2022 IEEE 8th International Conference on Network Softwarization (NetSoft) | 978-1-6654-0694-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/NetSoft54395.2022.9844083

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

MiddleNet: A High-Performance, Lightweight,
Unified NFV and Middlebox Framework

Ziteng Zeng, Leslie Monis, Shixiong Qi, K. K. Ramakrishnan
Dept. of Computer Science and Engineering, University of California, Riverside

Abstract—Traditional network resident functions (e.g., fire-
walls, network address translation) and middleboxes (caches, load
balancers) have moved from purpose-built appliances to software-
based components. However, L.2/1.3 network functions (NFs) are
being implemented on Network Function Virtualization (NFV)
platforms that extensively exploit kernel-bypass technology. They
often use DPDK for zero-copy delivery and high performance.
On the other hand, L4/L7 middleboxes, which usually require full
network protocol stack support, take advantage of a full-fledged
kernel-based system with a greater emphasis on functionality.
Thus, L2/L.3 NFs and middleboxes continue to be handled by
distinct platforms on different nodes.

This paper proposes MiddleNet that seeks to overcome this
dichotomy by developing a unified network resident function
framework that supports L2/LL3 NFs and L4/L7 middleboxes.
MiddleNet supports function chains that are essential in both
NFV and middlebox environments. MiddleNet uses DPDK for
zero-copy packet delivery without interrupt-based processing,
to enable the ‘bump-in-the-wire’ L2/L.3 processing performance
required of NFV. To support L4/L.7 middlebox functionality,
MiddleNet utilizes a consolidated, kernel-based protocol stack
processing, avoiding a dedicated protocol stack for each function.
MiddleNet fully exploits the event-driven capabilities provided
by the extended Berkeley Packet Filter (eBPF) and seamlessly
integrates it with shared memory for high-performance com-
munication in L4/L7 middlebox function chains. The overheads
for MiddleNet are strictly load-proportional, without needing
the dedicated CPU cores of DPDK-based approaches. MiddleNet
supports flow-dependent packet processing by leveraging Single
Root I/O Virtualization (SR-IOV) to dynamically select packet
processing needed (Layer 2 to Layer 7). Our experimental results
show that MiddleNet can achieve high performance in such a
unified environment.

Index Terms—Middleboxes, NFV, DPDK, eBPF, service func-
tion chains.

I. INTRODUCTION

Networks have increasingly become software-based, us-
ing virtualization to exploit common off-the-shelf (COTS)
hardware to provide a wide array of network-resident func-
tions, avoiding deploying functions in purpose-built hardware
appliances. This has broadened the networking capabilities
provided by the network and cloud platforms, thus offload-
ing the burden from end-hosts that have limited power and
compute capability (e.g., cell phones or IoT devices). With
softwarized network-resident functions, network services can
be dynamically deployed across shared hosts.

However, there continues to be a dichotomy in how vari-
ous network resident services can be supported on software-
based platforms. Layer 2 and Layer 3 (L2/L3) functions
that seek to be transparent bump-in-the-wire capabilities are

being supported with Network Function Virtualization (NFV)
designs. These focus on performance, are built around network
functions (NFs) and chains in userspace supported by kernel-
bypass technology such as DPDK [1]. Other than switching
(demultiplexing and forwarding), they do not provide a full
protocol stack and are exemplified by approaches such as
OpenNetVM [2] and OpenvSwitch (OVS) [3]. The use of
DPDK helps provide zero-copy packet delivery and shared
memory to minimize overheads for data access within the
chain, making it possible to support complex function chaining
at line rate. Moreover, DPDK’s poll-mode driver avoids un-
desirable behavior (i.e., receive-livelocks) under overload [4].
Nevertheless, dedicated polling consumes significant CPU
resources and is not load-proportional. While this may be
reasonable in an NFV-only dedicated system, it is challenging
for systems that host many services, including middlebox
functionality.

Middleboxes require the full network protocol stack’s pro-
cessing (e.g., application layer functionality such as HTTP
proxies), in addition to more complex stateful functionality
in userspace, such as storage and other I/O operations (e.g.,
caching). Thus, flexibility and functionality are prominent
concerns, with performance being a second (albeit important)
consideration. It is often desirable to depend on a robust
and proven kernel-based protocol stack [S], as specialized
userspace protocol stack implementations often do not support
all possible corner cases. However, depending on the kernel-
based protocol stack often results in unnecessary duplicate
protocol processing when multiple middlebox functions (MFs)
are chained together. It is desirable to leverage the same
design features of typical NFV platforms, such as zero-copy
shared memory processing and the avoidance or mitigation of
interrupt processing. This can recover some of the performance
penalties of using a kernel protocol stack and ensure good
overload behavior.

These distinct requirements for NFV and middlebox designs
typically result in the need for different systems. However,
networks require both types of functions to be supported
concurrently for different flows, and in many cases, even
for the same flow. This calls for supporting both types of
functionality in a unified framework so that the functionality
can be deployed on COTS hosts dynamically and flexibly.

For achieving this unified platform, we develop MiddleNet,
a unified, high-performance NFV and middlebox framework.
We take a somewhat unconventional approach by examining
the design of two major alternatives in supporting NFV
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and middleboxes, and evaluating them. The first is to fully
exploit the feature-rich networking subsystem provided by the
extended Berkeley Packet Filter (eBPF [6]). Using eBPF’s
event-driven functionality, we examine its utility in supporting
NFV and middlebox capabilities. Importantly, eBPF incurs
negligible overhead in the absence of events (such as packet
arrivals to a given function or even to the platform), mak-
ing it an excellent fit for supporting a rich set of diverse,
efficient network resident functions. An eBPF program has
size restrictions and must run to completion, requiring careful
design [7]. A second alternative approach is to build the unified
framework around DPDK, as has been used in many high-
performance virtualized environments, e.g., OpenNetVM [2].
Such environments provide zero-copy delivery into userspace.
With poll-mode drivers (PMD), they avoid the deleterious
effects of interrupt-based processing of network I/O [4]. We
implement these alternatives and evaluate their performance
and resource usage for L2/L.3 NFV and L4/L7 middlebox use
cases. This helps us understand the strengths and limitations of
each option, and understand their root causes. We then arrive
at the design of MiddleNet as the most suitable framework
for a unified platform for both capabilities. MiddleNet uses
Single Root I/O Virtualization (SR-IOV [8]) to allow their
co-existence. MiddleNet leverages the strengths of DPDK
for L2/L.3 NFV while taking advantage of eBPF for L4/L7
middleboxes.

II. RELATED WORK

NFV platforms use different implementation approaches and
primarily operate at L2/L.3. OpenNetVM [2], based on DPDK,
uses the microservice paradigm with a flexible composition
of functions and uses shared memory to achieve full line-
rate performance. However, OpenNetVM lacks full-fledged
protocol stack support, focusing on supporting L2/L3 NFs.
Compared to OpenNetVM, MiddleNet supports processing
across the entire protocol stack, including application sup-
port. Other NFV platforms take different approaches. Both
ClickOS [9] and NetMap [10] use traditional kernel style
processing and mapping of kernel-user space memory, using
interrupts for notifications. The interrupt-based notification
schemes of ClickOS and NetMap can be vulnerable to poor
overload behavior because of receive-livelocks [4]. In con-
trast, the L2/L3 processing in MiddleNet uses polling, thus
avoiding receive-livelocks. E2 [11] integrates all the NFs as
one monolith to help improve performance but gives up some
flexibility to build complex NF chains through the composition
of independently developed functions. NFV designs have
increasingly adopted the microservice paradigm for flexible
composition of functions while still striving to achieve full
line-rate performance. Supporting this, MiddleNet’s disaggre-
gated design offers the flexibility to build complex L2/L.3 NF
chains.

Network-resident middleboxes’ functionality depends on
having full kernel protocol processing, typically terminating a
transport layer connection and requiring a full-fledged protocol
stack. Efforts have been made to pursue a high-performance

middlebox framework with protocol processing support [5],
[12], [13]. However, each of these proposals has its difficulties.
mOS [12] focuses on developing a monolithic middlebox,
lacking the flexibility of a disaggregated design like Mid-
dleNet. Microboxes [13] leverages DPDK and OpenNetVM’s
shared memory design to improve packet processing perfor-
mance and flexible middlebox function chaining. However, it
does not provide a full-fledged protocol stack (it only supports
TCP). The CPU consumption of DPDK-based designs is a
further deterrent in the L4/L7 use case, significantly when
the chain’s complexity increases. Establishing communica-
tion channels for a chain of middleboxes using the kernel
network stack incurs considerable overhead. Every transfer
between the distinct middleboxes typically involves full pro-
tocol stack traversals, which adds considerable overhead. It
typically involves fwo data copies, context switches, protocol
stack processing, multiple interrupts, and one serialization and
deserialization operation. MiddleNet is designed to reduce
these overheads by leveraging event-driven shared memory
processing to minimize CPU consumption. StackMap [5] also
leverages the feature-rich kernel protocol stack to perform
protocol processing while bypassing the kernel to improve
packet I/O performance. However, it is more focused on end-
system support than middlebox function chaining. StackMap’s
capability may be complementary to the design of MiddleNet.
There has not been a significant effort to design a unified
environment where L2/L.3 NFV and L4/L7 middlebox environ-
ments co-exist. MiddleNet is designed to address this issue.

III. DESIGN OF MIDDLENET: L2/L3 NFV

We first discuss the eBPF-based and DPDK-based network-
ing alternatives for L2/L.3 NFV support, given the performance
requirement of operating at line rate and being capable of sup-
porting service function chains. Since they operate at L2/L.3,
there is less emphasis on having a full-function protocol stack.

A. Overview

To minimize overheads, reduce resource consumption, and
achieve the full line rate, MiddleNet needs to take full advan-
tage of zero-copy packet delivery. For evaluating an eBPF-
based L2/L3 NFV design, MiddleNet uses the kernel-bypass
support offered by AF_XDP [14]. By DMAing packets into
the userspace, MiddleNet saves CPU cycles spent on the
data copying, protocol processing, and context switching over-
heads involved in kernel protocol stack processing. AF_XDP
depends on the interrupts triggered by the event execution
of the XDP program attached to the NIC driver (Fig. 2).
This interrupt serves to notify the packet processing in the
userspace. However, these interrupts have to be managed with
care to avoid poor overload behavior when subjected to high
packet rates [4]. For evaluating the DPDK-based alternative for
MiddleNet, we adopt the architecture of OpenNetVM [2] for
supporting L2/1.3 NFs. An NF Manager mediates the delivery
of packets to and from the network, running on a core that
constantly polls the NIC and uses Receive (RX)/Transmit
(TX) descriptor rings to communicate with the NFs. Function
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Fig. 1. Packet processing flow for DPDK-based L2/L.3 NFV: RX and TX

chains are also mediated through the NF manager, which
copies descriptor entries into the corresponding target NF,
enabling lock-free communication. Data resides in shared
memory (Huge Pages) so that there are no copies of the packet
payload.

B. The DPDK-based L2/L3 NFV design

The DPDK-based approach uses polling-based zero-copy
packet delivery. Packets bypass the kernel stack and are
delivered directly into the shared memory in the userspace.
DPDK uses its Poll Mode Driver (PMD) to poll the RX ring
to retrieve arriving packets constantly. While assuring packet
processing performance, it comes at the cost of occupying
one CPU core for polling. In addition, for each NF of the
L2/L3 service function chain, one CPU core is used up for
each function. Thus, DPDK can be ‘expensive’ in having
dedicated CPU cores for each functioning component. This
can be wasteful if incoming traffic is low. Somewhat more
complex NFV support, such as NFVnice [15], can be used
to mitigate these overheads by sharing a CPU core across
multiple NFs.

Fig. 1 depicts the packet flow of DPDK-based L.2/L.3 NFs.
In the RX path, PMD provides a packet descriptor for the
NIC (®) to deliver the packet into the shared memory via
DMA (®). The NF manager examines the packet, and moves
the packet descriptor into the RX ring of the target NF
(®), based on the routing table. The target NF obtains the
packet descriptor by polling its RX ring and uses it to access
the packet in shared memory (®). After the NF’s packet
processing is complete (®), the NF writes the descriptor to
its TX ring (®). On the other side, the NF manager (as the
DPDK primary process) continuously polls the NF’s TX ring
and sets up the packet transmission based on the descriptor in
the ring (®). The PMD then completes the processing once the
packet is transmitted, to clean up the transmit descriptor (®).
Both TX and RX rings are polled by the PMD for RX and
TX from/to the NIC, and NFs use polling to RX or TX packet
descriptors. All of this inevitably increases CPU consumption.
Methods to reduce CPU consumption have been explored [15],
which this design can conveniently adopt.
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Fig. 2. Packet processing flow for eBPF-based L2/L.3 NFV: RX and TX

Service function chains: To support routing between a chain
of functions for the DPDK-based approach, the NF manager
utilizes destination information in the packet descriptor to
forward the packet to the next NF in the chain. The chaining is
done by selecting the name of the next service NF. The routing
table in the NF manager is used to resolve that NF’s ID,
thus avoiding the need for each function to maintain a private
routing table. After the NF manager gets a packet descriptor
from the TX ring of an NF, it parses the packet descriptor
to look at the destination NF information. It then pushes a
packet descriptor to the RX ring of the next function to transfer
ownership of the shared memory frame (as pointed to by the
descriptor). Ownership for write is based on the NF currently
owning a descriptor to that frame in shared memory, thus
ensuring a single writer and obviating the need for locks. Using
the NF manager for ‘centralized’ routing mitigates contention
when multiple NFs may forward to a downstream NF.

C. The eBPF-based L2/L3 NFYV design

With the support of AF_XDP, packets processed by L2/L3
NFs are delivered to shared memory in userspace, also bypass-
ing the kernel and avoiding data copies. NFs that utilize AF_
XDP have a dedicated AF_XDP socket (i.e., XSK) that serves
as an interface to interact with the kernel to handle RX and
TX for AF_XDP-based packet delivery. Each XSK is assigned
a set of RX and TX rings to pass packet descriptors containing
pointers to packets in shared memory. All XSKs share a set of
‘Completion’ and ‘Fill’ rings, owned by the kernel and used to
transfer ownership of the shared memory frame between the
kernel and userspace NFs. Fig. 2 depicts the zero-copy packet
flow based on AF_XDP.

An XDP program works in the kernel space with the NIC
driver to handle packet reception (and transmission). The NIC
is provided a descriptor (@) pointing to an empty frame in
shared memory. Upon reception, the packet is DMAed into
shared memory (@), and a receive interrupt triggers an XDP_
REDIRECT which moves the packet descriptor to the RX ring
of the NF manager (®) before invoking it. In the interrupt
service routine, the kernel notifies the NF manager about
updates in its RX ring, which the NF manager then accesses
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via its XSK (®@). The interrupt service routine is completed
once the NF manager fetches the packet descriptor from the
RX ring. The NF manager invokes the corresponding NF (®)
and waits for NFs to complete processing.

After the NF completes packet processing, the NF manager
is invoked to transmit the packet out of the node (@). The
descriptor is populated in the TX ring (), pointing to the
packet frame in shared memory. The system call by the NF
manager (typically sendmsg () ) notifies the kernel about the
TX event (®). The kernel then transmits the packet based
on the descriptor given in the TX ring (@). If the packet is
successfully transmitted, the kernel pushes the descriptor back
to the ‘Completion’ ring (@) to inform the NF manager that
the frame can now be reused for the subsequent transmission.
The NF manager fetches the packet descriptor from the ‘Com-
pletion’ ring (®) and moves it to the ‘Fill’ ring for incoming
packets (@).

We implement the NF manager with three threads to manage

the different rings without locks. We use one thread to handle
the read of the RX ring (®) and another one to handle
the transmit to the TX ring (®). We use a third thread to
coordinate between the ‘Completion’ ring and the ‘Fill’ ring.
This thread watches for the kernel to move packet descriptors
into the ‘Completion’ ring (®) upon transmitting completions.
The third thread then moves the packet descriptor from the
‘Completion’ ring to the ‘Fill’ ring (@). The NF manager can
access different rings without locks by using three different
threads.
Service function chains: MiddleNet extensively uses eBPF’s
socket message to support service function chaining for L2/L.3
NFs. A strong motivation for exploring eBPF’s event-driven
approach is its load-proportional overhead compared to the
constant CPU consumption of the polling-based DPDK ap-
proach. We can still achieve zero-copy packet delivery capa-
bility for communication within a chain of functions.

To support flexible routing between functions, we utilize
eBPF’s socket map. The in-kernel socket map maintains a
map between the ID of the target NF and the socket interface
information. As shown in Fig. 3, the function creates a packet
descriptor to be sent (D). The socket message program per-
forms a lookup in the socket map to determine the destination
socket (@). It then redirects the packet descriptor to the next
function (®). That function uses the descriptor to access data
in shared memory (®) and passes the packet descriptor to the
next function through the socket message after processing.

User space

From NF
manager

Kernel space

manager

Fig. 3. Function chaining in MiddleNet: eBPF-based approach

Thus, communication within the function chain does not
involve packet copies.

D. Performance evaluation

Experiment setup: We compare the performance of DPDK
and eBPF approaches to support L2/L.3 NFVs with a ‘packet-
centric’ evaluation by comparing the Maximum Loss Free Rate
(MLFR), the end-to-end latency, and CPU utilization at this
MLEFR for different packet sizes. The DPDK-based approach
is based on the OpenNetVM design [2], and our eBPF-based
approach is as described above. We set up our experiments on
NSF Cloudlab [16] with three nodes: the 1st node is configured
with a Pktgen [17] load generator for L2/L.3 NFV use case;
the 2nd node is configured with MiddleNet using each of the
two alternatives; For this L2/L3 use case, the 3rd node is
configured to return the packets directly back to the 1st node,
to measure latency. Each node has a 40-core CPU, 192GB
memory, and a 10Gbps NIC. We use Ubuntu 20.04 with kernel
version 5.15. We use DPDK version 21.11 [1] and libbpf [18]
version 0.6.0 for eBPF-related experiments. Each run is for
60 seconds. We collect the average value measured across 5
repetitions.

L2/1.3 NFV Performance Evaluation: To compare the
performance difference between the eBPF-based L2/L.3 NFV
approach and the DPDK-based L2/L.3 NFV approach, we
set up two NFs in a chain on the 2nd node: an L3 routing
function followed by an L2 forwarding function. For the L3
routing function, MiddleNet updates the IP address of received
packets, and the L2 forwarding function of a subsequent NF
in the chain updates the MAC address of received packets and
forwards it to the 3rd node.

Fig. 4(a) shows the MLFR for the DPDK-based and the
eBPF-based approaches. The DPDK-based approach achieves
almost the line rate for different packet sizes. The exception is
for packet sizes of 64Bytes, achieving 12.6M packets/sec (84%
of line rate) due to our limiting the number of CPU cores for
the NF Manager and the PMD. Even with the limited CPU
cores, the DPDK-based performance far exceeds the eBPF-
based design performance. At a packet size of 64Bytes, the
eBPF-based approach is limited to a forwarding rate of 3.2
Mpps (only 25% of the DPDK-based approach). Moreover, if
the NFs have more complex processing or if the load were
to be higher (e.g., if there is bidirectional traffic), then we
observe receive-livelock [4]. The performance of the eBPF-
based L2/L.3 NFV option is limited by its overheads, including
a number of interrupts and context switches. For the two
NFs setup in the eBPF-based approach, processing one packet
requires 4 receive interrupts (1 receive interrupt incurred by
AF_XDP, 3 interrupts incurred for communication within the
NF chain). As we observe in Fig. 4(b), both the eBPF-based
NF manager and the NFs spent most of the CPU time in the
kernel (53% for the NF manager, 67% for NFs) to handle
interrupts generated by SKMSG, thus leaving fewer resources
to perform the NF packet forwarding tasks. Although devoting
more resources to the eBPF-based NF manager and NFs may
alleviate the overload, this only postpones the problem as
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Fig. 4. Comparison between different L2/L.3 NFV approaches: (a) Maximum loss free rate (MLFR) under different packet sizes, (b) CPU usage under MLFR
under different packet sizes, (c¢) end-to-end latency under MLFR under different packet sizes.

the traffic load continues to increase. Moreover, using more
resources to mitigate overload defeats the original intention
of using eBPF-based event-driven processing since the goal
of using it is for resource efficiency. For end-to-end packet
latency, the DPDK-based approach achieves 2x improvement
(Fig. 4(c)) compared to the eBPF-based approach.

The DPDK-based approach does constantly consume lots of
CPU (one CPU core per NF, 2 CPU cores for the NF manager).
While this is a concern, its much better performance makes
it more attractive for L2/L3 NFs, since they have to act like
a ‘bump-in-the-wire’. An eBPF-based NFV implementation is
less attractive because of its poor overload behavior.

IV. DESIGN OF MIDDLENET: L4/L.7 MIDDLEBOX

We discuss the corresponding eBPF-based and DPDK-
based designs to support L4/L.7 middleboxes. Since an L4/L7
middlebox relies heavily on protocol processing, we discuss
optimizations, leveraging the kernel protocol stack processing,
focusing on resource efficiency.

A. Overview

Packets pass through the kernel for protocol layer processing
required by L4/L7 middleboxes. Incoming packets processed
by the kernel network protocol stack are delivered through a
socket to a message broker in userspace and inevitably incur
data copying and context switch penalties. This penalty comes
at a cost, but MiddleNet benefits significantly from a fully
functional kernel protocol stack for such L4/L7 middleboxes.
However, to eliminate subsequent, wasteful protocol process-
ing within a chain of middlebox functions (MFs) and achieve
the best possible performance, MiddleNet uses shared memory
support for communication within an MF chain. This is done
for both eBPF-based and DPDK-based approaches and avoids
expensive data copies between MFs to achieve high-speed,
scalable packet forwarding within the chain. In addition, since
the MF operates directly on the payload, this obviates the need
for a dedicated userspace protocol stack and makes the func-
tion more lightweight in terms of memory footprint. For the
eBPF-based L4/L7 middlebox design, packets are forwarded
between MFs using eBPF’s SKMSG capability. We expect this

alternative to be frugal in using compute resources given this
event-driven functionality. For DPDK-based L4/L7 middlebox
functionality, the message broker delivers descriptor entries to
the ring of the target MF, with the payload being placed in
the shared memory after protocol processing by the message
broker. Thus, the design for L4/L7 middlebox processing is
quite similar to the alternatives.

B. The eBPF-based L4/L7 middlebox design

Fig. 5 depicts the packet flow for the eBPF-based L4/L7
middlebox processing. For inbound traffic, after the payload
is moved into shared memory by the message broker (@), a
packet descriptor containing information about the location of
the data in shared memory is sent to the target MF via eBPF’s
SKMSG mechanism (®). The MF then uses the descriptor to
access the data in shared memory (®). For outbound traffic,
once the MF has finished processing the packet (@), the MF
uses the SKMSG to inform the message broker (®), which then
fetches the packet in shared memory (®) and transmits it on
the network via the kernel protocol stack.

Function chain support: With the eBPF-based L4/L7 ap-
proach, MiddleNet utilizes the eBPF’s SKMSG and socket
map for delivering packet descriptors within the function
chain (similar to what we described for L2/L3 NFV with
eBPF), as shown in Fig. 3. Although the eBPF-based L4/L7
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Fig. 5. Packet processing flow for eBPF-based L4/L7 middleboxes
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approach still executes in a purely interrupt-driven manner,
since the kernel protocol stack is involved, it often uses
a flow-controlled transport protocol. This potentially avoids
overloading the receiver, and therefore, receive-livelocks are
less of a concern. Interrupt-based processing does not use
up a CPU like polling, so it is more resource-efficient and
benefits the L4/L7 use case. We further mitigate the impact of
interrupts with batching.

Adaptive batching of SKMSG Processing: Since the eBPF-
based approach uses SKMSG for packet descriptor transmis-
sion, bursty traffic can cause a large number of SKMSG
transfers. We consider an adaptive batching mechanism to
reduce the overhead of frequent SKMSG transfers. For each
interrupt generated by SKMSG, instead of reading only one
packet descriptor present in the socket buffer, we read multiple
(up to a limit) packet descriptors available in the socket buffer.
Thus, we can reduce the total number of interrupts, even for
frequent SKMSG transfers, and mitigate overload behavior.

C. The DPDK-based L4/L7 middlebox design

We base our DPDK-based L4/L’7 middlebox design on the
overall design of OpenNetVM [2]. To leverage the kernel
protocol stack, we restructure the NF manager of the L2/L.3
use case (Fig. 1) into a message broker. The message broker
is assigned a Linux socket interface to receive payloads from
the kernel, as shown in Fig. 6. The message broker writes
the received payload to shared memory (@), then, consulting
the routing table, pushes the packet descriptor to the RX ring
of the target MF (®@). The MF keeps polling its RX ring for
arriving packets. The MF uses the received packet descriptor
to access the packet in shared memory and processes it (®).
Once the processing is complete (@), the MF pushes the packet
descriptor to its TX ring. On the other side, the message broker
polls the TX ring of MFs for the packet descriptor (®), then
accesses the shared memory and sends the packet out through
the kernel protocol stack (®).

Function chain support: The function chain support in the
DPDK-based L4/L.7 middlebox design is the same as the
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Fig. 6. Packet processing flow for DPDK-based L4/L7 middleboxes

service function chain support in the DPDK-based L2/L.3 NFV
use case ($III-B). Here, the message broker performs the
(same) tasks to transfer packet descriptors between MFs.

D. Performance Evaluation of L4/L7 middleboxes

Experiment Setup: We now study the performance differ-
ences between the eBPF-based L4/L7 implementation option
for MiddleNet (Fig. 5, hereafter referred to as MN-E) and
the DPDK-based L4/L7 MiddleNet implementation (Fig. 6,
hereafter referred to as MN-D). As a third alternative, we
use an NGINX proxy to study the impact of the loosely-
coupled design of MiddleNet. The NGINX proxy acts as
a non-virtualized proxy to perform functions via internal
function calls, which avoids introducing context switches or
interrupts to provide good dataplane performance with a static,
monolithic function implementation. We reuse most of the
experiment setup described in §III-D.

We consider a typical HTTP workload for the L4/L.7 middle-
box scenario and examine application-level metrics, including
request rate, response latency, and CPU usage, where the
middlebox acts as a reverse proxy for web servers. The 1st
node is configured to run the Apache Benchmark [19] to
generate HTTP workloads. The 2nd node is configured with
the MiddleNet system. On the 3rd node, we configure two
NGINX [20] instances as web servers. We enable adaptive
batching for the eBPF-based approach to minimize the over-
head incurred by frequent SKMSG interrupts between MFs and
the message broker at high concurrency. We use a chain with
two MFs. The first is a reverse proxy function that performs
round-robin load balancing between the two NGINX web
server backends on the 3rd node. The second function is a
URL rewrite function that helps perform redirection for static
websites.

We also compare the scalability of MN-D and MN-E, when
the number of MFs in a linear chain increases. To evaluate the
impact of CPU-intensive tasks on the network performance
of MF chains, we let MFs perform prime number generation
(based on the sieve-of-Atkin algorithm [21]) when a request
is received. Each MF is assigned one dedicated CPU core to
perform tasks, including RX/TX of requests and the prime
number generation. We set the concurrency level (i.e., the
number of clients sending HTTP requests concurrently) of
Apache Benchmark to 512 to generate sufficient load.
Evaluation: Fig. 7 compares the RPS, response latency, and
CPU usage of the different alternatives. MN-E depends on in-
kernel SKMSG to pass packet descriptors between MFs, which
inevitably generates context switches and interrupts, leading
to slightly worse latency and throughput than MN-D. When
the concurrency is between 1 and 32, there is a throughput
difference between MN-D and MN-E, ranging from 1.09x to
1.3x. The throughput of NGINX’s monolithic implementation
is in-between MN-D and MN-E. At the lowest concurrency
level of 1, MN-E consumes 37% of the CPU, which is a
10x reduction compared to MN-D (404%, i.e., 4 CPU cores).
Since MN-D uses polling to deliver packet descriptors, it
continuously consumes CPU resources even when the traffic
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increasing number of CPU-intensive MFs in the chain.

load is low, resulting in wasted CPU resources. Although MN-
D achieves 1.3 x better RPS and latency compared to the MN-
E at a concurrency of 1, MN-E’s resource efficiency more than
makes up for its lower throughput (which is likely not the goal
when using a concurrency of 1, in any case) compared to MN-
D’s constant usage of CPU. Thus, it is more desirable to use
the lightweight MN-E approach for these light loads.

When the concurrency level increases and the load is higher,
the adaptive batching of the MN-E approach amortizes the
interrupt and context switch overheads. The performance gap
between MN-E and the others reduces to be within 1.05x for
concurrency levels higher than 64. With adaptive batching,
SKMSG can pass a set of packet descriptors, incurring only one
context switch and interrupt, saving substantial CPU cycles,
reducing latency, and improving throughput.

Compared to a monolithic NGINX as a middlebox, the MN-
E approach exhibits slightly worse throughput and latency per-
formance (1.04x less RPS due to 1.04x higher response de-
lay) because of the overhead of function chaining, SKMSG, and
virtualization. NGINX’s internal function calls have slightly
lower overhead (25% less on average) than middlebox function
chaining with SKMSG, which has additional context switches
and interrupts. However, running a set of middlebox functions
as microservices improves flexibility and resiliency, allowing
us to scale better, according to traffic load, especially with
heterogeneous functions. Moreover, it allows functions to
be shared between different middlebox function chains to
improve resource utilization. With orchestration engines, e.g.,
Kubernetes, intelligent scaling and placement policies can be
applied with MiddleNet to improve resource efficiency further
while still maintaining performance very close to a monolithic
middlebox design.

interrupts, which is strictly load-proportional and avoids CPU
contention. Since the prime number generation is performed
within MN-E’s MFs, it is able to fully utilize the assigned
CPU core, improving its performance. To improve MN-D’s
performance, more CPU resources need to be assigned to the
MFs, meaning that we are using resources inefficiently. In
addition, for the combined CPU usage of the message broker
and MFs, MN-D always needs one more CPU core than MN-E
(Fig .8(c)). The extra CPU usage of MN-D is due to the RX
polling in the message broker to receive requests from the MF.
Since prime number generation is time-consuming, it results
in a lower request rate. This means that the CPU devoted to
handling RX of requests is used inefficiently. This reiterates
the fact that MN-D uses resources inefficiently for this case,
when dealing with CPU-intensive functions.

Throughout these experiments, MN-E has significant re-
source savings at different concurrency levels compared to
MN-D, while having comparable throughput. Further, MN-
E can even achieve better performance than MN-D when it
executes CPU-intensive functions even when it uses resources
more frugally. It also achieves close to the same performance
as a highly optimized, monolithic application like NGINX.
The resource efficiency benefits of the event-driven capability
of eBPF, in conjunction with SKMSG to support shared mem-
ory processing, is a highly desirable way of building L4/L7
middlebox functionality in software.

V. A UNIFIED DESIGN BASED ON SR-IOV

Based on the understanding from studying the alternative
approaches and their performance characteristics, we now
develop the overall architecture of MiddleNet that supports
the co-existence of network resident NFV and middlebox
capabilities in a unified framework running on a single system.

SR-IOV [8] allows multiple Virtual Functions (VFs) on a
shared NIC, as depicted in Fig. 9. A VF acts as a distinct
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logical interface on the PCle that offers direct access to the
physical NIC resources that are shared across multiple VFs. It
still achieves close to the single physical NIC’s performance.
By dividing the hardware resources available on the physical
NIC into multiple VFs, we can dedicate a VF for each L2/L.3
NFV and L4/L7 middlebox functions without having any
one take up the entire physical NIC. The aggregate NIC
performance will still be at the line rate. MiddleNet uses the
Flow Bifurcation mechanism [22] for splitting traffic within
the physical NIC in a flow or state-dependent manner. Since
each VF is associated with different IP and MAC addresses,
MiddleNet dynamically selects the packet processing layer
(based on the VF it is attached to) from L2 to L7, providing
a rich set of network-resident capabilities.

A. Flow and State-dependent packet processing using SR-IOV

MiddleNet attaches flow rules to the packet classifier in the
physical NIC to support flow (and possibly state) dependent
packet processing. Once a packet is received, the packet
classifier parses and processes it based on its IP 5 tuple
(i.e., source/destination IPs, source/destination ports, protocol),
which helps differentiate between packet flows.

(1) For a packet that needs to be handled by L2/L.3 NFs, the
classifier hands it to the VF bound to DPDK. The VF DMA’s
the raw packet to the shared memory in userspace. On the
other side, the NF manager obtains the packet descriptor via
the PMD and processes the packet in shared memory.

(2) For a packet that needs to be handled by L4/L7 MFs,
the packet classifier hands the packet to the kernel TCP/IP
stack through the corresponding VF. Since L4/L.7 MFs require
transport layer processing, MiddleNet utilizes the full-featured
kernel protocol stack.

Because SR-IOV allows multiplexing of physical NIC re-
sources, the split between the DPDK path and Linux kernel
protocol stack path can be easily handled. L2/.3 NFs and
L4/L'7 MFs can co-exist on the same node in MiddleNet.

Using SR-IOV in a simple design, however, would result in
these two frameworks co-existing as two distinct and separate
functions providing services for distinct flows. The NIC switch
feature of SR-IOV [23] can be used to bridge between different
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N N
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Fig. 9. The overall architecture of MiddleNet: A Combination of DPDK and
eBPF via SR-IOV.
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VFs within the NIC!. For both L2/L.3 NFs and L4/L7 MFs
to operate on the same flow, we use the NIC switch to
have packets pass through the kernel protocol stack in or
out of the L4/L7 layer to the L2/L3 NF. But this approach
inevitably introduces extra overhead and may compromise the
performance gain achieved by L2/L3 kernel bypass. Instead,
since the packet payload (including header and all) is in Mid-
dleNet’s shared memory, an ideal way is to directly transfer
packets between L2/L.3 NFs and L4/L7 MFs without looping
it back through SR-IOV’s NIC switch. One possible approach
is using the Kernel NIC Interface (KNI [24]) to perform
userspace protocol processing by directly leveraging the kernel
networking protocol stack while still keeping packets in shared
memory. We speculate that MiddleNet could utilize KNI to
remap the address space of the userspace shared memory
into kernel address space, thus eliminating expensive system
calls, interrupts and data copies, and can interact with the
kernel protocol stack to provide much higher performance. A
small overhead would be incurred for context switching and
converting each packet’s control information between the rfe_
mbuf and sk_buff formats. KNI also provides the flexibility of
configuring the number of kernel threads that can be used for
processing and setting the core affinity for each kernel thread.
This flexibility will allow us to dynamically control the usage
of CPU resources based on different types of workloads [15].

B. Performance evaluation

We investigate the performance of a unified L2/L.3 NFV
and L4/L7 middlebox and examine the interaction between the
two, using SR-IOV to split the traffic. To mitigate interference
between the load generators for L2/L.3 (Pktgen [17]) and
L4/L7 (Apache Benchmark [19]), we deploy Pktgen on the 1st
node and Apache Benchmark on the 3rd node. We configure
two NGINX servers on the 3rd node as the L4/L7 traffic sink.
We configure two VFs on the 2nd node with SR-IOV and
bind L2/L.3 MiddleNet (DPDK) and L4/L.7 MiddleNet (eBPF)
to separate VFs. We use the same NFs (L3 routing and L2
forwarding) and MFs (reverse proxy and URL rewrite) on the

'A SR-IOV enabled NIC must include the internal hardware bridge to
support forwarding and packet classification between VFs on the same NIC.
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2nd node as described in §III-D and §IV-D. We modify the
NFs and MFs to perform hairpin routing: L2/L.3 NFs return
traffic to the 1st node, and L4/L7 MFs return traffic to the
3rd node. Thus, we eliminate the interference that occurs
between the two traffic generators. For L2/L.3 traffic, we keep
the sending rate at the MLFR. For L4/L7 traffic, we use a
concurrency of 256 with the Apache Benchmark.

We study whether there is interference by checking the
aggregate throughput as well as the throughput for the L2/L.3
traffic processed by NFV and the L4/L7 processed by the
middlebox, as shown in Fig. 10(a). The aggregate throughput
of L2/L3 NFs and L4/L7 MFs remains close to 10Gbps, with
negligible performance loss across various packet sizes. We
also study the impact of adding L4/L7 flows when L2/L.3
traffic (128Bytes packets) goes through MiddleNet at line rate
(10 Gbps link). As shown in Fig. 10(b), at the 25th second, the
Apache Benchmark starts to generate L4/L7 traffic (0.22Gbps),
and the throughput of L2/L.3 NFs correspondingly drops to
9.78Gbps. Thus, our unified design in MiddleNet for the co-
existence of DPDK-based L2/L3 NFs and eBPF-based MFs
provides both flexibility and performance.

VI. CONCLUSION

We presented MiddleNet, a unified environment supporting
L2/L.3 NFV functionality and L4/L7 middlebox functions. In
MiddleNet, we chose the high-performance packet processing
of DPDK for L2/L3 NFs and the resource efficiency of
eBPF for L4/L7 middlebox functions. MiddleNet leverages
shared memory processing for both use cases to support high-
performance function chains. Experimental results demon-
strated the performance benefits of using DPDK for L2/L.3
NFV. MiddleNet can achieve full line rate for almost all packet
sizes given adequate CPU resources provided to MiddleNet’s
NF manager. Its throughput outperforms an eBPF-based design
that depends on interrupts by 4x for small packets and has
a 2x reduction in latency. For the L4/L7 use case, the per-
formance of our eBPF-based design in MiddleNet is close to
the DPDK-based approach, getting to within 1.05x at higher
loads (large concurrency levels). In addition, the eBPF-based
approach has significant resource savings, with an average of
3.2x reduction in CPU usage compared to a DPDK-based
L4/L7 design. Using SR-IOV on the NIC, MiddleNet creates
a unified environment with negligible impact on performance,
running the DPDK-based L2/L3 NFV service chains and
eBPF-based L4/L7 middlebox function chains on the same
node. This can bring substantial deployment flexibility.
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