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Abstract— We introduce the so-called Auxiliary Energy Re-
duction (AER) technique, which is a gradient-based approach
to solving motion planning problems with homotopy class
constraints for system models with full-scale nonholonomic
dynamics. The hallmark of our approach is that we first
introduce virtual control terms to the original system dynamics
that ensure that any preset state trajectory is dynamically
feasible with respect to the new extended system. We then
gradually shift the contribution of the artificial inputs to the
actual original inputs by solving a sequence of associated
quadratic programs. When the contribution of the artificial
inputs has been fully removed, the preset trajectory will have
been deformed to a trajectory of the same homotopy class
that is now also feasible with respect to the original system.
The practicality of our method is demonstrated in simulation
examples for the Brockett integrator, the unicycle, and a 12-
dimensional nonlinear quadcopter model.

I. INTRODUCTION

The basic task of motion planning is to find a dynamically
feasible system trajectory connecting a given starting point
with a desired target point in a state space that possibly
contains one or more obstacles. Many control techniques can
be leveraged to achieve this goal, such as model predictive
control [1], iterative LQR [2], and, more recently, works
related to homotopy methods [3] and iterative optimal control
syntheses [4]. When tackling motion planning problems that
involve more complicated irregular obstacles, approaches
based on an incremental sampling strategy, such as prob-
abilistic roadmaps (RPM) [5] and rapidly-exploring random
trees (RRT) [6], can be employed. However, these sampling-
based planners are often limited to very simplistic system
dynamics, in which any obstacle-free curve between any
two points in the state space is automatically dynamically
feasible. Further extensions of these methods, such as Kino-
dynamic RRT* [7] and LQR-RRT* [8] provide the ability to
handle kinodynamic system models, which are, however, still
limited to either linear or approximately linear dynamics.

In addition to the aforementioned issues, oftentimes,
merely avoiding collisions is insufficient in some topology-
sensitive tasks, e.g., a vehicle having to stay on the right side
of the road. Hence, it is important to consider and distinguish
among different homotopy classes for generated trajectories.
For this consideration, [9] provides a way to classify ho-
motopy classes in higher-dimensional space and proposes a
search-based robot path planning method fulfilling topolog-
ical constraints. Probabilistic roadmaps introduced in [10]
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are also capable of path generation under homotopy classes
constraints. Furthermore, Gaussian process inference is lever-
aged in [11] to achieve online motion planning involving
multiple homotopy classes. However these methods are again
limited to robots with simple dynamics.

There are few prior works on motion planning that allow
for the simultaneous considerations of full-scale nonlinear
nonholonomic dynamics and homotopy class constraints.
Recent works that made important contributions towards this
direction are [12], [13] and [14]. These works introduce
the so-called affine geometric heat flow, which is a partial
differential equation that evolves an arbitrary differentiable
path between an initial and final state to a path that meets
additional constraints imposed on the problem. A potential
drawback is the reliance of this approach on the numerical
solution of the involved partial differential equation.

In this paper, we propose a novel direction for addressing
motion planning problems with homotopy class constraints
that can be applied to general, possibly high-dimensional,
nonlinear dynamical systems. The approach first adds an
auxiliary control term to the original system, which turns a
preset reference trajectory that is dynamically infeasible for
the original system to a feasible one for the new extended
system. Afterwards, the approach gradually (cf. [15],[16])
eliminates the influence of the auxiliary control term so as
to let the original input slowly take over the control of the
system. As a result, the dynamically infeasible trajectory
is gradually deformed to a feasible one that the original
system is fully capable to track. In addition, the advocated
approach is able to preserve the homotopy class for generated
trajectories throughout the iterative synthesis process.

The general idea underlying our proposed technique is
reminiscent of the process by which young children first learn
how to ride a bicycle, where in the beginning, the children
often require external assistance, e.g., via parents actively
holding or via a pair of training wheels to mitigate the chal-
lenging unstable dynamical component. After having gained
sufficient experience under the externally facilitated steady
conditions, the external assistance/forces can be gradually
removed during subsequent phases of the learning process.

This paper is organized as follows. Section II, introduces
the precise problem setup. Then we develop our method for
generating feasible trajectories in Section III, and its exten-
sion that concerns homotopy class constraints in Section IV.
The applicability of the advocated technique is presented in
Section V. Finally, we conclude the paper in Section VI.



II. PROBLEM FORMULATION
We consider the general nonlinear dynamical system

@(t) = f(a(t), u(t)), (1)

where z(t) € R™ and u(t) € R™. The feasible trajectory
of the system above can be represented as a tuple (z,u),
which satisfies the dynamical constraint (1) and terminal-
point constraints z(0) = Zgar, (1) = Tiarger» Where T is
the terminal time. We denote & € Xgynamic, if there exists a
corresponding admissible input « that steers (1) along x. We
take the parallel parking problem as an example to illustrate
feasible and infeasible state trajectories as shown in Figure 1.

2 [ 2
1.5 EE 1.5
C
1 1
0.5 0.5
0 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fig. 1. Parallel parking problem from the current car position (0, 2) to the
parking spot that is shown as the green rectangular and centered at (0, 0).
The trajectory on the left shown as the blue straight line is dynamically
infeasible, which can be observed by the fact that the car’s facing directions
(shown as the red arrows) are perpendicular to the path. In contrast, the
trajectory on the right is feasible, as the car’s facing directions are tangent
to the path.

Moreover, we denote H as the homotopy class which
satisfies the homotopy class constraints described by a set
of obstacles. Trajectories with identical starting and target
points are defined to be homotopy equivalent if and only if
they can be smoothly deformed into one another without
intersecting any obstacle in the state space. A graphical
illustration is presented in Figure 2. For a more detailed
definition, readers are referred to [9].

Fig. 2. Three trajectories connecting identical starting and target points.
According to the definition of homotopy class, the blue trajectory is
homotopy equivalent with the purple one, but belongs to the different
homotopy class of the green one.

Given a nominal state trajectory, the objective of this work
is to find a feasible trajectory = € Xgynamic N H and the
corresponding admissible control w, with the property x € ‘H
being preserved throughout the iterative computation process.
It is noted that the initially chosen state trajectories are not
required to be dynamically feasible.

Notation:

1) For conciseness, (zg,z1,...,2y) will represent the

vector (zg,z],...,2)" € RPN+,
2) By default, || - || stands for || - ||2 in this paper.

III. MOTION PLANNING BY
AUXILIARY ENERGY REDUCTION (AER)

In this section, we first introduce the general structure of
the AER method in the absence of a cluttered environment. In
Section III-A, we transform the motion planning problem to
an energy-minimization problem by virtue of the framework
centered around the auxiliary control terms. The resulting
nonlinear optimization problem to eliminate the virtually-
added control energy is then solved in an iterative fashion,
which is described in more detail in Section III-B.

A. Auxiliary control inputs and the Extended System
For the purpose of the computational implementation, we
assume that the continuous-time nonlinear system
z(t) = flx(t),u(t)), z(t)eR™ wult)eR™, (2)

has been appropriately discretized into

l‘k+1 = F(Ik, uk). (3)

In order to track an arbitrary, even dynamically infeasible,
nominal trajectory, we introduce an auxiliary (virtual) control
component 1y, to the discrete-time nonlinear system (3)

Th41 = F(xk,Uk) + ﬁkv (4)

where z; € R” u € R™, and 4, € R™. Moreover, for any
pair of X = (zg,z1,..,2n) and U = (ug, ..., un—_1), not
necessarily feasible for the original system (3), there always
exists a corresponding auxiliary control

Uy = g1 — Fag, ur), &)

such that (4) initialized at x¢ and driven with U and U traces
out the given trajectory X in the state space.

In our Auxiliary Energy Reduction framework, the prob-
lem of generating feasible trajectories for the original system
can be then cast as an energy minimization problem:

minimize T2
(U,U)
subject to  xo = Tstart, (6)

TN = Trargets
Tpy1 = F(xk,uk) —+ ﬂk,

where the start and end point of the given predetermined
trajectory have been fixed. It is clear that if this optimization
problem admits a solution where the auxiliary control term
reaches zero, i.e., |U]|2 = 0, the virtually-added input no
longer impacts the system (3), i.e., we obtain the admissible
control that steers the system (3) from Zgar tO Ziarger along
with the corresponding feasible trajectory.

The purpose of our overall approach to first introduce an
auxiliary term and then to work towards reducing it is to
have a feasible starting point (for the extended system) in



the computational optimal control setup, which in particular
also allows for the fixing of known and desired start and end
points. Furthermore, in some instances, a user may already
have a sense of how the desired trajectory of a system may
end up looking like, and incorporate this information in
terms of a useful prior design of the desired state trajectory,
with the parts of the prior that are dynamically infeasible
for the original system being outsourced to the auxiliary
control terms. Another key is that we subsequently solve the
nonlinear optimization problem (6) in an iterative fashion
which is very efficient in that it results in a sequence of
quadratic programs that need to be solved.

B. Auxiliary Energy Reduction

Given the discrete nonlinear system (4), a nominal state
trajectory X, a nominal control signal U, and the derived
auxiliary input signal U, we obtain the discrete-time lin-
earization of (4) via perturbing the entire trajectory (except
x) and control signals, which yields the dynamics of the
pertubation of the state as

(Sxk-+1 ~ Apdxy + Brpouy + Bk(s'lfbk, dxg = 0, (7)

where A = %(mk,uk), By = g—s(mk,uk), By, = I, are
Jacobian matrices of the flow with respect to the state and
the input, respectively. Unfolding (7), we arrive at

533‘1 ~ B05U0 + Bodao

51’2 ~ A1305U0 —+ Bl(S’U,l + Aléoéﬂo + 3151}1

dxny ~ An_1...A1Bodug + -+ + By_10un_1
+AN_1... A1§0§a0 —+ -+ BN,1(S’LALN,1.
It is noted that, these linear approximations are
only wvalid for small control penurbations: ie.,
HAUH = ||((5’U,0,(5’LL1,...,(5UN,1)H and ||AU|| =
(04, 611, ..., dtUN_1)]| are sufficiently small. To condense

the approximation above, the variation of the entire state
trajectory caused by small AU and AU can be rewritten as

511 H\AU + HiAU
AX = | 1 |~ : = HAU + HAU,
dxn HNAU + HyAU
®)
where
r Bo 0 0 7
o A, By By ’
: : 0
_ANfl - A1By An_1---ABy BNfl_
i By 0 0
I:I — A1B0 Bl ,
: 0
_ANfl "'AlBO ANfl AQBl BNfl_

and the magrices H; and H ; represent the ith horizontal block
of H and H, respectively. Moreover, the corresponding state
trajectory driven by the slightly drifted nominal control can
thus be quantified as

X(U+AU,U+ AU) =~ X(U,U) + HAU + HAU. (9)

With these insights, we can tackle the solution of the
optimization problem (6) in a iterative manner where in each
step of the iteration, we are looking at a drastically simpler
quadratic program

minimize  ||U + AU||? + 1 ||AU||? + 72| AT ||?

(AU, AU)

subject to

(10)
N + HyAU + ]:INAU = Ttarget;

for gradually reducing the auxiliary energy. Here v, o are
regularization parameters that penalize large values of ||AU||
and ||AU||, which ensures the validity of the first order
Taylor expansion applied in (8). By iteratively updating U
and U by solving (10), the auxiliary control energy U will
be steadily reduced. Furthermore, if we arrive at U = 0, this
would mean that the original input U has taken over full
control of the system in steering the state on a trajectory
Connecting Ty and Tiger. The general structure of AER
which is summarized as below.

Algorithm 1 Auxiliary Energy Reduction (AER)

Require: A nominal trajectory X connectmg Tare and Trarget,
as well as a pair of nominal inputs (U, U), such that (U, U)
steers the extended system along X.

1: Apply the input (U, U) to the system and calculate H, H.
2: Solve for (AU*, AU*) of the optimization problem (10).
3: Update the control input via U < U + AU* and U«
U+ AU

4: Repeat step 1 — 3 until [|U]|2 < ez 1.

As the dimension of the input of the extended system
dim(U) + dim(U) = m + n is larger than the dimension
of the state, the extended system is an over-actuated system,
and more than one pair of (ug, @it ) can drive the system from
T to z41. To decrease the total iteration times needed when
employing the AER method, an initial U with less energy
is preferred. In the next part, we show how this may be
achieved by manipulating the way U is initialized.

Without loss of generality, we focus on minimizing the
energy of the initial auxiliary control term in the kth time
step of the trajectory by considering (5) through choosing
the initial input wuy, according to muin||:1:k+1 — F(xg,ur)| 2
Given a nominal trajectory, a nonlinear regression approach
can be utilized to update uy:

UL <—uk+/\B};(xk+1 —F(mk,uk)), (11
where A is the step size which is small enough to ensure a
steady convergence, and B}; is the left pseudo inverse of By.



This procedure can be generalized to the entire time steps
for properly initialization that is concluded in Algorithm 2.

Algorithm 2 Proper initialization of U, U

Require: A nominal trajectory X from T tO Zarger-

1: Initialize U = (ug,...,un—1) as a sequence of small
random numbers.

2: Calculate By for every k, and update ug by (11) until
converged.

3: Set the auxiliary control input via @y, = xp4+1—F(xg, ug),
and U = (’&(), ...,’lAI,Nfl).

We note that the AER method without optimizing the
initial U is fast enough for simpler systems, such that the
energy minimization step is not necessary in general, in
which case step 2 of Algorithm 2 can be skipped.

IV. MOTION PLANNING WITH HOMOTOPY CLASS
CONSTRAINTS

In this section, we illustrate how the AER method can
be extended to preserve the homotopy class of generated
trajectories when tackling motion planning problems in-
volving cluttered environments and homotopy constraints.
To this end, we integrate the AER method with two new
components: anchors that are to identify the obstacles and the
associated anchor loss that is added to the objective function
for maintaining the topological properties of the trajectory.

Anchors are obstacles with regular shapes, such as points,
lines and planes. In addition, obstacles with irregular shapes
can be approximated by tightly arranging multiple anchors
around their boundaries. An anchor is defined as a tuple
(C,a), where C' € RP*™ is the linear operator for dimension
selection and rotation, and a € RP. As a result, the distance
between a point = and the anchor can be measured as ||Cz —
al|. Moreover, a set of anchors is defined as a collection of
tuples: A = {(C1,a1), ..., (Cnm,an)}-

To keep a given trajectory X (U, U) = (g, 21, ..., T that
is obtained by an extended system (4) starting from gy
and driven by inputs (U,U) away from an anchor set A,
we introduce the so-called anchor loss L(X, A) € RM(V+1)
by utilizing the framework of barrier functions. Within our
particular implementation, the anchor loss is defined to be
logarithmic-like, whose (¢ + kM )th element is expressed as

0, if [|Cizr — ail|* > p,
L(X, A)itrm =
( Ji+kM { log(||Cizr — ai]|?), otherwise,
(12)

where (C;,a;) denotes the ith anchor of A, € (0,1] and
x, represents the state at the kth time step of the trajectory.
The logarithm distance of the form —log(d?) is preferred
here because its derivative will not vanish as —d? or expand
too fast as 1/d?> when d approaches zero.

In order to prevent the trajectories from crossing through
the anchor set during the trajectory updates, we need to
ensure that there is no anchor standing inside the smooth
deformation from X (U, U) to X (U + AU, U+ AU). To this

end, we consider the following. If there is an intersection
between (C;, a;) and the interpolated trajectory segment z:j,
to w41, we have ||Cizr — ai)? < ||Ci(zper — x)|%
which implies that there exists zy,rry+1 and an anchor
(Ci,ai) € A, such that L(X, A)iyrn > —log(||Ci(xp41 —
x1)||?), where we assume that the sampling rate of the
discretization from (2) to (3) is sufficiently fast so that
|Ci(zk+1 — 2)||*> < p holds for every k. In addition, by
denoting X* = X (U 4+ oAU, U +aAU),a € [0,1], we can
leverage X? ++ X! to present a smooth deformation from
X (U,U) to X (U+AU,U+AU). We conclude that, as long
as one can ensure

IL(X, Al < min —log(|Ci(arsr — x)]/?) = . (13)

and X§ = XY for all « € [0,1], the trajectory driven by
updated inputs X (U + AU, U + AU) belongs to the same
homotopy class of X (U, U).

It is natural to consider an optimization problem minimiz-
ing the norm of the anchor loss so as to fulfill the condition in
(13). Before we take the further step towards the optimization
formulation, we first investigate the linear approximation of
the anchor loss with respect to (U, U ). Based on (8) and (12),
the (i+ kM )th row of the Taylor expansion’s first-order term
regarding L(X,.A) is expressed as

Oa if ||Cla:k - a‘i”2 > s

AL(X, A); = R :
( i {MiJrkMAU + Mk AU, otherwise,
where ( "
—2(Ciwy —a;)" C;
M/L = H ,
M T G —alP
v —2(Ci.7jk - ai)TCi A
MZ = H .
+kM ||01',55k _ ai||2 k

Having done so, the following quadratic program is consid-
ered for maintaining the auxiliary energy and decreasing the
anchor loss simultaneously,

minimize || L(X,A) + MAU|> +~||AU|?
AU (14)
subject to  xy + HNAU = Ziargers

where 7 > 0 is the regularization parameter.

We note that it is in general cumbersome to choose 7; and
~2 in (10) for each iteration such that the condition (13) is
satisfied. Instead, one could simply use the same 7; and ~y» in
Algorithm 1, and choose an appropriate update step size « to
update the controls: for AU™* and AU* obtained from (10),
we employ a line search strategy to find the largest update
step size a* € (0,1], such that ||L(X*, A)|« < & for all
a € [0, a*], where £ < E is a predetermined threshold. This
strategy has been found to be particularly effective in dealing
with highly nonlinear systems.

To summarize, by incorporating anchors, we endow AER
method with the capability of preserving the topology class
for the generated trajectories through out iterations. The
overall procedure is summarized in Algorithm 3.



Algorithm 3 AER with anchors

Require: A nominal trajectory X connecting Tsia and Tiarget,
as well as a pair of corresponding inputs (U, U).

1: Apply the input (U, U) to the system and calculate H, H.
2: Solve for AU* and AU* of the optimization problem
(10), and find the largest step size o™ using line search.

3: Update U <+ U + o*AU and U+ U+ a*AU.

4: Calculate L(X,.A) and M, update U according to (14).
5: Repeat step 4 until || L(X,A)]]? < ea.

6: Repeat step 1 — 5 until [|U]|? < ea 1.

V. ILLUSTRATIVE EXAMPLES

We first demonstrate the effectiveness of the proposed
AER method on two well-studied benchmark platforms:
Brockett integrator and a unicycle that operates on a plane.
Then a more complex and highly nonlinear model of the
quadcopter in 3-D space is evaluated.

A. Brockett Integrator Model

As a classical nonholonomic control system, the Brockett
integrator

T u
d 1 1
—_ To = U
dt
I3 T1Ug — T2U1

has been widely studied.

We consider the setup in which 2y = (0,0,0)7, Ttarget =
(0,0,1)T, T = 2, and the preset state trajectory is set
as a naive straight line between these two points. We set
Y1 = 72 = 0.05]|U]|2, and the sampling rate to be 20 Hz.
By leveraging the geometric interpretation of the Brockett
integrator in terms of the connection to the sector area of the
curve in the xy-plane (cf. [17]), the value of x3 is known to
be a function of the area of the (x1, z2) curve. Therefore, this
preset reference is clearly dynamically infeasible. Figure 3
illustrates the deformation from the reference trajectory to
a dynamically feasible one obtained by AER, where the x
and T are represented in red and blue dots, respectively.

B. Unicycle Model with Homotopy Class Constraints

The unicycle model is another popular nonholonomic
testbed for illustrating path generation methods, cf. [13].
Its corresponding system dynamics are described by the
following system of nonlinear differential equations

d [* v COS @
T y| =|[vsing |,
) w

where ¢ represents the facing angle of the unicycle, v stands
for the moving velocity, and w denotes the steering velocity.

We set zg = (0,0,0) ", et = (3,0,0) 7, T = 3. We set
Y1 = 72 = 0.0001|T]|2, v = 0.005, and the sampling rate
of the discretization to be 20 Hz. In order to illustrate AER
method’s capability of keeping the consistency of homotopy
class for generated trajectories, two anchors are placed at
(1.25,0.25) and (1.75, —0.25), respectively. Figure 4 shows
snapshots of the unicycle’s movements within three represen-
tative iterations, as well as the corresponding input signals.
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C. Quadcopter Model with Homotopy Class Constraints

Here we consider a quadcopter model with full-scale
nonlinear dynamics to highlight the effectiveness of the pro-
posed AER method to generate a feasible tracking trajectory,
which at the same time preserves a desired homotopy class.
The adopted dynamic model of the quadcopter system is
described by a system of nonlinear ODEs with 12 states
and 4 control inputs representing the rotating speed of four
motors in rotation per minute (rpm) and takes the form

4
Lo = ful) + Y Filad
=1

where fy and f; are nonlinear differentiable functions. Read-
ers are referred to [18] for the detailed dynamics structure.

Given the quadcopter model above, we leverage the AER
method to plan feasible trajectories with homotopy con-
straints for three flight tasks in different environments. The
simulation setup and results are shown in Figure 5. In these
tasks, we set 71 = vo = 0.0001||U||2, v = 0.005, the
sampling rate to be 20 Hz, and total time horizon of each
task to be 5, 6 and 8 seconds, respectively. Moreover, we
heuristically initialize U such that the quadcopter hovers at
the starting point, while the initial U then would act as the
invisible force that drives the quadcopter along the preset
trajectory.

(a) Flight task 1

(c) Flight task 3

Fig. 5. For each flight task, the cluttered environment contains different
types of obstacles that are identified by a set of anchors shown in red
points/lines. The states with regard to the position of the preset nominal
reference trajectory is presented as green polylines, while the rest, i.e.
translational velocities, altitudes, angular velocities, are set to zero. AER
method has transformed the preset reference to a dynamically-feasible one
shown in the blue dashed curve for the quadcopter to track. Meanwhile,
the homotopy class constraints are observed to be fulfilled. The sequential
snapshots demonstrate the tracking procedure of the quadcopter starting
from the darker blue color to lighter yellow color gradually.

VI. CONCLUSION
In this paper, we introduced a new motion planning
technique called auxiliary energy reduction (AER) method.

The AER method obtains a dynamically feasible trajectory
through minimizing the energy of the auxiliary control

term which is artificially added to the original dynamics.
By incorporating the so-called anchor and anchor loss, the
method further preserves the homotopy class for generated
trajectories. We have demonstrated the practicability of the
method in three different simulation examples.
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