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Abstract—Future sub-THz cellular deployments may be uti-
lized to complement the coverage of the global positioning
system (GPS) and provide centimeter-level accuracy. In this work,
we use measurement data at 142 GHz to test a map-based
position location algorithm in an outdoor urban microcell (UMi)
environment. We utilize an extended Kalman filter (EKF) to track
the position of the user equipment (UE) along a rectangular track,
with the transmitter-receiver separation distances varying from
24.3 m to 52.8 m. The position and velocity of the UE are tracked
by the EKF, with measurements of the angle of arrival and time
of flight information obtained along an outdoor track, to provide
a mean accuracy of 24.8 cm at 142 GHz, over 34 UE locations,
using a single base station in line-of-sight and non-line-of-sight.

Index Terms—localization; position location; positioning; nav-
igation;, mmWave; sub-THz; 5G; 6G; map-based; outdoor;
kalman filtering; 140 GHz

I. INTRODUCTION

Accurate knowledge of the position of mobile devices is
crucial for a variety of outdoor applications, such as naviga-
tion in unknown environments and tracking the location of
commercial vehicular fleets. The global positioning system
(GPS) can achieve centimeter-level accuracy with real-time
kinematics (RTK), where the user equipment (UE) measures
the carrier-phase differential between satellites [1]. However,
GPS coverage is inadequate in urban canyons with high-rise
buildings, in underground parking areas, and indoors, where
the GPS reference signal is blocked by building walls.

Current millimeter wave (mmWave) cellular networks and
future sub-THz cellular networks are prime candidates to
complement GPS for position location [2]. Wide bandwidth is
available at mmWave frequencies, with channel bandwidths up
to 400 MHz configurable in the frequency range 2 (FR2) of the
fifth generation of mobile technologies (5G) [3]. Phased arrays
with hundreds of antenna elements and narrow half power
beamwidths (HPBW) are commercially available at mmWave
frequencies. The sixth generation of mobile technologies (6G)
will see a move to frequencies above 100 GHz (sub-THz
frequencies) where channel allocations spanning several GHz
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are feasible and where precise angle of arrival (AoA) and time
of flight (ToF) resolution are supported [2], [4]-[6].

A popular method for outdoor position location is finger-
printing, wherein channel parameters (such as received signal
strength or channel state information) are first measured and
recorded for reference points with known positions. Once
a database of the a priori measured channel parameters is
created, a prediction model is used to determine the unknown
position of a UE based on the previously measured channel
parameters. The authors of [7] used temporal convolutional
networks to predict the unknown position of a UE. The UE
measured and stored the power delay profile (PDP) of pulsed
waveforms transmitted by a BS over a fixed beam codebook to
create a beamfored fingerprint at the UE. The beamformed fin-
gerprint was sent back from the UE to the BS, for UE position
location using a temporal convolutional network. An average
position location error of 1.78 m was achieved in simulations at
28 GHz over a 400 x 400 m area in [7]. Real-world outdoor
field measurements at 28 GHz were used in [8] to analyze
the performance of fingerprinting-based outdoor localization.
Using a 500 MHz wideband channel frequency response as
the signal characteristic, the fingerprinting algorithm could
differentiate between 8 UE locations spaced 1 meter apart.

Unlike fingerprinting algorithms that are data-driven,
geometry-based position location algorithms that exploit mul-
tipath components (MPCs) have also been investigated for
position location. The outdoor mmWave position location
accuracy of a MPC-based position location algorithm was
demonstrated via simulations [9], where the authors utilized
the ToF, AoA, and angle of departure (AoD) of the MPCs
to estimate the position of the UE in line-of-sight (LOS) and
non-line-of-sight (NLOS). Two outdoor urban scenarios were
considered: an urban canyon and an urban corner. The authors
assumed NLOS MPCs measured by the UE arrived after one
bounce [9]. A median accuracy of 50 cm was achieved over
an area of 50 x 15 m.

Map assisted positioning with angle and time (MAP-AT)
is a map-based positioning approach that fuses angular and



temporal information with a map of the environment to provide
centimeter-level position location in LOS and NLOS environ-
ments. The MAP-AT approach makes no assumption on the
number of reflections encountered by the NLOS MPC. The
performance of MAP-AT was examined with real-world indoor
field measurements in [10]. An excellent mean accuracy of
5.7 cm at 28 GHz and 6.3 cm at 140 GHz was achieved over
distances ranging from 4.2 m to 32.3 m.

In addition to utilizing channel measurements to determine
the current position of the UE, tracking the path of a mobile
UE has been well-investigated. In [11], the authors use the
unscented Kalman filter (UKF) and extended Kalman filter
(EKF) to simultaneously determine the position of a moving
vehicle and for network synchronization. A root mean squared
error of 0.76 m was achieved over the vehicular trajectory. In
[12], the authors used an EKF to track the position of a UE
moving along a 100 m long trajectory by estimating the angle
of departure, to achieve sub-meter positioning accuracy 90%
of the time at an operating frequency of 39 GHz.

In this paper, we extend the work in [10] by evaluating
the performance of MAP-AT in an outdoor environment and
demonstrate that the EKF tracking algorithm works well and
could be implemented at a BS transmitting in the sub-THz
frequency band of 140 GHz, for UE tracking.

The remainder of this paper is organized as follows. The
MAP-AT method and position location algorithm is described
in Section II, along with the design of an EKF tracking
algorithm. The performance of MAP-AT localization and
tracking on real-world outdoor measurement data at 140 GHz
is evaluated in Section III. Concluding remarks and directions
for future work are provided in Section IV.

II. POSITION LOCATION AND TRACKING WITH MAP-AT

MAP-AT is a position location technique that fuses the AoA
and ToF of MPCs and associates them with a map of the
environment (that is pre-generated or generated on-the-fly [13],
[14]). The AoA of an uplink reference signal may be measured
by the phased array at the base station (BS). Note that an
alternate implementation of MAP-AT may utilize downlink
reference signals by measuring the AoD of the MPCs at the
BS, as described in [14]. The ToF may be measured using
the round trip time of the reference signal in order to avoid
synchronization issues.

A. Position Location with MAP-AT

MAP-AT makes no assumptions on the number of reflec-
tions suffered by each MPC since strong reflections with multi-
ple bounces are possible at mmWave and sub-THz frequencies
[15]. MAP-AT is capable of determining the location of the
UE in LOS and NLOS, provided at least two MPCs arrive at
the UE.

CL,
Wall 3
cL, \
cL, | ue L,
CL, CL,
wanz2l

Fig. 1. Two NLOS MPCs arrive at the UE shown above - one in green and one
in blue. Two candidate locations ( CL5, CLg) are at the actual user location,
while the other candidate locations are dispersed [10], [14].

Using a site-specific map of the environment, MAP-AT
back-traces the path of each MPC received at the BS. On
encountering an obstruction, MAP-AT traces the ray that
would have been reflected by the obstruction as well as the
ray that would have penetrated through the obstruction. In
this manner, MAP-AT maps out all possible UE locations
(henceforth referred to as candidate locations) based on the
AoA and ToF of each MPC, measured at the BS. When two or
more MPCs are back-traced, since a majority of the candidate
locations coincide with the true UE location [10], [14], MAP-
AT can easily determine the position of the UE. Fig. 1 depicts a
UE in an outdoor environment, which receives two MPCs from
the BS located around the building corner. One MPC arrives
at the UE after suffering two reflections while the other MPC
arrives after penetrating through the building. All the candidate
locations are illustrated in the figure. Note that two candidate
locations coincide with or are clustered around the true UE
location on the map while the other candidate locations are
dispersed.

B. Location tracking with the EKF

Prior MAP-AT work [10], [14] focused on determining the
UE location at a single time instant. We now extend MAP-
AT for user tracking, i.e. following the position location of
a mobile UE. Tracking the user location reduces the effect
of sudden error spikes in AoA or ToF measurements, and
provides an estimate of the UE location over motion even when
the UE experiences a temporary outage.

An EKF may be used to track the position of the UE. The
EKEF acts like a low pass filter, smoothening the error in the
position along the track of a user. In this work, we assume
a constant velocity model for the EKF, with known system
input [16], [17]. Varying velocity can be accommodated by
estimating the UE velocity by measuring the Doppler shift of
UE transmissions over the air or with onboard gyroscopes,
accelerometers, and other sensors in the UE.



The position and velocity of the UE at time instant k are
represented by state vector Xx = [Tk, Vgk, Yk, Vyk)t . The
evolution of the state of a UE with time (the relationship
betweem xyx_1 and xy) is described by state dynamics. The
state dynamics may be described mathematically as [18]:

Xk =Fr 1Xk 1 +uk 1 +wk 1. (D

Fy is the state transition matrix which represents the linear
relationship between xx_1 and xi. At time instants where the
velocity of the UE did not change, ux_1, the control input is
equal to zero and Fy is given by [18], [19]:

1 7T 0 O
01 0 O
Fy = (@3]
00 1 T
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with T' equal to the sampling period in seconds.

For a UE moving along a rectangular track at a constant
speed, the velocity of the UE changes four times (at the four
corners of the rectangular track) due to the change in direction
of motion. At the four corners of the rectangular track, Fy
is equal to the 4 X 4 zero matrix, while ux_7 specifies the
state of the UE. At the four corners of the rectangle, ux_1 is
equal to the state (position and velocity) of the UE after the
turn, assuming the UE continues to move along the rectangular
track. wy represents the process noise which allows for slack
in the state dynamics, to account for when the motion of the
UE differs from the constant velocity model. The UE logged
Py, i.e., the state covariance matrix (E[xxxk”]), and xy.

At sampling instant k, the EKF performs a prediction step
and an update step. In the prediction step, the EKF predicts
the state vector xy and covariance matrix Py of the UE from
measurements up to sampling instant k — 1, using [20]

Xk = Fro1Xk-1 + uk_1 (3)
Pr=F, 1P 1Fe 17 +Q, 4)

where X is the predicted state vector, ﬁ( is the predicted state
covariance matrix, Q is the process covariance matrix, equal
to the covariance of the process noise wi.

Using MAP-AT, the paths taken by each of the MPCs were
predicted with the help of the measured ToF and AoA, using
a site-specific map of the environment as seen in Fig 2 (by
estimating the position of the UE via MAP-AT, as described in
Section II). To implement an EKF, the geometric relationship
between the current position of the UE and the measured ToF
and AoA must be derived, for which the concept of virtual
anchors (VA) was used. VAs are successive reflections of the
BS on walls in the environment. The VA is treated as a LoS BS
in place of the physical NLoS BS, as shown in Fig. 2. Since
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Fig. 2. One virtual anchor for each MPC arriving at the UE is calculated,
based on the path of the MPC predicted by MAP-AT.

the length of a MPC path does not change due to a reflection,
the ToF of multipath that would have arrived at the UE from
the VAs is equal to the ToF of the multipath arriving from the
physical BS. Using VAs instead of physical BSs simplifies the
geometric relationship between the current position of the UE
and the measured ToF and AoA.

The ToF and AoA measurements may be expressed in terms
of the coordinates of the VA and the UE as follows:

r=/(rva— )2+ (yva — y)?
= ¢ X ToF ®))
i = cos(AoA) = £ TVA (6)
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where r is the 2D distance between the UE and VA,
(xva,yva) is the position of the VA, ¢ is the speed of light,
and 7 is the cosine of the AoA of the MPC arriving from
the VA. For mathematical convenience, r and n are jointly
represented by the measurement vector zy = [r n]7.

Once the prediction step is complete, in the update step,
the EKF updates Xj with measurements obtained at sampling
instant k, to produce a final estimate of the UE state vector
Xk. It can be shown that to minimize the least square error
between Xy and the true UE position and velocity [20],

5 = Xk + Kig. (7

K is the Kalman gain of the filter which will be defined shortly.
The term iy is called the innovation (also called measurement
residual) and is equal to the difference in zy (the measurement
vector) and zy (the value of the measurements calculated by
replacing xj and y, with Zx and g in (5) and (6)):

ik = 2 — zxk. (8)

As seen in (7), the final EKF estimate of the UE state
vector, i.e., Xy, is a linear combination of measurement data
collected up to time instant & — 1 (in the form of xy) and
new measurements collected at time instant k. The weight of



new measurements collected by the UE at time instant k in
the linear combination is provided by K [20]:

K = PHTHPHT +R) !, )

where H is the Jacobian of the measurements with respect
to the extrapolated state vector Xi (i.e. the multidimensional
derivative of the measurements) and is given by:
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R, the measurement covariance matrix of ToF and AoA
measurements, gives insight into the measurement noise levels.

III. MAP-AT PERFORMANCE WITH REAL-WORLD
OUTDOOR SUB-THZ MEASUREMENTS

The localization performance of MAP-AT shall now be
examined with real-world outdoor UMi measurements at 140
GHz. Measurements were conducted on the NYU Tandon
engineering campus courtyard in downtown Brooklyn, New
York as shown in Fig. 3. Out of the 34 UE locations in the
102 m long rectangular path, 17 locations were LOS, and
17 locations were NLOS. Fig. 4 depicts the environment of
the LOS UE at location 1, while the typical environment
experienced by a UE in NLOS is shown in Fig. 5.

Fig. 3. Map of the outdoor environment, depicting the outdoor LOS and
NLOS locations where measurements were conducted at 140 GHz [4]

A wideband sliding correlator-based channel sounder was
used to capture multipath PDPs and associated AoAs needed to
implement MAP-AT, where the sounder had a null-to-null RF
bandwidth of 1 GHz. Identical horn antennas at the BS and UE
with 27 dBi gain and 8° half-power beamwidths (HPBW) were
used at 140 GHz, with a TX transmit power of 0 dBm, resulting
in an effective isotropic radiated power (EIRP) of 27 dBm [4],
[5], [21]. The horn antennas were mounted on electronically

steerable gimbals with sub-degree accuracy in the azimuth and
elevation plane. The TX was placed at a height of 4 m (the
height of a lamppost), to replicate the location where cellular
BSs could be deployed while the RX was at a height of 1.5
m, the typical mobile UE height. Additional details about the
measurement environment are provided in [4].

The measurements were conducted in a rectangular path
of length 102 m, with a distance of 3 m between each
measurement [4], [22]. Due to the bulky equipment at the
RX, it was not possible to conduct measurements with the RX
in motion, however, the static measurements were modeled as
though a moving UE were sampling the wireless channel once
every two seconds, assuming a walking speed of 1.5 m/s (since
1.5 m/s x 2 seconds = 3 m). In a real deployment, UE velocity
could be measured by doppler or by the sensors present in the
mobile device such as the accelerometer and the gyroscope.

Fig. 5. UE location 15 NLOS with no direct signal path from the BS.

The channel sounder detected MPCs by conducting an
exhaustive 3-D search at each of the 34 UE locations, by
rotating the electronically controlled TX and RX gimbals [4],
[5], [22]. One to five MPCs were detected at each UE location
except location 17, where no signal was received [22].



The channel sounder in [4] measures relative timing of
arriving MPCs via sliding correlation [21]. To calculate the
absolute ToF of MPCs, ray tracing is required. The measured
AoA was augmented with ToF predicted by NYURay, a 3-D
mmWave ray tracer [14]. Augmenting channel sounder mea-
surements with ray tracing has proven valuable for producing
statistical models as well as accurate site-specific models with
absolute timing [23], [24]. NYURay is calibrated to real-
world mmWave measurements capable of providing accurate
temporal, angular, and power measurements [14]. Zero mean
Gaussian noise with a standard deviation of 0.25 ns and 0.5°
was added to the measured ToF and AoA respectively to
model measurement uncertainty. The augmented AoA and ToF
measurements generated by NYURay were used by MAP-AT
and the EKF for position location and tracking. The effect of
increasing the standard deviation of ToF error to 0.5 ns on
position location accuracy will be examined in Section III-B.

A. Extended Kalman Filter Parameter Selection

Choosing appropriate values of the Py, Q, and R matrices
described in Section II-B is necessary for optimal performance
of the EKF and to ensure that the position location error is
reasonably bounded [19].

The state covariance matrix Py in (4) is initialized based
on the confidence in the initial state of the system. Since the
initial UE position (location 1 in Fig. 3) is a LOS location, the
confidence in the initial position estimate of the UE is high
and we set P; = 0.0114, where 1 is the 4 x4 identify matrix.
The initial position of the UE, x; was estimated via MAP-AT
using the measured AoA and the ToF estimated by NYURay.

The process noise wy was modeled by a random accel-
eration, which perturbed the constant velocity assumed by
the tracking model [19]. Thus the process noise is given
by wie = (T?/2 T T?/2 T)wa, where w, is a 2 x 1
random vector containing the Gaussian random accelerations
in the x and y directions with a mean of 0 and a standard
deviation of ¢, =0.05 m/s2. Assuming no cross-correlation
between the random accelerations in the x and y directions
(since the motion of the UE is independent in both directions),
the covariance matrix of the random process is [19]:

T4/4 T3/2 0 0

/2 T> 0 0|,
Q= o2, (11)
0 0 T4/4 T3)2

0 0 T3)2

T2
The measurement noise covariance matrix R in (9) was set
equal to a diagonal matrix, with entries equal to the variance
of the ToF and AoA measurements since the errors in the ToF
and AoA measurements were assumed to be uncorrelated [16].
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Fig. 6. The variation of position location error over the 34 UE locations along
the 102 m long rectangular track.
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Fig. 7. The CDF of the position location error along the rectangular track.

B. Experimental Results

Good localization results were obtained over the entire 102
m long rectangular track, with a mean error of 23.3 cm
observed between the predicted and actual position location
over the 17 LOS locations, and a mean error of 26.4 cm
observed over the 17 NLOS locations at 140 GHz, with the
TX-RX separation distance varying from 24.3 m to 52.8 m.
Even though location 17 experienced an outage, the EKF was
able to determine the location of the UE to an accuracy of 47.4
cm at location 17. A plot of the position location error at each
UE location is provided in Fig. 6, with a CDF of the position
location errors provided in Fig. 7. Increasing the standard
deviation of the ToF error from 0.25 ns to 0.5 ns increased the
mean localization error from 24.8 cm to 38.4 cm. It should be
noted that these results are for a single BS, where additional
base stations would likely improve the accuracy [14].

C. Comparison of Accuracy With and Without Tracking

Of the 34 UE locations along the rectangular path, the
position of nine UE locations could be determined using MAP-
AT alone, without using EKF, since two or more MPCs were



received at the locations. Assuming a Gaussian ToF error with
a standard deviation of 0.25 ns, the mean position location
error over the nine UE locations was 7.39 cm using MAP-
AT alone, and 10.39 cm using MAP-AT with EKF, with the
TX-RX separation distance varying from 24.3 m to 46.8 m.
As seen in Fig. 8, UE tracking with the EKF did not
significantly improve the localization accuracy of the nine
UE locations which could be localized with MAP-AT alone,
however, the EKF was critical for the 24 UE locations which
received one MPC and UE location 17, which was in outage.
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Fig. 8. The UE position location error utilizing only MAP-AT vs. the accuracy
with MAP-AT and the EKF. Although the mean position location error is
similar, position location with EKF tracking has a greater variance in error.

IV. CONCLUSION

MAP-AT determines the UE position in LOS and NLOS en-
vironments by combining the AoA and ToF of MPCs received
at the UE using a site-specific map of the environment. This
paper analyzed the performance of MAP-AT using real-world
140 GHz channel data. An EKF was used to track the position
of the UE moving along a rectangular track, with only marginal
improvement over not using EKF. The UE was in NLOS for
half of the 34 measured locations since the direct signal from
the BS was blocked by a building corner. A mean position
location error of 24.8 cm was obtained at 140 GHz over 34
UE locations, with a TX-RX distance ranging from 24.3 m
to 52.8 m. The EKF could predict the UE at a location of
temporary outage (location 17) based on the tracked position
and velocity of the UE. For the nine UE locations where two
or more MPCs were received, the mean localization accuracy
of MAP-AT without tracking (7.39 cm) was similar to the error
of MAP-AT with EKF tracking (10.39 cm).

Future work will analyze the improvement in position loca-
tion accuracy by incorporating cooperative measurements, i.e.
the measurement of signals transmitted between UEs.
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