radio Access Network
(RAN), usually comprising the wireless channel, the cellular base
station and a backhaul network, all used to connect mobile devices
(i.e., UEs) to the core network. The core network is responsible for
connecting UEs to the Data Network, (typically IP network), and
provides the majority of the ‘cellular services’. A 3GPP-compliant
5G architecture is shown in Fig. 1. Unlike previous generation core
network, 5GC takes advantage of NFV to implement the core func-
tions in software rather than purpose-built hardware appliances [6].
We list a number of 3GPP abbreviation in Appendix D.

Control plane: 5GC utilizes a service-based architecture in the con-
trol plane (Fig. 1). By connecting control plane functions as various
cloud-native services in the form of a service mesh, 5GC greatly
improves the operability of inter-service communication over a
HTTP/REST API compared to inflexible point-to-point connected
approach.

Data plane processing: The Session Management Function (SMF)
dictates the data plane forwarding at User Plane Function (UPF) by
provisioning PDRs, which contain various information, e.g., packet
detection information (PDI), priority, and associated actions. The
UPF organizes PDRs in a list in descending order of their priority.
On arrival of a user packet, UPF performs a lookup to identify
the user session, and then the list of PDRs is traversed until the
highest precedence rule is found [23]. The data is carried over the
GTP tunnel between the gNB and UPF, and requires setting up the
unique tunnel endpoint identifier (TEID).

2.2 Related Work

There has been considerable recent research to improve the perfor-
mance and reliability of cellular networks.

e Reducing control plane latency: Mukhtiar et al. [27] propose
Neutrino, which seeks to optimize the cellular control plane latency
by using fast serialization techniques and reduces handover time
by maintaining user state replicas in a larger geographical area.
This may add overhead of replicating to all neighboring ‘regions’ in
what is already a heavyweight protocol state machine. L25GC seeks
to eliminate the cost incurred due to serialization and it can comple-
ment the handover optimizations of [27]. Further, given that cellular
operator backhaul networks are based on metro area packet net-
works, L25GC’s deployment strategy seeks to minimize handovers
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causing sessions to move to another 5GC through consolidation
and processing efficiencies since a 5GC is accessible over the metro
network without significant latency difference. With an edge cloud
having reasonable scalability in the number of sessions supported,
we resort to replication for failure recovery similar to [27, 44, 56].
However, Neutrino [27] focuses only on control events by replicat-
ing UE state consistently across multiple nodes by mirroring control
plane functions (which unfortunately consumes extra resources) at
the multiple nodes. In addition, Neutrino does not account for data
packets that get lost during failover, placing the burden on user
end-systems to retransmit these data packets, impacting QoE. In
contrast, L25GC addresses both control and data plane resiliency.
o Optimizing 5GC SBI: Buyakar et al. [29] implements the 5GC’s
SBI with gRPC [2] instead of HTTP/REST. However, gRPC is built
on top of HTTP/2 [3] and uses protobuf [1] or JSON as the seri-
alizing structure. It still has overheads related to serialization and
expensive communication over kernel sockets. Our experiments
show that these are major sources of 5G control plane latency,
which L?5GC avoids.

o Cellular core availability: ECHO [51] proposes a distributed
state machine replication protocol for 4G. It replicates the EPC state
machines in an NFV environment to provide redundancy against
potential failures. L25GC’s failure resiliency is similar to ECHO’s
design. Our emphasis, however, is on reducing control plane latency.
® Redesigning control plane procedures: There have been many
proposals [49, 50, 54] to redesign the cellular control plane protocol
and the core architecture. CleanG [49] proposes a scalable NFV-
based architecture to optimize the control plane and data plane
latency in cellular networks. It leverages the shared memory feature
of Data Plane Development Kit (DPDK) [12] to improve control
plane latency. However, CleanG’s focus is on having a substantially
new control plane protocol. Our focus here is on developing a
3GPP-compliant high-performance implementation.

o Leveraging client-side state: DPCM [45] proposes a client-side
solution that initiates and executes control operations in parallel by
leveraging the device side user state to reduce control plane latency,
and eliminating some 3GPP messages for authenticated UEs. We
believe, by incorporating DPCM’s client-side modifications, L25GC
may further speed up the control plane processing. However, until
their security implications are proved, L25GC conservatively seeks
to retain compatibility with the 3GPP-specified protocol.
Existing Open-Source Implementations:

There are several cellular core network implementations avail-
able as open-source [18, 20, 32]. OpenAirInterface [20] is a well
known open-source implementation, focused on an open-source
RAN. It also provides a 4G EPC implementation. The 5GC ver-
sion [21] is in the early stages, with a subset of NFs such as AMF,
SMF, and UPF being implemented. NextEPC [18] is another, more
complete 4G core network implementation. It has been known to
work well with commercial 4G small cells. Their subsequent 5GC
implementation, Open5GS [19], does not yet have all the features of
the 3GPP specifications. Travelping [25] is a Vector Packet Process-
ing based User Plane Gateway (UPG) [26] implementation, a key
component of the 5GC to achieve a high-performance data plane.
However, it is not yet a full-fledged 5GC implementation.

Our earlier work on a 5GC implementation, free5GC, provides a
complete Release 15 [6, 7] 3GPP-compliant 5GC implementation. It
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includes additional features such as a full-fledged PCF, support for
Non-3GPP Interworking Function (N3IWF) [4], EAP-AKA’ authen-
tication, and packet buffering. These unique features significantly
extend its usage for either research and experimentation or for de-
velopment into a production environment. The support for N3IWF
and EAP-AKA’ authentication allows non-3GPP devices to access
free5GC, and thus L25GC which is based on free5GC, without being
restricted to the licensed spectrum and production base stations.
For example, IoT devices connected to WiFi Access Points can ac-
cess free5GC via N3IWF, with EAP-AKA’ providing the necessary
authentication for these devices.

There are several consortium-based 5G frameworks, such as
Magma [16], SD-CORE [24], and Aether [11], that utilize open
source 5GC implementations. Many of them (especially those 3)
have considered using free5GC as their 5G core network.

Although free5GC provides a comprehensive 3GPP-based im-
plementation with substantial flexibility in organizing 5GC NFs,
its performance is limited by its kernel-based implementation, as
discussed next. LZ5GC seeks to overcome them.

2.3 Challenges with existing Framework

We identify the following challenges to implement a low latency
5GC. Several control and data plane components contribute to
latency that ultimately impacts the user QoE:

Challenge 1. Control message processing: The number of con-
trol messages exchanged in 5G has in fact increased slightly, rel-
ative to 4G, to keep the user state consistent across multiple dis-
aggregated NFs [6]. The cost of exchanging these messages is high
because of several factors including message serialization, HTTP/
TCP overheads. The communication overheads will be even higher
if the NFs are placed across the nodes. This becomes a concern as
5G network deployments and applications evolve, e.g., supporting
IoT, which are likely to increase control plane traffic [31].
Challenge 2. Complex handover procedure: During a han-
dover process, the user experiences added delay, data loss, and
out-of-order delivery. The handover operation can take up to 1.9
seconds [45] to complete. This can affect data plane traffic. For
example, TCP-based data traffic can suffer from spurious timeouts,
which degrades application throughput. Further, UE handover may
be more frequent because of the smaller cell sizes Along with the
many control message exchanges, the 5G handover relies on direct
(X2) or indirect (S1) forwarding, which involves data packets being
buffered at the source gNB. When the UE synchronizes with the
target gNB they are re-routed to the target gNB. Unlike 4G base
stations, gNBs may be relatively small and have limited buffering ca-
pacity. Based on private conversations with major cellular operators
and an equipment manufacturer, we estimate the buffering capacity
at (macro cell) base stations to be about 2MB (~1300 full MTU pack-
ets) per radio resource-connected UE. Thus, both data forwarding
techniques (i.e., X2 or S1) may have extra latency and suffer from
data loss. Further, the use of X2 handover is relatively small (or non-
existent). With the 3GPP-specified S1 handover, this results in more
traffic ‘hairpinning’ back to 5GC and then forwarded to target gNB.
Challenge 3. Expensive Rule Lookup: The cellular ecosystem
has evolved from providing traditional services (e.g., voice, SMS)
to enabling various packet-oriented services. Also, with the higher
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Figure 2: Multiple packet flows within a user session.

bandwidth available, fixed wireless access may be provided by
the 5G network. The definition of a UE will evolve from a single
user device to a home gateway (Fig. 2) that connects multiple end
devices, including cell phones, IoT devices and smart TV, etc. One
can think of the 5G home gateway as a single ‘virtual UE’, which
can simultaneously run multiple sessions for different types of
services, generating packets with different Quality of Service (QoS).
5GC provides a flexible QoS model where QoS is applied at the
granularity of subflows. That is, we have multiple IP-level flows
within a session [10]. As a result, the number of PDRs per user
session will likely grow much larger than the 2-4 rules currently
used primarily for UL and DL classification [43].

Moreover, as 5G networks evolve to become primarily packet-
oriented, there is a need for firewall and NAT functionality to be
included to secure the flows in a PDU session. Maintaining high
performance requires these functions to be tightly integrated into
the data plane. Vendors (e.g., Ericsson [36]) are integrating this
functionality in the 5G data plane. 3GPP defines a number of Infor-
mation Elements (IEs) in the PDR for match-action functionality,
including the Service Data Flow (SDF) filter, Ethernet Packet Filter,
etc [23]. Given the IEs supported by the PDR, NAT and firewall
rules can be integrated into the PDRs and maintain data plane per-
formance, as long as the increased number of rules are handled
efficiently. Some of the IEs can be further expanded to include ad-
ditional elements, e.g., the SDF filter can be expanded to IP 5 tuples
plus other fields. Thus, the complexity of the PDR’s IE structure
can potentially result in a large number of PDRs being scanned for
each data packet. Therefore, we need better approaches (instead of
a linear search of a list, as suggested in §5.2.1 of [8]) for looking up
PDRs applied for the flow. This problem is similar to the classical
packet classification problem, where studies [57] have shown that
linear search does not scale.

Challenge 4. NF resiliency and recovery: To recover from fail-
ure, the 3GPP restoration procedure requires additional control
messages for restoring the context of 5G sessions in various NFs.
Ongoing cellular connections have to wait for this context to be
restored before exchanging data. While this re-initiation of the
connection is an obvious, simple solution, it adds considerable de-
lay, and potential packet loss. This need for reattachment can be
avoided by replicating the primary NFs. Proactive replication of
state information is needed to switch over to the active standby,
upon failure of the primary. However, maintaining a strongly con-
sistent replica for such NFs can impact normal performance and
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incur substantial (possibly wasteful) overheads. Although existing
techniques (e.g., packet replay with lazy checkpoint and full check-
pointing) work well in the NFV environment, 5GC poses significant
challenges because of the tight interdependence between the con-
trol and data planes, requiring substantial enhancements to their
design. Additionally, a constantly running replica consumes system
resources. We need a strategy to lower recovery times, coordinate
control plane state with the data plane, and ensure consistency
without consuming extra resources.

3 L25GC DESIGN AND IMPLEMENTATION
3.1 Overview: Design Goals and Approach

We seek to reduce control and data plane latency and achieve
high throughput by optimizing the processing and communication
among NFs implementing the 3GPP specified control and data plane
protocols. The fundamental idea behind the service-oriented archi-
tecture of 3GPP 5G specifications is to permit individual services to
be developed and scaled independently, following the microservice
design paradigm. However, in our view a service-based interface
should not mandate that it must only use HTTP and a REST API. We
believe having a straightforward API for communication between
microservices is desirable, but should be able to take advantage of
alternative ways of exchanging information in the case when the
microservices are co-resident on the same node. We believe our
design principles will be applicable for 5G and beyond:
Consolidating NFs on the same node: We take advantage of
system capabilities, including a shared memory space for data shar-
ing to avoid moving data between NFs, which also avoids the added
cost of serialization and de-serialization. This also allows us to mit-
igate network I/O latency and helps to overcome overheads that
occur with the SBI currently recommended. We take a fresh look at
deployment and scaling strategies in this context for 5GC (see §4).
Smart Buffering for Handover: A straightforward implemen-
tation of the 3GPP specification for handovers involves buffering
downlink packets at the source gNB, which may have limited re-
sources, especially with small cells. To address this issue, we utilize
the buffering functionality at UPF that is already in-place for pag-
ing operations without adding any additional control messages.
This has the added benefit of avoiding hairpin routing through the
source gNB.

Fast rule lookup: Instead of performing the linear search of PDRs,
we explore two alternatives: TSS, and PartitionSort. This reduces
the complexity of PDR lookup in the UPF.

Resiliency through state replication: We leverage the idea of
external synchrony (as used in [44, 52, 56]) to continue the spec-
ulative execution of user events while the state is replicated to a
standby. This allows us to avoid synchronous replication and have
5G control and data plane processing progress without reduction
in performance, while still providing consistency guarantees on a
failure of one or more NFs.

We built our framework on top of free5GC (its implementation
details are in Appendix B) and OpenNetVM (ONVM) [41, 60], a
high-performance NFV platform based on DPDK. The innovations
brought by L25GC may also be applied to other NFV platforms with
similar capabilities.
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Figure 3: Optimized 5GC architecture through shared-
memory communication: data and control plane

3.2 Consolidating NFs on same node

To minimize communication overheads, we leverage software-based
5GC NFs, and run them on a commercial off-the-shelf (COTS) server
that has a sufficient number of CPU cores. With the development
of high-performance packet processing frameworks (e.g., DPDK,
OpenNetVM) and the evolution of virtualization technologies (e.g.,
single root input/output virtualization [34]), a COTS server can
host all 5GC NFs and provide accelerated data packet processing at
the same time.

Shared memory communication: To further reduce the packet
processing cost and to support fast communication between 5GC
NFs, L25GC uses shared memory to achieve zero-copy packet pro-
cessing. As shown in Fig. 3, L25GC runs an NF manager to handle
incoming packets, manage the shared memory, and facilitate zero-
copy communication between 5GC NFs. Each 5GC NF is assigned a
unique service ID and attached receive (Rx) and transmit (Tx) rings.
These ring buffers are shared with the manager used for packet
descriptors pointing to packets in shared memory. After processing,
the NF attaches the metadata to the packet to specify the action
(send to port/NF, drop) for that packet and puts it in the Tx ring for
the manager to process the action. To send the packets between
NFs, the source NF specifies the target NF’s id in the metadata.
The manager copies the descriptor of flat data structure into the
ring buffer of the target NF and thus mitigates serialization and
HTTP processing. We replace the SBI and N4 interfaces (shown in
Fig. 1) with our descriptor-based shared-memory approach, thus
eliminating considerable overhead. We utilize the clean abstraction
provided by OpenNetVM’s shared-memory [60] to implement se-
rialization and lock-free inter-process communication. To support
NFV-based components, we started from the Golang-based free5GC
and developed a generic cGO shim layer (shown in Fig. 3). This
allows Golang-based NFs to use DPDK functions and use ONVM
and shared memory.

Zero cost state update: We divide the data plane (i.e., UPF) into
a pair of NFs: UPF-C and UPF-U, to mitigate interference between
control and data plane processing. To avoid overheads for state
update and propagation across NFs, we ensure that forwarding
rules and state for the UPF are in a shared memory. Using shared
Hugepages (with DPDK), we maintain two hash tables for stor-
ing the pointer to a user session context. The keys for these two
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tables are TEID and UE IP to differentiate UL and DL traffic, re-
spectively. Each user session context stores a number of different
rule sets in shared memory, e.g., PDRs and FARs, to control the
packet-forwarding behavior of the data plane.

Currently, our control plane implementation supports two users.

The data plane component (i.e., UPF) supports as many users as the
available system resources will support.
Security domain in L25GC: With potentially multiple services
(possibly developed by third parties) running in the cloud environ-
ment, security concerns such as eavesdropping and data tampering
may arise. It is necessary to isolate L25GC from those other appli-
cations. We take advantage of the security domain design of [42].

L25GC’s trust model assumes all of L25GC’s NFs are trusted,
managed by the cellular operator. These NFs share a private memory
pool not accessible by the other applications running on the same
node. At the startup of L25GC, the NF manager (Fig. 3), which runs
as the DPDK primary process, creates a private shared memory pool
for NFs in L?5GC. This private shared memory pool is implemented
as hugepages in the Linux file system with a unique “shared data file
prefix” [13] specified during creation. NFs in L25GC, which run as
DPDK secondary processes, use the same file prefix specified by the
NF manager to gain access to the private shared memory pool. For
multiple L25GC instances on the same node managed by different
operators, each would have a unique file prefix to keep its shared
memory pool isolated from the others. Further enhancements to
the security domain design of L5GC would be to add an admission
control mechanism for verifying NFs that seek access to the private
memory pool belonging to the cellular operator.

. T-gNB -

(a) 3GPP-based indirect forwarding and (b) Direct forwarding with 5GC buffer-
buffering ing, improving handover

Figure 4: Buffering during Handover: 3GPP vs. L25GC

3.3 Smart Buffering for Handover

L25GC redesigns the 3GPP handover behavior. Instead of perform-
ing hairpin routing as shown in Fig. 4(a), L25GC buffers the down-
link (DL) packets at the UPF which has more buffering, as in Fig. 4(b).
This results in several benefits: i) mitigation of packet loss at source
gNB, ii) avoids unnecessary packet processing (and delay) due to
hairpin routing.

L25GC does not introduce any additional messages to enable
the buffering at UPF. However, it modifies the control plane (SMF)
behavior to provision the buffering rule at the UPF for a handover
event, which already utilizes the buffering capabilities for paging
events (idle-active transition). When a UE requests a handover, the
SMF sends a Packet Forwarding Control Protocol (PFCP) message
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to UPF to allocate a new TEID for the target gNB. We leverage this
opportunity and piggyback an additional IE along with the original
PFCP message to update the PDR and FAR action to buffer the pack-
ets. The UPF buffers all the subsequent DL packets for the session
and forwards them to the target gNB once the handover completes.
To avoid interference from other sessions, L5GC implements a
3GPP compliant session-based buffering. Our design also ensures
in-order delivery of data packets.

3.4 Fast Rule Lookup

Since the UPF-U requires a PDR lookup for each arriving packet to
determine its forwarding policy, the lookup speed directly impacts
the data plane performance. We examine different alternatives:
Linear Search (PDR-LL), TSS (PDR-TSS) and ParititionSort (PDR-PS)
for reducing the search complexity of large-scale PDR lookups in
UPF-U, which we see as being critical for future-proofing the 5GC.

Both PDR-TSS and PDR-PS have lower search complexity than
PDR-LL. PDR-TSS reduces the search complexity by partitioning
PDRs into multiple sub-tables based on tuples (e.g., PDI IE fields).
PDRs in the same sub-table have the same prefix bits in each tuple,
but their values can differ. Each sub-table is organized as a hash table
with O(1) complexity for the PDR lookup based on TSS traversal of
the tuple space (i.e., a group of sub-tables converted from the PDRs)
until a matching PDR is found. Compared to the linked list based
PDR-LL, the PDR-TSS search achieves less overhead when there
are a large number of PDRs. A linked list with M elements can be
converted into N tuples (N < M). However, PDR-TSS does not guar-
antee optimal lookup performance since the number of partitioned
sub-tables has some variability. In the worst case, PDR-TSS can have
the same search complexity as PDR-LL. The variability in the search
overhead of PDR-TSS, combined with the need for software hashing
to look up a sub-table, can potentially result in high overhead.

PDR-PS reduces the search complexity by leveraging multidi-
mensional binary search. For a set of PDRs, PDR-PS stores sorted
PDRs in a multidimensional binary tree based on the values of the
tuples. PDR-PS can perform fast binary search among the sorted
PDRs compared to the in-order lookup of a linked list. Similar to
PDR-TSS, PDR-PS divides the PDRs into multiple groups and then
sort these groups to further reduce the complexity of the lookup.

Compared to PDR-TSS, PDR-PS does not rely on software hash-
ing during PDR lookup. With PartitionSort’s online ruleset parti-
tioning, PDR-PS eliminates randomness and results in fewer parti-
tioned rule sets, yielding more consistent performance [59].

In addition, L25GC’s UPF-U seeks to meet important require-
ments of operators, e.g., avoiding DoS attacks [33]. PartitionSort
helps to avoid TSS’s vulnerability to DoS attack. Given the advan-
tages of PDR-PS, we use it in L25GC for fast PDR lookup. We studied
other state-of-the-art alternatives, e.g., NeuroCuts [46], but lacking
production data-sets for learning, we seek to use the option with
the highest performance providing the needed flexibility. To ac-
commodate a packetized 5GC, we employ a number of PDI IEs (up
to 20) in the PDR to support rich functionality needed, including
firewalls, NATs, and per-flow QoS treatment (see Appendix. A for
more details).
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3.5 Resiliency through state replication

In L?5GC, we have developed a thorough and novel resiliency
framework particularly suited for the cellular environment where
control and data plane traffic have substantial inter-dependency.
We avoid having the UE re-establish the connection after a failure.

3.5.1 Replication and failover. We provide two levels of resiliency
to support software failure (local resiliency) and node/link failure
(remote resiliency).

e Local resiliency: We maintain a local replica of each NF. Once
the replica NFs are initialized, they are kept in ‘freezed’ state, using
cgroup freezer subsystem consuming no CPU cycles until the NF
Manager issues a signal to wake up the NF. We use a no-replay
scheme to synchronize the active and standby NFs and ensure an
‘output commit’ property once the UE event is completed. The NF
(e.g., AMF) does not release any response unless the local replica is
synchronized. Since the NFs are on the same system, they take neg-
ligible time (less than 5us) for synchronization. For failover, once
the NF Manager detects the failure of an active NF, it ‘unfreezes’
the standby, which is guaranteed to have a consistent checkpoint
of NF state.

e Remote resiliency: While software failures are easier to recover
with local resiliency, more importantly we address the case that
a serving node becomes unreachable (e.g., link/node failure). The
main feature of our resiliency design is to maintain external syn-
chrony during replication, i.e., allow strict state consistency without
impeding normal operation. We leverage both checkpointing and
packet replay (similar to [27, 44, 56]) but account for both control
and data packet recovery, to provide complete resiliency from node
and link failures. The resiliency procedure is as follows:

(1) The Counter at the load balancer (LB) node (in Fig. 5) attaches
a counter value to every outgoing message and maintains its copy
in buffer (PacketLogger). To avoid the impact of interference be-
tween control and data if the buffer overflows, L25GC separates the
packet logger into four different queues for UL-control, UL-data,
DL-control, and DL-data packets. These buffered packets are re-
played to reconstruct the state at the replica when a failure occurs
and we need to recover the state updates lost between two consec-
utive checkpoints. The replica node checks the counter value of the
packet at the front of each of the four queues and picks from the
queue with a lowest counter value, so as to maintain the processing
order while replaying the packets.

(2) The local replica at the primary node, which is already in sync
with the primary copy, periodically sends the delta of state snapshot
(thus reducing the update size) to the remote replica. Both primary
and remote replicas maintain a record (counter) of the messages
that are processed and synchronized. By utilizing the local replica
for synchronization, our design ensures that normal operations are
not impeded. We chose periodic state sync over per UE event sync
(as done in Neutrino [27]) for two reasons: 1) to recover data packets
lost during a failure, and avoid having end-points to retransmit
the packets; and 2) the 5GC is expected to have a large number
of control plane events, increasing the frequency of event-based
checkpointing, which can degrade performance.

(3) Upon receiving the success ACK for state and counter sync
from the remote replica, the primary node notifies to the LB to
release the processed messages from its buffer.
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If a primary node fails, the remote replica is ‘unfreezed’ with the
last checkpointed state, and the remaining state is reconstructed
by replaying packets present in the LB node.
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Figure 5: LZ5GC’s resiliency framework with cloud-native
deployment

3.5.2 Failure detector. The NF manager periodically (every few
milliseconds) determines the status of all the registered active NFs.
L25GC also leverages REINFORCE’s method [44] of detecting node
and link failure, using the configuration of the simplified Seamless
BFD (S-BFD) [53] that has lower overhead for both link and node
failure detection.

4 L?5GC DEPLOYMENT STRATEGY

An important reason to move to software-based NF components
for the 5GC is to improve scalability, and ease of deployment by
using modern cloud-native frameworks of NFV, Kubernetes and
Istio [30]. Our L?5GC design also adopts the same functional goals
as sought by 3GPP with the SBI in terms of vendor and implemen-
tation flexibility.

Scaling: A user session remains associated with a particular 5GC
instance (we term this a 5GC unit) assigned at the establishment, as
long as the user remains within the set of gNodeBs supported by the
5GC units instantiated in the same data center. A single 5GC unit
can serve a large set of UEs in a serving region. A serving region
can have multiple 5GC units. Our design assigns a UE session to a
particular 5GC unit. This allows us to limit excessive state migration.
Load is balanced by assigning new UE sessions to the appropriate
5GC unit based on its current load. Fig. 5 illustrates the affinity
of a UE (e.g., Blue UE) at time T1 and T2 to L25GC unit on Node
2. The main feature of our approach is to have consolidated 5GC
unit instantiated as a service, rather than independent, individual
NFs. A 5GC unit serves a number of neighboring gNBs in a metro
area. Multiple 5GC units can be provisioned in the same data center
to handle increases in user sessions. We employ a UE-aware LB
(Fig. 5) to maintain the affinity of a UE to its serving 5GC unit. This
allows us to scale 5GC units including control plane NFs without
excessive overheads of moving user sessions and avoids the cost
incurred for migrating the user state between L25GC units.
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A single server can host multiple 5GC units. Network slices
can be supported by logically assigning different service IDs. We
leverage Receive Side Scaling [47] offered by modern NICs to seg-
regate incoming packets into different receive queues based on a
configurable hash. This allows received packet processing to be
load balanced across multiple cores running different 5GC units
and network slices.

Supporting Canary Rollouts: Our deployment strategy envisages
the adoption of canary deployment of the 5G NFs. This is similar
to the Istio service mesh, where Envoy proxies are configured to
support the canary rollout of a new version of a service [30]. With
the help of the NF manager, L25GC seamlessly allows the gradual
roll out of a new version of a specific NF or a whole 5GC unit. The
manager identifies any NF with its NF ID, and when a new version
of the same service has started, it uses an instance ID to differentiate
between two instances. It can be configured with the percentage of
traffic to send to the particular version to support the principles of
a canary rollout.

Scheduling: All cellular core functions in our architecture can also
be containerized as cloud-native services and still utilize the shared
memory communication interface. The containerized service-chain
for the 5GC unit can be used with modern orchestration frame-
works. Further, by leveraging placement engines (e.g., Kubernetes
scheduler) that consider the affinity of the 5GC components, all the
containerized NFs of a 5GC unit can be deployed on the same node.
The design of such a placement engine is straightforward and only
requires knowledge of the available capacity of the system.

5 EVALUATION & ANALYSIS

We measure the performance improvements of L25GC and com-
pare it with free5GC. We also compare L25GC’s SBI approach with
alternatives for sharing data between NFs, such as FlatBuffers (Neu-
trino [27]) and Protobuf (Buyakar et al. [29]). We show the effective-
ness of L25GC’s control plane components and overall control plane
latency reduction (§5.2); the improvement in data plane latency
and throughput (§5.3); the improvements in data plane latency as a
result of improved control plane processing (§5.4); finally, we show
the improvement due to L25GC’s resiliency framework (§5.5).

5.1 Experiment Setup

Our evaluation testbed consists of three Intel® Xeon® CPU E5-2697
v3 @ 2.60GHz servers running Ubuntu 20.04 with kernel 5.4.0-33-
generic. Each server has an Intel 82599ES 10G Dual Port NIC. Server-
1 and server-3 are configured as the RAN/UE and DN, respectively.
Server-2 runs the L25GC core, including all the NFs in Fig. 1. We
use MoonGen [35] on server-1 and server-3 for generating uplink
and downlink traffic.

5.1.1 UE and RAN simulator. We implement a custom UE & RAN
simulator for generating user events, based on the New Genera-
tion Application Protocol (NGAP) specified by 3GPP. We focus on
four common UE events: i) UE registration, ii) Session request, iii)
Handover, and iv) Paging (Idle-active). Currently, our simulator
only implements the N1 & N2 interface of 5GC (i.e., UE to AMF)
over an SCTP socket. It does not implement the PHY channel (e.g.,
mmWave). But, simulating radio characteristics can easily be done
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by integrating a model (e.g., ns-3’s mmWave [48] model) with AMF
over the SCTP socket.

5.2 Control plane Evaluation

In this subsection, we first assess the performance improvement
from each control plane enhancement of L25GC, and then present
overall improvement in control plane latency.

Improvement over HTTP: L25GC’s shared memory communica-
tion unsurprisingly reduces the latency significantly for messages
exchanged over the HTTP/REST interface (e.g., used for AMF-AUSF,
AMF-SMF communication) and PFCP (for SMF-UPF). Fig. 6 shows
the cost of message serialization during a message exchange over
the REST interface. We start two NFs on the same node and ex-
change a ‘PostSmContextsRequest’ message. Besides JSON (de facto
format for REST API), we use different serializing structures dis-
cussed in recent proposals such as FlatBuffers (Neutrino [27]) and
Protobuf (Buyakar et al. [29]) to compare against L25GC. We ob-
served that even with optimized serializing structures such as Flat-
Buffers, there is still significant cost involved in serialization and
overhead of message copy, context switch and protocol stack pro-
cessing when services communicate over kernel sockets. L25GC
completely mitigates these costs to achieve significant speedup for
typical control plane messages, as shown in Fig. 9 (log scale) shows
the speedup for selected control plane messages. We chose these
messages due to their importance and frequent usage. On average,
we observe a speedup of 13X over using the HTTP channel. While
it is not surprising, the latency saving with L25GC’s shared memory
communication is crucial for this application.

Improvement over PFCP: We study the latency of UE-related
control plane messages that are frequently exchanged over the PFCP
channel between SMF and UPF-C for critical UE events, e.g., the PDU
session establishment and modification. The ‘SessionModification’
message with ‘UpdateFAR’ IE is used to change forwarding behavior.
Similarly, the ‘SessionReportRequest’ message notifies the SMF of
the reception of any DL packet, thus initiating paging when UE
is in sleep-mode. These messages influence control plane latency
and thereby the data plane latency since they control when data
packets can begin to flow after a state change. The comparison
between L25GC and free5GC is shown in Fig. 7. L25GC achieves
21% ~ 39% latency reduction compared to free5GC for both the
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session establishment and modification messages, benefiting from
utilizing the shared memory to support messaging over the N4
interface. Compared to in-kernel UDP socket messaging, the shared
memory consumes less overhead and helps speed up the control
plane messaging between the SMF and UPF-C.

Overall Control Plane Performance: We examine the overall re-
duction in control-plane latency for user events such as UE registra-
tion, PDU session request, N2 Handover (both L25GC and free5GC
use our smart buffering and direct handover), and Paging. We begin
by running vanilla free5GC that uses the kernel-driver based UPF
for the data plane and compare with the “ONVM-UPF”. ONVM-UPF
runs the OpenNetVM-based data plane function (i.e., UPF) but the
rest of the NFs use the original free5GC implementation with the
REST-based control plane functions (thus only the SMF-UPF, or N4
interface, runs on OpenNetVM). We evaluated the control plane
operation latency with 1 and 2 users performing control plane tasks
simultaneously. We see no perceptible difference. We report the
average time for specific control procedures for each UE event in
Fig. 8 (labeled ONVM-UPF). Compared to vanilla-free5GC, ONVM-
UPF shows a slight improvement as it eliminates a data copy in the
SMF to UPF communication. Retaining the N4 interface’s use of
PFCP in our design of L25GC makes our UPF universally compatible
with any SMF implementation. Further, it helps when not all the
NFs are on the same node and the SMF and UPF are on different
devices. The reduction in latency primarily comes from reduced
communication latency, while the handler-processing latency is
common (and is a significant part of the latency) for both free5GC
and L25GC. L25GC has a substantially lower completion time (al-
most 2X) compared to free5GC, as shown in Fig. 8, because of the
efficient processing of the frequent control plane messages. With
the improved physical layer access latency (beam alignment and
link acquisition can be of the order of 1-10ms [39]), this reduction
in handover latency of L25GC (of the order of 100 ms), is even
more significant and provides meaningful QoE improvement to
user applications (shown in §5.4.1).

5.3 Data plane Evaluation

We now demonstrate the data plane performance improvement
obtained from leveraging the benefits of NFV platform. We use
the MoonGen [35] traffic generator on server-1 and server-3 to



L25GC: A Low Latency 5G Core Network based on High-Performance NFV Platforms

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

(4

[ S B L2 O~ |=@= L"25GC
B fenee ) o Fescoaoly | 12{MEE L"25GC (DL -2 core) WM L*25GC (DL - 1core) WA free5GC (UL)| ™ fro056C
—_ ‘ I B8 L"25GC (UL - 2 core) B L"25GC (UL - 1 core) M free5GC (DL)
3 o ¥ Q 3
8 5 H | 8 of kY
e IS g | 2 5
= N K] o = -
26 g | X 3 O o
< X K % & 6 =
o 5 l " 9]
3 S Kl o =4 ©
> ©
g s | 3 3
= K | = 3 N
N Kl o =
{| D ]
K] N ] o—~0—~0—0o—0
o U 8 Y ol . . . .
68 1 256 512 1024 10 20 30 40 50
(a) packet size (Bytes) (c) Rate (Kpps)

Figure 10: Data plane performance comparison between L25GC and free5GC with increasing packet sizes: Throughput with (a)
uni-direction traffic (UL only and DL only) and (b) bi-direction traffic; (c) Mean end-to-end latency.

0.6 6|EEE PDR-PS
- R B s
PDR-TSS_Best - es
0.5/ - PDRPS — = .5 {EEE PDR-TSS Worst
s
50.4‘ 94«
> 5
§0.3~ 234
—0—0—v—0—190 o
b =]
Zo.2] £2;
}—
O.T 14
0.0 S — 0-
2 20 40 60 80 100 2 60 80 100

20 40
(a) # of PDRs (b) # of PDRs

Figure 11: PDR lookup comparison: (a) PDR lookup latency
with increasing # of PDR rules; (b) Throughput with increas-
ing # of PDR rules (Packet size 68 bytes)

generate UL and DL traffic. We also demonstrate the benefit of the
fast PDR lookup , with an increasing number of PDRs for a single
user session in LZ5GC.

o Packet forwarding performance: Fig. 10(a) and 10(b) compare
the throughput between L25GC and free5GC. With a packet size
of 68 bytes, L25GC achieves 27x throughput improvement for uni-
directional traffic in both UL and DL traffic compared to free5GC
(Fig. 10(a)), demonstrating the performance benefits of a high per-
formance DPDK-based NFV platform (using one CPU core). The
free5GC’s throughput improves slightly at large packet sizes due to
a reduction (in proportion) in the fixed per-packet processing over-
head. When UPF-U is assigned two CPU cores, L?5GC’s throughput
improves by a factor of 4 over free5GC, even for 1024-byte packets.
We expect that by allocating a sufficient number of CPU cores to
the UPF-U as needed, the data plane throughput of L25GC can be
further improved. Fig. 10(c) shows the mean end-to-end packet
latency. free5GC has high latency due to interrupt-based packet
processing in the kernel, even if the packet rate is relatively low. On
the other hand, L?5GC leverages DPDK’s poll-mode kernel bypass
technique to process packets in userspace without any data copies,
thus achieving much lower latency. L?5GC’s latency remains rela-
tively flat throughout the range we tested.
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o Supporting 40Gbps links: To support 40 Gbps line rate on the
datapath, we need to increase the number of CPUs allocated to the
UPF. With 1 core assigned to UPF and NF manager each, the UPF can
only achieve a forwarding rate of 10 Gbps with MTU size packets. To
saturate a 40Gbps link, we increased the number of CPUs assigned
to the UPF and NF manager (Rx and Tx) thread from 1 to 4. With 2
cores each to UPF and NF manager (Rx and Tx), the forwarding rate
goes up to 28 Gbps. With 4 cores each to the UPF and NF manager
(Rx and Tx) thread, we can comfortably operate at 40 Gbps.

o PDR lookup comparison: We compare the lookup performance
between PDR-TSS, PDR-PS, and PDR-LL. We extend ClassBench [58]
to generate PDRs (including a total of 20 PDIIEs Packet Detection In-
formation (PDI)) for evaluation. Two different scenarios of PDR-TSS
are studied: Best case (PDR-TSS_Best) and Worst case (PDR-TSS_
Worst). For PDR-TSS_Best, given N PDR rules, all the N PDRs are
inserted into a single sub-table. One hash table lookup finds the
target PDR. For PDR-TSS_Worst, each sub-table has only one PDR
inserted. Thus, it can take up to N sub-table lookups to find a match-
ing PDR. In PDR-TSS_Worst, we assume the match is in the last
sub-table. For PDR-LL, we assume the packet randomly matches a
PDRs in the second half of list.

Fig. 11(a) and 11(b) compare the PDR lookup latency and through-
put. We omit the case of “PDR-TSS_Worst” from Fig. 11(a) since
the latency goes up rapidly to 2.9us, out of the range of the graph
for just 100 rules. This poor performance is primarily because of
the penalty of software hashing, and having to go through a num-
ber of PDR sub-tables. However, despite the increased number of
PDRs, PDR-TSS_Best has a constant latency of ~ 0.26us. It also
has a lower latency than PDR-LL, when there are more than 60
PDRs. With 2 PDRs per session, PDR-LL may be acceptable as its
throughput and latency are competitive. However, as we evolve to
a packet-oriented environment, concerns about throughput degra-
dation can be a significant issue as the number of PDRs per session
grows. Finally, PDR-PS achieves the best performance of all, in terms
of both latency and throughput.
¢ PDR update comparison: Updating the PDR table is also an
important consideration as it impacts events such as session mod-
ification, etc. We compare the PDR update performance between
the alternatives by measuring the average latency for a single PDR
update, and repeating it 50 times. PDR-TSS (1.41us) and PDR-PS
(6.14ps) have a higher update latency than PDR-LL (0.38us), but
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Figure 12: Impact of handovers on application: Round-trip delay (left), congestion window (middle), goodput (right).

the difference is not substantial. Therefore, we choose PDR-PS be-
cause of its reduced forwarding overhead and thereby the improved
throughput, as shown in Fig. 11(b).

5.4 Impact of control plane on Application
Performance (and data latency)

5.4.1 Control Plane Impact on Application Performance. We study
the impact of L25GC’s control-plane improvements on the data
plane by evaluating the page load time (PLT) for a webpage on a
Firefox browser at the UE, as intermittent handovers occur. The
webpage contains a few high-resolution images (each ~15MB),
javascript libraries, and CSS files, hosted on the DN node. We dis-
abled browser caching to avoid artificial speedup because of our
limited web content being cached, and used six parallel TCP con-
nections (Firefox’s default). We use the PLT reported by Firefox
Developer Tools (Network Monitoring) [17], as it reflects the delay
experienced by the user. We set the aggregate bottleneck bandwidth
as 30Mbps and round-trip delay (RTT) of 20ms. We use Wireshark to
calculate goodput and RTT, and the ss utility to extract congestion
window (cwnd).

During a handover, DL packets are buffered at 5GC and ex-
perience an additional delay. free5GC incurs up to 463ms delay
(Fig. 12(a)), which is higher than the minimum retransmission time-
out (200ms) in Linux, leading to ~1500 spurious retransmissions
out of ~80K packets with the consequent reduction of each con-
nection’s cwnd. L5GC incurs at most 96ms of extra delay due to its
faster handover, and there are no timeouts (22 packets are retrans-
mitted, but none were dropped at the 5GC). The total PLT is ~32
seconds with free5GC, while it is ~28 secs. with L25GC, a 12.5%
improvement in the user QoE illustrating the utility of L25GC.

5.4.2  Impact on UDP streams. We study the impact of the control
plane on UDP streams by triggering two UE events (paging and
handover) separately, to demonstrate the impact of control plane
latency on the data plane’s latency. Packets are sent at a constant
rate of 10 Kpps for a UE session. To estimate the impact of buffering,
we use a buffer of 3K packets at the UPF.

Paging: Fig. 13 (Y-axis in log-scale), and Table 1 show the RTT expe-
rienced by packets (we measure RTT of packets sent from and ack’d.
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Table 1: Control and data plane behavior (paging event)

Base | Paging | RTT after | # Pkts experience
RTT | time paging higher RTT
free5GC | 116 us | 59 ms 63 ms 608
LZ5GC [ 25us | 28ms | 30ms 294

back to the generator). When data transfer stops, the UE goes into
the sleep state to save battery. Once the UPF receives a DL packet,
it initiates a paging event to wake up UE. Until the paging event
is completed, all the subsequent DL packets have to be buffered in
the 5GC. The longer it takes for the event to complete, the higher
the queuing and delay experienced by packets. In both free5GC
and L25GC, packets experience a higher delay for a period until
the queue drains after data starts flowing. The RTT goes up from
116 psec to 63 ms with free5GC. L25GC is distinctively better than
free5GC both in terms of the base RTT and the RTT after paging.
With L25GC, the base RTT goes from 25 psec (base RTT is 4x better
with L25GC, because of its kernel bypass zero copy delivery and
user space processing) to 30 ms with L25GC. In addition, paging in
L25GC completes in about half the time, and less than half of the
packets experience an increased RTT compared to free5GC.

Handover (HO): Fig. 14 (log-scale Y-axis) and Table 2 show the RTT
experienced by data packets during the handover event. We perform
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two distinct experiments: expt. (i) uses a single UE session with one
flow; expt. (ii) uses multiple UE sessions sending data concurrently,
while one UE performs handover. In both experiments, the UE
initiates a handover request at 1 second and the UPF starts to buffer
packets and the SMF provisions PDR and FAR rules to buffer the
incoming packets at the UPF. In expt. (i), with the kernel-based
free5GC handover takes longer, resulting in more DL packets being
buffered (864 packets more than L25GC). Packets experience an
increased data plane RTT of 242ms for free5GC compared to 132ms
for L25GC. For expt. (ii), the handover time for kernel-based free5GC
is quite a bit more than L25GC. Moreover, since multiple flows are
being forwarded by the UPF, it results in an increased RTT of 305ms
(free5GC) for all the data packets, compared to 137ms (L?5GC). More
packets see this buffering delay (1313 packets more for free5GC
than L25GC). Up to 43 packets are dropped in free5GC, (0 in L25GC)
even with a 3K buffer.

Estimating Smart Buffering benefit: We assess the benefit of
our smart handover approach compared to 3GPP’s hairpin routing,
for packet drops (Ngyop) and one-way delay (towp), UPF to UE:

Ndrop = DLygte X tHO — Qlength (1)
towD = tHO + tUPF,GNB; L?5GC @
tHO + tUPF,GNBs + tGNB,,UPF + tUPF,GNB, 3GPP

o Packet Drop: We evaluate two cases: case (i) allocating equal buffers
(500 pkts) at gNB (at the GN B for 3GPP handover) and UPF (our
smart handover), and case (ii) allocating higher buffering at UPF
(1500 pkts), with GNBg (500 pkts) (likely more common). We use
the handover time (tgo) measured, 130 ms as in Table 2, and DL
data rate of 10 Kpps. In case (i), 3GPP’s routing and L?5GC’s direct
handover both experience a similar packet loss of ~800 packets dur-
ing the handover (based on Eq. 1). In case (ii), the UPF sees no packet

106 -
—— free5GC (expt. i) ::'10 'glg\g
105| — L25GC (expt. ) |50 —
free5GC (expt. ii)
'glo“ —— L25GC (expt. ii)
E 103 ]
) More flows
10 % Start
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00

Time (seconds)

Figure 14: Data plane latency during handover (HO) event
(log-scale Y-axis)

Table 2: Control and data plane behavior (HO event)

Base | HO RTT after | #Pkts experie- #Pkts
RTT | time | handover | nce higher RTT | Dropped
free5GC (expt.i) | 118 us | 227ms | 242ms 2301 0
L25GC (expt. i) 24us 130ms | 132ms 1437 0
free5GC (expt. ii) | 425us | 231ms | 305ms 3092 43
L25GC (expt.ii) | 39us | 132ms | 137ms 1779 0
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loss due to increased buffer size, while GNB; still experiences a
similar loss of ~800 packets for 3GPP handover.
eOne-Way Delay: The 3GPP-based forwarding requires packets to
traverse back to 5GC before being forwarded to the target gNB,
resulting in additional delay. We assume the propagation delay to
be 10ms from UPF to gNBs (typr,GNB, etc. ) and use handover time
as in Table 2. Using Eq. 2, the 3GPP handover sees an additional
overall delay of 20 ms than L25GC’s smart buffering approach.
The increase in the RTT, during paging and handover events
(among others) may affect higher layer protocols, as seen in §5.4.1,
(e.g., potential TCP spurious timeouts) degrading the overall user
QOE. The latency reduction by 2x with L25GC mitigates this impact.
Further, the gNB is likely to have less buffering (e.g., small cells),
resulting in packet drops, thereby wasting processing throughout
the entire data path (5GC, gNB). The smart buffering in L25GC’s
UPF mitigates this, with more buffering (while being cognizant of
buffer-bloat [37]), without additional control plane messaging.

5.5 Impact of Failure recovery

We evaluate the efficiency of the resiliency framework of L25GC and
free5GC by showing the impact of failure, both on the control and
data planes (e.g., when the failure occurs as UE undergoes handover).
We compare L25GC’s resiliency (failover) with the standard 3GPP
approach that requires the UE to reattach to an alternate 5GC
through the target gNB, using the free5GC implementation. We
use the topology shown in Fig. 5, with three instances of L25GC
(primary, local and remote replicas). We use flent [40] for TCP
based data transfer (bandwidth limited to 30Mbps to a single UE).
We highlight the penalties from the failure, even with a modest
transfer rate. The 3GPP approach to reattach discards all the data
packets when 5GC fails. On the other hand, during the failure,
L25GC buffers the data and control packets in its replay buffer (in
separate queues, so control packets are not dropped if the replay
buffer overflows).

5.5.1 Impact on Control Plane. We consider the case when there
is a failure occurring while there is an ongoing handover event.
L%5GC potentially makes the failure entirely transparent to the user.
With L25GC, we use a probe agent at the LB node to detect that
the 5GC instance is unreachable. It takes less than 0.5ms for the
probe agent for the detection of the failure. For the 3GPP case, it is
necessary to notify the UE of the failure, and initiate a reattach. For
this experiment, we assume that the failure detection time for the
free5GC/3GPP option is also 0.5ms before the reattach is initiated.

Even with a failure, the handover procedure in L25GC only takes
a few additional milliseconds, taking 134 ms, instead of 130 ms
(without failure). It is substantially faster than 3GPP’s reattach-
based approach, which takes 401 ms for completing the handover
in the presence of a failure. Breaking down the additional operations
performed during failure, L25GC consumes 2 ms for re-routing, and
3 ms for the state re-construction using packet replay, with some
overlap between the two.

5.5.2  Impact on Data Plane. With the 3GPP’s reattach, all incoming
packets (~121 packets) are dropped during failure. With the result-
ing retransmit timeout (potentially multiple timeouts because of the
long delay to reattach), the receiving UE does not receive packets
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Figure 15: 5GC failover: data plane performance

for an interval, and has to reattach to a backup 5GC after notifica-
tion. TCP also sees a drop in throughput as the sender’s congestion
window (cwnd) drops. The larger RTT is shown in Fig. 15(a), and
the degraded goodput in Fig. 15(b). In contrast, L?5GC seamlessly
synchronizes the control and forwarding state with the remote
replica. The replay buffer queues incoming packets (in 4 queues:
control and data, for UL and DL, separately), thus avoiding data
loss. L25GC’s LB node replays the buffered data packets to the
replica. TCP maintains its high throughput throughout (Fig. 15(b)).
A small number of packets experience slightly increased RTT due
to re-routing and packet replay (see zoomed inset in Fig. 15(a)).

5.5.3  5GC Failure Recovery: ongoing control event plus data transfer.
We initiate a handover during an ongoing TCP transfer and then
fail the links to the primary 5GC unit (at 4.5 seconds in Fig. 16(a)),
disrupting both control and data flow to/through it. We assume
that half of the handover is executed prior to the failure. The result
shows that L25GC’s resiliency framework transparently handles the
5GC failure and still maintain regular control and data plane per-
formance (as in §5.4.1). During handover, both L25GC and free5GC
buffer incoming DL packets. However, L25GC also buffers control
(handover) and data packets in its packet replay buffer (at the LB).
When the 5GC fails partway through the handover, L5GC seam-
lessly replays the control packets and forward the buffered data
packets with minimal overhead. Data packets experience a slightly
higher RTT (highlighted in the zoomed inset of Fig. 16(a)). On the
other hand, the 3GPP-standard based approach waits to reattach
after failure, resulting in all buffered packets being lost and requir-
ing retransmission, thus degrading goodput (see Fig. 16(b)). (as in
§5.5.2). Without the control and data plane coupling of L25GC (e.g.,
as in Neutrino [27]), even if the control plane state is synchronized,
we will continue seeing data packet loss and reduced throughput.

6 CONCLUSION

L25GC creates a low latency 5GC framework by exploiting the
advantages of high-performance NFV-based platforms. Compared
to the 3GPP-based free5GC, L25GC has better performance of both
the control plane and data planes. L25GC consolidates the 5GC NFs
on the same node. It simplifies the SBI and N4 interfaces based
on the userspace shared memory available in a OpenNetVM-based
NFV platform, fundamentally reducing the latency of the 5G control
plane. Compared to free5GC, L25GC reduces the latency of several

(a) Time (second) (b) Time (second)

Figure 16: 5GC failover during handover: Control and data
plane impact
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control plane events by up to 51% on average. Due to tight inter-
dependence between the control and data planes, L%5GC’s faster
handover completion avoids spurious timeouts and retransmission
of data packets. Thus, L25GC improves user QoE (PLT) by 12.5% for a
browser accessing even a simple web page (but with many images).

In addition to improving control plane performance, L25GC im-
proves the data plane performance by leveraging DPDK’s userspace
packet processing. L25GC achieves 27x and 15X improvement in
the throughput and latency compared to free5GC. Since cellular
networks are evolving and will likely have a large number of PDRs,
L25GC accommodates this by implementing an advanced PDR
lookup mechanism and speeds up lookup latency by 20x com-
pared to the linear search recommended by 3GPP. Additionally,
L25GC supports smart buffering for handover, avoiding the hairpin
routing through the ‘old’ source base station. The paging latency
in L25GC sees at least a 2x reduction compared to free5GC. Our
experiments show seamless continued data plane operation dur-
ing failure restoration of 5GC NFs. We have released L?5GC as
open-source on Github, to further research on high performance
NFV-based cellular cores for 5G and beyond. The code is available
at: https://github.com/nycu-ucr/I125gc.

This work does not raise any ethical issues.
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APPENDICES

Appendices are supporting material that has not been peer-reviewed.

A INFORMATION ELEMENTS IN PACKET

DETECTION RULE (PDR)
Table. 3 shows PDI IEs used in packet classification in UPF.

Table 3: Information elements in PDR

Packet Detection Rule ID
Precedence
OuterHeaderRemoval
Forwarding Action Rule ID
QoS Enforcement Rule ID
Usage Reporting Rule ID
Source Interface
Tunnel Endpoint Identifier
IPv4
IPv6
CHOOSE ID
IPv4
IPv6
Network instance
Application ID
QoS Flow ID
Length of Flow Description
Source IP
Destination IP

Local F-TEID

UE IP

Packet
Detection

Information

Source Port

Destination Port
Protocol
Type of Service
Security Parameter Index
Flow Label
SDF Filter ID

SDF Filter

B IMPLEMENTATION DETAILS OF FREE5GC

The 3GPP specifications and several implementations have divided
the cellular core network into two separate subsystems, for the
control plane and the data plane. We describe the free5GC Kernel-
based (non-NFV) implementation.

Control plane functions: All control plane components are im-
plemented as microservices. These microservices interact using a
REST API over HTTP/2 on a SBI. 3GPP specifies RESTful interfaces
and datatypes for each component as an OpenAPI specification.!
free5GC uses these OpenAPI specifications and OpenAPI Gener-
ator? to generate client and server interfaces for each of the 5GC
control NFs. Golang [15] is used to implement these services. The
RESTful APIs are implemented on top of Golang’s inbuilt HTTP/2
server that utilizes the underlying kernel TCP stack. The user event
procedure handlers are implemented according to the 3GPP speci-
fications, with all of the essential control plane functions, such as
AMEF, SMF, AUSF, UDR, PCF. They communicate based on the 3GPP
specifications. For example, the source function has to perform

!The OpenAPI Specification [9] is a set of YAML files that represents a language-
agnostic interface to RESTful APIs.

20penAPI Generator [22] is a tool to create API client libraries and server stubs from
OpenAPI 2.0 and 3.x specification.
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service discovery for a target function. Further, the control plane
function, SMF, provides UPF the forwarding rules over a PFCP chan-
nel, running over a UDP socket. Subscriber information is stored
in a MongoDB database, and accessed through the UDR NF.
Data plane functions: The data plane functions have two sub-
components: i) control plane listener, ii) user data handler. The
SMF (part of the control plane) provides UPF the forwarding rules
over a PFCP channel running on top of a UDP socket. Based on
3GPP specifications, the control function sends the PFCP message,
a type-length-value (TLV) encoded message. For user data handling,
the kernel-based free5GC leverages the gtp5g kernel module that
performs GTP encapsulation and decapsulation to implement the
data plane forwarding functionality. This allows us to avoid packet
copying to the user space. Further, the rules from PFCP messages
are conveyed to the kernel driver using Linux’s netlink capabilities.
At first look, this is an intuitive and straightforward 3GPP-based
implementation, providing flexibility. But it results in significant
performance penalties, as we mentioned in the challenges described
in §2. By carefully understanding the causes for performance degra-
dation, we evolved from the strict implementation of the 3GPP
specification in a kernel-based environment to the NFV-based 5GC
in L25GC. Our optimizations improve both the control plane com-
munication channel and at the same time substantially improves
the data plane throughput.

C IMPACT OF CONTROL PLANE ON
ONGOING TCP CONNECTION

We study the impact of the control plane procedure on the data
plane by assessing ongoing TCP connections’ behavior during han-
dover. This experiment demonstrates that the control plane proce-
dure completion time directly impacts the ongoing data plane and
severely impacts QoE. We simulate a scenario where UE launches
10 TCP connections (equivalent to launching a few apps on a Smart-
phone) and undergo handovers every few seconds (representing
mobility, e.g., UE traveling in a bus). These handovers are even
more frequent because of small cells. We choose TCP since many
user applications are built on reliable transport that require a timely
response for continuous operation. We use flent to generate TCP
traffic from server to client, with the aggregate bottleneck band-
width as 100Mbps and RTT as 50ms.

During handover, all incoming DL packets are buffered at 5GC
until handover is finished and experience an additional queuing
delay. This results in increase in RTT (up to 130ms for L25GC and
328ms for free5GC), as shown in Fig. 17(a). However, in case of
free5GC, upon not increasing the response, TCP senders falsely
imply this delay as incipient congestion and result in the expiration
of retransmission timeout (RTO), the minimum RTO in Linux is
200ms. As a result, TCP senders spuriously retransmit all the packets
(60 packets every handover) after RTO expiration and reduce their
sending rate by lowering their congestion window (cwnd), Fig. 17(b).
This causes frequent jitters in the application and affect overall
goodput (Fig. 17(c)). Consequently, L25GC allows 442MB of data
transfer compared to free5GC, which only transfers 416MB for
the runtime of the experiment. These spurious timeouts do not
appear in L25GC because of our fast handover completion time,
thus sustaining a good QoE.
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Figure 17: Impact of repeated Handover on data plane

D ABBREVIATIONS

Tables 4 lists various abbreviations based on 3GPP specification.

Table 4: Abbreviations table (general)

‘ Abbreviation ‘ Full form
5GC 5G Core Network
3GPP 3rd Generation Partnership Project
AMF Access and Mobility Management Function
AUSF Authentication Server Function
N3IWF Non-3GPP Interworking Function
NSSF Network Slice Selection Function
PCF Policy Control Function
SMF Session Management Function
UDM Unified Data Management
UDR Unified Data Repository
UPF User Plane Function
DL Downlink
DN Data Network
DPDK Data Plane Development Kit
EPC Evolved Packet Core
FAR Forwarding Action Rule
GTP GPRS Tunnelling Protocol
IE Information Elements
LB Load Balancer
NF Network Function
NFV Network Functions Virtualization
NGAP New Generation Application Protocol
PDR Packet Detection Rules
PDR-LL PDR Linear Search Algorithm
PDR-PS PDR Partition Sort Algorithm
PDR-TSS PDR Tuple Space Search Algorithm
PDU Packet Data Unit
PFCP Packet Forwarding Control Protocol
QoS Quality of Service
RTT Round-Trip Delay
SBI Service-Based Interface
SDF Service Data Flow
RAN Radio Access Network
TEID Tunnel Endpoint Identifier
UE User Equipment
UP Uplink
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E ARTIFACT APPENDIX
Abstract

We have released our implementation of L25GC and other artifacts
in a Github repository. It contains the scripts for setting up the
environment, our UE RAN simulator to generate various UE-related
events, and a number of plotting scripts useful to generate the
results presented in §5.

Scope

The scope of the artifact is to make implementation of L25GC
publicly available for the community and industry to experiment
with L25GC. It also includes the steps to setup and reproduce the
experiment results presented in §5.

Contents

The artifact consists of the complete source code and all the neces-
sary scripts for setting up L?5GC and free5GC:

e Source code for L?5GC, free5GC with gtp5g kernel driver (for
free5GC based UPF), ONVM based UPF (onvm-upf)

o test-script3.0.5: simulator for generating UE-events

e Scripts to build and run L?5GC and free5GC

e Scripts to generate GTP encapsulated data plane pcap traces

e Misc. scripts for environment clean up and plotting results

Hosting

L25GC is publicly available at https://github.com/nycu-ucr/125gc
(commit hash 74cb@35). The “README.md” covers the details
about the artifact and includes steps for setting up the environ-
ment and reproducing the results presented in this paper.

Requirements

Hardware Dependencies: The node to run L25GC needs to have
at least 12 CPU cores and two DPDK-compatible NICs. This can
achieve the demonstrated performance.

Software Dependencies: This artifact requires Ubuntu 20.04 with
Linux kernel version 5.4, OpenNetVM v20.05. We use Moongen as
the traffic generator running on another node, using pcap traces
available with this artifact.

More details can be found in the artifact documentation.


https://github.com/nycu-ucr/l25gc
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