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AbstractÐFuture sub-THz cellular deployments may be uti-

lized to complement the coverage of the global positioning

system (GPS) and provide centimeter-level accuracy. In this work,

we use measurement data at 142 GHz to test a map-based

position location algorithm in an outdoor urban microcell (UMi)

environment. We utilize an extended Kalman filter (EKF) to track

the position of the user equipment (UE) along a rectangular track,

with the transmitter-receiver separation distances varying from

24.3 m to 52.8 m. The position and velocity of the UE are tracked

by the EKF, with measurements of the angle of arrival and time

of flight information obtained along an outdoor track, to provide

a mean accuracy of 24.8 cm at 142 GHz, over 34 UE locations,

using a single base station in line-of-sight and non-line-of-sight.

Index TermsÐlocalization; position location; positioning; nav-

igation; mmWave; sub-THz; 5G; 6G; map-based; outdoor;

kalman filtering; 140 GHz

I. INTRODUCTION

Accurate knowledge of the position of mobile devices is

crucial for a variety of outdoor applications, such as naviga-

tion in unknown environments and tracking the location of

commercial vehicular fleets. The global positioning system

(GPS) can achieve centimeter-level accuracy with real-time

kinematics (RTK), where the user equipment (UE) measures

the carrier-phase differential between satellites [1]. However,

GPS coverage is inadequate in urban canyons with high-rise

buildings, in underground parking areas, and indoors, where

the GPS reference signal is blocked by building walls.

Current millimeter wave (mmWave) cellular networks and

future sub-THz cellular networks are prime candidates to

complement GPS for position location [2]. Wide bandwidth is

available at mmWave frequencies, with channel bandwidths up

to 400 MHz configurable in the frequency range 2 (FR2) of the

fifth generation of mobile technologies (5G) [3]. Phased arrays

with hundreds of antenna elements and narrow half power

beamwidths (HPBW) are commercially available at mmWave

frequencies. The sixth generation of mobile technologies (6G)

will see a move to frequencies above 100 GHz (sub-THz

frequencies) where channel allocations spanning several GHz
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are feasible and where precise angle of arrival (AoA) and time

of flight (ToF) resolution are supported [2], [4]±[6].

A popular method for outdoor position location is finger-

printing, wherein channel parameters (such as received signal

strength or channel state information) are first measured and

recorded for reference points with known positions. Once

a database of the a priori measured channel parameters is

created, a prediction model is used to determine the unknown

position of a UE based on the previously measured channel

parameters. The authors of [7] used temporal convolutional

networks to predict the unknown position of a UE. The UE

measured and stored the power delay profile (PDP) of pulsed

waveforms transmitted by a BS over a fixed beam codebook to

create a beamfored fingerprint at the UE. The beamformed fin-

gerprint was sent back from the UE to the BS, for UE position

location using a temporal convolutional network. An average

position location error of 1.78 m was achieved in simulations at

28 GHz over a 400 × 400 m area in [7]. Real-world outdoor

field measurements at 28 GHz were used in [8] to analyze

the performance of fingerprinting-based outdoor localization.

Using a 500 MHz wideband channel frequency response as

the signal characteristic, the fingerprinting algorithm could

differentiate between 8 UE locations spaced 1 meter apart.

Unlike fingerprinting algorithms that are data-driven,

geometry-based position location algorithms that exploit mul-

tipath components (MPCs) have also been investigated for

position location. The outdoor mmWave position location

accuracy of a MPC-based position location algorithm was

demonstrated via simulations [9], where the authors utilized

the ToF, AoA, and angle of departure (AoD) of the MPCs

to estimate the position of the UE in line-of-sight (LOS) and

non-line-of-sight (NLOS). Two outdoor urban scenarios were

considered: an urban canyon and an urban corner. The authors

assumed NLOS MPCs measured by the UE arrived after one

bounce [9]. A median accuracy of 50 cm was achieved over

an area of 50 × 15 m.

Map assisted positioning with angle and time (MAP-AT)

is a map-based positioning approach that fuses angular and









The channel sounder in [4] measures relative timing of

arriving MPCs via sliding correlation [21]. To calculate the

absolute ToF of MPCs, ray tracing is required. The measured

AoA was augmented with ToF predicted by NYURay, a 3-D

mmWave ray tracer [14]. Augmenting channel sounder mea-

surements with ray tracing has proven valuable for producing

statistical models as well as accurate site-specific models with

absolute timing [23], [24]. NYURay is calibrated to real-

world mmWave measurements capable of providing accurate

temporal, angular, and power measurements [14]. Zero mean

Gaussian noise with a standard deviation of 0.25 ns and 0.5◦

was added to the measured ToF and AoA respectively to

model measurement uncertainty. The augmented AoA and ToF

measurements generated by NYURay were used by MAP-AT

and the EKF for position location and tracking. The effect of

increasing the standard deviation of ToF error to 0.5 ns on

position location accuracy will be examined in Section III-B.

A. Extended Kalman Filter Parameter Selection

Choosing appropriate values of the Pk, Q, and R matrices

described in Section II-B is necessary for optimal performance

of the EKF and to ensure that the position location error is

reasonably bounded [19].

The state covariance matrix Pk in (4) is initialized based

on the confidence in the initial state of the system. Since the

initial UE position (location 1 in Fig. 3) is a LOS location, the

confidence in the initial position estimate of the UE is high

and we set P1 = 0.01I4, where I4 is the 4×4 identify matrix.

The initial position of the UE, x1 was estimated via MAP-AT

using the measured AoA and the ToF estimated by NYURay.

The process noise wk was modeled by a random accel-

eration, which perturbed the constant velocity assumed by

the tracking model [19]. Thus the process noise is given

by wk = (T 2/2 T T 2/2 T )wa, where wa is a 2 × 1

random vector containing the Gaussian random accelerations

in the x and y directions with a mean of 0 and a standard

deviation of σa =0.05 m/s2. Assuming no cross-correlation

between the random accelerations in the x and y directions

(since the motion of the UE is independent in both directions),

the covariance matrix of the random process is [19]:
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The measurement noise covariance matrix R in (9) was set

equal to a diagonal matrix, with entries equal to the variance

of the ToF and AoA measurements since the errors in the ToF

and AoA measurements were assumed to be uncorrelated [16].

Fig. 6. The variation of position location error over the 34 UE locations along

the 102 m long rectangular track.

Fig. 7. The CDF of the position location error along the rectangular track.

B. Experimental Results

Good localization results were obtained over the entire 102

m long rectangular track, with a mean error of 23.3 cm

observed between the predicted and actual position location

over the 17 LOS locations, and a mean error of 26.4 cm

observed over the 17 NLOS locations at 140 GHz, with the

TX-RX separation distance varying from 24.3 m to 52.8 m.

Even though location 17 experienced an outage, the EKF was

able to determine the location of the UE to an accuracy of 47.4

cm at location 17. A plot of the position location error at each

UE location is provided in Fig. 6, with a CDF of the position

location errors provided in Fig. 7. Increasing the standard

deviation of the ToF error from 0.25 ns to 0.5 ns increased the

mean localization error from 24.8 cm to 38.4 cm. It should be

noted that these results are for a single BS, where additional

base stations would likely improve the accuracy [14].

C. Comparison of Accuracy With and Without Tracking

Of the 34 UE locations along the rectangular path, the

position of nine UE locations could be determined using MAP-

AT alone, without using EKF, since two or more MPCs were



received at the locations. Assuming a Gaussian ToF error with

a standard deviation of 0.25 ns, the mean position location

error over the nine UE locations was 7.39 cm using MAP-

AT alone, and 10.39 cm using MAP-AT with EKF, with the

TX-RX separation distance varying from 24.3 m to 46.8 m.

As seen in Fig. 8, UE tracking with the EKF did not

significantly improve the localization accuracy of the nine

UE locations which could be localized with MAP-AT alone,

however, the EKF was critical for the 24 UE locations which

received one MPC and UE location 17, which was in outage.

Fig. 8. The UE position location error utilizing only MAP-AT vs. the accuracy

with MAP-AT and the EKF. Although the mean position location error is

similar, position location with EKF tracking has a greater variance in error.

IV. CONCLUSION

MAP-AT determines the UE position in LOS and NLOS en-

vironments by combining the AoA and ToF of MPCs received

at the UE using a site-specific map of the environment. This

paper analyzed the performance of MAP-AT using real-world

140 GHz channel data. An EKF was used to track the position

of the UE moving along a rectangular track, with only marginal

improvement over not using EKF. The UE was in NLOS for

half of the 34 measured locations since the direct signal from

the BS was blocked by a building corner. A mean position

location error of 24.8 cm was obtained at 140 GHz over 34

UE locations, with a TX-RX distance ranging from 24.3 m

to 52.8 m. The EKF could predict the UE at a location of

temporary outage (location 17) based on the tracked position

and velocity of the UE. For the nine UE locations where two

or more MPCs were received, the mean localization accuracy

of MAP-AT without tracking (7.39 cm) was similar to the error

of MAP-AT with EKF tracking (10.39 cm).

Future work will analyze the improvement in position loca-

tion accuracy by incorporating cooperative measurements, i.e.

the measurement of signals transmitted between UEs.
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