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AbstractÐ We introduce the so-called Auxiliary Energy Re-
duction (AER) technique, which is a gradient-based approach
to solving motion planning problems with homotopy class
constraints for system models with full-scale nonholonomic
dynamics. The hallmark of our approach is that we first
introduce virtual control terms to the original system dynamics
that ensure that any preset state trajectory is dynamically
feasible with respect to the new extended system. We then
gradually shift the contribution of the artificial inputs to the
actual original inputs by solving a sequence of associated
quadratic programs. When the contribution of the artificial
inputs has been fully removed, the preset trajectory will have
been deformed to a trajectory of the same homotopy class
that is now also feasible with respect to the original system.
The practicality of our method is demonstrated in simulation
examples for the Brockett integrator, the unicycle, and a 12-
dimensional nonlinear quadcopter model.

I. INTRODUCTION

The basic task of motion planning is to find a dynamically

feasible system trajectory connecting a given starting point

with a desired target point in a state space that possibly

contains one or more obstacles. Many control techniques can

be leveraged to achieve this goal, such as model predictive

control [1], iterative LQR [2], and, more recently, works

related to homotopy methods [3] and iterative optimal control

syntheses [4]. When tackling motion planning problems that

involve more complicated irregular obstacles, approaches

based on an incremental sampling strategy, such as prob-

abilistic roadmaps (RPM) [5] and rapidly-exploring random

trees (RRT) [6], can be employed. However, these sampling-

based planners are often limited to very simplistic system

dynamics, in which any obstacle-free curve between any

two points in the state space is automatically dynamically

feasible. Further extensions of these methods, such as Kino-

dynamic RRT∗ [7] and LQR-RRT∗ [8] provide the ability to

handle kinodynamic system models, which are, however, still

limited to either linear or approximately linear dynamics.

In addition to the aforementioned issues, oftentimes,

merely avoiding collisions is insufficient in some topology-

sensitive tasks, e.g., a vehicle having to stay on the right side

of the road. Hence, it is important to consider and distinguish

among different homotopy classes for generated trajectories.

For this consideration, [9] provides a way to classify ho-

motopy classes in higher-dimensional space and proposes a

search-based robot path planning method fulfilling topolog-

ical constraints. Probabilistic roadmaps introduced in [10]
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are also capable of path generation under homotopy classes

constraints. Furthermore, Gaussian process inference is lever-

aged in [11] to achieve online motion planning involving

multiple homotopy classes. However these methods are again

limited to robots with simple dynamics.

There are few prior works on motion planning that allow

for the simultaneous considerations of full-scale nonlinear

nonholonomic dynamics and homotopy class constraints.

Recent works that made important contributions towards this

direction are [12], [13] and [14]. These works introduce

the so-called affine geometric heat flow, which is a partial

differential equation that evolves an arbitrary differentiable

path between an initial and final state to a path that meets

additional constraints imposed on the problem. A potential

drawback is the reliance of this approach on the numerical

solution of the involved partial differential equation.

In this paper, we propose a novel direction for addressing

motion planning problems with homotopy class constraints

that can be applied to general, possibly high-dimensional,

nonlinear dynamical systems. The approach first adds an

auxiliary control term to the original system, which turns a

preset reference trajectory that is dynamically infeasible for

the original system to a feasible one for the new extended

system. Afterwards, the approach gradually (cf. [15],[16])

eliminates the influence of the auxiliary control term so as

to let the original input slowly take over the control of the

system. As a result, the dynamically infeasible trajectory

is gradually deformed to a feasible one that the original

system is fully capable to track. In addition, the advocated

approach is able to preserve the homotopy class for generated

trajectories throughout the iterative synthesis process.

The general idea underlying our proposed technique is

reminiscent of the process by which young children first learn

how to ride a bicycle, where in the beginning, the children

often require external assistance, e.g., via parents actively

holding or via a pair of training wheels to mitigate the chal-

lenging unstable dynamical component. After having gained

sufficient experience under the externally facilitated steady

conditions, the external assistance/forces can be gradually

removed during subsequent phases of the learning process.

This paper is organized as follows. Section II, introduces

the precise problem setup. Then we develop our method for

generating feasible trajectories in Section III, and its exten-

sion that concerns homotopy class constraints in Section IV.

The applicability of the advocated technique is presented in

Section V. Finally, we conclude the paper in Section VI.



II. PROBLEM FORMULATION

We consider the general nonlinear dynamical system

ẋ(t) = f(x(t), u(t)), (1)

where x(t) ∈ R
n and u(t) ∈ R

m. The feasible trajectory

of the system above can be represented as a tuple (x, u),
which satisfies the dynamical constraint (1) and terminal-

point constraints x(0) = xstart, x(T ) = xtarget, where T is

the terminal time. We denote x ∈ Xdynamic, if there exists a

corresponding admissible input u that steers (1) along x. We

take the parallel parking problem as an example to illustrate

feasible and infeasible state trajectories as shown in Figure 1.

Fig. 1. Parallel parking problem from the current car position (0, 2) to the
parking spot that is shown as the green rectangular and centered at (0, 0).
The trajectory on the left shown as the blue straight line is dynamically
infeasible, which can be observed by the fact that the car’s facing directions
(shown as the red arrows) are perpendicular to the path. In contrast, the
trajectory on the right is feasible, as the car’s facing directions are tangent
to the path.

Moreover, we denote H as the homotopy class which

satisfies the homotopy class constraints described by a set

of obstacles. Trajectories with identical starting and target

points are defined to be homotopy equivalent if and only if

they can be smoothly deformed into one another without

intersecting any obstacle in the state space. A graphical

illustration is presented in Figure 2. For a more detailed

definition, readers are referred to [9].

Fig. 2. Three trajectories connecting identical starting and target points.
According to the definition of homotopy class, the blue trajectory is
homotopy equivalent with the purple one, but belongs to the different
homotopy class of the green one.

Given a nominal state trajectory, the objective of this work

is to find a feasible trajectory x ∈ Xdynamic ∩ H and the

corresponding admissible control u, with the property x ∈ H
being preserved throughout the iterative computation process.

It is noted that the initially chosen state trajectories are not

required to be dynamically feasible.

Notation:

1) For conciseness, (x0, x1, . . . , xN ) will represent the

vector (x⊤
0 , x

⊤
1 , . . . , x

⊤
N )⊤ ∈ R

n(N+1).

2) By default, ∥ · ∥ stands for ∥ · ∥2 in this paper.

III. MOTION PLANNING BY

AUXILIARY ENERGY REDUCTION (AER)

In this section, we first introduce the general structure of

the AER method in the absence of a cluttered environment. In

Section III-A, we transform the motion planning problem to

an energy-minimization problem by virtue of the framework

centered around the auxiliary control terms. The resulting

nonlinear optimization problem to eliminate the virtually-

added control energy is then solved in an iterative fashion,

which is described in more detail in Section III-B.

A. Auxiliary control inputs and the Extended System

For the purpose of the computational implementation, we

assume that the continuous-time nonlinear system

ẋ(t) = f(x(t), u(t)), x(t) ∈ R
n, u(t) ∈ R

m, (2)

has been appropriately discretized into

xk+1 = F (xk, uk). (3)

In order to track an arbitrary, even dynamically infeasible,

nominal trajectory, we introduce an auxiliary (virtual) control

component ûk to the discrete-time nonlinear system (3)

xk+1 = F (xk, uk) + ûk, (4)

where xk ∈ R
n, uk ∈ R

m, and ûk ∈ R
n. Moreover, for any

pair of X = (x0, x1, ..., xN ) and U = (u0, ..., uN−1), not

necessarily feasible for the original system (3), there always

exists a corresponding auxiliary control

ûk = xk+1 − F (xk, uk), (5)

such that (4) initialized at x0 and driven with U and Û traces

out the given trajectory X in the state space.

In our Auxiliary Energy Reduction framework, the prob-

lem of generating feasible trajectories for the original system

can be then cast as an energy minimization problem:

minimize
(U, Û)

∥Û∥2

subject to x0 = xstart,

xN = xtarget,

xk+1 = F (xk, uk) + ûk,

(6)

where the start and end point of the given predetermined

trajectory have been fixed. It is clear that if this optimization

problem admits a solution where the auxiliary control term

reaches zero, i.e., ∥Û∥2 = 0, the virtually-added input no

longer impacts the system (3), i.e., we obtain the admissible

control that steers the system (3) from xstart to xtarget along

with the corresponding feasible trajectory.

The purpose of our overall approach to first introduce an

auxiliary term and then to work towards reducing it is to

have a feasible starting point (for the extended system) in



the computational optimal control setup, which in particular

also allows for the fixing of known and desired start and end

points. Furthermore, in some instances, a user may already

have a sense of how the desired trajectory of a system may

end up looking like, and incorporate this information in

terms of a useful prior design of the desired state trajectory,

with the parts of the prior that are dynamically infeasible

for the original system being outsourced to the auxiliary

control terms. Another key is that we subsequently solve the

nonlinear optimization problem (6) in an iterative fashion

which is very efficient in that it results in a sequence of

quadratic programs that need to be solved.

B. Auxiliary Energy Reduction

Given the discrete nonlinear system (4), a nominal state

trajectory X , a nominal control signal U , and the derived

auxiliary input signal Û , we obtain the discrete-time lin-

earization of (4) via perturbing the entire trajectory (except

x0) and control signals, which yields the dynamics of the

pertubation of the state as

δxk+1 ≈ Akδxk +Bkδuk + B̂kδûk, δx0 = 0, (7)

where Ak = ∂F
∂x

(xk, uk), Bk = ∂F
∂u

(xk, uk), B̂k = In are

Jacobian matrices of the flow with respect to the state and

the input, respectively. Unfolding (7), we arrive at

δx1 ≈ B0δu0 + B̂0δû0

δx2 ≈ A1B0δu0 +B1δu1 +A1B̂0δû0 + B̂1δû1

...

δxN ≈ AN−1 . . . A1B0δu0 + · · ·+BN−1δuN−1

+AN−1 . . . A1B̂0δû0 + · · ·+ B̂N−1δûN−1.

It is noted that, these linear approximations are

only valid for small control perturbations, i.e.,

∥∆U∥ = ∥(δu0, δu1, . . . , δuN−1)∥ and ∥∆Û∥ =
∥(δû0, δû1, . . . , δûN−1)∥ are sufficiently small. To condense

the approximation above, the variation of the entire state

trajectory caused by small ∆U and ∆Û can be rewritten as

∆X :=







δx1

...

δxN






≈







H1∆U + Ĥ1∆Û
...

HN∆U + ĤN∆Û






= H∆U + Ĥ∆Û ,

(8)

where

H :=













B0 0 · · · 0

A1B0 B1

...
...

... 0
AN−1 · · ·A1B0 AN−1 · · ·A2B1 · · · BN−1













,

Ĥ :=













B̂0 0 · · · 0

A1B̂0 B̂1

...
...

... 0

AN−1 · · ·A1B̂0 AN−1 · · ·A2B̂1 · · · B̂N−1













,

and the matrices Hi and Ĥi represent the ith horizontal block

of H and Ĥ , respectively. Moreover, the corresponding state

trajectory driven by the slightly drifted nominal control can

thus be quantified as

X(U +∆U, Û +∆Û) ≈ X(U, Û) +H∆U + Ĥ∆Û . (9)

With these insights, we can tackle the solution of the

optimization problem (6) in a iterative manner where in each

step of the iteration, we are looking at a drastically simpler

quadratic program

minimize
(∆U,∆Û)

∥Û +∆Û∥2 + γ1∥∆U∥2 + γ2∥∆Û∥2

subject to xN +HN∆U + ĤN∆Û = xtarget,

(10)

for gradually reducing the auxiliary energy. Here γ1, γ2 are

regularization parameters that penalize large values of ∥∆U∥
and ∥∆Û∥, which ensures the validity of the first order

Taylor expansion applied in (8). By iteratively updating U
and Û by solving (10), the auxiliary control energy Û will

be steadily reduced. Furthermore, if we arrive at Û = 0, this

would mean that the original input U has taken over full

control of the system in steering the state on a trajectory

connecting xstart and xtarget. The general structure of AER

which is summarized as below.

Algorithm 1 Auxiliary Energy Reduction (AER)

Require: A nominal trajectory X connecting xstart and xtarget,

as well as a pair of nominal inputs (U, Û), such that (U, Û)
steers the extended system along X .

1: Apply the input (U, Û) to the system and calculate H , Ĥ .

2: Solve for (∆U∗,∆Û∗) of the optimization problem (10).

3: Update the control input via U ← U + ∆U∗ and Û ←
Û +∆Û∗.

4: Repeat step 1− 3 until ∥Û∥2 ≤ ϵ2,tol.

As the dimension of the input of the extended system

dim(U) + dim(Û) = m + n is larger than the dimension

of the state, the extended system is an over-actuated system,

and more than one pair of (uk, ûk) can drive the system from

xk to xk+1. To decrease the total iteration times needed when

employing the AER method, an initial Û with less energy

is preferred. In the next part, we show how this may be

achieved by manipulating the way U is initialized.

Without loss of generality, we focus on minimizing the

energy of the initial auxiliary control term in the kth time

step of the trajectory by considering (5) through choosing

the initial input uk according to min
uk

||xk+1 − F (xk, uk)||
2.

Given a nominal trajectory, a nonlinear regression approach

can be utilized to update uk:

uk ← uk + λB†
k(xk+1 − F (xk, uk)), (11)

where λ is the step size which is small enough to ensure a

steady convergence, and B†
k is the left pseudo inverse of Bk.



This procedure can be generalized to the entire time steps

for properly initialization that is concluded in Algorithm 2.

Algorithm 2 Proper initialization of U, Û

Require: A nominal trajectory X from xstart to xtarget.

1: Initialize U = (u0, ..., uN−1) as a sequence of small

random numbers.

2: Calculate Bk for every k, and update uk by (11) until

converged.

3: Set the auxiliary control input via ûk = xk+1−F (xk, uk),
and Û = (û0, ..., ûN−1).

We note that the AER method without optimizing the

initial U is fast enough for simpler systems, such that the

energy minimization step is not necessary in general, in

which case step 2 of Algorithm 2 can be skipped.

IV. MOTION PLANNING WITH HOMOTOPY CLASS

CONSTRAINTS

In this section, we illustrate how the AER method can

be extended to preserve the homotopy class of generated

trajectories when tackling motion planning problems in-

volving cluttered environments and homotopy constraints.

To this end, we integrate the AER method with two new

components: anchors that are to identify the obstacles and the

associated anchor loss that is added to the objective function

for maintaining the topological properties of the trajectory.

Anchors are obstacles with regular shapes, such as points,

lines and planes. In addition, obstacles with irregular shapes

can be approximated by tightly arranging multiple anchors

around their boundaries. An anchor is defined as a tuple

(C, a), where C ∈ R
p×n is the linear operator for dimension

selection and rotation, and a ∈ R
p. As a result, the distance

between a point x and the anchor can be measured as ∥Cx−
a∥. Moreover, a set of anchors is defined as a collection of

tuples: A = {(C1, a1), ..., (CM , aM )}.
To keep a given trajectory X(U, Û) = (x0, x1, ..., xN ) that

is obtained by an extended system (4) starting from xstart

and driven by inputs (U, Û) away from an anchor set A,

we introduce the so-called anchor loss L(X,A) ∈ R
M(N+1)

by utilizing the framework of barrier functions. Within our

particular implementation, the anchor loss is defined to be

logarithmic-like, whose (i+ kM)th element is expressed as

L(X,A)i+kM =

{

0, if ∥Cixk − ai∥
2 ≥ µ,

− log(∥Cixk − ai∥
2), otherwise,

(12)

where (Ci, ai) denotes the ith anchor of A, µ ∈ (0, 1] and

xk represents the state at the kth time step of the trajectory.

The logarithm distance of the form −log(d2) is preferred

here because its derivative will not vanish as −d2 or expand

too fast as 1/d2 when d approaches zero.

In order to prevent the trajectories from crossing through

the anchor set during the trajectory updates, we need to

ensure that there is no anchor standing inside the smooth

deformation from X(U, Û) to X(U+∆U, Û+∆Û). To this

end, we consider the following. If there is an intersection

between (Ci, ai) and the interpolated trajectory segment xk

to xk+1, we have ∥Cixk − ai∥
2 ≤ ∥Ci(xk+1 − xk)∥

2,

which implies that there exists xk, xk+1 and an anchor

(Ci, ai) ∈ A, such that L(X,A)i+kM ≥ −log(∥Ci(xk+1 −
xk)∥

2), where we assume that the sampling rate of the

discretization from (2) to (3) is sufficiently fast so that

∥Ci(xk+1 − xk)∥
2 ≤ µ holds for every k. In addition, by

denoting Xα = X(U +α∆U, Û +α∆Û), α ∈ [0, 1], we can

leverage X0 7→ X1 to present a smooth deformation from

X(U, Û) to X(U+∆U, Û+∆Û). We conclude that, as long

as one can ensure

∥L(Xα,A)∥∞ < min
i,k
−log(∥Ci(xk+1 − xk)∥

2) = Ξ, (13)

and Xα
N = X0

N for all α ∈ [0, 1], the trajectory driven by

updated inputs X(U + ∆U, Û + ∆Û) belongs to the same

homotopy class of X(U, Û).
It is natural to consider an optimization problem minimiz-

ing the norm of the anchor loss so as to fulfill the condition in

(13). Before we take the further step towards the optimization

formulation, we first investigate the linear approximation of

the anchor loss with respect to (U, Û). Based on (8) and (12),

the (i+kM)th row of the Taylor expansion’s first-order term

regarding L(X,A) is expressed as

∆L(X,A)i+kM =

{

0, if ∥Cixk − ai∥
2 ≥ µ,

Mi+kM∆U + M̂i+kM∆Û , otherwise,

where

Mi+kM =
−2(Cixk − ai)

TCi

∥Cixk − ai∥2
Hk,

M̂i+kM =
−2(Cixk − ai)

TCi

∥Cixk − ai∥2
Ĥk.

Having done so, the following quadratic program is consid-

ered for maintaining the auxiliary energy and decreasing the

anchor loss simultaneously,

minimize
∆U

∥L(X,A) +M∆U∥2 + γ∥∆U∥2

subject to xN +HN∆U = xtarget,
(14)

where γ ≥ 0 is the regularization parameter.

We note that it is in general cumbersome to choose γ1 and

γ2 in (10) for each iteration such that the condition (13) is

satisfied. Instead, one could simply use the same γ1 and γ2 in

Algorithm 1, and choose an appropriate update step size α to

update the controls: for ∆U∗ and ∆Û∗ obtained from (10),

we employ a line search strategy to find the largest update

step size α∗ ∈ (0, 1], such that ∥L(Xα,A)∥∞ < ξ for all

α ∈ [0, α∗], where ξ ≤ Ξ is a predetermined threshold. This

strategy has been found to be particularly effective in dealing

with highly nonlinear systems.

To summarize, by incorporating anchors, we endow AER

method with the capability of preserving the topology class

for the generated trajectories through out iterations. The

overall procedure is summarized in Algorithm 3.



Algorithm 3 AER with anchors

Require: A nominal trajectory X connecting xstart and xtarget,

as well as a pair of corresponding inputs (U, Û).
1: Apply the input (U, Û) to the system and calculate H, Ĥ .

2: Solve for ∆U∗ and ∆Û∗ of the optimization problem

(10), and find the largest step size α∗ using line search.

3: Update U ← U + α∗∆U and Û ← Û + α∗∆Û .

4: Calculate L(X,A) and M , update U according to (14).

5: Repeat step 4 until ∥L(X,A)∥2 ≤ ϵA.

6: Repeat step 1− 5 until ∥Û∥2 ≤ ϵ2,tol.

V. ILLUSTRATIVE EXAMPLES

We first demonstrate the effectiveness of the proposed

AER method on two well-studied benchmark platforms:

Brockett integrator and a unicycle that operates on a plane.

Then a more complex and highly nonlinear model of the

quadcopter in 3-D space is evaluated.

A. Brockett Integrator Model

As a classical nonholonomic control system, the Brockett

integrator

d

dt





x1

x2

x3



 =





u1

u2

x1u2 − x2u1





has been widely studied.

We consider the setup in which x0 = (0, 0, 0)⊤, xtarget =
(0, 0, 1)⊤, T = 2, and the preset state trajectory is set

as a naive straight line between these two points. We set

γ1 = γ2 = 0.05∥Û∥2, and the sampling rate to be 20 Hz.

By leveraging the geometric interpretation of the Brockett

integrator in terms of the connection to the sector area of the

curve in the xy-plane (cf. [17]), the value of x3 is known to

be a function of the area of the (x1, x2) curve. Therefore, this

preset reference is clearly dynamically infeasible. Figure 3

illustrates the deformation from the reference trajectory to

a dynamically feasible one obtained by AER, where the x0

and xtarget are represented in red and blue dots, respectively.

B. Unicycle Model with Homotopy Class Constraints

The unicycle model is another popular nonholonomic

testbed for illustrating path generation methods, cf. [13].

Its corresponding system dynamics are described by the

following system of nonlinear differential equations

d

dt





x
y
ϕ



 =





v cosϕ
v sinϕ

ω



 ,

where ϕ represents the facing angle of the unicycle, v stands

for the moving velocity, and ω denotes the steering velocity.

We set x0 = (0, 0, 0)⊤, xtarget = (3, 0, 0)⊤, T = 3. We set

γ1 = γ2 = 0.0001∥Û∥2, γ = 0.005, and the sampling rate

of the discretization to be 20 Hz. In order to illustrate AER

method’s capability of keeping the consistency of homotopy

class for generated trajectories, two anchors are placed at

(1.25, 0.25) and (1.75,−0.25), respectively. Figure 4 shows

snapshots of the unicycle’s movements within three represen-

tative iterations, as well as the corresponding input signals.

Fig. 3. From top to bottom, the three rows represent the results of the
0th, 40th and 55th iteration of the computation. In the left column, the
state trajectory of the Brockett integrator evolves from being dynamically
infeasible to being feasible. The corresponding control signals U and

auxiliary input signals Û are shown in the middle and the right column.

Fig. 4. From top to bottom, the three rows show the computational results of
the 0th, 11th and 42th iteration, respectively. In the left column, the generated
paths tend to be more dynamically feasible. Additionally, the corresponding

control U and the virtually added input Û are shown in the middle and the
right column, respectively.



C. Quadcopter Model with Homotopy Class Constraints

Here we consider a quadcopter model with full-scale

nonlinear dynamics to highlight the effectiveness of the pro-

posed AER method to generate a feasible tracking trajectory,

which at the same time preserves a desired homotopy class.

The adopted dynamic model of the quadcopter system is

described by a system of nonlinear ODEs with 12 states

and 4 control inputs representing the rotating speed of four

motors in rotation per minute (rpm) and takes the form

d

dt
x = fd(x) +

4
∑

i=1

fi(x)u
2
i ,

where fd and fi are nonlinear differentiable functions. Read-

ers are referred to [18] for the detailed dynamics structure.

Given the quadcopter model above, we leverage the AER

method to plan feasible trajectories with homotopy con-

straints for three flight tasks in different environments. The

simulation setup and results are shown in Figure 5. In these

tasks, we set γ1 = γ2 = 0.0001∥Û∥2, γ = 0.005, the

sampling rate to be 20 Hz, and total time horizon of each

task to be 5, 6 and 8 seconds, respectively. Moreover, we

heuristically initialize U such that the quadcopter hovers at

the starting point, while the initial Û then would act as the

invisible force that drives the quadcopter along the preset

trajectory.

(a) Flight task 1 (b) Flight task 2

(c) Flight task 3

Fig. 5. For each flight task, the cluttered environment contains different
types of obstacles that are identified by a set of anchors shown in red
points/lines. The states with regard to the position of the preset nominal
reference trajectory is presented as green polylines, while the rest, i.e.
translational velocities, altitudes, angular velocities, are set to zero. AER
method has transformed the preset reference to a dynamically-feasible one
shown in the blue dashed curve for the quadcopter to track. Meanwhile,
the homotopy class constraints are observed to be fulfilled. The sequential
snapshots demonstrate the tracking procedure of the quadcopter starting
from the darker blue color to lighter yellow color gradually.

VI. CONCLUSION

In this paper, we introduced a new motion planning

technique called auxiliary energy reduction (AER) method.

The AER method obtains a dynamically feasible trajectory

through minimizing the energy of the auxiliary control

term which is artificially added to the original dynamics.

By incorporating the so-called anchor and anchor loss, the

method further preserves the homotopy class for generated

trajectories. We have demonstrated the practicability of the

method in three different simulation examples.
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