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ABSTRACT
Serverless computing promises an efficient, low-cost compute ca-

pability in cloud environments. However, existing solutions, epit-

omized by open-source platforms such as Knative, include heavy-

weight components that undermine this goal of serverless comput-

ing. Additionally, such serverless platforms lack dataplane optimiza-

tions to achieve efficient, high-performance function chains that

facilitate the popular microservices development paradigm. Their

use of unnecessarily complex and duplicate capabilities for building

function chains severely degrades performance. ‘Cold-start’ latency

is another deterrent.

We describe SPRIGHT, a lightweight, high-performance, respon-

sive serverless framework. SPRIGHT exploits shared memory pro-

cessing and dramatically improves the scalability of the dataplane

by avoiding unnecessary protocol processing and serialization-

deserialization overheads. SPRIGHT extensively leverages event-

driven processing with the extended Berkeley Packet Filter (eBPF).

We creatively use eBPF’s socket message mechanism to support

shared memory processing, with overheads being strictly load-

proportional. Compared to constantly-running, polling-basedDPDK,

SPRIGHT achieves the same dataplane performance with 10× less

CPU usage under realistic workloads. Additionally, eBPF benefits

SPRIGHT, by replacing heavyweight serverless components, allow-

ing us to keep functions ‘warm’ with negligible penalty.

Our preliminary experimental results show that SPRIGHT achieves

an order of magnitude improvement in throughput and latency com-

pared to Knative, while substantially reducing CPU usage, and

obviates the need for ‘cold-start’.
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1 INTRODUCTION
Serverless computing has grown in popularity because users have to

only develop their applications while depending on a cloud service

provider to be responsible for managing the underlying operating

system and hardware infrastructure. The typical costs borne by the

user are only for processing incoming requests. This event-driven

consumption of resources is attractive for cloud users, especially

when their demand is intermittent. It does, however, place the

burden on the cloud service provider to provide adequate resources

on-demand and ensure the quality of service requirements are met.

In many cases, serverless frameworks are profligate in their re-

source consumption. They provide the needed functionality by

loosely coupling serverless functions and middleware components

that run as a separate container and/or pod.
1
This can be extremely

resource-intensive, especially when deployed in a limited capac-

ity environment, e.g., edge cloud [57]. There are still a number

of shortcomings to be overcome for building a high-performance,

resource-efficient, and responsive serverless cloud. Some contribu-

tors to this overhead are the following.

Use of heavyweight serverless components. In a serverless

environment, each function pod has a dedicated sidecar proxy, dis-

tinct from its application container. Sidecar proxies help build an

inter-function service mesh layer with extensive functionality sup-

port, e.g., metrics collection and buffering, facilitating serverless

networking and orchestration. However, the existing sidecar proxy

is heavyweight since it is continuously running and incurs exces-

sive overheads, including 2 data copies, 2 context switches, and 2

interrupts (see §2) for a single request. Moreover, since most server-

less frameworks primarily focus on HTTP/REST API [6, 25, 47],

additional protocol adaptation is required for specialized use cases,

e.g., IoT (Internet-of-Things) with MQTT [19, 73], CoAP [38]. The

current design runs protocol adaptation as an individual compo-

nent, resulting in substantial resource consumption. Having such a

heavyweight design may overload serverless environments, espe-

cially in resource-limited edge clouds or when handling infrequent

workloads (e.g., IoT). Instead, going a step further and invoking code
for execution on a completely event-driven basis without using an

individual component can result in substantial resource savings.

Poor dataplane performance for function chaining.Modern

cloud-native architectures decompose the monolithic application

1
“one-container-per-Pod” is the most common model used by Kubernetes for running

a function instance.
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into multiple loosely-coupled, chained functions with the help of

platform-independent communication techniques, e.g.,HTTP/REST

API, for the sake of flexibility. But, this involves context switching,

serialization and deserialization, and data copying overheads. The

current design also relies heavily on the kernel protocol stack to

handle the routing and forwarding of network packets to and be-

tween function pods, all of which impact performance. Although

function chaining brings flexibility and resiliency for building com-

plex serverless applications, the decoupled nature of these chains

also requires additional components (e.g., a message broker such

as Apache Kafka [34], to coordinate communication between func-

tions, and a load balancer like Istio [13]). The resulting complex

data pipelines add more network communications for the function

chain. All of this contributes to poor dataplane performance (lower

throughput, higher latency), potentially compromising service ser-

vice level objectives (SLOs).

In this paper, we design SPRIGHT, a high-performance, event-

driven, and responsive serverless cloud framework that utilizes

shared-memory processing to achieve high-performance commu-

nication within a serverless function chain. We base the design

of SPRIGHT
2
on Knative [14], a popular open-source serverless

framework. Evaluation results are presented for SPRIGHT and com-

pared with Knative under various realistic serverless workloads in

a cloud environment. Our event-driven shared memory process-

ing, includes event-driven proxies (we call them the EPROXY and

SPROXY) that significantly reduce the high resource utilization in

the Knative design. This results in much lower latency. SPRIGHT

overcomes the challenges of existing serverless computing with

the following innovations:

(1) We design the SPRIGHT gateway, a chain-wide component, to

facilitate shared memory processing within a serverless function

chain. The SPRIGHT gateway consolidates protocol stack process-

ing in the Linux kernel and distributes the payload to the chain.

(2) We implement zero-copy message delivery within a serverless

function chain by using event-based shared memory communica-

tion. This avoids the unnecessarily duplicated in-kernel packet pro-

cessing between functions, achieving high-speed, highly scalable

packet forwarding within a serverless function chain. Event-based

shared memory communication helps reduce CPU usage and alle-

viate penalties when keeping the function chain warm.

(3) We design event-driven proxies (i.e., EPROXY and SPROXY) us-

ing the eBPF (extended Berkeley Packet Filter [66]), that effectively

replace the heavyweight sidecar proxy. We support the functions

of metrics collection etc., with much lower CPU consumption.

(4)We implement separation at the function-chain level in SPRIGHT’s

shared memory processing by restricting access to a private shared

memory to trusted functions of only that chain. The SPROXY fur-

ther restricts unauthorized access by applying message filtering for

inter-function communication.

(5) We utilize the packet redirection function provided by eBPF

to improve packet forwarding performance outside the serverless

function chain. Compared to the kernel networking stack, the eBPF-

based dataplane dramatically lowers latency and CPU consumption.

2
SPRIGHT is publicly available at https://github.com/ucr-serverless/spright.git

(6) We optimize protocol adaptation by running it as an event-

driven component attached to the SPRIGHT gateway, to avoid

unnecessary networking protocol stack processing overhead. This

optimization can significantly reduce latency.

2 BACKGROUND AND CHALLENGES
There are a variety of implementations for function chaining since

there is no standard for a general solution architecture for server-

less applications. The data pipeline patterns for function chaining

of different open-source serverless platforms are slightly different,

depending on the messaging model applied, e.g., a publish/subscribe
model typically uses a message broker as the intermediate compo-

nent for coordinating invocations within the function chain, while

the request/response model typically employs a front-end proxy

to perform invocations within the function chain. We examined

the design of several proprietary and open-source serverless plat-

forms [8, 15, 27, 28, 56] and developed a common abstract model of

the typical data pipeline pattern they use, as shown in Fig. 1.

The data pipeline for function chains uses a message routing as

follows:①Clients sendmessages (requests) to amessage broker/front-

end proxy through the ingress gateway of the cluster. ② The mes-

sages are queued in the message broker/front-end proxy and regis-

tered as an event. ③ The message broker/front-end proxy sends the

message to an active pod of the head (first) function in the chain,

as defined by the user. ④ The function pod is invoked to process

the incoming request. After the first function processes the request,

a response is returned and queued in the message broker/front-end

proxy, registered as a new event for the next function in the chain.

⑤ The message broker/front-end proxy sends this new event to an

active pod for the next function in the chain.

Unfortunately, this data pipeline poses several challenges that

are common across the different serverless platforms. The core

dataplane components, including the ingress gateway, message

broker/front-end proxy, sidecar proxy, etc., are usually implemented

as individual, constantly-running, loosely coupled components. In

addition, for internal calls within the chain, each involves context

switching, serialization/deserialization, and protocol processing.

We quantify the overheads in the representative open-source

platform, Knative, through systematic auditing performed with a

‘1 broker/front-end + 2 functions’ chain setup based on the current

design depicted in Fig. 1. We assume all evaluated components
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Figure 1: Networking processing involved in a typical server-
less function chain setup.
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Table 1: Per request Knative overhead auditing of data
pipelines for a ‘1 broker/front-end + 2 functions’ chain.

Data Pipeline No. External Within chain Total
① ② total ③ ④ ⑤ total

# of copies 1 2 3 4 4 4 12 15

# of context switches 1 2 3 4 4 4 12 15

# of interrupts 3 4 7 6 6 6 18 25

# of protocol processing tasks 1 2 3 3 3 3 9 12

# of serialization 1 1 2 2 2 2 6 8

# of deserialization 0 1 1 2 2 2 6 7

are deployed on the same node, with the overhead on the external

client-side excluded. We use a NGINX [21] server function for

this audit. However, our results are generally applicable, as these

basic overheads are independent of the function used. We examine

the different overheads incurred in the data pipeline processing

of one request (from ① to ⑤), including # of copies, # of context

switches, etc. as listed in Table 1. Due to implementation-specific

differences, e.g., running multiple threads on the same CPU core,

there may inevitably be additional context switches. Our audit aims

to quantify the minimum value of each type of overhead. Based on

these observations, we list the following key takeaways:

Takeaway#1: Excessive data copies, context switches, and
interrupts. With the existing Knative framework, each request

results in 15 data copies, 15 context switches, and 25 interrupts

throughout the entire data pipeline. Surprisingly, most of the over-

head (80%) comes from networking within the function chain (from

③ to ⑤). Current approaches for serverless function chaining rely

on the composition of existing networking components to sup-

port asynchronous and reliable message exchange between func-

tions, and traffic within the chain has to go through the message

broker/front-end proxy each time over the kernel. This inevitably

introduces additional data copies, context switches, and interrupts,

thus increasing overhead. Furthermore, as the chain becomes more

complex, the number of data copies, context switches, and inter-

rupts increase linearly, resulting in very poor scaling.

Takeaway#2: Excessive, duplicate protocol processing. Pro-
tocol processing is another major source of overhead. As seen in

Table 1, networking within the function chain accounts for 75% of

the total protocol processing overhead, reflecting the problematic

design of current serverless function chains. Protocol processing

tasks, including checksum calculation in software and complex ipt-

ables processing,
3
contribute to latency and results in poor scaling

(especially as the number of iptables rules increases) [55].

Takeaway#3: Unnecessary serialization/deserialization. REST
API and HTTP require additional serialization and deserialization

operations to convert application data to byte streams before being

transmitted over the network. These operations incur significant

overhead (lowering throughput and adding latency) [71]. Each step

in the data pipeline for the function chain (from ③ to ⑤) introduces

2 serialization and 2 deserialization operations. As shown in Table 1,

current designs further amplify this degradation with an excessive

number of protocol stack traversals.

Takeaway#4: Individual, constantly-running heavyweight
components. Serverless platforms equip each function pod with

3
[61] reports that the overheads for iptables processing in a typical Kubernetes envi-

ronment (also applicable to Knative) using the Container Network Interface accounts

for 60% of the total networking overhead.
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Figure 2: Performance and overhead breakdown of different
sidecar proxy implementations.
an individual, constantly-running sidecar proxy to handle inbound

and outbound traffic. The presence of this sidecar proxy introduces

a significant amount of overhead. Just going through step ④, the

sidecar proxy introduces 2 data copies (50%), 2 context switches

(50%), and 2 interrupts (33%). To understand the impact of this

overhead on dataplane performance, we evaluate several sidecar

proxies, including the Envoy sidecar from Istio [12], Queue proxy

from Knative [53], and the OF-watchdog from OpenFaaS [22]. We

use these sidecar proxies to work with NGINX [21] as a representa-

tive HTTP server function. We also use this NGINX HTTP server

function without sidecar proxies as the baseline to quantify the

additional overhead introduced by the sidecar proxy. We disable

autoscaling and limit ourselves to a single function instance. We

use wrk [3] as the workload generator and send variable-size HTTP

traffic (2% 10KB requests, 98% 100B requests) directly to the func-

tion pod (including sidecar). Both wrk and the function pod are

running on the same node.

Our experimental results are shown in Fig. 2. Equipping a sidecar

proxy results in a 3×–7× reduction in throughput, 3×–7× higher

latency, and a significant increase (3×–7×) in CPU cycles per re-

quest. Even though the overhead varies, it is common across all

the evaluated sidecar proxies. Looking deeper at the CPU overhead

breakdown, the kernel stack for the sidecar proxy consumes 50% of

CPU cycles. This substantial overhead of sidecar proxies undercuts

the benefit of serverless computing and calls for a more lightweight

serverless capability to provide the same functionality.

Summary: The expected benefit of serverless computing was to

overcome the inefficiencies of ‘serverful’ computing. However, the

excessive overhead in current serverless frameworks shows that the

‘server’ is still entrenched in serverless computing. Our auditing

shows that the loosely coupled construction of existing compo-

nents for serverless computing results in substantial unnecessary

processing overhead, possibly discouraging the implementation of

microservices as function chains. This poor dataplane design and

having individual, constantly-running components in the function

chain prompt us to create a more streamlined, responsive serverless

framework by considering high-performance shared memory pro-

cessing and lightweight event-driven optimizations to help extract

the ‘server’ out of serverless computing.

3 SYSTEM DESIGN OF SPRIGHT
In this section, we start with the overall architecture of SPRIGHT by

justifying the design of each component and discussing the benefits

it achieves in improving serverless environments. We then discuss

each part separately, including the shared memory processing for
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Figure 3: The overall architecture of SPRIGHT

communication within serverless function chains, the lightweight

event-driven proxy, the security domain design, the dataplane accel-

eration for communication outside the function chain, lightweight

protocol adaptation, and intelligent autoscaling.

3.1 Overview of SPRIGHT
In this work, we start with open-source Knative as the base plat-

form [14]. Using an innovative combination of event-driven pro-

cessing and shared memory, we support high performance while

being resource-efficient and providing the flexibility to build mi-

croservices using serverless function chaining. Importantly, we

extensively use eBPF in SPRIGHT for networking and monitor-

ing. eBPF is an in-kernel lightweight virtual machine that can be

plugged in/out of the kernel with considerable flexibility, efficiency,

and configurability [66]. The execution of eBPF programs is trig-

gered only whenever a new event arrives, thus working naturally

with the event-driven serverless environment. Using eBPF, various

event-driven programs can be attached to kernel hook points (e.g.,
the network or socket interface). This enables high-speed packet

processing [45, 70] and low-overhead metric collection [51, 75].

eBPF achieves its configurability through eBPF maps – a config-

urable data structure shared between the kernel and userspace.

With eBPF maps, a more flexible dataplane can be implemented

with customized routing. The good features of eBPF help us provide

functionality with resource use that is strictly load-proportional, a

highly desirable toolbox for serverless environments.

Fig. 3 shows the overall architecture of SPRIGHT. We introduce

a SPRIGHT controller to coordinate the control plane for functions

working in conjunction with the orchestration engine (i.e., Kuber-
netes and Knative). The SPRIGHT controller runs as a cluster-wide

control plane component in the Kubernetes master node. It cooper-

ates with the kubelet, which is an indispensable pod management

process in the Kubernetes control plane that runs on each worker

node, to manage the lifecycle of the pods. In addition, the SPRIGHT

controller works with the autoscaler and placement engine (i.e.,
Kubernetes scheduler) to determine the scale of the function chain

and placement of the function chain at the appropriate worker node.

Given a function chain creation request from the user, the SPRIGHT

controller instructs a kubelet on a selected worker node to create

and assign necessary control and data plane components for the

function chain, including the shared memory manager and the

SPRIGHT gateway, and start up the functions in the chain based on

the user configuration. To route external requests to the SPRIGHT

gateways of different function chains, we use a cluster-wide Ingress

Gateway to distribute the traffic.

To flexibly manage traffic in and out of the function chain in

SPRIGHT and avoid duplicate protocol processing within the chain,

we create a SPRIGHT gateway. It acts as a reverse proxy for the func-

tion chain to consolidate the protocol processing. The SPRIGHT

gateway relies on the kernel protocol stack for protocol processing

and extracts the application data (i.e., Layer 7 payload). It intercepts
incoming requests to the function chain and copies the payload

into a shared memory region. This enables zero-copy processing

within the chain, avoids unnecessary serialization/deserialization

and protocol stack processing. The SPRIGHT gateway invokes the

function chain for requests, processes the results, and constructs

the HTTP response to external clients. SPRIGHT assumes that func-

tions in the same chain run within the same node, to derive the

benefits of sharing the memory between functions. We dedicate a

SPRIGHT gateway for each function chain (§3.4). To mitigate the

concern of overhead when there are many chains in the cluster, we

emphasize that the SPRIGHT gateway is a lightweight component

with a relatively small memory footprint (27KB compared to each

(even simple) Golang-based function that is more than 2MB). The

CPU consumption of the SPRIGHT gateway is also not a signif-

icant concern. We share the requisite CPU cores across multiple

SPRIGHT gateways. In addition, since the SPRIGHT gateway pro-

cesses requests based on kernel interrupts, its event-driven nature

results in the CPU usage being largely load-dependent.

To eliminate impact of additional networking components for

function chaining, we design Direct Function Routing (DFR). DFR

exploits shared memory and leverages the configurability provided

by eBPFmaps. DFR allows dynamic update of routing rules and uses

shared memory to pass data directly between functions (§3.2.3).

We design a lightweight, event-driven proxy (EPROXY and

SPROXY) that uses eBPF to construct the service mesh instead

of a continuously-running queue proxy associated with each func-

tion instance, as is used by Knative. Thus, we reduce a significant

amount of the processing overhead (§3.3).

SPRIGHT also incorporates security domains to restrict unautho-

rized access between different chains by coordination with kubelet.
SPRIGHT’s security domain design isolates different chains by cre-

ating a private shared memory pool for each chain and applying

message filtering for inter-function communication. We discuss the

security considerations in more detail in §3.4.

To accelerate the data path outside the function chain, we utilize

XDP/TC hooks [67] in eBPF to forward packets between other

serverless dataplane components, e.g., ingress gateway and to/from

the chain. An XDP/TC hook processes packets at the early stage of

the kernel receive (RX) path before packets enter into the kernel

iptables [36, 45], resulting in substantial dataplane performance

improvement without dedicated resource consumption, compared

to a constantly running queue proxy that depends on the kernel

protocol stack (§3.5).
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Event-driven processing can help tremendously in interfacing

serverless frameworks, which have an HTTP/REST API, with a va-

riety of application-specific protocols (e.g., for IoT with MQTT [19],

CoAP [38]). Current designs use a separate protocol adapter for

translation between these protocols. However, since SPRIGHT’s

shared memory processing directly works on payloads independent

of the application layer (L7) protocols, the protocol adapter can

ideally run as an internal event-driven component that is part of the

SPRIGHT gateway. This way, we achieve a much more streamlined

protocol adapter design, using resources strictly on demand (§3.6).

Although these optimizations are built around the Knative-based

environment, our concepts and methodology can also be broadly

applied to other serverless platforms.

3.2 Optimizing communication within
serverless function chains

3.2.1 Shared memory within a function chain. SPRIGHT allocates

a private shared memory pool with Linux HugePages for each

serverless function chain. Using HugePages can reduce the access

overhead of in-memory pages, thus improving the performance of

serverless functions when accessing data in the shared memory

pool. In addition, the shared memory pool within the function chain

supports queueing to help sustain traffic bursts.

To enable zero-copy data movement between functions, shared

memory processing relies on packet descriptors to pass the location

of data in the shared memory pool, which is then accessed by the

function. One implementation option is DPDK, which uses polling-

based RTE rings [29] to deliver the packet descriptor through its

multi-process support [20]. DPDK has been extensively used to

build up high-performance dataplane for cloud services [74]. While

DPDK allows for fast packet processing and low latency, it continu-

ously consumes significant CPUs independent of traffic intensity.

Instead of using heavyweight polling-based shared memory pro-

cessing, SPRIGHT dynamically extends the use of the socket in-

terface at the function pod by attaching an eBPF Socket Message

program (SPROXY in Fig. 4) [62]. SPROXYworkswith eBPF’s socket
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map to enable message redirection between socket interfaces of

function pods. The packet descriptor used by SPROXY is a small

16-byte message to minimize overhead. A packet descriptor con-

tains two fields: the instance ID of the next function and a pointer

to the data in shared memory. Once the SPROXY receives a packet

descriptor, it extracts the instance ID of the next function, which

is then used to query the eBPF’s socket map to retrieve the target

socket interface information (i.e., the file descriptor). Appendix-A
describes the zero-copy based packet flow of SPRIGHT. SPRIGHT’s

gateway maintains the in-kernel eBPF’s socket map (Fig. 4). When

a new function pod instance starts, the SPRIGHT gateway updates

its instance ID and socket interface information in the socket map

to support redirection between socket interfaces.

The packet descriptor redirection performed by SPROXY by-

passes the kernel protocol stack, incurring minimal latency over-

head. SPROXY operates in a purely event-driven manner, avoiding

the need to busy-poll packet descriptors and saving CPU resources.

Thus communication overhead is entirely load-dependent.

3.2.2 Event-based vs. polling-based shared memory processing. To
identify the most appropriate shared memory processing mecha-

nism in the context of serverless computing, we compare SPRIGHT’s

event-based shared memory processing based on SPROXY (here-

after referred to as S-SPRIGHT) with polling-based shared memory

processing based on DPDK (hereafter referred to as D-SPRIGHT),

with a function chain containing 2 function pods. We use Apache

Benchmark [1] on a second node as the workload generator. We

additionally set up a function chain with the base Knative envi-

ronment and use NGINX as the front-end proxy to coordinate the

communication within the chain. Both the SPRIGHT gateway and

NGINX proxy are configured with two dedicated cores for a fair

comparison. Note: We collect the results from 10 repetitions. All

results also show the 99% confidence interval.

As shown in Fig. 5, with low concurrency, e.g., at 32, S-SPRIGHT

(0.024ms) shows a slightly higher average response delay compared

to DPDK (0.02ms), but still a much lower (almost 6×) response delay
compared to Knative (0.138ms). In terms of RPS, both DPDK (50.3K)

and S-SPRIGHT (41.7K) are substantially higher than Knative (7.2K),

with a significant 5.7× improvement.

As S-SPRIGHT relies on the in-kernel eBPF program (i.e., SPROXY)
to deliver packet descriptors, it incurs the overheads for context

switching, contributing to the extra latency. However, the SPROXY

processing latency is masked when the concurrency increases

(≥ 32), because the context switching latency overlaps with the

other processing. Throughput increases rapidly, up to 5× that of

Knative. Although S-SPRIGHT has a 1.2× lower peak throughput

than D-SPRIGHT, S-SPRIGHT has a substantially lower CPU usage

because it is purely event-driven. Both of those approaches have a

much lower overhead compared to Knative. With a concurrency

of 1, S-SPRIGHT consumes 32% CPU, which is 9.6× and 4.5× less

than D-SPRIGHT (308%, or more than 3 CPU cores fully used) and

Knative (143%), respectively. When the concurrency increases to

32, S-SPRIGHT consumes 259% CPU, which is still less than DPDK

(359%). Comparatively, the CPU usage of base Knative increases to

a shocking 1585% (more than 15 CPU cores used) at a concurrency

of 32 (see Fig. 5 (c)). The queue proxy consumes 70% of Knative’s

CPU. Even with increasing concurrency (≥ 32), S-SPRIGHT has a
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(a) RPS and latency

(b) CPU usage of D- and S-SPRIGHT (c) CPU usage of Knative
Figure 5: Comparison between polling-based (D-SPRI.) and
event-driven (S-SPRI.) sharedmemory processingwith 1 gate-
way pod and 2 serverless function pods. Kn: Knative; QPs:
Queue proxies; SFs: serverless functions; GW: gateway

consistent and steady saving in CPU compared to the others. Indi-

vidual, constantly-running components (queue proxy with Knative

or DPDK’s poll mode using up CPUs) have excessive overhead.

More importantly, S-SPRIGHT consumes negligible CPU resources

when there is no traffic. We observed that S-SPRIGHT’s gateway

and function pods that are SPROXY-based consume zero CPUwhen

there is no traffic, making it possible to keep a function pod ‘warm’

to overcome the ‘cold start’ delay (§4.2.2). Thus, SPROXY-based

shared memory processing is ideal for serverless computing, espe-

cially for function chains.

3.2.3 Direct Function Routing & Load balancing within a function
chain. To optimize the invocations within a function chain, we

use Direct Function Routing (DFR), which enables the upstream

function in the chain to directly invoke/communicate with the

downstream function. As shown in Fig. 4, the SPRIGHT gateway

only invokes the head function in the chain once (① in Fig. 4). When

the first function completes the request message processing (② in

Fig. 4), it directly calls the next function without going through

the SPRIGHT gateway. The rest of the function invocations in the

chain also bypass the SPRIGHT gateway, thus significantly reducing

the invocation latency (and overhead) for the function chain. To

support DFR, SPRIGHT adopts a two-step routing mechanism. It

uses a chain-specific, userspace routing table, and an in-kernel

socket map. The userspace routing table helps determine the ID of

next function while the in-kernel socket map uses that function ID

to find its corresponding socket file descriptor, which is then used

by the SPROXY to perform the actual packet descriptor delivery

between the sockets of the source and destination function.

We use the SPRIGHT controller (Fig. 3) to manage DFR within

the function chain. The SPRIGHT controller configures the routing

table based on the user-defined sequence for the function chain.

We keep the routing table in shared memory to reduce access la-

tency. To support multiple downstream functions, we use a ‘topic’

(extracted from the message payload) based publish/subscribe mes-

saging model, and dynamically route requests using the routing

table. The message topic and the ID of the current function serve

as the key to looking up the ID of the next-hop function in the

routing table. For load balancing, we select the active pod instance

with the maximum residual service capacity
4
and pack its instance

ID into the packet descriptor. The invocation is then performed

through the SPROXY based on configured instance ID, without

going through the SPRIGHT gateway.

3.3 Event-driven proxy (EPROXY & SPROXY)
In Knative, the queue proxy runs as an additional container in a

function pod distinct from the user container. It buffers incoming

requests before forwarding them to the user container, to help

handle traffic bursts and maintain throughput. The queue proxy is

also responsible for collecting metrics for the pod (e.g., request rate,
concurrency level, response time) and exposing them to a metrics

server to facilitate control plane decision-making, e.g., autoscaling.
However, this design has several drawbacks we described earlier.

We overcome these with our lightweight, event-driven eBPF-based

EPROXY & SPROXY, replacing the queue proxy.

The goal of EPROXY & SPROXY is to achieve functionality com-

parable to that of the queue proxy but with lower overhead. We do

not need the queueing capability in the EPROXY as the shared mem-

ory within the function chain already provides that queueing. Thus,

SPRIGHT still provides the same functionality to improve concur-

rency and handle traffic bursts as a queue proxy. But, eliminating

the additional queuing stage helps reduce request delays.

To collect the required metrics for the Knative control plane,

we attach eBPF-based monitor programs to the EPROXY (at the

SPRIGHT gateway pod) and SPROXY (at function pods), as shown

in Fig. 4. The EPROXY at the SPRIGHT gateway pod collects L3

metrics, e.g., packet rate, bytes received, while the SPROXY at func-

tion pods collect L7 metrics, e.g., request rate. In addition, we assign

a ‘metrics map’ in the eBPF maps that serves as a local metrics

storage on each node. When a new request or response occurs, the

monitor programs are triggered to collect and update the metrics

to the metrics map. The SPRIGHT gateway has a built-in metrics

agent responsible for reading the metrics map periodically and pro-

viding the latest metrics to the metrics server. We further extend the

SPRIGHT gateway with internal event-driven metrics collection

capabilities as an enhancement of EPROXY to provide function-

chain-level metrics such as the request rate and execution time on

a chain basis. Since the EPROXY and SPROXY are only triggered

when there are incoming requests, there is no CPU overhead when

idle. Although EPROXY and SPROXY work in the kernel, they are

created by the cloud service provider rather than the user, which

does not affect the isolation of the user function. This is similar to

how serverless platforms attach a sidecar to a user function.

4
The residual service capacity (𝑅𝐶𝑖,𝑡 ) of a function pod i at time t is calculated by

𝑅𝐶𝑖,𝑡 = 𝑀𝐶𝑖 − 𝑟𝑖,𝑡 , where 𝑀𝐶𝑖 is the maximum service capacity (i.e., maximum

request rate that can be served) of the function pod i and 𝑟𝑖,𝑡 is the request rate to

the function pod i at time t. Both𝑀𝐶𝑖 (estimated at maximum load) and 𝑟𝑖,𝑡 can be

monitored by SPRIGHT’s event-driven proxy.
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Kubernetes natively supports function pod health checks via

the kubelet. Working in conjunction with the kubelet, SPRIGHT

can enable TCP or HTTP probes in functions for health checks.

Enabling the TCP or HTTP probes requires a minimal change of

opening an additional socket or HTTP server in the function to

listen to health check requests from the control plane. Thus, we

can dispense with Knative’s queue proxy doing a health check to

check on function pods, using TCP or HTTP probing.

3.4 Security domains in SPRIGHT
SPRIGHT recognizes the need for isolation between serverless

functions in a shared cloud environment, especially with the use

of shared memory processing. It is necessary to restrict access of a

shared memory pool to only trusted functions. The trust model in

SPRIGHT assumes that the functions within a chain trust each other,

but the functions in different chains may not. To limit unauthorized

access across function chains, SPRIGHT provides two abstractions

to construct a security domain for each function chain: 1) a pri-

vate shared memory pool for each chain; 2) inter-function packet

descriptor filtering with the SPROXY.

SPRIGHT takes advantage of DPDK’s multi-process support [20]

to isolate shared memory pools between chains. The kubelet works
with the SPRIGHT controller to assign each chain with a dedicated

shared memory manager and a SPRIGHT gateway at startup. The

shared memory manager runs as a DPDK primary process to have

the privileged permission to initialize the shared memory pool (us-

ing rte_mempool_create() API). Each shared memory manager

owns a unique shared data file prefix – a multiprocessing-related

option inDPDKused to isolate differentmemory pools [20]. By spec-

ifying the correct prefix, the gateway and functions in SPRIGHT,

which run as DPDK secondary processes, can attach to the mem-

ory pool (use rte_memzone_lookup() API) created by the chain’s

shared memory manager. The SPRIGHT gateway of each chain is

used to consolidate protocol processing and move the payload to

this private shared memory pool. Functions in the same chain are

assigned the same shared data file prefix upon creation and are

identified as trusted functions in their dedicated security domain.

SPRIGHT’s DFR allows function-to-function communication.

Malicious functions may crash other functions by intentionally

sending a packet descriptor pointing to an unauthorized memory

address. SPRIGHT leverages the extensibility of the SPROXY to

enforce inter-function message filtering, where we check carefully

which function has write and read access to each descriptor. Upon

the reception of a descriptor, the SPROXY performs a rule look-up in

the filtering map (built on eBPF maps) to check if the destination of

this packet descriptor is allowed. If the destination is not authorized,

SPROXY discards the packet descriptor. During the function startup,

Worker 
Node

Security domain of chain #1 
Fn 1 Fn 2

SPRIGHT 
Gateway #1

Shared Mem. Pool #1

Fn 3
Security domain of chain #2 

Fn 1 Fn 2

Shared Mem. Pool #2

Fn 3

SPRIGHT 
Gateway #2

Shared mem. 
manager

Shared mem. 
manager

data path control flow

kubelet

2

1 34

Figure 6: Security domains isolating function chains
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Figure 7: Dataplane acceleration using eBPF XDP/TC hooks

the kubelet configures the rules in the filtering map. SPRIGHT also

supports dynamic configuration of rules during runtime.

Fig. 6 shows the startup flow of a function chain in SPRIGHT: ①)

On receiving a request to create a function chain, the SPRIGHT con-

troller starts a shared memory manager dedicated to the chain. ②)

The shared memory manager initializes a private memory pool for

the chain. ③) The SPRIGHT controller creates a dedicated SPRIGHT

gateway for the chain. ④) The SPRIGHT controller starts the func-

tions in the chain and attaches a SPROXY to each function while

also configuring the filtering rules in the eBPF map.

3.5 eBPF-based dataplane acceleration for
external communication

We exploit eBPF’s XDP/TC hooks to accelerate the communication

by the function chain in SPRIGHT to external components. We

develop an eBPF forwarding program and attach it to the XDP/TC

hook that is positioned on the RX path of the network interface,

including the host-side veth of the pod (i.e., veth-host5) and the phys-
ical NIC, as shown in Fig. 7. eBPF offers packet redirect features

(i.e., ‘XDP_REDIRECT’ and ‘TC_ACT_REDIRECT’) that support

passing raw frames between the virtual network interfaces, or to

and from the physical NIC without going through the kernel proto-

col stack [11]. This helps save CPU cycles consumed by iptables.

The eBPF forwarding program has two functions: 1) Look up the

kernel FIB (Forwarding Information Base) table to find the desti-

nation network interface based on the FIB parameters [7] of the

received packet, including the IP 5-tuple, index of source interface,

etc. 2) Forward the raw packet frame to the target (veth-host or
NIC) interface via ‘XDP_REDIRECT’ or ‘TC_ACT_REDIRECT’. The

communication could be either in the same node or across different

nodes, supported by an eBPF-based dataplane via the eBPF for-

warding program. An XDP program at the physical NIC processes

all inbound packets received by the NIC. It redirects the packet to

the veth-host of the destination function pod after a routing table

lookup (① in Fig. 7). The TC program at the veth-host handles the
outbound packet from the function pod. Depending on the packet’s

destination, the TC program may take different routes. If the desti-

nation of the packet is to another function pod (e.g., traffic between

ingress gateway pod and SPRIGHT gateway pod) on the same node,

the TC program directly passes the packet to the veth-host of the
destination function pod via ‘TC_ACT_REDIRECT’ (② in Fig. 7).

If the destination function pod is on another node, the TC pro-

gram redirects the packet to the NIC (③ in Fig. 7). Our evaluation

shows that XDP/TC redirection helps achieve a 1.3× improvement

in throughput and a 20% reduction in latency under peak load.

5
A function pod is connected to the host through a pair of veths, i.e., the host-side
veth and pod-side veth.
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3.6 Event-driven protocol adaptation
To run a protocol adapter as an internal, lightweight event-driven

component, we predefine ‘protocol adaptation hook points’ on the

packet datapath inside the SPRIGHT gateway, just before the gate-

way sends messages to the function pod. The protocol adaptation

hook is a function call entry point that can be invoked to execute

customized protocol adaptation programs that are attached. Once

an application-specific message arrives at the hook point, the pro-

tocol adaptation program is triggered and executed. With internal

event-driven execution, invocations are integrated into the same

component without extra context switching and networking over-

head. Our design supports attaching the protocol adapter program

at runtime by exploiting dynamic code injection [10]. Different pro-

grams are pre-compiled into a dynamic library and can be loaded

to, or unloaded from, the hook point at runtime according to the

protocol adapter’s requirements. This facilitates compatibility when

handling traffic specific to each distinct protocol. In addition, dy-

namic loading of the program helps reduce startup time compared

to initializing a separate protocol adapter function pod.

Our adapter works seamlessly with stateless protocol adaptation,

e.g., HTTP, since managing the transport layer (L4) connections

is offloaded to the SPRIGHT gateway. However, some adaptation

scenarios with stateful protocols, e.g., MQTT, require an additional

L7 connection establishment before exchanging messages [19]. To

retain stateless protocol adaptation, we use the SPRIGHT gateway

to handle the L7 connection establishment rather than the internal

protocol adapter. Then, the SPRIGHT gateway passes the received

application messages to the event-driven protocol adapter, which

extracts the payload from the application message and delivers it

to shared memory. To improve interoperability and compatibility

with current serverless platforms, our adapter is designed to be

compatible with the CloudEvent specification [9], an event data

format widely adopted by serverless platforms [15, 26].

3.7 Intelligent autoscaling
In the control plane, the autoscaler scrapes metrics from the metrics

server to determine the load intensity, based on which serverless

function instances are automatically scaled up or down to serve

requests on demand. Knative’s autoscaler depends primarily on the

users to specify the requested resources for their functions based on

a single metric and is unaware of the complexity of function chains.

To improve on Knative, several approaches, e.g.,Mu [57], GRAF [60],

etc. have been proposed to more effectively scale cloud resources

for serverless applications. SPRIGHT can be used in conjunction

with these advanced autoscalers. In addition, SPRIGHT supports

each function being scaled independently using vertical pod scaling,

especially with adding more CPU cores for the function as needed.

3.8 Discussion
Overhead auditing (contd.) - SPRIGHT: We now perform an

audit of overhead for SPRIGHT, following the same methodology

used before in §2, and compare it against the base design depicted

in Fig. 1. As can be seen in Table 2, SPRIGHT significantly reduces

overheads for processing within the function chain. With shared

memory processing, SPRIGHT achieves 0 data copies, 0 additional

protocol processing, and no serialization/deserialization overheads

within the chain. Although the use of SPROXY generates context

switches and interrupts, which do add latency for processing, the

Table 2: Per request data pipeline overhead for SPRIGHT
for ‘1 broker/front-end + 2 functions’ chain (excluding client
overhead). Note-2: DFR: hence no route ④ and ⑤ (Fig. 1). ④:
direct route from function-1’s pod to function-2’s pod.

Data Pipeline No. External Within chain Total Total
of Kn① ② total ③ ④ total

# of copies 1 2 3 0 0 0 3 15

# of context switches 1 2 3 2 2 4 7 15

# of interrupts 3 4 7 2 2 4 11 25

# of proto. processing tasks 1 2 3 0 0 0 3 12

# of serialization 1 1 2 0 0 0 2 8

# of deserialization 0 1 1 0 0 0 1 7

total number of context switches and interrupts for SPRIGHT is

still much less than that of the base Knative design (repeated in the

last column of Table 2). In addition, the results in Fig. 5 show that

the context switches and interrupts introduced by SPROXY have

a limited impact on the performance with concurrent processing

of just a few sessions. The event-based shared memory processing

substantially reduces resource usage, more than compensating for

any of the added context switches and interrupts.

Deployment Constraints: In SPRIGHT, functions in the same

chain need to be placed on the same node. This requires the place-

ment engine to deploy functions on the basis of a chain. This allows

shared memory communication between functions in a chain. In

addition, scaling SPRIGHT across multiple nodes requires all the

function of a chain to be deployed on each node. This may lead

to more resource fragmentation compared to deployment of each

function. Additionally, we need to load balance between different

function chain units in a multi-node deployment.

Application Porting Requirements: Porting an HTTP/REST-

based application to SPRIGHT requires replacing HTTP/REST-

based I/O with SPRIGHT’s SPROXY-based event-driven shared

memory I/O. However, SPRIGHT does not support synchronous

calls between functions, e.g., where the client sends a request to
the server and waits for a response before moving on to the next

step. SPRIGHT’s existing programming model assumes that a func-

tion’s code runs to completion after invocation, is purely event-

driven, and inherently supports asynchronous calls between func-

tions. In SPRIGHT, a synchronous call needs to be broken down

into multi-step asynchronous calls. For instance, a synchronous

“request-response” transaction needs to be treated as two separate

asynchronous calls: (1) The calling function sends a request (associ-

ated with a caller ID) to the serving function. The calling function

can continue processing other requests without pausing and wait-

ing for the response. (2) The serving function generates a response

and sends it back to the calling function (based on the caller ID in

the request). The calling function receives the response and then

continues to process the transaction.

We ported the online boutique application
6
[23] to SPRIGHT and

evaluate it in §4.2.1. The source code is available in [30]. Currently,

SPRIGHT only supports C-based implementations of user functions.

We expect to extend SPRIGHT’s language support as part of our

ongoing development of SPRIGHT.

6
[23] is a popular application used to demonstrate the utility of serverless computing.
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4 EVALUATION & ANALYSIS
4.1 Experiment Setup
To examine the improvement of SPRIGHT and its components, we

consider several typical serverless scenarios, including (1) a popu-

lar online shopping boutique, (2) An IoT environment of motion

detectors, and (3) a more complex processing of image detection &

charging for an automated parking garage. For each scenario, we

set up a function chain to execute the serverless application (Fig. 8).

The details of the setup for each scenario are as follows:

1. Online Boutique is an open-source representative implementa-

tion of a microservice-based online store application [23]. It has 10

different functions communicating with each other using gRPC. We

ported these functions to SPRIGHT (in C) and Knative (using the Go

language) based on the implementation provided in [23]. Functions

ported to SPRIGHT use shared memory, while functions in Knative

continue to use gRPC, for inter-function communication. We use

Locust [18] as the load generator and use the default workload

provided in [23] to generate a realistic web-based shopping appli-

cation’s request pattern. The default workload utilizes a total of 6

different sequences of function chains (see Table 3 in Appendix-B).

We compare four alternatives to run the online boutique applica-

tion, including gRPC, Knative, S-SPRIGHT, and D-SPRIGHT. In

the “gRPC” mode (‘server-full’ approach), the function runs as a

Kubernetes pod without a sidecar and uses the built-in gRPC server

for functions to talk to each other directly without involving a

broker/front-end.
7
In Knative mode, we use the Istio ingress gate-

way to mediate the communication between functions. We disable

the activator [17] (a cluster-wide queuing component in Knative)

to avoid additional queuing delays.

2. IoT - Indoor motion detection for automated lighting requires

tracking a sequence of events utilizing multiple sensors. The simple

function chain contains 2 functions (Fig. 8 (b)). Motion sensors

going ‘on’ triggers an actuator function to turn on the light. The

light may be automatically turned off after a period of no activity.

We consider the MERLmotion detector dataset [72]. We use a traffic

generator developed in Python to send motion events based on the

timestamps in the dataset. The CPU service time of the sensor

function and actuator function are both set at 1ms. For the base

Knative setup, we use NGINX to coordinate the communication

within the function chain.

3. Parking - image detection & charging takes snapshots of each

parking spot as input for visual occupancy (of parking spots) detec-

tion in parking lots. It detects the vehicle’s license plate and deter-

mines whether the plate metadata is stored in the database through

a plate search function. If it is not stored, a ‘persist-metadata’ func-

tion is invoked to store the plate metadata in the database. Finally,

it charges parking fees based on the license plate’s metadata. We

consider the CNRPark+EXT image dataset collected from a parking

lot with 164 parking spaces [33]. We use the same load generator

used for IoT workload to send snapshot images (150×150 pixels, ∼
3KB each) through HTTP/REST API call. Every 240-second interval,

164 snapshots are sent to the function chain. We use NGINX to

7
The “frontend service” (Fig. 8 (a)) in the online boutique runs as a user function, which

is distinct from the general broker/front-end. The latter is a system component that

used to mediate the communication between functions (e.g., the Istio ingress gateway

in Knative mode).

(b) Motion detection
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Figure 8: Serverless function chains setup

coordinate the message exchanges within the chain. We use VGG-

16 as the image detection algorithm, and the CPU service time of

the image detection function is set to 435ms [40]. The CPU service

times of other functions are listed in Table 4 (Appendix-B).

We use these serverless applications to quantify the performance

gain brought by each of SPRIGHT’s optimization. We evaluate it

based on several metrics, including CPU usage, RPS, and response

time. To understand in detail, we show the time series and CDF

when appropriate.

Testbed setup: The testbed is built on top of a base Knative plat-

form, including 1) Knative serving/eventing components (v0.22.0) [15,

16]; 2) Kubernetes components (v1.19.0), including API server, place-

ment engine, etcd, etc [2]. We consider Calico CNI (Native routing

mode) [68] as the underlying networking solution except for the

communication within the function chain of SPRIGHT. We run

the experiments on the NSF Cloudlab with two c220g5 nodes [41].

Each node has a 40-core Intel CPU@2.2 GHz, 192GB memory, and

a 10Gb NIC. We use Ubuntu 20.04 with kernel version 5.16. We

configure the concurrency of both Knative and SPRIGHT function

as 32. The concurrency level of a function pod determines the # of

requests that can be processed in parallel at each time.

Figure 9: RPS for online boutique: {Knative, gRPC} at 5K &
{D-SPRIGHT, S-SPRIGHT (overlap)} at 25K concurrency.
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4.2 Performance with Realistic Workloads
4.2.1 Comparing SPRIGHT, Knative, and gRPC mode. We now com-

pare D-SPRIGHT (using DPDK’s RTE rings) and S-SPRIGHT (using

SPROXY) against Knative and the gRPC mode for several different

function chains (i.e., Ch-1 to Ch-6) of the online boutique applica-
tion. We configure different concurrency levels (i.e., # of concurrent
users) of requests from the Locust load generator. We select two

concurrency levels, 5K and 25K, to show here. To achieve the 5K

concurrency, we set the spawn rate of 200/sec. concurrent requests.

The spawn rate controls the # of concurrency steps increased every

second. Above 5K, Knative’s performance becomes highly variable

with time, indicating overload (also results in very high tail response

times). Both S-SPRIGHT and D-SPRIGHT have stable performance

at a 25K concurrency level, after which they begin to show behavior

indicating a slight overload. To achieve the 25K concurrency, we

set the spawn rate of concurrency at 500/sec.

Even at 5K concurrency, Knative already begins to be overloaded.

From 0s to 35s (Fig. 9), as the concurrency level of the load gener-

ator is ramping up to 5K, and the requests/sec (RPS) increases to

∼900 req/sec. Knative begins to overload (see at 35s in Fig. 9) due to

the use of sidecars and use of the Istio ingress gateway (hereafter

referred to simply as ‘gateway’) to mediate the communication

between functions. At this 5K concurrency, the gateway and side-

cars consume ∼13 CPU cores (from 35s onwards), which is 50% of

the entire Knative setup. It finally leads to CPU contention with

the functions, whose CPU utilization soon reaches saturation at

62s (using up ∼13 CPU cores, Fig. 10 (g)). In addition, the use of

the gateway and sidecars adds additional processing and queuing

delays on the request’s data path, leading to the reduction in RPS

observed (see beyond 30s in Fig. 9). The closed-loop nature of the

workload generation and request processing results in the RPS,

resource utilization, and response times going through cycles of

overload (occurring again between 100s - 140s).

Compared to Knative, gRPC has a more stable RPS and better

overload behavior at 5K as gRPC has no sidecars and bypasses the

gateway. By removing these heavyweight components, functions

in the gRPC mode make full use of CPU resources. The shortened

request data path further reduces latency and alleviates overload

and queuing problems. As shown in Fig. 10 (a) and (b), the resulting

tail latency of gPRC, i.e., 95%ile, of 141ms, measured across all

the functions of the online boutique service, which is 4.9× lower

than Knative (whose 95%ile is 693ms). Fig. 10 (d) and (e) further

demonstrate the benefits of removing sidecars and the gateway. For

requests sent between 35s and 75s, the response time of Knative

increases significantly while the gRPC shows a delayed overload

(only 45s onwards) and its response time during the overload (45s to

75s) is much lower than Knative. However, as gRPC depends on the

kernel protocol stack for networking and requires serialization/de-

serialization. These overheads are not negligible. The entire gRPC

setup consumes 91% of the total CPU cores available on the physical

node in order to drain the queued requests (e.g., 45s to 75s in Fig. 10

(h)). This pattern repeats again, e.g., in the time period 108s - 140s.

Overall, this is quite inefficient.

Compared to Knative and gRPC, D-SPRIGHT and S-SPRIGHT

both have stable RPS throughout the experiment, for concurrency

levels ranging from 5K all the way to 25K. At 5K concurrency,

The 95%ile latency of D-SPRIGHT and S-SPRIGHT are 11ms and

13ms (see Table 5 in Appendix-B), significantly less than Knative

(690ms) and gRPC (140ms), while utilizing far less CPU. Although

D-SPRIGHT constantly consumes CPU cycles when idle, even at
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Figure 11: Time series of response time, and CPU utilization
for motion detection workload - 1-hour long experiments.

maximum load, it consumes only 11 total CPU cores at a concur-

rency level of 5K, which is ∼2.5× less than Knative (similar to Fig. 5).

This again validates the benefits of SPRIGHT’s shared memory pro-

cessing, saving CPU resources by avoiding the needless processing

overheads with Knative discussed previously in §2. S-SPRIGHT

further reduces CPU usage dramatically by using a purely event-

driven processing compared to D-SPRIGHT. With 5K concurrency,

S-SPRIGHT consumes only ∼1 CPU cores, including the gateway

and all the functions, getting comparable performance (throughput,

response time) to D-SPRIGHT. We further increase the concurrency

level of the load generator to 25K for D-SPRIGHT and S-SPRIGHT.

This increases the utilization, but still maintaining low tail response

times. Both D-SPRIGHT and S-SPRIGHT maintain a stable RPS of

∼5500 req/sec (Fig. 9), which is 5× higher than the highest stable

RPS achieved with Knative and gRPC. Moreover, S-SPRIGHT far

less CPU resources than D-SPRIGHT, even as the load increases.

At 25K concurrency, S-SPRIGHT consumes only ∼3.5 CPU cores,

which is 3× less than D-SPRIGHT (Fig. 10(i)), showing the benefit

of the eBPF-based event-driven processing.

With SPROXY generating context switches and interrupts for

descriptor delivery (Table 2), there is some additional latency in

S-SPRIGHT’s shared memory processing, and is slightly worse

than D-SPRIGHT in terms of tail latency (Fig. 10(c)). The 95%iles

of S-SPRIGHT, measured across all the functions, is 1.2× higher

than D-SPRIGHT (more details in Table 5, Appendix-B). The addi-

tional delay for SPROXY’s descriptor delivery, adds to the transient

queueing and hence slightly longer tail latency. However, as we

said in §3.2.2, the impact of this additional latency introduced by

SPROXY is quite limited. Further, the processing time within the

functions, which usually are non-trivial, will likely dwarf the extra

latency introduced by SPROXY, in relative terms. Importantly, the

throughput (RPS) of S-SPRIGHT is very close to D-SPRIGHT at the

high concurrency levels.

4.2.2 Bypassing the impact of cold start and zero scaling. We set

up an experiment with zero scaling enabled in Knative to study

the impact of cold start. Without incoming requests, Knative scales

functions down to zero to save resources and reduce costs. We

set the ‘grace period’ for scaling down to zero as 30 seconds. In

contrast, we keep functions in SPRIGHT ‘warm’ by having a min-

imum number of active function pods, knowing that our purely

event-driven processing will not consume CPU resources when

idle. We use the motion detection workload to study the impact of

cold start because of the intermittent nature of such IoT traffic.

Fig. 11 (a) clearly shows the impact of cold start in Knative, with

large response times that possibly render the motion detection

application ineffective and severely violate SLOs. E.g., starting from

1950s, a number of motion events occur one after another (inter-

arrival time of a few seconds) that are sent to the currently zero-

scaled function chain. The first motion event that arrives at the

gateway is queued and triggers the instantiation of the functions.

Since a serverless function pod takes some time to start, subsequent

requests have to be queued. The cascading effect during the cold

start of the entire function chain further degrades the response

time [60], resulting in a long tail latency going up to 9s. Once

the function is active, Knative has a reasonably small response

time when there are consecutive incoming events (e.g., before the
grace period terminates between 2000s and 2500s), which keeps

the functions ‘warm’.

In contrast, SPRIGHT shows consistently low response times

over the entire workload duration since there is always an active

pod to serve the request without leaving requests waiting in the

queue (we can sidestep going down to zero-scale). More importantly,

although SPRIGHT keeps one (or more) function warm, the event-

driven nature of SPRIGHT leads to negligible CPU consumption

when there is no traffic. In fact, with Knative, the higher resource

usage of the queue proxy under load more than offsets any benefit

of Knative’s zero-scaling. E.g., in Fig. 11 (b), the spikes in the CPU

usage for the queue proxy (e.g., at the 1500s mark), even when

handling small traffic, is quite wasteful and is eminently avoidable

with SPRIGHT’s event-driven design.

Since the ‘Parking: image detection & charging’ workload has a

distinct periodic arrival pattern (e.g.,monitoring and billing every 4

minutes), we configure a ‘pre-warm’ phase for Knative functions 20

seconds before the next burst is scheduled to arrive. ‘Pre-warming’

helps avoid the penalty of the cold start delay of serverless functions

while trading off a small amount of the resource savings of shut-

ting down the pods in serverless computing with zero-scaling [63].

However, as observed in Fig. 12 (b), the CPU usage for each func-

tion instantiation at the pre-warming stage in fact exceeds the CPU

usage consumed by request processing (i.e., observe the CPU usage

spike for the pre-warming and the function execution 20 seconds

later). Thus, while zero-scaling reduces CPU usage if the idle period

is long, a CPU cost for frequent creation/destruction of functions

must be considered. Knative also is quite inefficient for scaling

functions down to zero. When there is no traffic for a grace period

of 30s (e.g., 270s to 300s in Fig. 12 (b)), Knative begins scaling down

the functions to zero. But, functions remain in a ‘terminating’ state

until 380s without being really terminated or releasing CPU re-

sources. Thus, the scaling down process lasts as long as 80s, during

which all the Knative queue proxies and functions are consuming

CPU resources, which is unnecessary and wasteful.

For comparison, S-SPRIGHT consumes only a small amount of

CPU throughout the entire period, in fact with slightly lower (about

16%) response time (both average and 95%, Fig. 12 (a)). Overall, S-

SPRIGHT saves up to 41% CPU cycles in this 700s experiment
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Figure 12: Parking image detection & charging: (a) Time se-
ries of response time of function chains; (b) Time series of
aggregate CPU for function chains, queue proxy (Knative).

without resorting to zero-scaling, almost doubling system capacity

compared to Knative.

5 RELATEDWORK
In recent years, a number of serverless platforms have been launched,

e.g., AWS Lambda [5], IBM Cloud Functions [48], Apache Open-

Whisk [4], OpenFaaS [24], Knative [14], etc, to support cloud-resident
applications. Work on understanding the performance impact of

commercial or open-source serverless platforms [35, 53] has guided

us on the design of SPRIGHT. Li et al. [53] showed that the overhead
of the ingress gateway reduced the throughput by 13%, compared to

the performance of function invocation using the ‘direct call’ mode

(i.e., the client directly invokes the function instance, bypassing

the ingress gateway). Priscilla et al. [35] studied the suitability of

different serverless function startup modes (i.e., cold and warm) for

supporting IoT applications, indicating that cold start can have sig-

nificant resource-saving benefits but can impact response time. This

prompts us to examine the resource consumption and overheads of

each component carefully.

Several past works have examined the inefficiency and overheads

that exist in Linux networking, including data copies and context

switching [39, 50, 52, 58]. The overhead of protocol processing [61]

and serialization-deserialization [49, 71] directly impact network-

ing performance, which applies to the container-based serverless

function, including function chains. A variety of optimizations have

been proposed to improve the network performance for different ap-

plication scenarios, which can be complementary to current Linux

networking (e.g., XDP [45], AF_XDP in OVS [69]) or bypass kernel-

based networking (e.g., NetVM for NFV [46]). Our work combines

the advantages of kernel-bypass zero-copy networking where es-

sential for serverless function chains, and leveraging eBPF-based

event-driven processing.

Multiple proposals optimize different aspects of serverless frame-

works, e.g., runtime overhead reduction [31, 32, 44, 59], intelligent

resource provisioning, and traffic management [57, 64]. Further,

[60], [37], [65] aim to optimize resource allocation and deployment

of serverless functions on the basis of a chain, which improves the

efficiency and flexibility of building microservices using serverless

function chaining. However, they do not focus on optimizing the

dataplane, which as we show has a significant impact.

‘Cold start’ in serverless: The cold start latency of serverless

functions detracts from their being an ideal framework for building

microservices. [42] proposes a startup latency optimization specifi-

cally for Kubernetes-based environments by placing pods on nodes

that have container image dependencies locally to avoid the latency

of pulling images. However, their 95%ile startup latency after opti-

mization is still around 23s, severely impacting the QoS. In addition,

startup (either cold start or pre-warm [63]) adds additional costs, as

we have observed, making optimizations built around cold start less

desirable. A policy of ‘keep-warm’ of pods has been an alternative

tomitigate the cold start latency in serverless [54]. They can achieve

an 85% improvement of the 99%ile latency. Although [54] consider-

ably improves the SLOs, it is built on Knative with heavyweight

components (e.g., queue proxy), resulting in excessive resource us-

age. Fuerst et al. [43] consider greedy-dual caching to determine

which functions should be kept as warm. By factoring in several

key indicators of a function, e.g., memory footprint, invocation

frequency etc., they can prioritize functions to be kept warm, thus

limiting memory consumption to keep a minimum number of warm

functions and achieve SLOs. Since SPRIGHT primarily contributes

to controlling the CPU usage, [43] can be a good complement to

SPRIGHT to reduce memory utilization.

6 CONCLUSIONS
SPRIGHT demonstrated the effectiveness of event-driven capability

for reducing resource usage in serverless cloud environments. With

extensive use of eBPF-based event-driven capability in conjunc-

tion with high-performance shared memory processing, SPRIGHT

achieves up to 5× throughput improvement, 53× latency reduction,

and 27× CPU usage savings compared to Knative when serving a

complex web workload. Compared to an environment using DPDK

for providing shared memory and zero-copy delivery, SPRIGHT

achieves competitive throughput and latency while consuming 11×
fewer CPU resources. Additionally, for intermittent request arrivals

typical of IoT applications, SPRIGHT still improves the average

latency by 16% while reducing CPU cycles by 41%, when compared

to Knative using ‘pre-warmed’ functions. This makes it feasible for

SPRIGHT to support several ‘warm’ functions with minimum over-

head (since CPU usage is load-proportional), sidestepping the ‘cold-

start’ latency problem. Across several typical serverless workloads,

SPRIGHT shows higher dataplane performance while avoiding the

inefficiencies of current open-source serverless environments, thus

getting us closer to meeting the promise of serverless computing.

To provide isolation between serverless functions with the use of

SPRIGHT’s sharedmemory processing, SPRIGHT supports function-

chain-level separation by restricting access of a private shared

memory pool to only trusted functions of that chain. SPRIGHT

further provides traffic isolation by enabling message filtering in

the SPROXY of each function. SPRIGHT is publicly available at

https://github.com/ucr-serverless/spright.git
This work does not raise any ethical issues.
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A PACKET DATA FLOW IN SPRIGHT
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Figure 13: Packet data flow in S-SPRIGHT (SPROXY). NOTE:
The SPROXY is an in-kernel component. We put it in the
userspace for simplicity.

We describe the zero-copy packet delivery in S-SPRIGHT and

D-SPRIGHT. Fig. 13 shows the packet flow in a sequential chain

with three functions using S-SPRIGHT. Each function attaches a

SPROXY containing the eBPF’s Socket Message program at startup.

After protocol processing, ①) and receipt of the payload from the

kernel protocol stack, the SPRIGHT gateway writes the payload

to shared memory. ②) The SPRIGHT gateway then generates a

packet descriptor, which contains the location of the payload in

shared memory, and executes the send() system call to send the

packet descriptor on its socket interface. The Socket Message pro-

gram at the socket interface intercepts the packet descriptor and

parses it to retrieve the ID of the next function (i.e., of Fn-1 in

Fig. 13). The Socket Message program then looks up the eBPF socket

map, using Fn-1’s ID as the key to find the file descriptor of Fn-1’s

socket interface. The Socket Message program invokes the bpf_
msg_redirect_map() eBPF call to transfer the packet descriptor

to Fn-1 without traversing the kernel protocol stack. ③) Once Fn-1

receives the packet descriptor, it can use the location information

contained in the packet descriptor to access the payload in shared

memory. The same procedure is followed for the subsequent packet

data flow (④ to ⑦) within the function chain. ⑧) After processing

within the function chain is complete, the packet descriptor is sent

back to the SPRIGHT gateway. ⑨) The SPRIGHT gateway fetches

the payload from the shared memory and sends it out through

the kernel protocol stack for processing and transmission of the

response.

Fig. 14 shows the packet flow when passing packet descriptors

between functions using DPDK’s RTE rings. It follows the same

procedure as the S-SPRIGHT, except for the way it is used to ex-

change packet descriptors. With the D-SPRIGHT setup, functions

and the SPRIGHT gateway are assigned an RTE ring at startup,

using rte_ring_create(). We configure the ring to run in a multi-

producer/multi-consumermode by specify the “flags” parameter [29]
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of rte_ring_create() as 0. The D-SPRIGHT supports direct rout-

ing from one function to another by looking up the routing table,

which is configured by the shared memory manager during the

initialization of the function chain. The source (SPRIGHT gateway

or function) looks up the routing table in the shared memory to

find its destination. It then calls rte_ring_enqueue() to move the

packet descriptor to the destination’s RTE ring. The destination

polls the RTE ring (using rte_ring_dequeue()) to retrieve the

packet descriptor and then accesses the payload in shared memory.
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Figure 14: Packet flow in D-SPRIGHT (DPDK’s RTE rings).

B ADDITIONAL EXPERIMENT DETAILS

Table 3: Sequence of different function chains in online bou-
tique. ①: Frontend service; ②: Currency Service; ③: Product
Catalog Service; ④: Cart Service; ⑤: Recommendation Ser-
vice; ⑥: Shipping Service; ⑦: Checkout Service; ⑧: Payment
Service; ⑨: Email Service; ⑩: Ad Service.

Index API call Call sequence in the chain

Ch-1 GET “/” 1,2,1,3,1,4,1,2,1,10,1

Ch-2 POST “/setCurrency” 1

Ch-3 GET “/product/$ID” 1,3,1,2,1,4,1,2,1,5,1,4,1,10,1

Ch-4 GET “/cart” 1,2,1,4,1,5,1,6,1,2,1,3,1,2,1

Ch-5 POST “/cart” 1,3,1,4,1

Ch-6 POST “/cart/checkout”

1,7,4,7,3,7,2,7,6,7,2,7,8,

7,6,7,4,7,9,7,1,5,1,2,1

Table 4: CPU service time and sequence of different function
chains of Parking: Image Detection & Charging workload. ①:
Plate detection, ②: Plate search, ③: Plate index, ④: Charging,
⑤: Persist metadata.

Sequence of the function chain

Ch-1 ① (435ms), ② (20ms), ③ (1ms), ⑤ (10ms), ④ (50ms)

Ch-2 ① (435ms), ② (20ms), ④ (50ms)

Table 3, 4, and 5 provide additional details of experiments in

§4. Table 3 describes the sequence of different function chains in

Table 5: Latency comparison between S-SPRIGHT, D-
SPRIGHT, Knative and gRPC mode at 5K and 25K concur-
rency. Note: latency is measured across all the functions of
the online boutique service.

Latency @ 5K (ms) Latency @ 25K (ms)

95% 99% Mean 95% 99% Mean

Knative 693 965 382 - - -

gRPC 141 199 45.6 - - -

D-SPRIGHT 11.1 45.1 5.8 80.8 144 17.7
S-SPRIGHT 13.4 49.2 7.2 96.1 159 20.0

online boutique workload. Based on the REST API call made by the

load generator, difference functions are invoked following a certain

sequence (i.e., Ch-1 to Ch-6). Table 4 defines the CPU service time

of each function and the sequence of functions being called in the

“Parking: Image Detection & Charging” workload. The “Parking:

Image Detection &Charging” workload has two function chains, i.e.,
Ch-1 and Ch-2 in Table 4. Table 5 compares the latency between

different alternatives in online boutique experiment at different

concurrency levels (5K and 25K).

C ARTIFACT APPENDIX
Abstract
Wehavemade the artifact of SPRIGHT publicly available. It contains

the environment setup and the provides the instructions to conduct

the set of experiments to reproduce the results in §4.

Scope
The goal of our submitting the artifact is to make the software of

SPRIGHT available as open source and allows the reproduction of

all the results and claims made in this paper. One can run SPRIGHT

and potentially extend the functionality of SPRIGHT based on the

source code and documentation provided.

Contents
The artifact consists of the full source code, and all necessary scripts

to run SPRIGHT as well as the experiments described in §4.

Hosting
SPRIGHT is publicly available at https://github.com/ucr-serverless/

spright.git. The artifact documentation can be found in the next

branch (commit 98434fd) in “ARTIFACTS.md”.

Requirements
Hardware Dependencies: This artifact was tested on NSF Cloud-

lab [41] using c220g5 nodes. However, it can be generally hosted

on any DPDK-compatible machines (required for D-SPRIGHT). For

those who only want to run S-SPRIGHT, any commercial off-the-

shelf machines would be adequate.

Software Dependencies: This artifact requires Ubuntu 20.04 with

Linux kernel version 5.16, Knative v0.22.0, Kubernetes v1.19.0,

DPDK v21.11, and libbpf v0.6.0.

More details can be found in the artifact documentation.
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