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ABSTRACT

Serverless computing promises an efficient, low-cost compute ca-
pability in cloud environments. However, existing solutions, epit-
omized by open-source platforms such as Knative, include heavy-
weight components that undermine this goal of serverless comput-
ing. Additionally, such serverless platforms lack dataplane optimiza-
tions to achieve efficient, high-performance function chains that
facilitate the popular microservices development paradigm. Their
use of unnecessarily complex and duplicate capabilities for building
function chains severely degrades performance. ‘Cold-start’ latency
is another deterrent.

We describe SPRIGHT, a lightweight, high-performance, respon-
sive serverless framework. SPRIGHT exploits shared memory pro-
cessing and dramatically improves the scalability of the dataplane
by avoiding unnecessary protocol processing and serialization-
deserialization overheads. SPRIGHT extensively leverages event-
driven processing with the extended Berkeley Packet Filter (eBPF).
We creatively use eBPF’s socket message mechanism to support
shared memory processing, with overheads being strictly load-
proportional. Compared to constantly-running, polling-based DPDK,
SPRIGHT achieves the same dataplane performance with 10X less
CPU usage under realistic workloads. Additionally, eBPF benefits
SPRIGHT, by replacing heavyweight serverless components, allow-
ing us to keep functions ‘warm’ with negligible penalty.

Our preliminary experimental results show that SPRIGHT achieves
an order of magnitude improvement in throughput and latency com-
pared to Knative, while substantially reducing CPU usage, and
obviates the need for ‘cold-start’.
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1 INTRODUCTION

Serverless computing has grown in popularity because users have to
only develop their applications while depending on a cloud service
provider to be responsible for managing the underlying operating
system and hardware infrastructure. The typical costs borne by the
user are only for processing incoming requests. This event-driven
consumption of resources is attractive for cloud users, especially
when their demand is intermittent. It does, however, place the
burden on the cloud service provider to provide adequate resources
on-demand and ensure the quality of service requirements are met.

In many cases, serverless frameworks are profligate in their re-
source consumption. They provide the needed functionality by
loosely coupling serverless functions and middleware components
that run as a separate container and/or pod.! This can be extremely
resource-intensive, especially when deployed in a limited capac-
ity environment, e.g., edge cloud [57]. There are still a number
of shortcomings to be overcome for building a high-performance,
resource-efficient, and responsive serverless cloud. Some contribu-
tors to this overhead are the following.

Use of heavyweight serverless components. In a serverless
environment, each function pod has a dedicated sidecar proxy, dis-
tinct from its application container. Sidecar proxies help build an
inter-function service mesh layer with extensive functionality sup-
port, e.g., metrics collection and buffering, facilitating serverless
networking and orchestration. However, the existing sidecar proxy
is heavyweight since it is continuously running and incurs exces-
sive overheads, including 2 data copies, 2 context switches, and 2
interrupts (see §2) for a single request. Moreover, since most server-
less frameworks primarily focus on HTTP/REST API [6, 25, 47],
additional protocol adaptation is required for specialized use cases,
e.g., IoT (Internet-of-Things) with MQTT [19, 73], CoAP [38]. The
current design runs protocol adaptation as an individual compo-
nent, resulting in substantial resource consumption. Having such a
heavyweight design may overload serverless environments, espe-
cially in resource-limited edge clouds or when handling infrequent
workloads (e.g., IoT). Instead, going a step further and invoking code
for execution on a completely event-driven basis without using an
individual component can result in substantial resource savings.

Poor dataplane performance for function chaining. Modern
cloud-native architectures decompose the monolithic application

1“one-container-per-Pod” is the most common model used by Kubernetes for running

a function instance.
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into multiple loosely-coupled, chained functions with the help of
platform-independent communication techniques, e.g., HTTP/REST
APIL for the sake of flexibility. But, this involves context switching,
serialization and deserialization, and data copying overheads. The
current design also relies heavily on the kernel protocol stack to
handle the routing and forwarding of network packets to and be-
tween function pods, all of which impact performance. Although
function chaining brings flexibility and resiliency for building com-
plex serverless applications, the decoupled nature of these chains
also requires additional components (e.g., a message broker such
as Apache Kafka [34], to coordinate communication between func-
tions, and a load balancer like Istio [13]). The resulting complex
data pipelines add more network communications for the function
chain. All of this contributes to poor dataplane performance (lower
throughput, higher latency), potentially compromising service ser-
vice level objectives (SLOs).

In this paper, we design SPRIGHT, a high-performance, event-
driven, and responsive serverless cloud framework that utilizes
shared-memory processing to achieve high-performance commu-
nication within a serverless function chain. We base the design
of SPRIGHT? on Knative [14], a popular open-source serverless
framework. Evaluation results are presented for SPRIGHT and com-
pared with Knative under various realistic serverless workloads in
a cloud environment. Our event-driven shared memory process-
ing, includes event-driven proxies (we call them the EPROXY and
SPROXY) that significantly reduce the high resource utilization in
the Knative design. This results in much lower latency. SPRIGHT
overcomes the challenges of existing serverless computing with
the following innovations:

(1) We design the SPRIGHT gateway, a chain-wide component, to
facilitate shared memory processing within a serverless function
chain. The SPRIGHT gateway consolidates protocol stack process-
ing in the Linux kernel and distributes the payload to the chain.
(2) We implement zero-copy message delivery within a serverless
function chain by using event-based shared memory communica-
tion. This avoids the unnecessarily duplicated in-kernel packet pro-
cessing between functions, achieving high-speed, highly scalable
packet forwarding within a serverless function chain. Event-based
shared memory communication helps reduce CPU usage and alle-
viate penalties when keeping the function chain warm.

(3) We design event-driven proxies (i.e., EPROXY and SPROXY) us-
ing the eBPF (extended Berkeley Packet Filter [66]), that effectively
replace the heavyweight sidecar proxy. We support the functions
of metrics collection etc., with much lower CPU consumption.

(4) We implement separation at the function-chain level in SPRIGHT
shared memory processing by restricting access to a private shared
memory to trusted functions of only that chain. The SPROXY fur-
ther restricts unauthorized access by applying message filtering for
inter-function communication.

(5) We utilize the packet redirection function provided by eBPF
to improve packet forwarding performance outside the serverless
function chain. Compared to the kernel networking stack, the eBPF-
based dataplane dramatically lowers latency and CPU consumption.

5

2SPRIGHT is publicly available at https://github.com/ucr-serverless/spright.git
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(6) We optimize protocol adaptation by running it as an event-
driven component attached to the SPRIGHT gateway, to avoid
unnecessary networking protocol stack processing overhead. This
optimization can significantly reduce latency.

2 BACKGROUND AND CHALLENGES

There are a variety of implementations for function chaining since
there is no standard for a general solution architecture for server-
less applications. The data pipeline patterns for function chaining
of different open-source serverless platforms are slightly different,
depending on the messaging model applied, e.g., a publish/subscribe
model typically uses a message broker as the intermediate compo-
nent for coordinating invocations within the function chain, while
the request/response model typically employs a front-end proxy
to perform invocations within the function chain. We examined
the design of several proprietary and open-source serverless plat-
forms [8, 15, 27, 28, 56] and developed a common abstract model of
the typical data pipeline pattern they use, as shown in Fig. 1.

The data pipeline for function chains uses a message routing as
follows: @ Clients send messages (requests) to a message broker/front-
end proxy through the ingress gateway of the cluster. @ The mes-
sages are queued in the message broker/front-end proxy and regis-
tered as an event. ® The message broker/front-end proxy sends the
message to an active pod of the head (first) function in the chain,
as defined by the user. @ The function pod is invoked to process
the incoming request. After the first function processes the request,
a response is returned and queued in the message broker/front-end
proxy, registered as a new event for the next function in the chain.
® The message broker/front-end proxy sends this new event to an
active pod for the next function in the chain.

Unfortunately, this data pipeline poses several challenges that
are common across the different serverless platforms. The core
dataplane components, including the ingress gateway, message
broker/front-end proxy, sidecar proxy, etc., are usually implemented
as individual, constantly-running, loosely coupled components. In
addition, for internal calls within the chain, each involves context
switching, serialization/deserialization, and protocol processing.

We quantify the overheads in the representative open-source
platform, Knative, through systematic auditing performed with a
‘1 broker/front-end + 2 functions’ chain setup based on the current
design depicted in Fig. 1. We assume all evaluated components
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Figure 1: Networking processing involved in a typical server-
less function chain setup.
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Table 1: Per request Knative overhead auditing of data
pipelines for a ‘1 broker/front-end + 2 functions’ chain.

L External Within chain
Data Pipeline No. ) ‘ @ ‘ toral | ® ‘ @ ‘ ® ‘ toial Total
# of copies 112 3 4| 4| 4 12 15
# of context switches 1|2 3 41 4| 4 12 15
# of interrupts 3| 4 7 6|66 18 25
# of protocol processing tasks || 1 | 2 3 31313 9 12
# of serialization 1|1 2 21212 [3 8
# of deserialization 0|1 1 21212 6 7

are deployed on the same node, with the overhead on the external
client-side excluded. We use a NGINX [21] server function for
this audit. However, our results are generally applicable, as these
basic overheads are independent of the function used. We examine
the different overheads incurred in the data pipeline processing
of one request (from @ to ®), including # of copies, # of context
switches, etc. as listed in Table 1. Due to implementation-specific
differences, e.g., running multiple threads on the same CPU core,
there may inevitably be additional context switches. Our audit aims
to quantify the minimum value of each type of overhead. Based on
these observations, we list the following key takeaways:
Takeaway#1: Excessive data copies, context switches, and
interrupts. With the existing Knative framework, each request
results in 15 data copies, 15 context switches, and 25 interrupts
throughout the entire data pipeline. Surprisingly, most of the over-
head (80%) comes from networking within the function chain (from
® to ®). Current approaches for serverless function chaining rely
on the composition of existing networking components to sup-
port asynchronous and reliable message exchange between func-
tions, and traffic within the chain has to go through the message
broker/front-end proxy each time over the kernel. This inevitably
introduces additional data copies, context switches, and interrupts,
thus increasing overhead. Furthermore, as the chain becomes more
complex, the number of data copies, context switches, and inter-
rupts increase linearly, resulting in very poor scaling.
Takeaway#2: Excessive, duplicate protocol processing. Pro-
tocol processing is another major source of overhead. As seen in
Table 1, networking within the function chain accounts for 75% of
the total protocol processing overhead, reflecting the problematic
design of current serverless function chains. Protocol processing
tasks, including checksum calculation in software and complex ipt-
ables processing, contribute to latency and results in poor scaling
(especially as the number of iptables rules increases) [55].
Takeaway#3: Unnecessary serialization/deserialization. REST
API and HTTP require additional serialization and deserialization
operations to convert application data to byte streams before being
transmitted over the network. These operations incur significant
overhead (lowering throughput and adding latency) [71]. Each step
in the data pipeline for the function chain (from @ to ®) introduces
2 serialization and 2 deserialization operations. As shown in Table 1,
current designs further amplify this degradation with an excessive
number of protocol stack traversals.

Takeaway#4: Individual, constantly-running heavyweight
components. Serverless platforms equip each function pod with

3[61] reports that the overheads for iptables processing in a typical Kubernetes envi-
ronment (also applicable to Knative) using the Container Network Interface accounts
for 60% of the total networking overhead.
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Figure 2: Performance and overhead breakdown of different
sidecar proxy implementations.

an individual, constantly-running sidecar proxy to handle inbound
and outbound traffic. The presence of this sidecar proxy introduces
a significant amount of overhead. Just going through step @, the
sidecar proxy introduces 2 data copies (50%), 2 context switches
(50%), and 2 interrupts (33%). To understand the impact of this
overhead on dataplane performance, we evaluate several sidecar
proxies, including the Envoy sidecar from Istio [12], Queue proxy
from Knative [53], and the OF-watchdog from OpenFaaS [22]. We
use these sidecar proxies to work with NGINX [21] as a representa-
tive HTTP server function. We also use this NGINX HTTP server
function without sidecar proxies as the baseline to quantify the
additional overhead introduced by the sidecar proxy. We disable
autoscaling and limit ourselves to a single function instance. We
use wrk [3] as the workload generator and send variable-size HTTP
traffic (2% 10KB requests, 98% 100B requests) directly to the func-
tion pod (including sidecar). Both wrk and the function pod are
running on the same node.

Our experimental results are shown in Fig. 2. Equipping a sidecar
proxy results in a 3X-7x reduction in throughput, 3X-7x higher
latency, and a significant increase (3x-7x) in CPU cycles per re-
quest. Even though the overhead varies, it is common across all
the evaluated sidecar proxies. Looking deeper at the CPU overhead
breakdown, the kernel stack for the sidecar proxy consumes 50% of
CPU cycles. This substantial overhead of sidecar proxies undercuts
the benefit of serverless computing and calls for a more lightweight
serverless capability to provide the same functionality.
Summary: The expected benefit of serverless computing was to
overcome the inefficiencies of ‘serverful’ computing. However, the
excessive overhead in current serverless frameworks shows that the
‘server’ is still entrenched in serverless computing. Our auditing
shows that the loosely coupled construction of existing compo-
nents for serverless computing results in substantial unnecessary
processing overhead, possibly discouraging the implementation of
microservices as function chains. This poor dataplane design and
having individual, constantly-running components in the function
chain prompt us to create a more streamlined, responsive serverless
framework by considering high-performance shared memory pro-
cessing and lightweight event-driven optimizations to help extract
the ‘server’ out of serverless computing.

3 SYSTEM DESIGN OF SPRIGHT

In this section, we start with the overall architecture of SPRIGHT by
justifying the design of each component and discussing the benefits
it achieves in improving serverless environments. We then discuss
each part separately, including the shared memory processing for
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Figure 3: The overall architecture of SPRIGHT

communication within serverless function chains, the lightweight
event-driven proxy, the security domain design, the dataplane accel-
eration for communication outside the function chain, lightweight
protocol adaptation, and intelligent autoscaling.

3.1 Overview of SPRIGHT
In this work, we start with open-source Knative as the base plat-
form [14]. Using an innovative combination of event-driven pro-
cessing and shared memory, we support high performance while
being resource-efficient and providing the flexibility to build mi-
croservices using serverless function chaining. Importantly, we
extensively use eBPF in SPRIGHT for networking and monitor-
ing. eBPF is an in-kernel lightweight virtual machine that can be
plugged in/out of the kernel with considerable flexibility, efficiency,
and configurability [66]. The execution of eBPF programs is trig-
gered only whenever a new event arrives, thus working naturally
with the event-driven serverless environment. Using eBPF, various
event-driven programs can be attached to kernel hook points (e.g.,
the network or socket interface). This enables high-speed packet
processing [45, 70] and low-overhead metric collection [51, 75].
eBPF achieves its configurability through eBPF maps — a config-
urable data structure shared between the kernel and userspace.
With eBPF maps, a more flexible dataplane can be implemented
with customized routing. The good features of eBPF help us provide
functionality with resource use that is strictly load-proportional, a
highly desirable toolbox for serverless environments.

Fig. 3 shows the overall architecture of SPRIGHT. We introduce
a SPRIGHT controller to coordinate the control plane for functions
working in conjunction with the orchestration engine (i.e., Kuber-
netes and Knative). The SPRIGHT controller runs as a cluster-wide
control plane component in the Kubernetes master node. It cooper-
ates with the kubelet, which is an indispensable pod management
process in the Kubernetes control plane that runs on each worker
node, to manage the lifecycle of the pods. In addition, the SPRIGHT
controller works with the autoscaler and placement engine (i.e.,
Kubernetes scheduler) to determine the scale of the function chain
and placement of the function chain at the appropriate worker node.
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Given a function chain creation request from the user, the SPRIGHT
controller instructs a kubelet on a selected worker node to create
and assign necessary control and data plane components for the
function chain, including the shared memory manager and the
SPRIGHT gateway, and start up the functions in the chain based on
the user configuration. To route external requests to the SPRIGHT
gateways of different function chains, we use a cluster-wide Ingress
Gateway to distribute the traffic.

To flexibly manage traffic in and out of the function chain in
SPRIGHT and avoid duplicate protocol processing within the chain,
we create a SPRIGHT gateway. It acts as a reverse proxy for the func-
tion chain to consolidate the protocol processing. The SPRIGHT
gateway relies on the kernel protocol stack for protocol processing
and extracts the application data (i.e., Layer 7 payload). It intercepts
incoming requests to the function chain and copies the payload
into a shared memory region. This enables zero-copy processing
within the chain, avoids unnecessary serialization/deserialization
and protocol stack processing. The SPRIGHT gateway invokes the
function chain for requests, processes the results, and constructs
the HTTP response to external clients. SPRIGHT assumes that func-
tions in the same chain run within the same node, to derive the
benefits of sharing the memory between functions. We dedicate a
SPRIGHT gateway for each function chain (§3.4). To mitigate the
concern of overhead when there are many chains in the cluster, we
emphasize that the SPRIGHT gateway is a lightweight component
with a relatively small memory footprint (27KB compared to each
(even simple) Golang-based function that is more than 2MB). The
CPU consumption of the SPRIGHT gateway is also not a signif-
icant concern. We share the requisite CPU cores across multiple
SPRIGHT gateways. In addition, since the SPRIGHT gateway pro-
cesses requests based on kernel interrupts, its event-driven nature
results in the CPU usage being largely load-dependent.

To eliminate impact of additional networking components for
function chaining, we design Direct Function Routing (DFR). DFR
exploits shared memory and leverages the configurability provided
by eBPF maps. DFR allows dynamic update of routing rules and uses
shared memory to pass data directly between functions (§3.2.3).

We design a lightweight, event-driven proxy (EPROXY and
SPROXY) that uses eBPF to construct the service mesh instead
of a continuously-running queue proxy associated with each func-
tion instance, as is used by Knative. Thus, we reduce a significant
amount of the processing overhead (§3.3).

SPRIGHT also incorporates security domains to restrict unautho-
rized access between different chains by coordination with kubelet.
SPRIGHT’s security domain design isolates different chains by cre-
ating a private shared memory pool for each chain and applying
message filtering for inter-function communication. We discuss the
security considerations in more detail in §3.4.

To accelerate the data path outside the function chain, we utilize
XDP/TC hooks [67] in eBPF to forward packets between other
serverless dataplane components, e.g., ingress gateway and to/from
the chain. An XDP/TC hook processes packets at the early stage of
the kernel receive (RX) path before packets enter into the kernel
iptables [36, 45], resulting in substantial dataplane performance
improvement without dedicated resource consumption, compared
to a constantly running queue proxy that depends on the kernel
protocol stack (§3.5).
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Event-driven processing can help tremendously in interfacing
serverless frameworks, which have an HTTP/REST API, with a va-
riety of application-specific protocols (e.g., for IoT with MQTT [19],
CoAP [38]). Current designs use a separate protocol adapter for
translation between these protocols. However, since SPRIGHT’s
shared memory processing directly works on payloads independent
of the application layer (L7) protocols, the protocol adapter can
ideally run as an internal event-driven component that is part of the
SPRIGHT gateway. This way, we achieve a much more streamlined
protocol adapter design, using resources strictly on demand (§3.6).

Although these optimizations are built around the Knative-based
environment, our concepts and methodology can also be broadly
applied to other serverless platforms.

3.2 Optimizing communication within

serverless function chains

3.2.1 Shared memory within a function chain. SPRIGHT allocates
a private shared memory pool with Linux HugePages for each
serverless function chain. Using HugePages can reduce the access
overhead of in-memory pages, thus improving the performance of
serverless functions when accessing data in the shared memory
pool. In addition, the shared memory pool within the function chain
supports queueing to help sustain traffic bursts.

To enable zero-copy data movement between functions, shared
memory processing relies on packet descriptors to pass the location
of data in the shared memory pool, which is then accessed by the
function. One implementation option is DPDK, which uses polling-
based RTE rings [29] to deliver the packet descriptor through its
multi-process support [20]. DPDK has been extensively used to
build up high-performance dataplane for cloud services [74]. While
DPDK allows for fast packet processing and low latency, it continu-
ously consumes significant CPUs independent of traffic intensity.

Instead of using heavyweight polling-based shared memory pro-
cessing, SPRIGHT dynamically extends the use of the socket in-
terface at the function pod by attaching an eBPF Socket Message
program (SPROXY in Fig. 4) [62]. SPROXY works with eBPF’s socket
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map to enable message redirection between socket interfaces of
function pods. The packet descriptor used by SPROXY is a small
16-byte message to minimize overhead. A packet descriptor con-
tains two fields: the instance ID of the next function and a pointer
to the data in shared memory. Once the SPROXY receives a packet
descriptor, it extracts the instance ID of the next function, which
is then used to query the eBPF’s socket map to retrieve the target
socket interface information (i.e., the file descriptor). Appendix-A
describes the zero-copy based packet flow of SPRIGHT. SPRIGHT’s
gateway maintains the in-kernel eBPF’s socket map (Fig. 4). When
a new function pod instance starts, the SPRIGHT gateway updates
its instance ID and socket interface information in the socket map
to support redirection between socket interfaces.

The packet descriptor redirection performed by SPROXY by-
passes the kernel protocol stack, incurring minimal latency over-
head. SPROXY operates in a purely event-driven manner, avoiding
the need to busy-poll packet descriptors and saving CPU resources.
Thus communication overhead is entirely load-dependent.

3.2.2 Event-based vs. polling-based shared memory processing. To
identify the most appropriate shared memory processing mecha-
nism in the context of serverless computing, we compare SPRIGHT s
event-based shared memory processing based on SPROXY (here-
after referred to as S-SPRIGHT) with polling-based shared memory
processing based on DPDK (hereafter referred to as D-SPRIGHT),
with a function chain containing 2 function pods. We use Apache
Benchmark [1] on a second node as the workload generator. We
additionally set up a function chain with the base Knative envi-
ronment and use NGINX as the front-end proxy to coordinate the
communication within the chain. Both the SPRIGHT gateway and
NGINX proxy are configured with two dedicated cores for a fair
comparison. Note: We collect the results from 10 repetitions. All
results also show the 99% confidence interval.

As shown in Fig. 5, with low concurrency, e.g., at 32, S-SPRIGHT
(0.024ms) shows a slightly higher average response delay compared
to DPDK (0.02ms), but still a much lower (almost 6x) response delay
compared to Knative (0.138ms). In terms of RPS, both DPDK (50.3K)
and S-SPRIGHT (41.7K) are substantially higher than Knative (7.2K),
with a significant 5.7X improvement.

As S-SPRIGHT relies on the in-kernel eBPF program (i.e., SPROXY)
to deliver packet descriptors, it incurs the overheads for context
switching, contributing to the extra latency. However, the SPROXY
processing latency is masked when the concurrency increases
(> 32), because the context switching latency overlaps with the
other processing. Throughput increases rapidly, up to 5x that of
Knative. Although S-SPRIGHT has a 1.2X lower peak throughput
than D-SPRIGHT, S-SPRIGHT has a substantially lower CPU usage
because it is purely event-driven. Both of those approaches have a
much lower overhead compared to Knative. With a concurrency
of 1, S-SPRIGHT consumes 32% CPU, which is 9.6X and 4.5X less
than D-SPRIGHT (308%, or more than 3 CPU cores fully used) and
Knative (143%), respectively. When the concurrency increases to
32, S-SPRIGHT consumes 259% CPU, which is still less than DPDK
(359%). Comparatively, the CPU usage of base Knative increases to
a shocking 1585% (more than 15 CPU cores used) at a concurrency
of 32 (see Fig. 5 (c)). The queue proxy consumes 70% of Knative’s
CPU. Even with increasing concurrency (> 32), S-SPRIGHT has a
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Figure 5: Comparison between polling-based (D-SPRI.) and
event-driven (S-SPRI.) shared memory processing with 1 gate-
way pod and 2 serverless function pods. Kn: Knative; QPs:
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consistent and steady saving in CPU compared to the others. Indi-
vidual, constantly-running components (queue proxy with Knative
or DPDK’s poll mode using up CPUs) have excessive overhead.
More importantly, S-SPRIGHT consumes negligible CPU resources
when there is no traffic. We observed that S-SPRIGHT’s gateway
and function pods that are SPROXY-based consume zero CPU when
there is no traffic, making it possible to keep a function pod ‘warm’
to overcome the ‘cold start’ delay (§4.2.2). Thus, SPROXY-based
shared memory processing is ideal for serverless computing, espe-
cially for function chains.

3.2.3 Direct Function Routing & Load balancing within a function
chain. To optimize the invocations within a function chain, we
use Direct Function Routing (DFR), which enables the upstream
function in the chain to directly invoke/communicate with the
downstream function. As shown in Fig. 4, the SPRIGHT gateway
only invokes the head function in the chain once (@ in Fig. 4). When
the first function completes the request message processing (@ in
Fig. 4), it directly calls the next function without going through
the SPRIGHT gateway. The rest of the function invocations in the
chain also bypass the SPRIGHT gateway, thus significantly reducing
the invocation latency (and overhead) for the function chain. To
support DFR, SPRIGHT adopts a two-step routing mechanism. It
uses a chain-specific, userspace routing table, and an in-kernel
socket map. The userspace routing table helps determine the ID of
next function while the in-kernel socket map uses that function ID
to find its corresponding socket file descriptor, which is then used
by the SPROXY to perform the actual packet descriptor delivery
between the sockets of the source and destination function.

We use the SPRIGHT controller (Fig. 3) to manage DFR within
the function chain. The SPRIGHT controller configures the routing
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table based on the user-defined sequence for the function chain.
We keep the routing table in shared memory to reduce access la-
tency. To support multiple downstream functions, we use a ‘topic’
(extracted from the message payload) based publish/subscribe mes-
saging model, and dynamically route requests using the routing
table. The message topic and the ID of the current function serve
as the key to looking up the ID of the next-hop function in the
routing table. For load balancing, we select the active pod instance
with the maximum residual service capacity* and pack its instance
ID into the packet descriptor. The invocation is then performed
through the SPROXY based on configured instance ID, without
going through the SPRIGHT gateway.

3.3 Event-driven proxy (EPROXY & SPROXY)
In Knative, the queue proxy runs as an additional container in a
function pod distinct from the user container. It buffers incoming
requests before forwarding them to the user container, to help
handle traffic bursts and maintain throughput. The queue proxy is
also responsible for collecting metrics for the pod (e.g., request rate,
concurrency level, response time) and exposing them to a metrics
server to facilitate control plane decision-making, e.g., autoscaling.
However, this design has several drawbacks we described earlier.
We overcome these with our lightweight, event-driven eBPF-based
EPROXY & SPROXY, replacing the queue proxy.

The goal of EPROXY & SPROXY is to achieve functionality com-
parable to that of the queue proxy but with lower overhead. We do
not need the queueing capability in the EPROXY as the shared mem-
ory within the function chain already provides that queueing. Thus,
SPRIGHT still provides the same functionality to improve concur-
rency and handle traffic bursts as a queue proxy. But, eliminating
the additional queuing stage helps reduce request delays.

To collect the required metrics for the Knative control plane,
we attach eBPF-based monitor programs to the EPROXY (at the
SPRIGHT gateway pod) and SPROXY (at function pods), as shown
in Fig. 4. The EPROXY at the SPRIGHT gateway pod collects L3
metrics, e.g., packet rate, bytes received, while the SPROXY at func-
tion pods collect L7 metrics, e.g., request rate. In addition, we assign
a ‘metrics map’ in the eBPF maps that serves as a local metrics
storage on each node. When a new request or response occurs, the
monitor programs are triggered to collect and update the metrics
to the metrics map. The SPRIGHT gateway has a built-in metrics
agent responsible for reading the metrics map periodically and pro-
viding the latest metrics to the metrics server. We further extend the
SPRIGHT gateway with internal event-driven metrics collection
capabilities as an enhancement of EPROXY to provide function-
chain-level metrics such as the request rate and execution time on
a chain basis. Since the EPROXY and SPROXY are only triggered
when there are incoming requests, there is no CPU overhead when
idle. Although EPROXY and SPROXY work in the kernel, they are
created by the cloud service provider rather than the user, which
does not affect the isolation of the user function. This is similar to
how serverless platforms attach a sidecar to a user function.

“The residual service capacity (RC; ;) of a function pod i at time ¢ is calculated by
RC;i; = MC; — r;;, where MC; is the maximum service capacity (i.e., maximum
request rate that can be served) of the function pod i and r;; is the request rate to
the function pod i at time t. Both MC; (estimated at maximum load) and r; ; can be
monitored by SPRIGHT’s event-driven proxy.
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Kubernetes natively supports function pod health checks via
the kubelet. Working in conjunction with the kubelet, SPRIGHT
can enable TCP or HTTP probes in functions for health checks.
Enabling the TCP or HTTP probes requires a minimal change of
opening an additional socket or HTTP server in the function to
listen to health check requests from the control plane. Thus, we
can dispense with Knative’s queue proxy doing a health check to
check on function pods, using TCP or HTTP probing.

3.4 Security domains in SPRIGHT

SPRIGHT recognizes the need for isolation between serverless
functions in a shared cloud environment, especially with the use
of shared memory processing. It is necessary to restrict access of a
shared memory pool to only trusted functions. The trust model in
SPRIGHT assumes that the functions within a chain trust each other,
but the functions in different chains may not. To limit unauthorized
access across function chains, SPRIGHT provides two abstractions
to construct a security domain for each function chain: 1) a pri-
vate shared memory pool for each chain; 2) inter-function packet
descriptor filtering with the SPROXY.

SPRIGHT takes advantage of DPDK’s multi-process support [20]
to isolate shared memory pools between chains. The kubelet works
with the SPRIGHT controller to assign each chain with a dedicated
shared memory manager and a SPRIGHT gateway at startup. The
shared memory manager runs as a DPDK primary process to have
the privileged permission to initialize the shared memory pool (us-
ing rte_mempool_create() API). Each shared memory manager
owns a unique shared data file prefix — a multiprocessing-related
option in DPDK used to isolate different memory pools [20]. By spec-
ifying the correct prefix, the gateway and functions in SPRIGHT,
which run as DPDK secondary processes, can attach to the mem-
ory pool (use rte_memzone_lookup() API) created by the chain’s
shared memory manager. The SPRIGHT gateway of each chain is
used to consolidate protocol processing and move the payload to
this private shared memory pool. Functions in the same chain are
assigned the same shared data file prefix upon creation and are
identified as trusted functions in their dedicated security domain.

SPRIGHT’s DFR allows function-to-function communication.
Malicious functions may crash other functions by intentionally
sending a packet descriptor pointing to an unauthorized memory
address. SPRIGHT leverages the extensibility of the SPROXY to
enforce inter-function message filtering, where we check carefully
which function has write and read access to each descriptor. Upon
the reception of a descriptor, the SPROXY performs a rule look-up in
the filtering map (built on eBPF maps) to check if the destination of
this packet descriptor is allowed. If the destination is not authorized,
SPROXY discards the packet descriptor. During the function startup,

Security domain of chain #1 Security domain of chain #2

[ 0 T |

I Shared Mem. Pool #1 1[I Shared Mem. Pool #2 1
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' Shared mem. SPRIGHT ' SPRIGHT Shared mem.
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Figure 6: Security domains isolating function chains
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the kubelet configures the rules in the filtering map. SPRIGHT also
supports dynamic configuration of rules during runtime.

Fig. 6 shows the startup flow of a function chain in SPRIGHT: @)
On receiving a request to create a function chain, the SPRIGHT con-
troller starts a shared memory manager dedicated to the chain. @)
The shared memory manager initializes a private memory pool for
the chain. @) The SPRIGHT controller creates a dedicated SPRIGHT
gateway for the chain. @) The SPRIGHT controller starts the func-
tions in the chain and attaches a SPROXY to each function while
also configuring the filtering rules in the eBPF map.

3.5 eBPF-based dataplane acceleration for

external communication

We exploit eBPF’s XDP/TC hooks to accelerate the communication
by the function chain in SPRIGHT to external components. We
develop an eBPF forwarding program and attach it to the XDP/TC
hook that is positioned on the RX path of the network interface,
including the host-side veth of the pod (i.e., veth-host’) and the phys-
ical NIC, as shown in Fig. 7. eBPF offers packet redirect features
(i.e., XDP_REDIRECT and “TC_ACT_REDIRECT’) that support
passing raw frames between the virtual network interfaces, or to
and from the physical NIC without going through the kernel proto-
col stack [11]. This helps save CPU cycles consumed by iptables.
The eBPF forwarding program has two functions: 1) Look up the
kernel FIB (Forwarding Information Base) table to find the desti-
nation network interface based on the FIB parameters [7] of the
received packet, including the IP 5-tuple, index of source interface,
etc. 2) Forward the raw packet frame to the target (veth-host or
NIC) interface via “XDP_REDIRECT’ or ‘TC_ACT_REDIRECT’. The
communication could be either in the same node or across different
nodes, supported by an eBPF-based dataplane via the eBPF for-
warding program. An XDP program at the physical NIC processes
all inbound packets received by the NIC. It redirects the packet to
the veth-host of the destination function pod after a routing table
lookup (@ in Fig. 7). The TC program at the veth-host handles the
outbound packet from the function pod. Depending on the packet’s
destination, the TC program may take different routes. If the desti-
nation of the packet is to another function pod (e.g., traffic between
ingress gateway pod and SPRIGHT gateway pod) on the same node,
the TC program directly passes the packet to the veth-host of the
destination function pod via “TC_ACT_REDIRECT’ (® in Fig. 7).
If the destination function pod is on another node, the TC pro-
gram redirects the packet to the NIC (® in Fig. 7). Our evaluation
shows that XDP/TC redirection helps achieve a 1.3x improvement
in throughput and a 20% reduction in latency under peak load.

5 A function pod is connected to the host through a pair of veths, i.e., the host-side
veth and pod-side veth.
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3.6 Event-driven protocol adaptation

To run a protocol adapter as an internal, lightweight event-driven
component, we predefine ‘protocol adaptation hook points’ on the
packet datapath inside the SPRIGHT gateway, just before the gate-
way sends messages to the function pod. The protocol adaptation
hook is a function call entry point that can be invoked to execute
customized protocol adaptation programs that are attached. Once
an application-specific message arrives at the hook point, the pro-
tocol adaptation program is triggered and executed. With internal
event-driven execution, invocations are integrated into the same
component without extra context switching and networking over-
head. Our design supports attaching the protocol adapter program
at runtime by exploiting dynamic code injection [10]. Different pro-
grams are pre-compiled into a dynamic library and can be loaded
to, or unloaded from, the hook point at runtime according to the
protocol adapter’s requirements. This facilitates compatibility when
handling traffic specific to each distinct protocol. In addition, dy-
namic loading of the program helps reduce startup time compared
to initializing a separate protocol adapter function pod.

Our adapter works seamlessly with stateless protocol adaptation,
e.g., HTTP, since managing the transport layer (L4) connections
is offloaded to the SPRIGHT gateway. However, some adaptation
scenarios with stateful protocols, e.g., MQTT, require an additional
L7 connection establishment before exchanging messages [19]. To
retain stateless protocol adaptation, we use the SPRIGHT gateway
to handle the L7 connection establishment rather than the internal
protocol adapter. Then, the SPRIGHT gateway passes the received
application messages to the event-driven protocol adapter, which
extracts the payload from the application message and delivers it
to shared memory. To improve interoperability and compatibility
with current serverless platforms, our adapter is designed to be
compatible with the CloudEvent specification [9], an event data
format widely adopted by serverless platforms [15, 26].

3.7 Intelligent autoscaling

In the control plane, the autoscaler scrapes metrics from the metrics
server to determine the load intensity, based on which serverless
function instances are automatically scaled up or down to serve
requests on demand. Knative’s autoscaler depends primarily on the
users to specify the requested resources for their functions based on
a single metric and is unaware of the complexity of function chains.
To improve on Knative, several approaches, e.g., Mu [57], GRAF [60],
etc. have been proposed to more effectively scale cloud resources
for serverless applications. SPRIGHT can be used in conjunction
with these advanced autoscalers. In addition, SPRIGHT supports
each function being scaled independently using vertical pod scaling,
especially with adding more CPU cores for the function as needed.

3.8 Discussion

Overhead auditing (contd.) - SPRIGHT: We now perform an
audit of overhead for SPRIGHT, following the same methodology
used before in §2, and compare it against the base design depicted
in Fig. 1. As can be seen in Table 2, SPRIGHT significantly reduces
overheads for processing within the function chain. With shared
memory processing, SPRIGHT achieves 0 data copies, 0 additional
protocol processing, and no serialization/deserialization overheads
within the chain. Although the use of SPROXY generates context
switches and interrupts, which do add latency for processing, the
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Table 2: Per request data pipeline overhead for SPRIGHT
for ‘1 broker/front-end + 2 functions’ chain (excluding client
overhead). Note-2: DFR: hence no route @ and ® (Fig. 1). @:
direct route from function-1’s pod to function-2’s pod.

s External Within chain Total
Data Pipeline No. } D ‘ ® ‘ total } 5 T® ‘ toial } Total | of Kn
# of copies 1|2 3 0] 0 0 3 15
# of context switches 112 3 2|2 4 7 15
# of interrupts 3| 4 7 212 4 11 25
# of proto. processing tasks || 1 | 2 3 0|0 0 3 12
# of serialization 11 2 0|0 0 2 8
# of deserialization 0|1 1 010 0 1 7

total number of context switches and interrupts for SPRIGHT is
still much less than that of the base Knative design (repeated in the
last column of Table 2). In addition, the results in Fig. 5 show that
the context switches and interrupts introduced by SPROXY have
a limited impact on the performance with concurrent processing
of just a few sessions. The event-based shared memory processing
substantially reduces resource usage, more than compensating for
any of the added context switches and interrupts.

Deployment Constraints: In SPRIGHT, functions in the same
chain need to be placed on the same node. This requires the place-
ment engine to deploy functions on the basis of a chain. This allows
shared memory communication between functions in a chain. In
addition, scaling SPRIGHT across multiple nodes requires all the
function of a chain to be deployed on each node. This may lead
to more resource fragmentation compared to deployment of each
function. Additionally, we need to load balance between different
function chain units in a multi-node deployment.

Application Porting Requirements: Porting an HTTP/REST-
based application to SPRIGHT requires replacing HTTP/REST-
based I/O with SPRIGHT’s SPROXY-based event-driven shared
memory I/O. However, SPRIGHT does not support synchronous
calls between functions, e.g., where the client sends a request to
the server and waits for a response before moving on to the next
step. SPRIGHT’s existing programming model assumes that a func-
tion’s code runs to completion after invocation, is purely event-
driven, and inherently supports asynchronous calls between func-
tions. In SPRIGHT, a synchronous call needs to be broken down
into multi-step asynchronous calls. For instance, a synchronous
“request-response” transaction needs to be treated as two separate
asynchronous calls: (1) The calling function sends a request (associ-
ated with a caller ID) to the serving function. The calling function
can continue processing other requests without pausing and wait-
ing for the response. (2) The serving function generates a response
and sends it back to the calling function (based on the caller ID in
the request). The calling function receives the response and then
continues to process the transaction.

We ported the online boutique application® [23] to SPRIGHT and
evaluate it in §4.2.1. The source code is available in [30]. Currently,
SPRIGHT only supports C-based implementations of user functions.
We expect to extend SPRIGHT s language support as part of our
ongoing development of SPRIGHT.

®[23] is a popular application used to demonstrate the utility of serverless computing,
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4 EVALUATION & ANALYSIS

4.1 Experiment Setup

To examine the improvement of SPRIGHT and its components, we
consider several typical serverless scenarios, including (1) a popu-
lar online shopping boutique, (2) An IoT environment of motion
detectors, and (3) a more complex processing of image detection &
charging for an automated parking garage. For each scenario, we
set up a function chain to execute the serverless application (Fig. 8).
The details of the setup for each scenario are as follows:

1. Online Boutique is an open-source representative implementa-
tion of a microservice-based online store application [23]. It has 10
different functions communicating with each other using gRPC. We
ported these functions to SPRIGHT (in C) and Knative (using the Go
language) based on the implementation provided in [23]. Functions
ported to SPRIGHT use shared memory, while functions in Knative
continue to use gRPC, for inter-function communication. We use
Locust [18] as the load generator and use the default workload
provided in [23] to generate a realistic web-based shopping appli-
cation’s request pattern. The default workload utilizes a total of 6
different sequences of function chains (see Table 3 in Appendix-B).
We compare four alternatives to run the online boutique applica-
tion, including gRPC, Knative, S-SPRIGHT, and D-SPRIGHT. In
the “gRPC” mode (‘server-full’ approach), the function runs as a
Kubernetes pod without a sidecar and uses the built-in gRPC server
for functions to talk to each other directly without involving a
broker/front-end.” In Knative mode, we use the Istio ingress gate-
way to mediate the communication between functions. We disable
the activator [17] (a cluster-wide queuing component in Knative)
to avoid additional queuing delays.

2. IoT - Indoor motion detection for automated lighting requires
tracking a sequence of events utilizing multiple sensors. The simple
function chain contains 2 functions (Fig. 8 (b)). Motion sensors
going ‘on’ triggers an actuator function to turn on the light. The
light may be automatically turned off after a period of no activity.
We consider the MERL motion detector dataset [72]. We use a traffic
generator developed in Python to send motion events based on the
timestamps in the dataset. The CPU service time of the sensor
function and actuator function are both set at 1ms. For the base
Knative setup, we use NGINX to coordinate the communication
within the function chain.

3. Parking - image detection & charging takes snapshots of each
parking spot as input for visual occupancy (of parking spots) detec-
tion in parking lots. It detects the vehicle’s license plate and deter-
mines whether the plate metadata is stored in the database through
a plate search function. If it is not stored, a ‘persist-metadata’ func-
tion is invoked to store the plate metadata in the database. Finally,
it charges parking fees based on the license plate’s metadata. We
consider the CNRPark+EXT image dataset collected from a parking
lot with 164 parking spaces [33]. We use the same load generator
used for IoT workload to send snapshot images (150150 pixels, ~
3KB each) through HTTP/REST API call. Every 240-second interval,
164 snapshots are sent to the function chain. We use NGINX to

"The “frontend service” (Fig. 8 (a)) in the online boutique runs as a user function, which
is distinct from the general broker/front-end. The latter is a system component that
used to mediate the communication between functions (e.g., the Istio ingress gateway
in Knative mode).

788

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

(2) Online boutique

el | [ ]\
|_service DB
_ /4
Payment Checkout Frontend Cart
|_service service service service
[ Shipping Currency Catalog Recommendation
|_service service service service
(b) Motion detection
Motion SensPr Actua.tor Light
sensor | function function actuator
(c) Parking: image detection & charging
Plate detection Plate search
—| . .
function function
Camera
persist-metadata Plate-index Charging
function function | function

Figure 8: Serverless function chains setup

coordinate the message exchanges within the chain. We use VGG-
16 as the image detection algorithm, and the CPU service time of
the image detection function is set to 435ms [40]. The CPU service
times of other functions are listed in Table 4 (Appendix-B).

We use these serverless applications to quantify the performance
gain brought by each of SPRIGHT’s optimization. We evaluate it
based on several metrics, including CPU usage, RPS, and response
time. To understand in detail, we show the time series and CDF
when appropriate.

Testbed setup: The testbed is built on top of a base Knative plat-
form, including 1) Knative serving/eventing components (v0.22.0) [15,
16]; 2) Kubernetes components (v1.19.0), including API server, place-
ment engine, etcd, etc [2]. We consider Calico CNI (Native routing
mode) [68] as the underlying networking solution except for the
communication within the function chain of SPRIGHT. We run
the experiments on the NSF Cloudlab with two ¢220g5 nodes [41].
Each node has a 40-core Intel CPU@2.2 GHz, 192GB memory, and
a 10Gb NIC. We use Ubuntu 20.04 with kernel version 5.16. We
configure the concurrency of both Knative and SPRIGHT function
as 32. The concurrency level of a function pod determines the # of
requests that can be processed in parallel at each time.

—— D-SPRIGHT
6K{—+ S-SPRIGHT
= gRPC
S5K{=== Kn
Bax :
u L. st
3K 800 Nl
-4
2K9 6008100 120 140 A
1Ky S e Sy oy
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Figure 9: RPS for online boutique: {Knative, gRPC} at 5K &
{D-SPRIGHT, S-SPRIGHT (overlap)} at 25K concurrency.
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4.2 Performance with Realistic Workloads

4.2.1 Comparing SPRIGHT, Knative, and gRPC mode. We now com-
pare D-SPRIGHT (using DPDK’s RTE rings) and S-SPRIGHT (using
SPROXY) against Knative and the gRPC mode for several different
function chains (i.e., Ch-1 to Ch-6) of the online boutique applica-
tion. We configure different concurrency levels (i.e., # of concurrent
users) of requests from the Locust load generator. We select two
concurrency levels, 5K and 25K, to show here. To achieve the 5K
concurrency, we set the spawn rate of 200/sec. concurrent requests.
The spawn rate controls the # of concurrency steps increased every
second. Above 5K, Knative’s performance becomes highly variable
with time, indicating overload (also results in very high tail response
times). Both S-SPRIGHT and D-SPRIGHT have stable performance
at a 25K concurrency level, after which they begin to show behavior
indicating a slight overload. To achieve the 25K concurrency, we
set the spawn rate of concurrency at 500/sec.

Even at 5K concurrency, Knative already begins to be overloaded.
From 0s to 35s (Fig. 9), as the concurrency level of the load gener-
ator is ramping up to 5K, and the requests/sec (RPS) increases to
~900 req/sec. Knative begins to overload (see at 35s in Fig. 9) due to
the use of sidecars and use of the Istio ingress gateway (hereafter
referred to simply as ‘gateway’) to mediate the communication
between functions. At this 5K concurrency, the gateway and side-
cars consume ~13 CPU cores (from 35s onwards), which is 50% of
the entire Knative setup. It finally leads to CPU contention with
the functions, whose CPU utilization soon reaches saturation at
62s (using up ~13 CPU cores, Fig. 10 (g)). In addition, the use of
the gateway and sidecars adds additional processing and queuing
delays on the request’s data path, leading to the reduction in RPS
observed (see beyond 30s in Fig. 9). The closed-loop nature of the
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workload generation and request processing results in the RPS,
resource utilization, and response times going through cycles of
overload (occurring again between 100s - 140s).

Compared to Knative, gRPC has a more stable RPS and better
overload behavior at 5K as gRPC has no sidecars and bypasses the
gateway. By removing these heavyweight components, functions
in the gRPC mode make full use of CPU resources. The shortened
request data path further reduces latency and alleviates overload
and queuing problems. As shown in Fig. 10 (a) and (b), the resulting
tail latency of gPRC, i.e, 95%ile, of 141ms, measured across all
the functions of the online boutique service, which is 4.9 lower
than Knative (whose 95%ile is 693ms). Fig. 10 (d) and (e) further
demonstrate the benefits of removing sidecars and the gateway. For
requests sent between 35s and 75s, the response time of Knative
increases significantly while the gRPC shows a delayed overload
(only 45s onwards) and its response time during the overload (45s to
75s) is much lower than Knative. However, as gRPC depends on the
kernel protocol stack for networking and requires serialization/de-
serialization. These overheads are not negligible. The entire gRPC
setup consumes 91% of the total CPU cores available on the physical
node in order to drain the queued requests (e.g., 45s to 75s in Fig. 10
(h)). This pattern repeats again, e.g., in the time period 108s - 140s.
Overall, this is quite inefficient.

Compared to Knative and gRPC, D-SPRIGHT and S-SPRIGHT
both have stable RPS throughout the experiment, for concurrency
levels ranging from 5K all the way to 25K. At 5K concurrency,
The 95%ile latency of D-SPRIGHT and S-SPRIGHT are 11ms and
13ms (see Table 5 in Appendix-B), significantly less than Knative
(690ms) and gRPC (140ms), while utilizing far less CPU. Although
D-SPRIGHT constantly consumes CPU cycles when idle, even at
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Figure 11: Time series of response time, and CPU utilization
for motion detection workload - 1-hour long experiments.

maximum load, it consumes only 11 total CPU cores at a concur-
rency level of 5K, which is ~2.5X less than Knative (similar to Fig. 5).
This again validates the benefits of SPRIGHT’s shared memory pro-
cessing, saving CPU resources by avoiding the needless processing
overheads with Knative discussed previously in §2. S-SPRIGHT
further reduces CPU usage dramatically by using a purely event-
driven processing compared to D-SPRIGHT. With 5K concurrency,
S-SPRIGHT consumes only ~1 CPU cores, including the gateway
and all the functions, getting comparable performance (throughput,
response time) to D-SPRIGHT. We further increase the concurrency
level of the load generator to 25K for D-SPRIGHT and S-SPRIGHT.
This increases the utilization, but still maintaining low tail response
times. Both D-SPRIGHT and S-SPRIGHT maintain a stable RPS of
~5500 req/sec (Fig. 9), which is 5% higher than the highest stable
RPS achieved with Knative and gRPC. Moreover, S-SPRIGHT far
less CPU resources than D-SPRIGHT, even as the load increases.
At 25K concurrency, S-SPRIGHT consumes only ~3.5 CPU cores,
which is 3% less than D-SPRIGHT (Fig. 10(i)), showing the benefit
of the eBPF-based event-driven processing.

With SPROXY generating context switches and interrupts for
descriptor delivery (Table 2), there is some additional latency in
S-SPRIGHT’s shared memory processing, and is slightly worse
than D-SPRIGHT in terms of tail latency (Fig. 10(c)). The 95%iles
of S-SPRIGHT, measured across all the functions, is 1.2X higher
than D-SPRIGHT (more details in Table 5, Appendix-B). The addi-
tional delay for SPROXY’s descriptor delivery, adds to the transient
queueing and hence slightly longer tail latency. However, as we
said in §3.2.2, the impact of this additional latency introduced by
SPROXY is quite limited. Further, the processing time within the
functions, which usually are non-trivial, will likely dwarf the extra
latency introduced by SPROXY, in relative terms. Importantly, the
throughput (RPS) of S-SPRIGHT is very close to D-SPRIGHT at the
high concurrency levels.

4.2.2  Bypassing the impact of cold start and zero scaling. We set
up an experiment with zero scaling enabled in Knative to study
the impact of cold start. Without incoming requests, Knative scales
functions down to zero to save resources and reduce costs. We
set the ‘grace period’ for scaling down to zero as 30 seconds. In
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contrast, we keep functions in SPRIGHT ‘warm’ by having a min-
imum number of active function pods, knowing that our purely
event-driven processing will not consume CPU resources when
idle. We use the motion detection workload to study the impact of
cold start because of the intermittent nature of such IoT traffic.

Fig. 11 (a) clearly shows the impact of cold start in Knative, with
large response times that possibly render the motion detection
application ineffective and severely violate SLOs. E.g., starting from
1950s, a number of motion events occur one after another (inter-
arrival time of a few seconds) that are sent to the currently zero-
scaled function chain. The first motion event that arrives at the
gateway is queued and triggers the instantiation of the functions.
Since a serverless function pod takes some time to start, subsequent
requests have to be queued. The cascading effect during the cold
start of the entire function chain further degrades the response
time [60], resulting in a long tail latency going up to 9s. Once
the function is active, Knative has a reasonably small response
time when there are consecutive incoming events (e.g., before the
grace period terminates between 2000s and 2500s), which keeps
the functions ‘warm’.

In contrast, SPRIGHT shows consistently low response times
over the entire workload duration since there is always an active
pod to serve the request without leaving requests waiting in the
queue (we can sidestep going down to zero-scale). More importantly,
although SPRIGHT keeps one (or more) function warm, the event-
driven nature of SPRIGHT leads to negligible CPU consumption
when there is no traffic. In fact, with Knative, the higher resource
usage of the queue proxy under load more than offsets any benefit
of Knative’s zero-scaling. E.g., in Fig. 11 (b), the spikes in the CPU
usage for the queue proxy (e.g., at the 1500s mark), even when
handling small traffic, is quite wasteful and is eminently avoidable
with SPRIGHT’s event-driven design.

Since the ‘Parking: image detection & charging’ workload has a
distinct periodic arrival pattern (e.g., monitoring and billing every 4
minutes), we configure a ‘pre-warm’ phase for Knative functions 20
seconds before the next burst is scheduled to arrive. ‘Pre-warming’
helps avoid the penalty of the cold start delay of serverless functions
while trading off a small amount of the resource savings of shut-
ting down the pods in serverless computing with zero-scaling [63].
However, as observed in Fig. 12 (b), the CPU usage for each func-
tion instantiation at the pre-warming stage in fact exceeds the CPU
usage consumed by request processing (i.e., observe the CPU usage
spike for the pre-warming and the function execution 20 seconds
later). Thus, while zero-scaling reduces CPU usage if the idle period
is long, a CPU cost for frequent creation/destruction of functions
must be considered. Knative also is quite inefficient for scaling
functions down to zero. When there is no traffic for a grace period
of 30s (e.g., 270s to 300s in Fig. 12 (b)), Knative begins scaling down
the functions to zero. But, functions remain in a ‘terminating’ state
until 380s without being really terminated or releasing CPU re-
sources. Thus, the scaling down process lasts as long as 80s, during
which all the Knative queue proxies and functions are consuming
CPU resources, which is unnecessary and wasteful.

For comparison, S-SPRIGHT consumes only a small amount of
CPU throughout the entire period, in fact with slightly lower (about
16%) response time (both average and 95%, Fig. 12 (a)). Overall, S-
SPRIGHT saves up to 41% CPU cycles in this 700s experiment
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without resorting to zero-scaling, almost doubling system capacity
compared to Knative.

5 RELATED WORK

In recent years, a number of serverless platforms have been launched,
e.g., AWS Lambda [5], IBM Cloud Functions [48], Apache Open-
Whisk [4], OpenFaa$ [24], Knative [14], etc, to support cloud-resident
applications. Work on understanding the performance impact of

commercial or open-source serverless platforms [35, 53] has guided

us on the design of SPRIGHT. Li et al. [53] showed that the overhead

of the ingress gateway reduced the throughput by 13%, compared to

the performance of function invocation using the ‘direct call’ mode

(i.e., the client directly invokes the function instance, bypassing

the ingress gateway). Priscilla et al. [35] studied the suitability of

different serverless function startup modes (i.e., cold and warm) for

supporting IoT applications, indicating that cold start can have sig-
nificant resource-saving benefits but can impact response time. This

prompts us to examine the resource consumption and overheads of

each component carefully.

Several past works have examined the inefficiency and overheads
that exist in Linux networking, including data copies and context
switching [39, 50, 52, 58]. The overhead of protocol processing [61]
and serialization-deserialization [49, 71] directly impact network-
ing performance, which applies to the container-based serverless
function, including function chains. A variety of optimizations have
been proposed to improve the network performance for different ap-
plication scenarios, which can be complementary to current Linux
networking (e.g., XDP [45], AF_XDP in OVS [69]) or bypass kernel-
based networking (e.g., NetVM for NFV [46]). Our work combines
the advantages of kernel-bypass zero-copy networking where es-
sential for serverless function chains, and leveraging eBPF-based
event-driven processing.

Multiple proposals optimize different aspects of serverless frame-
works, e.g., runtime overhead reduction [31, 32, 44, 59], intelligent
resource provisioning, and traffic management [57, 64]. Further,
[60], [37], [65] aim to optimize resource allocation and deployment
of serverless functions on the basis of a chain, which improves the
efficiency and flexibility of building microservices using serverless
function chaining. However, they do not focus on optimizing the
dataplane, which as we show has a significant impact.
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‘Cold start’ in serverless: The cold start latency of serverless
functions detracts from their being an ideal framework for building
microservices. [42] proposes a startup latency optimization specifi-
cally for Kubernetes-based environments by placing pods on nodes
that have container image dependencies locally to avoid the latency
of pulling images. However, their 95%ile startup latency after opti-
mization is still around 23s, severely impacting the QoS. In addition,
startup (either cold start or pre-warm [63]) adds additional costs, as
we have observed, making optimizations built around cold start less
desirable. A policy of ‘keep-warm’ of pods has been an alternative
to mitigate the cold start latency in serverless [54]. They can achieve
an 85% improvement of the 99%ile latency. Although [54] consider-
ably improves the SLOs, it is built on Knative with heavyweight
components (e.g., queue proxy), resulting in excessive resource us-
age. Fuerst et al. [43] consider greedy-dual caching to determine
which functions should be kept as warm. By factoring in several
key indicators of a function, e.g., memory footprint, invocation
frequency etc., they can prioritize functions to be kept warm, thus
limiting memory consumption to keep a minimum number of warm
functions and achieve SLOs. Since SPRIGHT primarily contributes
to controlling the CPU usage, [43] can be a good complement to
SPRIGHT to reduce memory utilization.

6 CONCLUSIONS
SPRIGHT demonstrated the effectiveness of event-driven capability
for reducing resource usage in serverless cloud environments. With
extensive use of eBPF-based event-driven capability in conjunc-
tion with high-performance shared memory processing, SPRIGHT
achieves up to 5% throughput improvement, 53 latency reduction,
and 27x CPU usage savings compared to Knative when serving a
complex web workload. Compared to an environment using DPDK
for providing shared memory and zero-copy delivery, SPRIGHT
achieves competitive throughput and latency while consuming 11x
fewer CPU resources. Additionally, for intermittent request arrivals
typical of IoT applications, SPRIGHT still improves the average
latency by 16% while reducing CPU cycles by 41%, when compared
to Knative using ‘pre-warmed’ functions. This makes it feasible for
SPRIGHT to support several ‘warm’ functions with minimum over-
head (since CPU usage is load-proportional), sidestepping the ‘cold-
start’ latency problem. Across several typical serverless workloads,
SPRIGHT shows higher dataplane performance while avoiding the
inefficiencies of current open-source serverless environments, thus
getting us closer to meeting the promise of serverless computing.

To provide isolation between serverless functions with the use of
SPRIGHT’s shared memory processing, SPRIGHT supports function-
chain-level separation by restricting access of a private shared
memory pool to only trusted functions of that chain. SPRIGHT
further provides traffic isolation by enabling message filtering in
the SPROXY of each function. SPRIGHT is publicly available at
https://github.com/ucr-serverless/spright.git

This work does not raise any ethical issues.
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A PACKET DATA FLOW IN SPRIGHT
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Figure 13: Packet data flow in S-SPRIGHT (SPROXY). NOTE:
The SPROXY is an in-kernel component. We put it in the
userspace for simplicity.

We describe the zero-copy packet delivery in S-SPRIGHT and
D-SPRIGHT. Fig. 13 shows the packet flow in a sequential chain
with three functions using S-SPRIGHT. Each function attaches a
SPROXY containing the eBPF’s Socket Message program at startup.
After protocol processing, @) and receipt of the payload from the
kernel protocol stack, the SPRIGHT gateway writes the payload
to shared memory. ®) The SPRIGHT gateway then generates a
packet descriptor, which contains the location of the payload in
shared memory, and executes the send() system call to send the
packet descriptor on its socket interface. The Socket Message pro-
gram at the socket interface intercepts the packet descriptor and
parses it to retrieve the ID of the next function (i.e., of Fn-1 in
Fig. 13). The Socket Message program then looks up the eBPF socket
map, using Fn-1’s ID as the key to find the file descriptor of Fn-1’s
socket interface. The Socket Message program invokes the bpf_
msg_redirect_map() eBPF call to transfer the packet descriptor
to Fn-1 without traversing the kernel protocol stack. @) Once Fn-1
receives the packet descriptor, it can use the location information
contained in the packet descriptor to access the payload in shared
memory. The same procedure is followed for the subsequent packet
data flow (® to @) within the function chain. ®) After processing
within the function chain is complete, the packet descriptor is sent
back to the SPRIGHT gateway. @) The SPRIGHT gateway fetches
the payload from the shared memory and sends it out through
the kernel protocol stack for processing and transmission of the
response.

Fig. 14 shows the packet flow when passing packet descriptors
between functions using DPDK’s RTE rings. It follows the same
procedure as the S-SPRIGHT, except for the way it is used to ex-
change packet descriptors. With the D-SPRIGHT setup, functions
and the SPRIGHT gateway are assigned an RTE ring at startup,
using rte_ring_create(). We configure the ring to run in a multi-
producer/multi-consumer mode by specify the “flags” parameter [29]
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of rte_ring_create() as 0. The D-SPRIGHT supports direct rout-
ing from one function to another by looking up the routing table,
which is configured by the shared memory manager during the
initialization of the function chain. The source (SPRIGHT gateway
or function) looks up the routing table in the shared memory to
find its destination. It then calls rte_ring_enqueue() to move the
packet descriptor to the destination’s RTE ring. The destination
polls the RTE ring (using rte_ring_dequeue()) to retrieve the
packet descriptor and then accesses the payload in shared memory.

..............

SPRIGHT gateway

User space =
Kernel space :

TCP/IP stack

A

Figure 14: Packet flow in D-SPRIGHT (DPDK’s RTE rings).

B ADDITIONAL EXPERIMENT DETAILS

Table 3: Sequence of different function chains in online bou-
tique. @: Frontend service; @: Currency Service; @: Product
Catalog Service; @: Cart Service; ®: Recommendation Ser-
vice; ©: Shipping Service; @: Checkout Service; ®: Payment
Service; @: Email Service; ©@: Ad Service.

‘ Index ‘ API call ‘ Call sequence in the chain ‘

Ch-1 | GET/ 1,21,3,1,4,1,2,1,10,1

Ch-2 | POST “/setCurrency” | 1

Ch-3 | GET “/product/$SID” | 1,3,1,2,1,4,1,2,1,5,1,4,1,10,1
Ch-4 GET “/cart” 1,2,1,4,1,5,1,6,1,2,1,3,1,2,1
Ch-5 | POST “/cart” 1,3,1,4,1

Ch-6 | POST “/cart/checkout” 1.7,4,7,3,7,2,7,6,7,2,7.8,

7,6,7,4,7,9,7,1,5,1,2,1

Table 4: CPU service time and sequence of different function
chains of Parking: Image Detection & Charging workload. @:
Plate detection, @: Plate search, ®: Plate index, @: Charging,
®: Persist metadata.

]
Ch-1
Ch-2

Sequence of the function chain ‘

@ (435ms), @ (20ms), @ (1ms), ® (10ms), @ (50ms)
@ (435ms), @ (20ms), @ (50ms)

Table 3, 4, and 5 provide additional details of experiments in
§4. Table 3 describes the sequence of different function chains in
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Table 5: Latency comparison between S-SPRIGHT, D-
SPRIGHT, Knative and gRPC mode at 5K and 25K concur-
rency. Note: latency is measured across all the functions of
the online boutique service.

Latency @ 5K (ms) | Latency @ 25K (ms)
95% | 99% | Mean | 95% | 99% | Mean
Knative 693 | 965 | 382 - - -
gRPC 141 | 199 | 456 | - : B
D-SPRIGHT || 11.1 | 45.1 5.8 80.8 | 144 17.7
S-SPRIGHT || 13.4 | 49.2 7.2 96.1 | 159 | 20.0

online boutique workload. Based on the REST API call made by the
load generator, difference functions are invoked following a certain
sequence (i.e., Ch-1 to Ch-6). Table 4 defines the CPU service time
of each function and the sequence of functions being called in the
“Parking: Image Detection & Charging” workload. The “Parking:
Image Detection & Charging” workload has two function chains, i.e.,
Ch-1 and Ch-2 in Table 4. Table 5 compares the latency between
different alternatives in online boutique experiment at different
concurrency levels (5K and 25K).

C ARTIFACT APPENDIX

Abstract

We have made the artifact of SPRIGHT publicly available. It contains
the environment setup and the provides the instructions to conduct
the set of experiments to reproduce the results in §4.

Scope

The goal of our submitting the artifact is to make the software of
SPRIGHT available as open source and allows the reproduction of
all the results and claims made in this paper. One can run SPRIGHT
and potentially extend the functionality of SPRIGHT based on the
source code and documentation provided.

Contents

The artifact consists of the full source code, and all necessary scripts
to run SPRIGHT as well as the experiments described in §4.

Hosting

SPRIGHT is publicly available at https://github.com/ucr-serverless/
spright.git. The artifact documentation can be found in the next
branch (commit 98434fd) in “ARTIFACTS.md”.

Requirements

Hardware Dependencies: This artifact was tested on NSF Cloud-
lab [41] using c220g5 nodes. However, it can be generally hosted
on any DPDK-compatible machines (required for D-SPRIGHT). For
those who only want to run S-SPRIGHT, any commercial off-the-
shelf machines would be adequate.

Software Dependencies: This artifact requires Ubuntu 20.04 with
Linux kernel version 5.16, Knative v0.22.0, Kubernetes v1.19.0,
DPDK v21.11, and libbpf v0.6.0.

More details can be found in the artifact documentation.


https://github.com/ucr-serverless/spright.git
 https://github.com/ucr-serverless/spright.git
https://github.com/ucr-serverless/spright.git
 https://github.com/ucr-serverless/spright.git
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