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Abstract—Traditional network resident functions (e.g., fire-
walls, network address translation) and middleboxes (caches, load
balancers) have moved from purpose-built appliances to software-
based components. However, L2/L3 network functions (NFs) are
being implemented on Network Function Virtualization (NFV)
platforms that extensively exploit kernel-bypass technology. They
often use DPDK for zero-copy delivery and high performance.
On the other hand, L4/L7 middleboxes, which usually require full
network protocol stack support, take advantage of a full-fledged
kernel-based system with a greater emphasis on functionality.
Thus, L2/L3 NFs and middleboxes continue to be handled by
distinct platforms on different nodes.

This paper proposes MiddleNet that seeks to overcome this
dichotomy by developing a unified network resident function
framework that supports L2/L3 NFs and L4/L7 middleboxes.
MiddleNet supports function chains that are essential in both
NFV and middlebox environments. MiddleNet uses DPDK for
zero-copy packet delivery without interrupt-based processing,
to enable the ‘bump-in-the-wire’ L2/L3 processing performance
required of NFV. To support L4/L7 middlebox functionality,
MiddleNet utilizes a consolidated, kernel-based protocol stack
processing, avoiding a dedicated protocol stack for each function.
MiddleNet fully exploits the event-driven capabilities provided
by the extended Berkeley Packet Filter (eBPF) and seamlessly
integrates it with shared memory for high-performance com-
munication in L4/L7 middlebox function chains. The overheads
for MiddleNet are strictly load-proportional, without needing
the dedicated CPU cores of DPDK-based approaches. MiddleNet
supports flow-dependent packet processing by leveraging Single
Root I/O Virtualization (SR-IOV) to dynamically select packet
processing needed (Layer 2 to Layer 7). Our experimental results
show that MiddleNet can achieve high performance in such a
unified environment.

Index Terms—Middleboxes, NFV, DPDK, eBPF, service func-
tion chains.

I. INTRODUCTION

Networks have increasingly become software-based, us-

ing virtualization to exploit common off-the-shelf (COTS)

hardware to provide a wide array of network-resident func-

tions, avoiding deploying functions in purpose-built hardware

appliances. This has broadened the networking capabilities

provided by the network and cloud platforms, thus offload-

ing the burden from end-hosts that have limited power and

compute capability (e.g., cell phones or IoT devices). With

softwarized network-resident functions, network services can

be dynamically deployed across shared hosts.

However, there continues to be a dichotomy in how vari-

ous network resident services can be supported on software-

based platforms. Layer 2 and Layer 3 (L2/L3) functions

that seek to be transparent bump-in-the-wire capabilities are

being supported with Network Function Virtualization (NFV)

designs. These focus on performance, are built around network

functions (NFs) and chains in userspace supported by kernel-

bypass technology such as DPDK [1]. Other than switching

(demultiplexing and forwarding), they do not provide a full

protocol stack and are exemplified by approaches such as

OpenNetVM [2] and OpenvSwitch (OVS) [3]. The use of

DPDK helps provide zero-copy packet delivery and shared

memory to minimize overheads for data access within the

chain, making it possible to support complex function chaining

at line rate. Moreover, DPDK’s poll-mode driver avoids un-

desirable behavior (i.e., receive-livelocks) under overload [4].

Nevertheless, dedicated polling consumes significant CPU

resources and is not load-proportional. While this may be

reasonable in an NFV-only dedicated system, it is challenging

for systems that host many services, including middlebox

functionality.

Middleboxes require the full network protocol stack’s pro-

cessing (e.g., application layer functionality such as HTTP

proxies), in addition to more complex stateful functionality

in userspace, such as storage and other I/O operations (e.g.,

caching). Thus, flexibility and functionality are prominent

concerns, with performance being a second (albeit important)

consideration. It is often desirable to depend on a robust

and proven kernel-based protocol stack [5], as specialized

userspace protocol stack implementations often do not support

all possible corner cases. However, depending on the kernel-

based protocol stack often results in unnecessary duplicate

protocol processing when multiple middlebox functions (MFs)

are chained together. It is desirable to leverage the same

design features of typical NFV platforms, such as zero-copy

shared memory processing and the avoidance or mitigation of

interrupt processing. This can recover some of the performance

penalties of using a kernel protocol stack and ensure good

overload behavior.

These distinct requirements for NFV and middlebox designs

typically result in the need for different systems. However,

networks require both types of functions to be supported

concurrently for different flows, and in many cases, even

for the same flow. This calls for supporting both types of

functionality in a unified framework so that the functionality

can be deployed on COTS hosts dynamically and flexibly.

For achieving this unified platform, we develop MiddleNet,

a unified, high-performance NFV and middlebox framework.

We take a somewhat unconventional approach by examining

the design of two major alternatives in supporting NFV
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and middleboxes, and evaluating them. The first is to fully

exploit the feature-rich networking subsystem provided by the

extended Berkeley Packet Filter (eBPF [6]). Using eBPF’s

event-driven functionality, we examine its utility in supporting

NFV and middlebox capabilities. Importantly, eBPF incurs

negligible overhead in the absence of events (such as packet

arrivals to a given function or even to the platform), mak-

ing it an excellent fit for supporting a rich set of diverse,

efficient network resident functions. An eBPF program has

size restrictions and must run to completion, requiring careful

design [7]. A second alternative approach is to build the unified

framework around DPDK, as has been used in many high-

performance virtualized environments, e.g., OpenNetVM [2].

Such environments provide zero-copy delivery into userspace.

With poll-mode drivers (PMD), they avoid the deleterious

effects of interrupt-based processing of network I/O [4]. We

implement these alternatives and evaluate their performance

and resource usage for L2/L3 NFV and L4/L7 middlebox use

cases. This helps us understand the strengths and limitations of

each option, and understand their root causes. We then arrive

at the design of MiddleNet as the most suitable framework

for a unified platform for both capabilities. MiddleNet uses

Single Root I/O Virtualization (SR-IOV [8]) to allow their

co-existence. MiddleNet leverages the strengths of DPDK

for L2/L3 NFV while taking advantage of eBPF for L4/L7

middleboxes.

II. RELATED WORK

NFV platforms use different implementation approaches and

primarily operate at L2/L3. OpenNetVM [2], based on DPDK,

uses the microservice paradigm with a flexible composition

of functions and uses shared memory to achieve full line-

rate performance. However, OpenNetVM lacks full-fledged

protocol stack support, focusing on supporting L2/L3 NFs.

Compared to OpenNetVM, MiddleNet supports processing

across the entire protocol stack, including application sup-

port. Other NFV platforms take different approaches. Both

ClickOS [9] and NetMap [10] use traditional kernel style

processing and mapping of kernel-user space memory, using

interrupts for notifications. The interrupt-based notification

schemes of ClickOS and NetMap can be vulnerable to poor

overload behavior because of receive-livelocks [4]. In con-

trast, the L2/L3 processing in MiddleNet uses polling, thus

avoiding receive-livelocks. E2 [11] integrates all the NFs as

one monolith to help improve performance but gives up some

flexibility to build complex NF chains through the composition

of independently developed functions. NFV designs have

increasingly adopted the microservice paradigm for flexible

composition of functions while still striving to achieve full

line-rate performance. Supporting this, MiddleNet’s disaggre-

gated design offers the flexibility to build complex L2/L3 NF

chains.

Network-resident middleboxes’ functionality depends on

having full kernel protocol processing, typically terminating a

transport layer connection and requiring a full-fledged protocol

stack. Efforts have been made to pursue a high-performance

middlebox framework with protocol processing support [5],

[12], [13]. However, each of these proposals has its difficulties.

mOS [12] focuses on developing a monolithic middlebox,

lacking the flexibility of a disaggregated design like Mid-

dleNet. Microboxes [13] leverages DPDK and OpenNetVM’s

shared memory design to improve packet processing perfor-

mance and flexible middlebox function chaining. However, it

does not provide a full-fledged protocol stack (it only supports

TCP). The CPU consumption of DPDK-based designs is a

further deterrent in the L4/L7 use case, significantly when

the chain’s complexity increases. Establishing communica-

tion channels for a chain of middleboxes using the kernel

network stack incurs considerable overhead. Every transfer

between the distinct middleboxes typically involves full pro-

tocol stack traversals, which adds considerable overhead. It

typically involves two data copies, context switches, protocol

stack processing, multiple interrupts, and one serialization and

deserialization operation. MiddleNet is designed to reduce

these overheads by leveraging event-driven shared memory

processing to minimize CPU consumption. StackMap [5] also

leverages the feature-rich kernel protocol stack to perform

protocol processing while bypassing the kernel to improve

packet I/O performance. However, it is more focused on end-

system support than middlebox function chaining. StackMap’s

capability may be complementary to the design of MiddleNet.

There has not been a significant effort to design a unified

environment where L2/L3 NFV and L4/L7 middlebox environ-

ments co-exist. MiddleNet is designed to address this issue.

III. DESIGN OF MIDDLENET: L2/L3 NFV

We first discuss the eBPF-based and DPDK-based network-

ing alternatives for L2/L3 NFV support, given the performance

requirement of operating at line rate and being capable of sup-

porting service function chains. Since they operate at L2/L3,

there is less emphasis on having a full-function protocol stack.

A. Overview

To minimize overheads, reduce resource consumption, and

achieve the full line rate, MiddleNet needs to take full advan-

tage of zero-copy packet delivery. For evaluating an eBPF-

based L2/L3 NFV design, MiddleNet uses the kernel-bypass

support offered by AF XDP [14]. By DMAing packets into

the userspace, MiddleNet saves CPU cycles spent on the

data copying, protocol processing, and context switching over-

heads involved in kernel protocol stack processing. AF XDP

depends on the interrupts triggered by the event execution

of the XDP program attached to the NIC driver (Fig. 2).

This interrupt serves to notify the packet processing in the

userspace. However, these interrupts have to be managed with

care to avoid poor overload behavior when subjected to high

packet rates [4]. For evaluating the DPDK-based alternative for

MiddleNet, we adopt the architecture of OpenNetVM [2] for

supporting L2/L3 NFs. An NF Manager mediates the delivery

of packets to and from the network, running on a core that

constantly polls the NIC and uses Receive (RX)/Transmit

(TX) descriptor rings to communicate with the NFs. Function
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Fig. 1. Packet processing flow for DPDK-based L2/L3 NFV: RX and TX

chains are also mediated through the NF manager, which

copies descriptor entries into the corresponding target NF,

enabling lock-free communication. Data resides in shared

memory (Huge Pages) so that there are no copies of the packet

payload.

B. The DPDK-based L2/L3 NFV design

The DPDK-based approach uses polling-based zero-copy

packet delivery. Packets bypass the kernel stack and are

delivered directly into the shared memory in the userspace.

DPDK uses its Poll Mode Driver (PMD) to poll the RX ring

to retrieve arriving packets constantly. While assuring packet

processing performance, it comes at the cost of occupying

one CPU core for polling. In addition, for each NF of the

L2/L3 service function chain, one CPU core is used up for

each function. Thus, DPDK can be ‘expensive’ in having

dedicated CPU cores for each functioning component. This

can be wasteful if incoming traffic is low. Somewhat more

complex NFV support, such as NFVnice [15], can be used

to mitigate these overheads by sharing a CPU core across

multiple NFs.

Fig. 1 depicts the packet flow of DPDK-based L2/L3 NFs.

In the RX path, PMD provides a packet descriptor for the

NIC (¬) to deliver the packet into the shared memory via

DMA (­). The NF manager examines the packet, and moves

the packet descriptor into the RX ring of the target NF

(®), based on the routing table. The target NF obtains the

packet descriptor by polling its RX ring and uses it to access

the packet in shared memory (¯). After the NF’s packet

processing is complete (°), the NF writes the descriptor to

its TX ring (±). On the other side, the NF manager (as the

DPDK primary process) continuously polls the NF’s TX ring

and sets up the packet transmission based on the descriptor in

the ring (²). The PMD then completes the processing once the

packet is transmitted, to clean up the transmit descriptor (³).

Both TX and RX rings are polled by the PMD for RX and

TX from/to the NIC, and NFs use polling to RX or TX packet

descriptors. All of this inevitably increases CPU consumption.

Methods to reduce CPU consumption have been explored [15],

which this design can conveniently adopt.

User
space

Kernel
space

NIC XDP program

NF manager

Shared memory

TX Comp.RXFill

6

5
4

3

2

1
5

4

3

2

1

7

NF 1 skmsg NF 2 skmsg NF 3 skmsg

skmsg

Fig. 2. Packet processing flow for eBPF-based L2/L3 NFV: RX and TX

Service function chains: To support routing between a chain

of functions for the DPDK-based approach, the NF manager

utilizes destination information in the packet descriptor to

forward the packet to the next NF in the chain. The chaining is

done by selecting the name of the next service NF. The routing

table in the NF manager is used to resolve that NF’s ID,

thus avoiding the need for each function to maintain a private

routing table. After the NF manager gets a packet descriptor

from the TX ring of an NF, it parses the packet descriptor

to look at the destination NF information. It then pushes a

packet descriptor to the RX ring of the next function to transfer

ownership of the shared memory frame (as pointed to by the

descriptor). Ownership for write is based on the NF currently

owning a descriptor to that frame in shared memory, thus

ensuring a single writer and obviating the need for locks. Using

the NF manager for ‘centralized’ routing mitigates contention

when multiple NFs may forward to a downstream NF.

C. The eBPF-based L2/L3 NFV design

With the support of AF XDP, packets processed by L2/L3

NFs are delivered to shared memory in userspace, also bypass-

ing the kernel and avoiding data copies. NFs that utilize AF

XDP have a dedicated AF XDP socket (i.e., XSK) that serves

as an interface to interact with the kernel to handle RX and

TX for AF XDP-based packet delivery. Each XSK is assigned

a set of RX and TX rings to pass packet descriptors containing

pointers to packets in shared memory. All XSKs share a set of

‘Completion’ and ‘Fill’ rings, owned by the kernel and used to

transfer ownership of the shared memory frame between the

kernel and userspace NFs. Fig. 2 depicts the zero-copy packet

flow based on AF XDP.

An XDP program works in the kernel space with the NIC

driver to handle packet reception (and transmission). The NIC

is provided a descriptor (¬) pointing to an empty frame in

shared memory. Upon reception, the packet is DMAed into

shared memory (­), and a receive interrupt triggers an XDP

REDIRECT which moves the packet descriptor to the RX ring

of the NF manager (®) before invoking it. In the interrupt

service routine, the kernel notifies the NF manager about

updates in its RX ring, which the NF manager then accesses
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via its XSK (¯). The interrupt service routine is completed

once the NF manager fetches the packet descriptor from the

RX ring. The NF manager invokes the corresponding NF (°)

and waits for NFs to complete processing.

After the NF completes packet processing, the NF manager

is invoked to transmit the packet out of the node (¶). The

descriptor is populated in the TX ring (·), pointing to the

packet frame in shared memory. The system call by the NF

manager (typically sendmsg()) notifies the kernel about the

TX event (¸). The kernel then transmits the packet based

on the descriptor given in the TX ring (¹). If the packet is

successfully transmitted, the kernel pushes the descriptor back

to the ‘Completion’ ring (º) to inform the NF manager that

the frame can now be reused for the subsequent transmission.

The NF manager fetches the packet descriptor from the ‘Com-

pletion’ ring (») and moves it to the ‘Fill’ ring for incoming

packets (¼).

We implement the NF manager with three threads to manage

the different rings without locks. We use one thread to handle

the read of the RX ring (¯) and another one to handle

the transmit to the TX ring (·). We use a third thread to

coordinate between the ‘Completion’ ring and the ‘Fill’ ring.

This thread watches for the kernel to move packet descriptors

into the ‘Completion’ ring (») upon transmitting completions.

The third thread then moves the packet descriptor from the

‘Completion’ ring to the ‘Fill’ ring (¼). The NF manager can

access different rings without locks by using three different

threads.

Service function chains: MiddleNet extensively uses eBPF’s

socket message to support service function chaining for L2/L3

NFs. A strong motivation for exploring eBPF’s event-driven

approach is its load-proportional overhead compared to the

constant CPU consumption of the polling-based DPDK ap-

proach. We can still achieve zero-copy packet delivery capa-

bility for communication within a chain of functions.

To support flexible routing between functions, we utilize

eBPF’s socket map. The in-kernel socket map maintains a

map between the ID of the target NF and the socket interface

information. As shown in Fig. 3, the function creates a packet

descriptor to be sent (¬). The socket message program per-

forms a lookup in the socket map to determine the destination

socket (­). It then redirects the packet descriptor to the next

function (®). That function uses the descriptor to access data

in shared memory (¯) and passes the packet descriptor to the

next function through the socket message after processing.

Kernel space

User space Shared memory

eBPF Socket Map

NF/MF 1 skmsg NF/MF 2 skmsg NF/MF 3 skmsg

To NF 
manager

1

2

3

4

From NF 
manager

Fig. 3. Function chaining in MiddleNet: eBPF-based approach

Thus, communication within the function chain does not

involve packet copies.

D. Performance evaluation

Experiment setup: We compare the performance of DPDK

and eBPF approaches to support L2/L3 NFVs with a ‘packet-

centric’ evaluation by comparing the Maximum Loss Free Rate

(MLFR), the end-to-end latency, and CPU utilization at this

MLFR for different packet sizes. The DPDK-based approach

is based on the OpenNetVM design [2], and our eBPF-based

approach is as described above. We set up our experiments on

NSF Cloudlab [16] with three nodes: the 1st node is configured

with a Pktgen [17] load generator for L2/L3 NFV use case;

the 2nd node is configured with MiddleNet using each of the

two alternatives; For this L2/L3 use case, the 3rd node is

configured to return the packets directly back to the 1st node,

to measure latency. Each node has a 40-core CPU, 192GB

memory, and a 10Gbps NIC. We use Ubuntu 20.04 with kernel

version 5.15. We use DPDK version 21.11 [1] and libbpf [18]

version 0.6.0 for eBPF-related experiments. Each run is for

60 seconds. We collect the average value measured across 5

repetitions.

L2/L3 NFV Performance Evaluation: To compare the

performance difference between the eBPF-based L2/L3 NFV

approach and the DPDK-based L2/L3 NFV approach, we

set up two NFs in a chain on the 2nd node: an L3 routing

function followed by an L2 forwarding function. For the L3

routing function, MiddleNet updates the IP address of received

packets, and the L2 forwarding function of a subsequent NF

in the chain updates the MAC address of received packets and

forwards it to the 3rd node.

Fig. 4(a) shows the MLFR for the DPDK-based and the

eBPF-based approaches. The DPDK-based approach achieves

almost the line rate for different packet sizes. The exception is

for packet sizes of 64Bytes, achieving 12.6M packets/sec (84%

of line rate) due to our limiting the number of CPU cores for

the NF Manager and the PMD. Even with the limited CPU

cores, the DPDK-based performance far exceeds the eBPF-

based design performance. At a packet size of 64Bytes, the

eBPF-based approach is limited to a forwarding rate of 3.2

Mpps (only 25% of the DPDK-based approach). Moreover, if

the NFs have more complex processing or if the load were

to be higher (e.g., if there is bidirectional traffic), then we

observe receive-livelock [4]. The performance of the eBPF-

based L2/L3 NFV option is limited by its overheads, including

a number of interrupts and context switches. For the two

NFs setup in the eBPF-based approach, processing one packet

requires 4 receive interrupts (1 receive interrupt incurred by

AF XDP, 3 interrupts incurred for communication within the

NF chain). As we observe in Fig. 4(b), both the eBPF-based

NF manager and the NFs spent most of the CPU time in the

kernel (53% for the NF manager, 67% for NFs) to handle

interrupts generated by SKMSG, thus leaving fewer resources

to perform the NF packet forwarding tasks. Although devoting

more resources to the eBPF-based NF manager and NFs may

alleviate the overload, this only postpones the problem as
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Fig. 4. Comparison between different L2/L3 NFV approaches: (a) Maximum loss free rate (MLFR) under different packet sizes, (b) CPU usage under MLFR
under different packet sizes, (c) end-to-end latency under MLFR under different packet sizes.

the traffic load continues to increase. Moreover, using more

resources to mitigate overload defeats the original intention

of using eBPF-based event-driven processing since the goal

of using it is for resource efficiency. For end-to-end packet

latency, the DPDK-based approach achieves 2× improvement

(Fig. 4(c)) compared to the eBPF-based approach.

The DPDK-based approach does constantly consume lots of

CPU (one CPU core per NF, 2 CPU cores for the NF manager).

While this is a concern, its much better performance makes

it more attractive for L2/L3 NFs, since they have to act like

a ‘bump-in-the-wire’. An eBPF-based NFV implementation is

less attractive because of its poor overload behavior.

IV. DESIGN OF MIDDLENET: L4/L7 MIDDLEBOX

We discuss the corresponding eBPF-based and DPDK-

based designs to support L4/L7 middleboxes. Since an L4/L7

middlebox relies heavily on protocol processing, we discuss

optimizations, leveraging the kernel protocol stack processing,

focusing on resource efficiency.

A. Overview

Packets pass through the kernel for protocol layer processing

required by L4/L7 middleboxes. Incoming packets processed

by the kernel network protocol stack are delivered through a

socket to a message broker in userspace and inevitably incur

data copying and context switch penalties. This penalty comes

at a cost, but MiddleNet benefits significantly from a fully

functional kernel protocol stack for such L4/L7 middleboxes.

However, to eliminate subsequent, wasteful protocol process-

ing within a chain of middlebox functions (MFs) and achieve

the best possible performance, MiddleNet uses shared memory

support for communication within an MF chain. This is done

for both eBPF-based and DPDK-based approaches and avoids

expensive data copies between MFs to achieve high-speed,

scalable packet forwarding within the chain. In addition, since

the MF operates directly on the payload, this obviates the need

for a dedicated userspace protocol stack and makes the func-

tion more lightweight in terms of memory footprint. For the

eBPF-based L4/L7 middlebox design, packets are forwarded

between MFs using eBPF’s SKMSG capability. We expect this

alternative to be frugal in using compute resources given this

event-driven functionality. For DPDK-based L4/L7 middlebox

functionality, the message broker delivers descriptor entries to

the ring of the target MF, with the payload being placed in

the shared memory after protocol processing by the message

broker. Thus, the design for L4/L7 middlebox processing is

quite similar to the alternatives.

B. The eBPF-based L4/L7 middlebox design

Fig. 5 depicts the packet flow for the eBPF-based L4/L7

middlebox processing. For inbound traffic, after the payload

is moved into shared memory by the message broker (¬), a

packet descriptor containing information about the location of

the data in shared memory is sent to the target MF via eBPF’s

SKMSG mechanism (­). The MF then uses the descriptor to

access the data in shared memory (®). For outbound traffic,

once the MF has finished processing the packet (¯), the MF

uses the SKMSG to inform the message broker (°), which then

fetches the packet in shared memory (±) and transmits it on

the network via the kernel protocol stack.

Function chain support: With the eBPF-based L4/L7 ap-

proach, MiddleNet utilizes the eBPF’s SKMSG and socket

map for delivering packet descriptors within the function

chain (similar to what we described for L2/L3 NFV with

eBPF), as shown in Fig. 3. Although the eBPF-based L4/L7

User space

Kernel space

NIC

TCP/IP stack

Payload
Message broker

Shared memory

MF 1

skmsg

MF 2
skmsg

1

2

3

4 5

6

socket

Fig. 5. Packet processing flow for eBPF-based L4/L7 middleboxes
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approach still executes in a purely interrupt-driven manner,

since the kernel protocol stack is involved, it often uses

a flow-controlled transport protocol. This potentially avoids

overloading the receiver, and therefore, receive-livelocks are

less of a concern. Interrupt-based processing does not use

up a CPU like polling, so it is more resource-efficient and

benefits the L4/L7 use case. We further mitigate the impact of

interrupts with batching.

Adaptive batching of SKMSG Processing: Since the eBPF-

based approach uses SKMSG for packet descriptor transmis-

sion, bursty traffic can cause a large number of SKMSG

transfers. We consider an adaptive batching mechanism to

reduce the overhead of frequent SKMSG transfers. For each

interrupt generated by SKMSG, instead of reading only one

packet descriptor present in the socket buffer, we read multiple

(up to a limit) packet descriptors available in the socket buffer.

Thus, we can reduce the total number of interrupts, even for

frequent SKMSG transfers, and mitigate overload behavior.

C. The DPDK-based L4/L7 middlebox design

We base our DPDK-based L4/L7 middlebox design on the

overall design of OpenNetVM [2]. To leverage the kernel

protocol stack, we restructure the NF manager of the L2/L3

use case (Fig. 1) into a message broker. The message broker

is assigned a Linux socket interface to receive payloads from

the kernel, as shown in Fig. 6. The message broker writes

the received payload to shared memory (¬), then, consulting

the routing table, pushes the packet descriptor to the RX ring

of the target MF (­). The MF keeps polling its RX ring for

arriving packets. The MF uses the received packet descriptor

to access the packet in shared memory and processes it (®).

Once the processing is complete (¯), the MF pushes the packet

descriptor to its TX ring. On the other side, the message broker

polls the TX ring of MFs for the packet descriptor (°), then

accesses the shared memory and sends the packet out through

the kernel protocol stack (±).

Function chain support: The function chain support in the

DPDK-based L4/L7 middlebox design is the same as the

User space

Message broker

Shared memory

MF 1 MF 2 MF 3

R R R
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Routing table

T TT
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TCP/IP stack

socket
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Fig. 6. Packet processing flow for DPDK-based L4/L7 middleboxes

service function chain support in the DPDK-based L2/L3 NFV

use case (§III-B). Here, the message broker performs the

(same) tasks to transfer packet descriptors between MFs.

D. Performance Evaluation of L4/L7 middleboxes

Experiment Setup: We now study the performance differ-

ences between the eBPF-based L4/L7 implementation option

for MiddleNet (Fig. 5, hereafter referred to as MN-E) and

the DPDK-based L4/L7 MiddleNet implementation (Fig. 6,

hereafter referred to as MN-D). As a third alternative, we

use an NGINX proxy to study the impact of the loosely-

coupled design of MiddleNet. The NGINX proxy acts as

a non-virtualized proxy to perform functions via internal

function calls, which avoids introducing context switches or

interrupts to provide good dataplane performance with a static,

monolithic function implementation. We reuse most of the

experiment setup described in §III-D.

We consider a typical HTTP workload for the L4/L7 middle-

box scenario and examine application-level metrics, including

request rate, response latency, and CPU usage, where the

middlebox acts as a reverse proxy for web servers. The 1st

node is configured to run the Apache Benchmark [19] to

generate HTTP workloads. The 2nd node is configured with

the MiddleNet system. On the 3rd node, we configure two

NGINX [20] instances as web servers. We enable adaptive

batching for the eBPF-based approach to minimize the over-

head incurred by frequent SKMSG interrupts between MFs and

the message broker at high concurrency. We use a chain with

two MFs. The first is a reverse proxy function that performs

round-robin load balancing between the two NGINX web

server backends on the 3rd node. The second function is a

URL rewrite function that helps perform redirection for static

websites.

We also compare the scalability of MN-D and MN-E, when

the number of MFs in a linear chain increases. To evaluate the

impact of CPU-intensive tasks on the network performance

of MF chains, we let MFs perform prime number generation

(based on the sieve-of-Atkin algorithm [21]) when a request

is received. Each MF is assigned one dedicated CPU core to

perform tasks, including RX/TX of requests and the prime

number generation. We set the concurrency level (i.e., the

number of clients sending HTTP requests concurrently) of

Apache Benchmark to 512 to generate sufficient load.

Evaluation: Fig. 7 compares the RPS, response latency, and

CPU usage of the different alternatives. MN-E depends on in-

kernel SKMSG to pass packet descriptors between MFs, which

inevitably generates context switches and interrupts, leading

to slightly worse latency and throughput than MN-D. When

the concurrency is between 1 and 32, there is a throughput

difference between MN-D and MN-E, ranging from 1.09× to

1.3×. The throughput of NGINX’s monolithic implementation

is in-between MN-D and MN-E. At the lowest concurrency

level of 1, MN-E consumes 37% of the CPU, which is a

10× reduction compared to MN-D (404%, i.e., 4 CPU cores).

Since MN-D uses polling to deliver packet descriptors, it

continuously consumes CPU resources even when the traffic
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Fig. 8. RPS (a), latency (b) and total CPU usage (c) comparison with
increasing number of CPU-intensive MFs in the chain.

load is low, resulting in wasted CPU resources. Although MN-

D achieves 1.3× better RPS and latency compared to the MN-

E at a concurrency of 1, MN-E’s resource efficiency more than

makes up for its lower throughput (which is likely not the goal

when using a concurrency of 1, in any case) compared to MN-

D’s constant usage of CPU. Thus, it is more desirable to use

the lightweight MN-E approach for these light loads.

When the concurrency level increases and the load is higher,

the adaptive batching of the MN-E approach amortizes the

interrupt and context switch overheads. The performance gap

between MN-E and the others reduces to be within 1.05× for

concurrency levels higher than 64. With adaptive batching,

SKMSG can pass a set of packet descriptors, incurring only one

context switch and interrupt, saving substantial CPU cycles,

reducing latency, and improving throughput.

Compared to a monolithic NGINX as a middlebox, the MN-

E approach exhibits slightly worse throughput and latency per-

formance (1.04× less RPS due to 1.04× higher response de-

lay) because of the overhead of function chaining, SKMSG, and

virtualization. NGINX’s internal function calls have slightly

lower overhead (25% less on average) than middlebox function

chaining with SKMSG, which has additional context switches

and interrupts. However, running a set of middlebox functions

as microservices improves flexibility and resiliency, allowing

us to scale better, according to traffic load, especially with

heterogeneous functions. Moreover, it allows functions to

be shared between different middlebox function chains to

improve resource utilization. With orchestration engines, e.g.,

Kubernetes, intelligent scaling and placement policies can be

applied with MiddleNet to improve resource efficiency further

while still maintaining performance very close to a monolithic

middlebox design.

Fig. 8 evaluates the scalability of MN-D and MN-E with

CPU-intensive MFs. Both MN-D and MN-E show good scal-

ability as the number of MFs increases. Surprisingly, MN-E

performs even better than MN-D with CPU-intensive tasks in

MFs, with a 10% improvement in RPS and a 10% reduction

in latency. This is because with the prime number generation

being CPU-intensive, it can quickly saturate the assigned CPU

core and contend for CPU with the polling-based RX tasks of

MN-D’s MF. But for MN-E, the RX of requests is triggered by

interrupts, which is strictly load-proportional and avoids CPU

contention. Since the prime number generation is performed

within MN-E’s MFs, it is able to fully utilize the assigned

CPU core, improving its performance. To improve MN-D’s

performance, more CPU resources need to be assigned to the

MFs, meaning that we are using resources inefficiently. In

addition, for the combined CPU usage of the message broker

and MFs, MN-D always needs one more CPU core than MN-E

(Fig .8(c)). The extra CPU usage of MN-D is due to the RX

polling in the message broker to receive requests from the MF.

Since prime number generation is time-consuming, it results

in a lower request rate. This means that the CPU devoted to

handling RX of requests is used inefficiently. This reiterates

the fact that MN-D uses resources inefficiently for this case,

when dealing with CPU-intensive functions.

Throughout these experiments, MN-E has significant re-

source savings at different concurrency levels compared to

MN-D, while having comparable throughput. Further, MN-

E can even achieve better performance than MN-D when it

executes CPU-intensive functions even when it uses resources

more frugally. It also achieves close to the same performance

as a highly optimized, monolithic application like NGINX.

The resource efficiency benefits of the event-driven capability

of eBPF, in conjunction with SKMSG to support shared mem-

ory processing, is a highly desirable way of building L4/L7

middlebox functionality in software.

V. A UNIFIED DESIGN BASED ON SR-IOV

Based on the understanding from studying the alternative

approaches and their performance characteristics, we now

develop the overall architecture of MiddleNet that supports

the co-existence of network resident NFV and middlebox

capabilities in a unified framework running on a single system.

SR-IOV [8] allows multiple Virtual Functions (VFs) on a

shared NIC, as depicted in Fig. 9. A VF acts as a distinct
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logical interface on the PCIe that offers direct access to the

physical NIC resources that are shared across multiple VFs. It

still achieves close to the single physical NIC’s performance.

By dividing the hardware resources available on the physical

NIC into multiple VFs, we can dedicate a VF for each L2/L3

NFV and L4/L7 middlebox functions without having any

one take up the entire physical NIC. The aggregate NIC

performance will still be at the line rate. MiddleNet uses the

Flow Bifurcation mechanism [22] for splitting traffic within

the physical NIC in a flow or state-dependent manner. Since

each VF is associated with different IP and MAC addresses,

MiddleNet dynamically selects the packet processing layer

(based on the VF it is attached to) from L2 to L7, providing

a rich set of network-resident capabilities.

A. Flow and State-dependent packet processing using SR-IOV

MiddleNet attaches flow rules to the packet classifier in the

physical NIC to support flow (and possibly state) dependent

packet processing. Once a packet is received, the packet

classifier parses and processes it based on its IP 5 tuple

(i.e., source/destination IPs, source/destination ports, protocol),

which helps differentiate between packet flows.

(1) For a packet that needs to be handled by L2/L3 NFs, the

classifier hands it to the VF bound to DPDK. The VF DMA’s

the raw packet to the shared memory in userspace. On the

other side, the NF manager obtains the packet descriptor via

the PMD and processes the packet in shared memory.

(2) For a packet that needs to be handled by L4/L7 MFs,

the packet classifier hands the packet to the kernel TCP/IP

stack through the corresponding VF. Since L4/L7 MFs require

transport layer processing, MiddleNet utilizes the full-featured

kernel protocol stack.

Because SR-IOV allows multiplexing of physical NIC re-

sources, the split between the DPDK path and Linux kernel

protocol stack path can be easily handled. L2/L3 NFs and

L4/L7 MFs can co-exist on the same node in MiddleNet.

Using SR-IOV in a simple design, however, would result in

these two frameworks co-existing as two distinct and separate

functions providing services for distinct flows. The NIC switch

feature of SR-IOV [23] can be used to bridge between different
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Fig. 9. The overall architecture of MiddleNet: A Combination of DPDK and
eBPF via SR-IOV.
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VFs within the NIC1. For both L2/L3 NFs and L4/L7 MFs

to operate on the same flow, we use the NIC switch to

have packets pass through the kernel protocol stack in or

out of the L4/L7 layer to the L2/L3 NF. But this approach

inevitably introduces extra overhead and may compromise the

performance gain achieved by L2/L3 kernel bypass. Instead,

since the packet payload (including header and all) is in Mid-

dleNet’s shared memory, an ideal way is to directly transfer

packets between L2/L3 NFs and L4/L7 MFs without looping

it back through SR-IOV’s NIC switch. One possible approach

is using the Kernel NIC Interface (KNI [24]) to perform

userspace protocol processing by directly leveraging the kernel

networking protocol stack while still keeping packets in shared

memory. We speculate that MiddleNet could utilize KNI to

remap the address space of the userspace shared memory

into kernel address space, thus eliminating expensive system

calls, interrupts and data copies, and can interact with the

kernel protocol stack to provide much higher performance. A

small overhead would be incurred for context switching and

converting each packet’s control information between the rte

mbuf and sk buff formats. KNI also provides the flexibility of

configuring the number of kernel threads that can be used for

processing and setting the core affinity for each kernel thread.

This flexibility will allow us to dynamically control the usage

of CPU resources based on different types of workloads [15].

B. Performance evaluation

We investigate the performance of a unified L2/L3 NFV

and L4/L7 middlebox and examine the interaction between the

two, using SR-IOV to split the traffic. To mitigate interference

between the load generators for L2/L3 (Pktgen [17]) and

L4/L7 (Apache Benchmark [19]), we deploy Pktgen on the 1st

node and Apache Benchmark on the 3rd node. We configure

two NGINX servers on the 3rd node as the L4/L7 traffic sink.

We configure two VFs on the 2nd node with SR-IOV and

bind L2/L3 MiddleNet (DPDK) and L4/L7 MiddleNet (eBPF)

to separate VFs. We use the same NFs (L3 routing and L2

forwarding) and MFs (reverse proxy and URL rewrite) on the

1A SR-IOV enabled NIC must include the internal hardware bridge to
support forwarding and packet classification between VFs on the same NIC.
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2nd node as described in §III-D and §IV-D. We modify the

NFs and MFs to perform hairpin routing: L2/L3 NFs return

traffic to the 1st node, and L4/L7 MFs return traffic to the

3rd node. Thus, we eliminate the interference that occurs

between the two traffic generators. For L2/L3 traffic, we keep

the sending rate at the MLFR. For L4/L7 traffic, we use a

concurrency of 256 with the Apache Benchmark.

We study whether there is interference by checking the

aggregate throughput as well as the throughput for the L2/L3

traffic processed by NFV and the L4/L7 processed by the

middlebox, as shown in Fig. 10(a). The aggregate throughput

of L2/L3 NFs and L4/L7 MFs remains close to 10Gbps, with

negligible performance loss across various packet sizes. We

also study the impact of adding L4/L7 flows when L2/L3

traffic (128Bytes packets) goes through MiddleNet at line rate

(10 Gbps link). As shown in Fig. 10(b), at the 25th second, the

Apache Benchmark starts to generate L4/L7 traffic (0.22Gbps),

and the throughput of L2/L3 NFs correspondingly drops to

9.78Gbps. Thus, our unified design in MiddleNet for the co-

existence of DPDK-based L2/L3 NFs and eBPF-based MFs

provides both flexibility and performance.

VI. CONCLUSION

We presented MiddleNet, a unified environment supporting

L2/L3 NFV functionality and L4/L7 middlebox functions. In

MiddleNet, we chose the high-performance packet processing

of DPDK for L2/L3 NFs and the resource efficiency of

eBPF for L4/L7 middlebox functions. MiddleNet leverages

shared memory processing for both use cases to support high-

performance function chains. Experimental results demon-

strated the performance benefits of using DPDK for L2/L3

NFV. MiddleNet can achieve full line rate for almost all packet

sizes given adequate CPU resources provided to MiddleNet’s

NF manager. Its throughput outperforms an eBPF-based design

that depends on interrupts by 4× for small packets and has

a 2× reduction in latency. For the L4/L7 use case, the per-

formance of our eBPF-based design in MiddleNet is close to

the DPDK-based approach, getting to within 1.05× at higher

loads (large concurrency levels). In addition, the eBPF-based

approach has significant resource savings, with an average of

3.2× reduction in CPU usage compared to a DPDK-based

L4/L7 design. Using SR-IOV on the NIC, MiddleNet creates

a unified environment with negligible impact on performance,

running the DPDK-based L2/L3 NFV service chains and

eBPF-based L4/L7 middlebox function chains on the same

node. This can bring substantial deployment flexibility.
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