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ABSTRACT
Storing a counter incremented 𝑁 times would naively consume

𝑂 (log𝑁 ) bits of memory. In 1978 Morris described the very first

streaming algorithm: the “Morris Counter” [15]. His algorithm’s

space bound is a random variable, and it has been shown to be

𝑂 (log log𝑁 + log(1/𝜀) + log(1/𝛿)) bits in expectation to provide a

(1 + 𝜀)-approximation with probability 1 − 𝛿 to the counter’s value.

We provide a new simple algorithm with a simple analysis showing

that randomized space 𝑂 (log log𝑁 + log(1/𝜀) + log log(1/𝛿)) bits
suffice for the same task, i.e. an exponentially improved dependence

on the inverse failure probability. We then provide a new analysis

showing that the original Morris Counter itself, after a minor but

necessary tweak, actually also enjoys this same improved upper

bound. Lastly, we prove a new lower bound for this task showing

optimality of our upper bound. We thus completely resolve the

asymptotic space complexity of approximate counting. Furthermore

all our constants are explicit, and our lower bound and tightest

upper bound differ by a multiplicative factor of at most 3 + 𝑜 (1).

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near
linear time algorithms.
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1 INTRODUCTION
Suppose one wishes to maintain an integer 𝑁 , initialized to zero,

subject to a sequence of increment operations. Maintaining this

counter exactly can be accomplished using ⌈log
2
𝑁 ⌉ bits. In the

first example of a non-trivial streaming algorithm, Morris gave a

Monte Carlo randomized “approximate counter”, which lets one

report a constant factor approximation to 𝑁 with large probability
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while using 𝑜 (log𝑁 ) bits of memory. His algorithm, the “Morris

Counter”, uses 𝑂 (log log𝑁 ) bits [15]. The Morris Counter was

later analyzed in more detail [9, 10], where it was shown that

𝑂 (log log𝑁 + log(1/𝜀) + log(1/𝛿)) bits of memory is sufficient to

return a (1 + 𝜀) approximation with success probability 1 − 𝛿 ; the
space consumption is a random variable, and this quantity is its ex-

pectation (and in fact, the space bound holds with large probability).

Further historical details can be found in [14].

Our main contribution is a new, simple improved algorithm and

matching lower bound. In particular, we show that the correct

dependence on the inverse failure probability is only doubly and

not singly logarithmic. This implies for example that 𝑂 (log log𝑁 )
memory suffices to have failure probability 1/𝑝𝑜𝑙𝑦 (𝑁 ), whereas pre-
vious Morris Counter analyses only guaranteed failure probability

1/𝑝𝑜𝑙𝑦 (log𝑁 ) in such space.

Theorem 1.1. For any 𝜀, 𝛿 ∈ (0, 1/2) there is a randomized algo-
rithm for approximate counting which outputs 𝑁̂ satisfying

P
(��𝑁 − 𝑁̂ �� > 𝜀𝑁

)
< 𝛿. (1)

The memory in bits is a random variable 𝑀 such that for any 𝑆 >

𝐶 (log log𝑁 + log(1/𝜀) + log log(1/𝛿)),1

P(𝑀 > 𝑆) < exp(−𝐶 ′ exp(𝐶 ′′𝑆)) . (2)

Furthermore, our algorithm is asymptotically optimal up to a con-
stant factor: any randomized algorithm which is promised that the
final counter is in the set {1, . . . , 𝑛} and which satisfies Eq. (1) must
use Ω(min{log𝑛, log log𝑛+log(1/𝜀)+log log(1/𝛿)}) bits of memory
with high probability.

Note the first term in the min of the lower bound of Theorem 1.1

is matched by a deterministic counter. We further note the space

usage of theMorris Counter is also a randomvariablewhich satisfies

a bound similar to Eq. (2). Next, we show that the Morris Counter

itself parametrized to use the same space bound also achieves (1) as

long as the counter 𝑁 is sufficiently large, i.e. at least some value

𝑁𝛿 = Ω(log(1/𝛿)). This is a mild restriction, since one can simply

maintain a deterministic counter in parallel to the Morris Counter

up to the value 𝑁𝛿 + 1. Then to answer queries, if the counter is at

most𝑁𝛿 , we return it; else if it equals𝑁𝛿 +1, we return the estimator

based on the Morris Counter. As we show in the appendix, this

minor tweak is necessary; without it, the Morris Counter would

not achieve success probability 1 − 𝛿 in the desired space. We call

this slight tweak “Morris+”, which is similar to a method used in

[10]. Our next theorem provides an improved analysis of Morris+.

All logarithms in this paper are base 2, unless it is stated otherwise.

1
In fact our analysis is more refined and produces explicit constant factors; see Theo-

rem 2.3 and Remark 2.5.
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Theorem 1.2. For any 𝜀, 𝛿 ∈ (0, 1/2) Morris+, instantiated with
appropriate parameters, uses log log𝑁 + 2 log(1/𝜀) + log log(1/𝛿) +
𝑂 (1) bits of memory with high probability and outputs 𝑁̂ satisfying

P
(��𝑁 − 𝑁̂ �� > 𝜀𝑁

)
< 𝛿. (3)

Though we provide two proofs of the same upper bound, we

believe both have value. One perhaps pedagogical advantage of

Theorem 1.1 is that the new algorithm we provide is designed with

the analysis in mind, leading to an overall proof of our novel optimal

upper bound that is both short and intuitive. That is, one reads the

argument and feels they clearly understand “why” the upper bound

is what it is. Meanwhile, the advantage of Theorem 1.2 is that it

provides a tight analysis of an algorithm commonly used in practice,

albeit at the pedagogical cost that the proof of the theorem boils

down to a technical calculation, and the reason the final bound

comes out the way it does is arguably less intuitive.

Given that most modern machines have much more than log𝑁

bits of memory for even for 𝑁 being on the order of the number of

particles in the universe, one might wonder whether approximate

counting is of real importance or merely a purely intellectual pur-

suit. An application to keep in mind is not that there is merely one

counter, but we may wish to maintain many such counters. In a real

such application the number of approximate counters could be very

large, and so cutting the number of bits per counter by even a con-

stant factor could be of value. Indeed this was Morris’ own original

motivation: he needed to keep track of not only one counter, but 26
3

counters, to keep trigram counts as part of the spellchecker typo
[14]. An example of a real such scenario in the modern day is the

implementation of the “Least Frequently Used” (LFU) cache evic-

tion policy in Redis, one of the most popular in-memory databases.

The Redis implementation of this eviction policy needs to keep

track of a counter for each key in the database, corresponding to

the number of times it has been queried recently. To save memory,

these counters are in fact implemented as approximate counters [?
].

This motivating perspective also reveals that typically the mem-

ory requirement to calculate the state transition of the approximate

counter after an increment, or to answer a query, is much less impor-

tant; rather, minimizing the memory required to maintain program

state is of higher practical relevance, as that affects total storage.

Furthermore, if we are maintaining𝑀 counters then it is natural to

want 𝛿 ≪ 1/𝑀 so that each counter is approximately correct with

high probability. If𝑀 is large, then requiring log(1/𝛿) ≥ log𝑀 bits

per counter may provide no benefit over a naive log𝑁 bit counter

for realistic values of 𝑁 .

In addition to potential practical relevance, from a theoretical

perspective “maintaining a counter” is a natural problem and as

such the Morris Counter has found applications to other streaming

problems. For example, Jayaram and Woodruff showed that for

𝑝 ∈ (0, 1] an approximate counter can be used effectively as a

subroutine in an algorithm for approximating the 𝑝th moment of

an insertion-only stream up to 1 + 𝜀 in 𝑂̃ (1/𝜀2 + log𝑛) bits of space
[12], improving over a derandomization of an algorithm of Indyk

that uses𝑂 (𝜀−2 log𝑛) bits [11, 13]. Approximate counting also finds

use in approximating large frequency moments [4, 10], approximate

reservoir sampling [10], approximating the number of inversion

when streaming over a permutation [3], and ℓ1 heavy hitters in

insertion-only streams [5].

1.1 Comparison with previous bounds from [9]
As we discuss in Subsection 1.2, the Morris Counter works by stor-

ing a counter𝑋 and incrementing it with probability 1/(1+𝑎)𝑋 per

update for some parameter 𝑎 > 0. The work [9] characterized the

behavior of the Morris algorithm exactlywhen 𝑎 = 1. Unfortunately,

the Morris Counter for 𝑎 = 1, which uses𝑂 (log log𝑁 ) bits of mem-

ory with high probability (which is 𝑂 (log log𝑁 + log log(1/𝛿)) for
𝛿 = 1/𝑝𝑜𝑙𝑦 (𝑁 )), does not enjoy constant factor approximation with

success probability any better than a constant even for large 𝑁 , let

alone with probability 1 − 1/𝑝𝑜𝑙𝑦 (𝑁 ). This failure of the Morris

Counter to achieve very high success probability for 𝑎 = 1 is im-

plied by the exact characterization of the algorithm given in [9]

itself; Proposition 3 of that work implies that the probability that 𝑋

fails to be in the interval [log
2
𝑁 −𝐶, log

2
𝑁 +𝐶] equals a constant

(depending on 𝐶), and 𝑋 being in that interval is required for the

Morris Counter to provide a 2
𝐶
-approximation. Thus, the failure

probability when 𝑎 = 1 is not even 𝑜 (1). Our Theorem 1.2 reveals

though that the Morris Counter with 𝑎 = Θ(1/log𝑁 ) does achieve
failure probability 1/𝑝𝑜𝑙𝑦 (𝑁 ), which is “for free” (up to a constant

factor) compared with 𝑎 = 1 since this smaller setting of 𝑎 still only

requires the Morris Counter to use 𝑂 (log log𝑁 ) bits of memory

with high probability.

[9] does have some discussion on using smaller 𝑎. Specifically,

[9, Section 5] mentions that if one wants error better than the

case 𝑎 = 1 to estimate 𝑁 , one can either average independent

counters or change base, and that the former has “an effect similar

to” the latter. A variance bound is then given for estimating 𝑁

when using arbitrary 𝑎. This variance bound seems to reveal though

that the effects of averaging versus changing base are not similar

from a computational complexity perspective: the former requires

averaging Ω(1/𝜀2) copies of the counter, blowing up the space

complexity by 1/𝜀2. The latter leads to a space bound depending

only on 𝑂 (log(1/𝜀)). Both yield 𝑂 (log(1/𝛿)) space dependence on
the failure probability 𝛿 . Equation (46) of [9] does give an explicit

sum-product formula for the exact probabilities 𝑃𝑛,ℓ that the counter

exactly equals ℓ after 𝑛 increments, but this formula is not readily

prescriptive for how 𝑎 should be set in order to achieve relative

error 1 + 𝜀 with failure probability 𝛿 .

1.2 Overview of approach
We first explain the idea behind the Morris Counter. The traditional,

deterministic and exact counter stores an integer 𝑋 , initialized to

zero. After every increment to 𝑁 , we increment 𝑋 with probability

1.0𝑋 , i.e. we always increment it. Thus we can “estimate” 𝑁 as 𝑋 ,

and this estimator has zero variance and is unbiased, at the cost of

using log𝑁 memory. Morris instead increments 𝑋 with probability

0.5𝑋 ; this trades off variance for memory. Specifically, one can show

that E[2𝑋 −1] = 𝑁 , though the variance only satisfies Var[2𝑋 −1] =
𝑁 (𝑁−1)/2. A natural idea ofMorris is then to change the base of the

exponential when deciding the probability to increment 𝑋 , which

turns out to provide a smooth tradeoff between memory and space

consumption. Specifically, for any 𝑎 > 0 if incrementing 𝑋 with

probability 1/(1+𝑎)𝑋 , the expression𝑎−1 ((1+𝑎)𝑋−1) is an unbiased
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estimator of 𝑁 with variance 𝑎𝑁 (𝑁 − 1)/2 (we call the Morris

Counter with this parameterization “Morris(𝑎)”). Setting 𝑎 = 2𝜀2𝛿 ,

one obtains the guarantee Eq. (1) via Chebyshev’s inequality. Note

that the space consumption 𝑆 := ⌈log
2
𝑋 ⌉ is a random variable, but

is at most𝑂 (log log𝑁 + log(1/𝜀) + log(1/𝛿)) with high probability.

This is because for 𝐶 > 2, once 𝑋 > 𝑍 := (log𝑁 /(2𝜀2𝛿))𝐶 , by
a union bound the probability that any of the remaining at most

𝑁 increments causes 𝑋 to increment even once more is at most

𝑁 (1 + 2𝜀2𝛿)−𝑍 < 𝑒−(log𝑁 /(2𝜀
2𝛿))𝐶−1 < 𝑁−𝜔 (1) (using that (1 −

𝑟 )1/𝑟 < 1/𝑒 for 𝑟 > 0). Thus, with high probability the Morris

Counter uses at most𝑂 (log𝑍 ) = 𝑂 (log log𝑁 + log(1/𝜀)+ log(1/𝛿))
bits of memory.

We now describe our new algorithm. First, we consider a promise

decision problem: given some 𝑇 > 1 and 𝜀 ∈ (0, 1), decide whether
𝑁 < (1−𝜀/10)𝑇 or 𝑁 > (1+𝜀/10)𝑇 when promised that one of the

two holds. We can solve this decision problem as follows. We store a

counter𝑌 inmemory, initialized to 0. Set𝛼 = min{1,𝐶 log(1/𝜂)/(𝜀2𝑇 )}
for𝐶 a large constant and 𝜂 ∈ (0, 1) a parameter to be set. For each

increment to 𝑁 , if 𝑌 ≤ 𝛼𝑇 then increment 𝑌 with probability 𝛼 ;

else do nothing. At query time, we declare 𝑁 > (1 + 𝜀/10)𝑇 iff

𝑌 > 𝛼𝑇 . A Chernoff bound shows that this procedure is correct

with probability at least 1 − 𝜂. Furthermore the memory consumed

is guaranteed to be 𝑂 (log(𝛼𝑇 )) = 𝑂 (log(1/𝜀) + log log(1/𝜂)).
Now to solve the full approximate counting problem, and not just

the decision problem, we solve multiple instantiations of the above

promise problem in sequence, where in iteration 𝑗 we use the thresh-

old𝑇𝑗 = (1+𝜀) 𝑗 and increment probability𝛼 𝑗 = min{1,𝐶 log(1/𝜂 𝑗 )/(𝜀3𝑇𝑗 )}
for 𝜂 𝑗 < 𝐶𝛿/ 𝑗2 (chosen so that by a union bound, the probability

that we ever fail to solve the promise problem in any iteration 𝑗 is

at most

∑
𝑗 𝜂 𝑗 ≤ 𝛿). When 𝑌 reaches the value 𝛼 𝑗𝑇𝑗 , we increase 𝑗

and correspondingly set 𝑌 ← ⌊𝑌 · 𝛼 𝑗+1/𝛼 𝑗 ⌋ (which is “correct in

expectation”, since the number of increments we would have done

in expectation with parameter 𝛼 𝑗+1 is an 𝛼 𝑗/𝛼 𝑗+1 ≈ 1+𝜀 factor less).
To answer a query for 𝑁 , we simply return𝑇𝑗 . The adjustment from

𝜀2 to 𝜀3 in 𝛼 𝑗 is for technical reasons (see the proof of Theorem 2.1).

We next provide an improved analysis of Morris’ original algo-

rithm. To do so, we define the random variable 𝑍𝑖 to be the number

of increments that Morris(𝑎), run for an infinite number of incre-

ments, would have its counter 𝑋 equal to 𝑖 before incrementing

to 𝑋 = 𝑖 + 1. Then 𝑍𝑖 is a geometric random variable with param-

eter 1/(1 + 𝑎)𝑖 , and we are able to show the desired behavior of

Morris(𝑎) by proving concentration bounds on prefix sums of the

𝑍𝑖 via analyzing its moment-generating function.

Our new lower bound comes from showing that a randomized

approximate counter using space 𝑆 can be made deterministic with

no increased space cost at the cost of increasing its failure prob-

ability by factors that grow with 𝑆 . If 𝑆 is smaller than a certain

threshold (the lower bound we are trying to prove), this argument

leads to a correct space-𝑜 (log𝑛) deterministic algorithm for the

problem, which is impossible, and thus the space-𝑆 algorithm for 𝑆

so small could not have existed.

1.3 Notation
We use𝐶,𝐶 ′,𝐶 ′′ to denote universal positive constants, which may

change from line to line. We also use 𝐴 ± 𝐵 to denote a value in the

interval [𝐴−𝐵,𝐴+𝐵], with𝐷 = 𝐴±𝐵 signifying𝐷 ∈ [𝐴−𝐵,𝐴+𝐵].

Asmentioned, we also use “Morris(𝑎)” to refer to theMorris Counter

parameterized to increment 𝑋 with probability 1/(1 + 𝑎)𝑋 .

2 IMPROVED UPPER BOUND FOR
APPROXIMATE COUNTING

In Subsection 2.1 we describe and analyze our new algorithm for ap-

proximate counting with space complexity𝑂 (log log𝑁 + log(1/𝜀) +
log log(1/𝛿)). We then show that this upper bound is achieved by

the original Morris Counter itself in Subsection 2.2.

2.1 New algorithm description and analysis

Algorithm 1 Approximate counting algorithm.

1: procedure ApproxCount(𝜀, 𝛿)
2: Init():
3: 𝜂 ← 𝛿, 𝑋0 ← ⌈ln1+𝜀 (𝐶 ln(1/𝜂)/𝜀3)⌉
4: 𝑌 ← 0, 𝑋 ← 𝑋0, 𝛼 ← 1,𝑇 ← ⌈(1 + 𝜀)𝑋 ⌉

5: Increment():
6: with probability 𝛼 , update 𝑌 ← 𝑌 + 1
7: if 𝑌 > 𝛼𝑇 then
8: 𝑋 ← 𝑋 + 1
9: 𝑇 ← ⌈(1 + 𝜀)𝑋 ⌉, 𝜂 ← 𝛿

𝑋 2

10: 𝛼new ← 𝐶 ln(1/𝜂)
𝜀3𝑇

11: 𝑌 ← ⌊𝑌 · 𝛼new/𝛼⌋
12: 𝛼 ← 𝛼new
13: end if

14: Query():
15: if 𝑋 = 𝑋0 then
16: return 𝑌

17: else
18: return 𝑇

19: end if
20: end procedure

We describe our full approximate counting algorithm in Algo-

rithm 1. The counter is initialized via the Init() procedure, and each
increment to 𝑁 and query for an estimate of 𝑁 are described in the

pseudocode, following the ideas set forth in Subsection 1.2. Theo-

rem 2.1 shows that the relative error of the output of Algorithm 1

is 1 +𝑂 (𝜀) with probability 1 −𝑂 (𝛿). Eq. (1) follows by adjusting

𝜀, 𝛿 by a constant factor. Our variable 𝑋 is quite similar to that of

the Morris Counter: it represents (an approximation to) log
1+𝜀 𝑁 .

The main difference is that whereas the Morris Counter decides to

increment 𝑋 based on flipping a number of coins depending on 𝑋

itself, we use an auxiliary counter 𝑌 to guide when 𝑋 should be

incremented.

First we define some notation that will be useful for the proof.

We divide the algorithm’s execution into epochs 𝑘 = 0, 1, 2, . . . ,

corresponding to the value of 𝑋 −𝑋0. We mark the end of an epoch

immediately before line 8 is about to execute, and the beginning of

the new epoch immediately after line 13 has completed executing.

During a given epoch, we let𝑇𝑘 , 𝛼𝑘 , 𝜂𝑘 be the corresponding values

of𝑇, 𝛼, 𝜂 set in lines 7–12 of Algorithm 1. For example,𝑇0 = 1, 𝛼0 =
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1, 𝜂0 = 𝛿 . We also define𝑌𝑘 to be the value of𝑌 when epoch𝑘 begins,

so that 𝑌0 = 0 and 𝑌𝑘 for 𝑘 > 0 is set in line 11 of Algorithm 1.

To be precise, a particular epoch is said to begin after Algorithm 1

completes lines 4 or 12, and it ends at line 6 when the if statement

triggers. We say that 𝑁 becomes a certain value once Increment()
has been called that number of times, and the most recent call

completed.

Theorem 2.1. There is a universal constant𝐶 ′ > 0 such that ∀𝜀, 𝛿 ∈
(0, 1/2), the output 𝑁̂ ofQuery() in Algorithm 1 satisfies P( |𝑁̂−𝑁 | >
𝐶 ′𝜀𝑁 ) < 𝐶 ′𝛿 .

Proof. We first note that while remaining in epoch 0, i.e. as long

as 1 ≤ 𝑁 ≤ 𝑇0, 𝑌 stores 𝑁 exactly and thus our output is exactly

correct. Our focus is thus on the case of larger 𝑁 .

For 𝑘 ≥ 0, define the event E𝑘 that once we enter epoch 𝑘 ,

the number of increments to 𝑁 before we advance to the next

epoch is𝑇𝑘 −𝑇𝑘−1 ± 𝜀2𝑇𝑘−1 (where we use the convention𝑇−1 = 0).

We henceforth condition on the event ∧𝑘≥0E𝑘 . Since the 𝑇𝑟 are

in geometric series with base 1 + 𝜀 (up to ±1 due to rounding),

we have

∑𝑘
𝑟=0 (𝑇𝑟 − 𝑇𝑟−1 ± 𝜀2𝑇𝑟−1) ⊆ (1 ± 1.5𝜀)𝑇𝑘 , i.e., only after

(1 ± 1.5𝜀)𝑇𝑘 increments to 𝑁 , could the algorithm possibly be in

epoch 𝑘 . Thus, if 𝑘∗ is the final epoch when Query() is called, we
have 𝑁̂ = 𝑇𝑘∗ and 𝑁 = (1 ± 1.5𝜀)𝑇𝑘∗ . That is, 𝑁̂ = 1

1±1.5𝜀𝑁 , which

implies |𝑁̂ − 𝑁 | ≤ 𝐶𝜀𝑁 when 𝜀 < 1/2.
We finally bound

P

( ∞∧
𝑘=0

E𝑘

)
= 1 − P

( ∞∨
𝑘=0

¬E𝑘

)
≥ 1 −

∞∑
𝑘=0

P(¬E𝑘 ) .

P(¬E0) = 0, so we focus on 𝑘 ≥ 1. Note 𝑌𝑘 = ⌊(⌊𝛼𝑘−1𝑇𝑘−1⌋ + 1) ·
(𝛼𝑘/𝛼𝑘−1)⌋, which is 𝛼𝑘𝑇𝑘−1 ±𝑂 (1). The new threshold for 𝑌 to

enter epoch 𝑘 +1 is ⌊𝛼𝑘𝑇𝑘 ⌋ +1, which thus requires 𝛼𝑘 (𝑇𝑘 −𝑇𝑘−1) ±
𝑂 (1) more increments to 𝑌 , which is

𝜀𝛼𝑘𝑇𝑘−1 ±𝑂 (1), (4)

since 𝑇𝑘 − 𝑇𝑘−1 = 𝜀𝑇𝑘−1 ± 𝑂 (1) and 𝛼 ≤ 1. To upper bound the

probability that we already advance to the next epoch after calling

Increment() 𝑡1 := 𝑇𝑘 − 𝑇𝑘−1 − 𝜀2𝑇𝑘−1 times, it suffices to con-

sider the following question: If we increment 𝑌 with probability

𝛼𝑘 independently for each of the 𝑡1 Increment() calls, what is the
probability that we increment 𝑌 at least 𝜀𝛼𝑘𝑇𝑘−1 −𝑂 (1) times.

2

The expected number of times 𝑌 is incremented is

𝛼𝑘𝑡1 = 𝜀𝛼𝑘𝑇𝑘−1 − 𝜀2𝛼𝑘𝑇𝑘−1 ±𝑂 (1),

which is Θ(ln(1/𝜂𝑘 )/𝜀2). Advancing to the next epoch thus implies

deviating from the expectation by more than 𝜀2𝛼𝑘𝑇𝑘−1 ± 𝑂 (1),
i.e., 𝜀 times the expectation. The Chernoff bound implies that the

probability of this occurring is at most 𝜂𝑘 . A similar calculation

shows that the probability that we have not advanced to the next

epoch after calling Increment() 𝑡2 := 𝑇𝑘−𝑇𝑘−1+𝜀2𝑇𝑘−1 times. Thus

P(¬E𝑘 ) ≤ 2𝜂𝑘 . Thus P(∨𝑘≥0¬E𝑘 ) ≤ 2

∑
𝑘 𝜂𝑘 = 2

∑
𝑘 𝛿/(𝑘 + 1)2 =

𝑂 (𝛿). □

2
Note that in the actual execution of the algorithm, not all 𝑡1 calls increment 𝑌 with

probability 𝛼𝑘 , e.g., if we have advanced to the next epoch already, then the probability

becomes 𝛼𝑘+1 . Nevertheless, the probability that we advance to the next epoch after

𝑡1 Increment() calls is the same if we increment 𝑌 with 𝛼𝑘 probability for each call,

since it does not matter if we have already advanced to the next epoch.

Remark 2.2. Before we give the space analysis, the astute reader

may notice that𝑇 itself is ideally approximately 𝑁 and thus should

require Θ(log𝑁 ) bits to store. A similar statement could be made

about the Morris Counter: the output is ultimately given as 𝑎−1 ((1+
𝑎)𝑋 − 1) (see Subsection 1.2), which is also Θ(log𝑁 ) bits. The key
is that in implementation, we never actually store 𝑇 : we only store

𝑋 . Then our answer to a query is only to return 𝑋 , which will be

an additive 𝑂 (1) approximation to log
1+𝜀 𝑁 with high probability,

which is enough for the querying party to specify an approximation

to 𝑁 . Similarly, 𝛿 is never stored or even given to the algorithm,

but rather the input should be Δ such that 𝛿 = 2
−Δ

, and only Δ is

ever stored. Also, the correctness analysis only requires that 𝛼 be at
least the value in line 10 and not exactly that (to apply the Chernoff

bound effectively). Thus 𝛼 can be rounded up to the nearest inverse

power of 2 so that 𝛼 = 2
−𝑡

and only 𝑡 need be stored consuming

only log 𝑡 = log log(1/𝛼) bits. We can then generate a Bernoulli(𝛼)
random variable (line 6) by flipping a fair coin 𝑡 times and returning

1 iff all flips were heads; this takes 1 bit to keep track of the AND
and log 𝑡 bits to keep track of the number of flips made so far. 𝜂

also need not be stored explicitly since its value is implicit from

other stored values (namely 𝑋 , 𝜀, and Δ).
Of course the situation is even simpler in models of computation

other than word RAM, such as a finite automaton or branching

program: then program constants need not be stored in memory

(they only affect the transitions), and only the variables 𝑋,𝑌 con-

tain program state that needs to be stored. Furthermore, what is

most important from the perspective of the practical motivation

in Section 1 when running a system storing many approximate

counters is the number of bits required to maintain program state;

it is reasonable to assume in practical applications that 𝑂 (log𝑁 )
bit registers are available to be used temporarily while process-

ing updates and queries, which could lead to faster and simpler

implementation.

Theorem 2.3. For any 𝜀, 𝛿 ∈ (0, 1/2), the probability that Algo-
rithm 1 needs more than

log log𝑁 + log log(1/𝛿) + 3 log(1/𝜀) + Ω(𝑡)

bits of memory after 𝑁 increments is at most (𝜀/𝑁 )2𝑡 , for any 𝑡 ≥ 𝐶 ·
(log log log𝑁 + log log(1/𝜀)), where𝐶 is a sufficiently large constant.

To see that this theorem implies the space bound stated in The-

orem 1.1, for any 𝑆 > 𝐶 (log log𝑁 + log(1/𝜀) + log log(1/𝛿)) for
a sufficiently large 𝐶 , we have 𝑡 > (𝐶 − 3) (log log𝑁 + log(1/𝜀) +
log log(1/𝛿)) > 𝑆/2. Hence, the probability that we use more than

𝑆 bits of memory after 𝑁 increments is at most

(𝜀/𝑁 )2
𝑡

≤ 2
−2𝑡 ≤ exp(−𝐶 ′ exp(𝐶 ′′𝑆)),

for some constants 𝐶 ′,𝐶 ′′ > 0.

Proof. As described in Remark 2.2, Algorithm 1 only explicitly

stores two variables 𝑋 and 𝑌 . When 𝑋 = 𝑋0, 𝑌 is between 0 and

𝑇 = 𝑂 (log(1/𝛿)/𝜀3). In this case, storing 𝑌 takes

log log(1/𝛿) + 3 log(1/𝜀) +𝑂 (1)
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bits. When 𝑋 = 𝑋0 + 𝑘 for 𝑘 ≥ 1 (i.e., in epoch 𝑘), 𝑌 is between

𝛼𝑘𝑇𝑘−1 −𝑂 (1) and 𝛼𝑘𝑇𝑘 +𝑂 (1). In this case, storing 𝑌 takes

log(𝛼𝑘 (𝑇𝑘 −𝑇𝑘−1) +𝑂 (1))
≤ log log(1/𝜂) + 2 log(1/𝜀) +𝑂 (1)
≤ log log(1/𝛿) + 2 log(1/𝜀) + 2 log log𝑋 +𝑂 (1)

bits. Thus, provided that 𝑋 ≤ 𝑋max, Algorithm 1 uses at most

max{log𝑋max, log(1/𝜀)} + log log(1/𝛿)
+ 2 log(1/𝜀) + 2 log log𝑋max +𝑂 (1)

(5)

bits. In the following, we show that the final 𝑋 is small with high

probability.

We will show that once we reach an epoch 𝑘 for 𝑘 large (cor-

responding to 𝑋 = 𝑋0 + 𝑘), with high probability we will never

advance to epoch 𝑘 + 1. Indeed, the probability that we do advance

is the probability that 𝑌 increments at least 𝜀𝛼𝑘𝑇𝑘−1 ±𝑂 (1) times

over the at most 𝑁 remaining calls to Increment() (see Eq. (4)). By
a union bound over all (𝜀𝛼𝑘𝑇𝑘−1 +𝑂 (1))-subsets of the remaining

increments, the probability that this occurs is at most(
𝑁

𝜀𝛼𝑘𝑇𝑘−1 ±𝑂 (1)

)
· 𝛼𝜀𝛼𝑘𝑇𝑘−1±𝑂 (1)

𝑘
≤

(
2𝑒𝑁

𝜀𝑇𝑘−1

)𝜀𝛼𝑘𝑇𝑘−1±𝑂 (1)
≤

(
𝐶 ′𝑁

𝜀 (1 + 𝜀)𝑋

)Θ(log(𝑋 2/𝛿)/𝜀2)
.

For 𝑋 ≥ 2 log
1+𝜀 (𝑁 /𝜀), it is at most(

𝐶 ′𝑁

𝜀 (1 + 𝜀)𝑋

)Θ(log(𝑋 2/𝛿)/𝜀2)
≤

(
1

(1 + 𝜀)𝑋

)Ω (1/𝜀2)
≤ (𝑒−Θ(𝜀𝑋 ) )Ω (1/𝜀

2)

≤ 𝑒−Ω (𝑋 ) .

By setting 𝑋max = Θ(2𝑡 log
1+𝜀 (𝑁 /𝜀)) for some integer 𝑡 ≥ 𝐶 ·

(log log log𝑁 + log log(1/𝜀)), i.e., 𝑡 ≥ log log𝑋max + log log(1/𝜀),
log𝑋max ≤ log log𝑁 + log(1/𝜀) + log log(1/𝜀) + 𝑡 +𝑂 (1)

= log log𝑁 + log(1/𝜀) + Θ(𝑡) .
By Equation (5), the probability that Algorithm 1 needs more than

log log𝑁 + log log(1/𝛿) + 3 log(1/𝜀) + Ω(𝑡)
bits of space is at most ( 𝜀

𝑁

)
2
𝑡

.

□

Remark 2.4. In the proof, we assumed that the algorithm allocates

exactly log𝑋max bits to store 𝑋 , and then we bounded the proba-

bility that 𝑋 exceeds 𝑋max after 𝑁 increments. This assumption

requires us to have an upper bound on 𝑁 in advance. In general,

when an upper bound on 𝑁 is unknown, we will have to store

variable 𝑋 that is also unbounded, and dynamically allocate bits

to the counter. This can be done by first encoding ⌈log𝑋 ⌉ using
𝑂 (log log𝑋 ) bits, then encoding 𝑋 using ⌈log𝑋 ⌉ bits. Our proof
gives the same space bound in this case.

Remark 2.5. The source of the constant factor “3” multiplying

log(1/𝜀) in the space complexity is due to the cubic dependence

of 𝛼new on 1/𝜀 in Algorithm 1. This cubic dependence was due to

the proof structure of Theorem 2.1: we conditioned on the events

E𝑘 that we spent a concentrated amount of time in each epoch.

To show that this happens with high probability, we performed a

union bound over all epochs. We feel this structure makes the proof

more intuitive, though it comes at the cost of a worsened constant

factor. One can show that the algorithm is still in fact correct with

𝛼new depending only quadratically on 1/𝜀 by proving concentration
only on the total time spent on all the epochs combined, as opposed

to union bounding over epochs separately, by using an argument

similar to what we will see shortly in Subsection 2.2. One can also

see empirically via implementation that the algorithm of this section

andMorris+ behave nearly identically, including the constant factor

(see Section 4).

Remark 2.6. Our approximate counter is fully mergeable [2]. That

is, given two counters (𝑋1, 𝑌1) and (𝑋2, 𝑌2), which approximate two

(unknown) numbers 𝑁1 and 𝑁2 respectively, they can be merged

into a single data structure (𝑋,𝑌 ) that follows the same distribution

as if it was incremented exactly 𝑁1 + 𝑁2 times so that nothing is

lost in the parameters 𝜀 and 𝛿 (the Morris Counter enjoys this same

benefit [7, Section 2.1]). To see this, observe that each epoch of our

algorithm uses sampling, and the sampling rate is non-increasing.

Assuming 𝑋1 ≤ 𝑋2, we can simulate 𝑁1 extra increments to the

second counter by another subsampling with the correct probabili-

ties. More specifically, the first counter is in epoch 𝑘1 = 𝑋1 − 𝑋0,

and we know the sampling probabilities 𝛼0, . . . , 𝛼𝑘1 , and the exact

number of increments that survived the sampling (caused 𝑌1 to

increment) in each epoch. We are going to insert all the survivors

to the second counter, which currently have sampling probability

𝛼𝑘2 for 𝑘2 = 𝑋2 − 𝑋0. For each survivor in epoch 𝑖 (for 0 ≤ 𝑖 ≤ 𝑘1),

we increment𝑌2 with probability 𝛼𝑘2/𝛼𝑖 . Then effectively, we incre-

ment 𝑌2 with probability 𝛼𝑘2 for each of the original 𝑁1 increments.

Whenever 𝑌2 reaches the threshold 𝛼𝑇 , we increment 𝑋2, update

𝑌2, and adjust the probabilities. Hence, the final (𝑋2, 𝑌2) has the
same distribution as if it was incremented a total of 𝑁1 + 𝑁2 times.

2.2 Morris Counter improved analysis
Here we analyze the Morris(𝑎) algorithm for some 𝑎 ∈ (0, 1), in
which 𝑋 is incremented with probability (1 + 𝑎)−𝑋 and we output

𝑁̂ = ((1 + 𝑎)𝑋 − 1)/𝑎. When the total number of increments 𝑁 is

at most 8/𝑎, the value of the counter can be explicitly maintained

in addition to the Morris Counter, which costs at most log(1/𝑎) +
𝑂 (1) bits of space. In the following, we assume 𝑁 is at least 8/𝑎;
this is not a serious limitation since we can maintain a separate

counter exactly, deterministically up until this value (the “Morris+”

modification described in Section 1).

Let us consider Morris(𝑎) on an infinite sequence of increments.

For any 𝑖 ≥ 0, 𝑋 exceeds 𝑖 with probability 1. Let 𝑍𝑖 ≥ 1 be the

random variable denoting the number of increments it takes for

𝑋 to increase from 𝑖 to 𝑖 + 1. Since when 𝑋 = 𝑖 , each increment

causes 𝑋 to increase with probability 𝑝𝑖 = (1 + 𝑎)−𝑖 , 𝑍𝑖 follows the
geometric distribution

P[𝑍𝑖 = 𝑙] = (1 − 𝑝𝑖 )𝑙−1𝑝𝑖 .

Therefore, we have

E[𝑍𝑖 ] = 1/𝑝𝑖 = (1 + 𝑎)𝑖 ,
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and

E[𝑒𝑡𝑍𝑖 ] =
∑
𝑙≥1

𝑒𝑡𝑙 (1 − 𝑝𝑖 )𝑙−1𝑝𝑖 =
𝑒𝑡𝑝𝑖

1 − 𝑒𝑡 (1 − 𝑝𝑖 )
,

for any 𝑡 such that 𝑒𝑡 (1 − 𝑝𝑖 ) < 1.

Next, let 𝜀 < 1/2, we bound

P

[
𝑘∑
𝑖=0

𝑍𝑖 ≥ (1 + 𝜀)
𝑘∑
𝑖=0

1/𝑝𝑖

]
. (6)

Following the proof of Chernoff bound, for 𝑡 such that 𝑒𝑡 (1−𝑝𝑘 ) < 1,

we have

E
[
𝑒𝑡

∑𝑘
𝑖=0 𝑍𝑖

]
=

𝑘∏
𝑖=0

E
[
𝑒𝑡𝑍𝑖

]
=

𝑒 (𝑘+1)𝑡
∏𝑘

𝑖=0 𝑝𝑖∏𝑘
𝑖=0 (1 − 𝑒𝑡 (1 − 𝑝𝑖 ))

=
𝑒 (𝑘+1)𝑡 (1 + 𝑎)−𝑘 (𝑘+1)/2∏𝑘

𝑖=0 (1 − 𝑒𝑡 (1 − 𝑝𝑖 ))
.

By Markov’s inequality,

(6) ≤
E

[
𝑒𝑡

∑𝑘
𝑖=0 𝑍𝑖

]
𝑒𝑡 (1+𝜀)

∑𝑘
𝑖=0 1/𝑝𝑖

=

E
[
𝑒𝑡

∑𝑘
𝑖=0 𝑍𝑖

]
𝑒𝑡 (1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎

=
𝑒 (𝑘+1)𝑡 (1 + 𝑎)−𝑘 (𝑘+1)/2

𝑒𝑡 (1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎
∏𝑘

𝑖=0 (1 − 𝑒𝑡 (1 − (1 + 𝑎)−𝑖 ))
.

Now set 𝑡 = ln

(
1

1− 1

2
𝜀 (1+𝑎)−𝑘

)
, which satisfies 𝑒𝑡 (1 − 𝑝𝑘 ) < 1, we

have

(6) ≤ (1 + 𝑎)−𝑘 (𝑘+1)/2 ·
(
1 − 1

2

𝜀 (1 + 𝑎)−𝑘
)−(𝑘+1)+(1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎

×
𝑘∏
𝑖=0

1

1 − 1−(1+𝑎)−𝑖
1− 1

2
𝜀 (1+𝑎)−𝑘

= (1 + 𝑎)−𝑘 (𝑘+1)/2 ·
(
1 − 1

2

𝜀 (1 + 𝑎)−𝑘
)−(𝑘+1)+(1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎

×
𝑘∏
𝑖=0

1 − 1

2
𝜀 (1 + 𝑎)−𝑘

(1 + 𝑎)−𝑖 − 1

2
𝜀 (1 + 𝑎)−𝑘

= (1 + 𝑎)−𝑘 (𝑘+1)/2 ·
(
1 − 1

2

𝜀 (1 + 𝑎)−𝑘
) (1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎

×
𝑘∏
𝑖=0

1

(1 + 𝑎)−𝑖 (1 − 1

2
𝜀 (1 + 𝑎)−𝑘+𝑖 )

≤ 𝑒−
1

2
𝜀 (1+𝑎)−𝑘 (1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎 ·

𝑘∏
𝑖=0

1

1 − 1

2
𝜀 (1 + 𝑎)−𝑘+𝑖

.

By the fact that 1/(1 − 𝑧) ≤ 𝑒𝑧+𝑧
2

for all 0 < 𝑧 < 1/2,

(6) ≤ 𝑒−
1

2
𝜀 (1+𝑎)−𝑘 (1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎 · 𝑒

∑𝑘
𝑖=0 ( 12 𝜀 (1+𝑎)

−𝑘+𝑖+ 1

4
𝜀2 (1+𝑎)−2𝑘+2𝑖 )

= 𝑒
− 1

2
𝜀 (1+𝑎)−𝑘

(
(1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎−∑𝑘

𝑖=0 ( (1+𝑎)𝑖+ 1

2
𝜀 (1+𝑎)−𝑘+2𝑖 )

)
≤ 𝑒−

1

2
𝜀 (1+𝑎)−𝑘

(
(1+𝜀) ( (1+𝑎)𝑘+1−1)/𝑎−(1+ 1

2
𝜀) ( (1+𝑎)𝑘+1−1)/𝑎)

)
= 𝑒−

1

4
𝜀2 (1+𝑎)−𝑘 ( (1+𝑎)𝑘+1−1)/𝑎 .

For 𝑘 > 1

𝑎 , we have (6) ≤ 𝑒−𝜀
2/8𝑎

.

Similarly, we next bound

P

[
𝑘∑
𝑖=0

𝑍𝑖 ≤ (1 − 𝜀)
𝑘∑
𝑖=0

1/𝑝𝑖

]
. (7)

By Markov’s inequality,

(7) = P
[
𝑒−𝑡

∑𝑘
𝑖=0 𝑍𝑖 ≥ 𝑒−𝑡 (1−𝜀)

∑𝑘
𝑖=0 1/𝑝𝑖

]
≤
E

[
𝑒−𝑡

∑𝑘
𝑖=0 𝑍𝑖

]
𝑒−𝑡 (1−𝜀)

∑𝑘
𝑖=0 1/𝑝𝑖

=
𝑒−𝑡 (𝑘+1) (1 + 𝑎)−𝑘 (𝑘+1)/2

𝑒−𝑡 (1−𝜀) ( (1+𝑎)𝑘+1−1)/𝑎
∏𝑘

𝑖=0 (1 − 𝑒−𝑡 (1 − 𝑝𝑖 ))
.

Now set 𝑡 = ln(1 + 1

2
𝜀 (1 + 𝑎)−𝑘 ), we have

(7) ≤ (1 + 𝑎)−𝑘 (𝑘+1)/2 ·
(
1 + 1

2

𝜀 (1 + 𝑎)−𝑘
)−(𝑘+1)+(1−𝜀) ( (1+𝑎)𝑘+1−1)/𝑎

× 1∏𝑘
𝑖=0

(
1 − 1−(1+𝑎)−𝑖

1+ 1

2
𝜀 (1+𝑎)−𝑘

)
= (1 + 𝑎)−𝑘 (𝑘+1)/2 ·

(
1 + 1

2

𝜀 (1 + 𝑎)−𝑘
)−(𝑘+1)+(1−𝜀) ( (1+𝑎)𝑘+1−1)/𝑎

× 1∏𝑘
𝑖=0

(
(1+𝑎)−𝑖+ 1

2
𝜀 (1+𝑎)−𝑘

1+ 1

2
𝜀 (1+𝑎)−𝑘

)
= (1 + 𝑎)−𝑘 (𝑘+1)/2 ·

(
1 + 1

2

𝜀 (1 + 𝑎)−𝑘
) (1−𝜀) ( (1+𝑎)𝑘+1−1)/𝑎

× 1∏𝑘
𝑖=0 (1 + 𝑎)−𝑖

(
1 + 1

2
𝜀 (1 + 𝑎)−𝑘+𝑖

)
=

(
1 + 1

2

𝜀 (1 + 𝑎)−𝑘
) (1−𝜀) ( (1+𝑎)𝑘+1−1)/𝑎

× 1∏𝑘
𝑖=0

(
1 + 1

2
𝜀 (1 + 𝑎)−𝑘+𝑖

) .
By the fact that 1/(1 + 𝑧) ≤ 𝑒−𝑧+𝑧

2

for 𝑧 ≥ 0, we have

(7) ≤ 𝑒
1

2
𝜀 (1+𝑎)−𝑘 (1−𝜀) ( (1+𝑎)𝑘+1−1)/𝑎 · 𝑒

∏𝑘
𝑖=0

(
− 1

2
𝜀 (1+𝑎)−𝑘+𝑖+ 1

4
𝜀2 (1+𝑎)−2𝑘+2𝑖

)
= 𝑒

1

2
𝜀 (1+𝑎)−𝑘

(
(1−𝜀) ( (1+𝑎)𝑘+1−1)/𝑎+∏𝑘

𝑖=0

(
−(1+𝑎)𝑖+ 1

2
𝜀 (1+𝑎)−𝑘+2𝑖

) )
≤ 𝑒−

1

4
𝜀2 (1+𝑎)−𝑘 ( (1+𝑎)𝑘+1−1)/𝑎 .

When 𝑘 > 1

𝑎 , this is at most 𝑒−𝜀
2/8𝑎

.
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Therefore, for any 𝑘 > 1/𝑎, with probability at least 1 − 𝑒−𝜀2/8𝑎 ,
we have����� 𝑘∑

𝑖=0

𝑍𝑖 − ((1 + 𝑎)𝑘+1 − 1)/𝑎
����� ≤ 𝜀 ((1 + 𝑎)𝑘+1 − 1)/𝑎.

Now fix any 𝑁 > 8/𝑎, let 𝑘1 be the largest 𝑘 such that (1 + 𝜀) ((1 +
𝑎)𝑘+1 − 1)/𝑎 < 𝑁 , 𝑘2 be the smallest 𝑘 such that (1 − 𝜀) ((1 +
𝑎)𝑘+1 − 1)/𝑎 ≥ 𝑁 . We have 𝑘1, 𝑘2 > 1/𝑎, then we apply the above

inequality to 𝑘1 and 𝑘2, and by union bound, with probability at

least 1 − 2𝑒−𝜀2/8𝑎 , we have both
𝑘1∑
𝑖=0

𝑍𝑖 ≤ (1 + 𝜀) ((1 + 𝑎)𝑘1+1 − 1)/𝑎 < 𝑁,

i.e., 𝑋 > 𝑘1 after 𝑁 increments, and

𝑘2∑
𝑖=0

𝑍𝑖 ≥ (1 − 𝜀) ((1 + 𝑎)𝑘2+1 − 1)/𝑎 ≥ 𝑁,

i.e., 𝑋 ≤ 𝑘2 after 𝑁 increments. Therefore, ((1 + 𝑎)𝑋 − 1)/𝑎 is a

(1 ± 2𝜀) approximation of 𝑁 with probability 1 − 2𝑒−𝜀2/8𝑎 .
By setting 𝑎 = 𝜀2/(8 ln(1/𝛿)), the space usage of Morris(𝑎) is

log log𝑁 + log(1/𝑎) +𝑂 (1) = log log𝑁 +2 log(1/𝜀) + log log(1/𝛿) +
𝑂 (1) bits with high probability, and outputs a (1±2𝜀) approximation

with probability 1−2/𝛿 . By reparametrizing, we prove Theorem 1.2.

Remark 2.7. While it may be possible to improve the constant

factor “8” in the exponent of the tail bound above, note that this

constant in turn only affects the setting of 𝑎 by a constant factor,

and the space complexity of Morris(𝑎) only depends logarithmically

on 1/𝑎. Thus, any improvement to the factor 8 can only improve

the analysis of the space complexity by an additive constant.

Remark 2.8. After seeing our proof, Eric Price pointed out that

it can be made even more succinct as follows: one can show that

geometric random variables are “subgamma”, so that a sum of

geometric random variables (as in Eqs. (6) and (7)) is subgamma

with appropriate parameters (see [6, Section 2.4] for the definition

and relevant properties of subgamma random variables).

3 SPACE LOWER BOUND
Here we prove the matching lower bound for approximate counters.

Our lower bound states that even if the algorithm’s memory usage is

a random variable which only has a small chance of being small (i.e.

we allow it to use arbitrarily large memory with large probability

1 −
√
𝛿), it still cannot satisfy Eq. (1).

Theorem 3.1. Fix 𝜀, 𝛿 ∈ (0, 1/2) and integer 𝑛. Let C be an approx-
imate counter which outputs 𝑁̂ satisfying

P( |𝑁 − 𝑁̂ | > 𝜀𝑁 ) < 𝛿,

for all 𝑁 ∈ {1, . . . , 𝑛}, and uses no more than 𝑆 bits of space with
probability at least

√
𝛿 . We must have

𝑆 ≥ min{log𝑛 −𝑂 (1),max{log log𝑛 + log(1/𝜀) −𝑂 (log log(1/𝜀)),
log log(1/𝛿) −𝑂 (log log log(1/𝛿))},

which is at least Ω(min{log𝑛, log log𝑛 + log(1/𝜀) + log log(1/𝛿)}).

The first observation is that conditioned on using no more than

𝑆 bits of space, we have

P( |𝑁−𝑁̂ | > 𝜀𝑁 | use at most 𝑆 bits) < 𝛿/P(use at most 𝑆 bits) ≤
√
𝛿.

Hence, we may assume that C always uses at most 𝑆 bits of space,

at the cost of increasing the failure probability to

√
𝛿 , which is

inconsequential since the dependence on 𝛿 in the space bound is

log log(1/𝛿). In the following, we assume that C never uses more

than 𝑆 bits.

Let𝑇 = ⌊min{𝑛/4, log(1/𝛿)
4 log log(1/𝛿) }⌋. Then for every𝑁 = 1, . . . ,𝑇 /2,

C outputs 𝑁̂ that is less than 𝑇 with probability 1 − 𝛿 , and for

every 𝑁 = 2𝑇, 2𝑇 + 1, . . . , 4𝑇 , C outputs 𝑁̂ that is at least 𝑇 with

probability 1 − 𝛿 . In particular, C distinguishes 𝑁 ∈ [1,𝑇 /2] and
𝑁 ∈ [2𝑇, 4𝑇 ] with probability 1− 𝛿 . In the following, we show that

any C that distinguishes the two cases with probability 1 − 𝛿 must

use log𝑇 − 𝑂 (1) bits of space. We assume for contradiction that

𝑆 ≤ log(𝑇 /4).
First, let us consider the following “derandomization” of C. C

uses no more than 𝑆 bits of space, hence, it has at most 2
𝑆
different

memory states. When Init() is called, the algorithm generates a

(possibly random) initial memory state. Each time Increment() is
called, the algorithm examines the current state and updates the

memory to a possibly different state (and possibly randomly). Let

the “deterministic” version of the algorithm C
det

have the same

query algorithm as C, but when Init() or Increment() is called, it
examines the current state and the distribution of the new state (or

the initial state) according to C; instead of updating the memory

according to this distribution, C
det

always updates it to the state

with the highest probability in this distribution (in case of tie, pick

the lexicographically smallest).

Now let us analyze the error probability of C
det

. The initialization

and increment algorithms are called exactly 𝑁 + 1 times in total.

Since C
det

picks the state with the highest probability each time,

which has probability at least 2
−𝑆

, the probability that the execution

of C follows the exact same path as C
det

is at least(
2
−𝑆

)𝑁+1
.

Therefore, conditioned on the execution of C following the same

path, its error probability is at most

𝛿 ·
(
2
𝑆
)𝑁+1

.

When 𝑁 ≤ 4𝑇 , it is at most

𝛿 · (𝑇 /4)4𝑇+1 ≤ 𝛿 · (log(1/𝛿)/(16 log log(1/𝛿)))log(1/𝛿)/log log(1/𝛿)+1

< 1/3.
That is, the error probability of C

det
is at most 1/3, for every 𝑁 ∈

[1,𝑇 /2] ∪ [2𝑇, 4𝑇 ].
On the other hand, since both initialization and increment al-

gorithms are deterministic, we may apply an argument similar

to the “pumping lemma” for DFAs. Since 2
𝑆 ≤ 𝑇 /4, there exists

1 ≤ 𝑁1 < 𝑁2 ≤ 𝑇 /2 such that C
det

reaches the same memory state

after 𝑁1 or 𝑁2 increments. Again by the fact that the increment

algorithm is deterministic, C
det

must reach the same memory state

after 𝑁1 +𝑘 (𝑁2−𝑁1) increments, for all integer 𝑘 ≥ 0. In particular,

there exists 𝑁3 ∈ [2𝑇, 4𝑇 ] such that C
det

reaches this memory state

after 𝑁3 increments. However, by the assumption of the algorithm,
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the query algorithm distinguishes between 𝑁1 increments and 𝑁3

increments with probability at least 2/3, which is impossible as the

algorithm reaches the same memory state in the two cases. This

proves that 𝑆 ≥ log𝑇 −𝑂 (1), i.e.,

𝑆 ≥ min{log𝑛 −𝑂 (1), log log(1/𝛿) −𝑂 (log log log(1/𝛿)))}. (8)

Finally, we show that 𝑆 ≥ min{log𝑛, log log𝑛+ log(1/𝜀)}−𝑂 (1)
as long as 𝛿 ∈ (0,

√
1/2). Let 𝑁 𝑗 =

⌈
(𝑒16𝜀 𝑗 − 1)/𝜀

⌉
, and consider

incrementing the counter 𝑁 𝑗 times for an unknown 𝑗 . Observe that

for 𝑗 ≥ 0, we have

(1 − 𝜀)𝑁 𝑗+1 − (1 + 𝜀)𝑁 𝑗

≥ (1 − 𝜀) (𝑒16𝜀 ( 𝑗+1) − 1)/𝜀 − (1 + 𝜀) (𝑒16𝜀 𝑗 − 1)/𝜀 − (1 + 𝜀)
= ((1 − 𝜀)𝑒16𝜀 − (1 + 𝜀))𝑒16𝜀 𝑗/𝜀 − (3 + 𝜀)
≥ ((1 − 𝜀) (1 + 16𝜀) − (1 + 𝜀))/𝜀 − (3 + 𝜀)
= 11 − 17𝜀
> 0.

Therefore, for every 𝑗 ≥ 0 and 𝑗 ≤ (1/16𝜀) ln(𝜀𝑛 + 1) (hence,
𝑁 𝑗 ≤ 𝑛), C recovers 𝑗 with probability 1 − 𝛿 > 1/5, if the counter
is incremented 𝑁 𝑗 times. By fixing the random bits used by C, at
least 1/5 fraction of such 𝑗 is successfully recovered. The algorithm

must reach a different final state for all such 𝑗 , implying that

2
𝑆 ≥ 1

5

· (1/16𝜀) ln(𝜀𝑛 + 1) = Ω((1/𝜀) log(𝜀𝑛 + 1)) .

When 𝜀 < 1/𝑛, it is Ω((1/𝜀) (𝜀𝑛)) = Ω(𝑛), and

𝑆 ≥ log𝑛 −𝑂 (1) .

When 1/𝑛 ≤ 𝜀 < 1/
√
𝑛, we have

𝑆 ≥ log(1/𝜀) −𝑂 (1) ≥ log(1/𝜀) + log log𝑛 −𝑂 (log log(1/𝜀)) .

When 𝜀 ≥ 1/
√
𝑛, we have

𝑆 ≥ log(1/𝜀) + log log(𝜀𝑛) −𝑂 (1) ≥ log(1/𝜀) + log log𝑛 −𝑂 (1) .

In all three cases, the bounds imply

𝑆 ≥ min{log𝑛 −𝑂 (1), log log𝑛 + log(1/𝜀) −𝑂 (log log(1/𝜀))}. (9)

Finally, by (8) and (9), we conclude that

𝑆 ≥ min{log𝑛 −𝑂 (1),max{log log𝑛 + log(1/𝜀) −𝑂 (log log(1/𝜀)),
log log(1/𝛿) −𝑂 (log log log(1/𝛿))}

= Ω(min{log𝑛, log log𝑛 + log(1/𝜀) + log log(1/𝛿)}) .

proving the claimed lower bound.

4 PHILOSOPHICAL DIGRESSION: THE VALUE
OF IMPLEMENTATION

Figure 1: Results of experimental comparison of the Morris
counter and a simplified version of the algorithm of Subsec-
tion 2.1.

We share in this section a historical note on the development of

this work, which may serve the reader as evidence of the value of

implementation. Chronologically, we first developed and analyzed

the algorithm of Subsection 2.1 and proved the lower bound in

Section 3. In the days afterward, excited by the prospect of having

a new and improved algorithm for such a fundamental problem, we

implemented the Morris Counter as well as (a simplified version

of) the algorithm of Subsection 2.1 (and this simplified algorithm

is itself similar to the algorithm of [8]) to compare. We ran sev-

eral experiments. In one, we did the following 5,000 times for each

algorithm, parameterized to use only 17 bits of memory: pick a

uniformly random integer 𝑁 ∈ [500000, 999999] (thus a 20-bit num-

ber) and perform 𝑁 increments. The results of this experiment are

in Fig. 1. The orange plot represents our algorithm, and the blue

plot is the Morris Counter. For each respective algorithm’s color, a

dot plotted at point (𝑥,𝑦) means that in 𝑥% of the trial runs (out of

5,000), the relative multiplicative error of the algorithm’s estimate

was𝑦% or less. In other words, we plotted the empirical CDFs of the

relative errors of each algorithm. For example, the plot indicates

that neither algorithm ever had relative error more than 2.37% in

5,000 runs. The experimental results are plainly apparent: the two

algorithms’ empirical performances are nearly identical! Witness-

ing this plot convinced us that the previously known analyses of

the Morris Counter, an algorithm that has been known for over 40

years and taught in numerous courses, were most likely subopti-

mal and that the Morris Counter itself is most likely an optimal

algorithm for the problem. With the confidence gained from the

experimental results, we sought a new and improved analysis of

the Morris Counter and succeeded. Thus it seems from this anec-

dote, implementation can sometimes be valuable even for purely

theoretical work.
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A TWEAKING THE MORRIS COUNTER IS
NECESSARY

In this section we show that the modification from the vanilla

Morris Counter to “Morris+” described in Section 1 is necessary.

Recall the modification: when using Morris(𝑎), we maintain a deter-

ministic counter 𝑋 ′ in parallel. During increments, we process the

increment both by Morris(𝑎) and by deterministically incrementing

𝑋 ′, unless its value is 𝑁𝑎 +1 in which case we do not alter it. During

queries, if 𝑋 ′ ≤ 𝑁𝑎 , we return 𝑋 ′; otherwise we return the estima-

tor from Morris(𝑎) based on 𝑋 . We set 𝑁𝑎 = 8/𝑎, as suggested by

the analysis in Subsection 2.2.

We now show that if one does notmodify the Morris Counter but

simply uses Morris(𝑎) for 𝑎 = 𝜀2/(8 ln(1/𝛿)) as suggested in Sub-

section 2.2, then when 𝛿 < 𝜀8/3𝑐2/16, 𝜀 < 1/4 and the counter value
equals 𝑁 = 𝑁 ′𝑎 := 𝑐𝜀4/3/𝑎 ≥ 2 for a constant 𝑐 ≤ 2

−8
, the probabil-

ity that the Morris Counter outputs an estimator 𝑁̂ < (1 − 𝜀)𝑁 is

much larger than 𝛿 . Note that our analysis requires switching from

a deterministic counter to the Morris Counter when 𝑁 ≥ Ω(1/𝑎)
and not Ω(𝜀4/3/𝑎), but the impact on memory complexity is at

most a factor of three (and less as 𝑁 grows): using a deterministic

counter up until 𝑁 = 𝑟 requires an additional ⌈log
2
𝑟⌉ bits. Thus

the difference between 𝑟 = 𝑐1/𝑎 versus 𝑟 = 𝑐2𝜀
4/3/𝑎 is the differ-

ence between log 𝑟 = log(𝑐1) + 3 + log log(1/𝛿) + 2 log(1/𝜀) versus
log 𝑟 = log(𝑐2) + log log(1/𝛿) + 2

3
log(1/𝜀); i.e. the dependence on

log(1/𝜀) differs by a factor of three. Thus our analysis here shows

that for small 𝛿 , our choice of transition point 𝑟 = 8/𝑎 from a deter-

ministic counter to using the Morris Counter is almost optimal, up

to affecting the memory by a multiplicative factor of at most three.

We now show why Morris(𝑎) will fail with probability much

larger than 𝛿 . Consider the event E that the Morris Counter in-

crements 𝑋 in the first 𝑡 increment operations, and its value re-

mains equal to 𝑡 in the last 𝑁 − 𝑡 increments, for 𝑡 = ⌊ln(1 + (1 −
2𝜀)𝜀4/3𝑐)/ln(1 + 𝑎)⌋. Recall the estimator is 𝑁̂ = 𝑎−1 ((1 + 𝑎)𝑋 − 1).
Thus conditioned on E,

𝑁̂ =
1

𝑎
·
(
(1 + 𝑎)𝑡 − 1

)
≤ 1

𝑎
·
(
1 + (1 − 2𝜀)𝜀4/3𝑐 − 1

)
= (1 − 2𝜀)𝑁
< (1 − 𝜀)𝑁

On the other hand, note that 𝑡 ≥ ln(1 + (1 − 2𝜀)𝜀4/3𝑐)/ln(1 +
𝑎) − 1 ≥ 1

𝑎 ln(1 + (1 − 2𝜀)𝜀4/3𝑐) − 1, and 𝑡 ≤ 𝑁 . The probability of

E is at least

P[E] =
𝑡−1∏
𝑖=0

(1 + 𝑎)−𝑖 ·
(
1 − (1 + 𝑎)−𝑡

)𝑁−𝑡
≥ (1 + 𝑎)−𝑡

2

·
(
1 − (1 + 𝑎)

(
1 + (1 − 2𝜀)𝜀4/3𝑐

)−1)𝑁− 1

𝑎
ln(1+(1−2𝜀)𝜀4/3𝑐)+1

= (1 + 𝑎)−𝑡
2

·
(
1 + (1 − 2𝜀)𝜀4/3𝑐 − (1 + 𝑎)

1 + (1 − 2𝜀)𝜀4/3𝑐

) 1

𝑎

(
𝑐𝜀4/3−ln(1+(1−2𝜀)𝜀4/3𝑐)

)
+1

≥ (1 + 𝑎)−𝑁
2

·
(
𝜀4/3𝑐
4

) 1

𝑎

(
𝑐𝜀4/3−ln(1+(1−2𝜀)𝜀4/3𝑐)

)
+1

,

which by the fact that ln(1 + 𝑥) ≤ 𝑥 and ln(1 + 𝑥) ≥ 𝑥 − 𝑥2/2 for
𝑥 < 1, is

≥ 𝜀4/3𝑐
4

· 𝑒−𝑎𝑁
2

·
(
𝜀4/3𝑐
4

) 1

𝑎

(
𝑐𝜀4/3−(1−2𝜀)𝜀4/3𝑐+( (1−2𝜀)𝜀4/3𝑐)2/2

)

=
𝜀4/3𝑐
4

· 𝑒−
1

𝑎
(𝜀4/3𝑐)2 · 𝑒−

ln(4/(𝜀4/3𝑐 ) )
𝑎

(
2𝜀7/3𝑐+𝜀8/3𝑐2/2

)
≥ 𝜀4/3𝑐

4

· 𝑒−
𝜀2

32𝑎 · 𝑒−
𝜀2

𝑎

(
4𝜀1/3𝑐 ln(4/(𝜀4/3𝑐)

)
≥ 𝜀4/3𝑐

4

· 𝑒−
𝜀2

16𝑎

=
𝜀4/3𝑐
4

·
√
𝛿.

When 𝛿 < 𝜀8/3𝑐2/16, this is larger than 𝛿 . Therefore, Morris(𝑎)
fails to provide a (1 − 𝜀)-approximation for 𝑁 with probability at

least 𝛿 .
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