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ABSTRACT

Storing a counter incremented N times would naively consume
O(log N) bits of memory. In 1978 Morris described the very first
streaming algorithm: the “Morris Counter” [15]. His algorithm’s
space bound is a random variable, and it has been shown to be
O(loglog N +log(1/¢) +1og(1/8)) bits in expectation to provide a
(1 + ¢)-approximation with probability 1 — & to the counter’s value.
We provide a new simple algorithm with a simple analysis showing
that randomized space O(loglog N + log(1/¢) + loglog(1/8)) bits
suffice for the same task, i.e. an exponentially improved dependence
on the inverse failure probability. We then provide a new analysis
showing that the original Morris Counter itself, after a minor but
necessary tweak, actually also enjoys this same improved upper
bound. Lastly, we prove a new lower bound for this task showing
optimality of our upper bound. We thus completely resolve the
asymptotic space complexity of approximate counting. Furthermore
all our constants are explicit, and our lower bound and tightest
upper bound differ by a multiplicative factor of at most 3 + 0(1).
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1 INTRODUCTION

Suppose one wishes to maintain an integer N, initialized to zero,
subject to a sequence of increment operations. Maintaining this
counter exactly can be accomplished using [log, N bits. In the
first example of a non-trivial streaming algorithm, Morris gave a
Monte Carlo randomized “approximate counter”, which lets one
report a constant factor approximation to N with large probability
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while using o(log N) bits of memory. His algorithm, the “Morris
Counter”, uses O(loglog N) bits [15]. The Morris Counter was
later analyzed in more detail [9, 10], where it was shown that
O(loglog N +1log(1/¢) +1og(1/6)) bits of memory is sufficient to
return a (1 + ¢) approximation with success probability 1 — §; the
space consumption is a random variable, and this quantity is its ex-
pectation (and in fact, the space bound holds with large probability).
Further historical details can be found in [14].

Our main contribution is a new, simple improved algorithm and
matching lower bound. In particular, we show that the correct
dependence on the inverse failure probability is only doubly and
not singly logarithmic. This implies for example that O(loglog N)
memory suffices to have failure probability 1/poly(N), whereas pre-
vious Morris Counter analyses only guaranteed failure probability
1/poly(log N) in such space.

Theorem 1.1. For any e, 8 € (0,1/2) there is a randomized algo-
rithm for approximate counting which outputs N satisfying

B(IN-N|>eN) <. (1)

The memory in bits is a random variable M such that for any S >

C(loglog N +log(1/e) +loglog(1/5)),!

P(M > S) < exp(—C’ exp(C”S)). )

Furthermore, our algorithm is asymptotically optimal up to a con-
stant factor: any randomized algorithm which is promised that the
final counter is in the set {1,...,n} and which satisfies Eq. (1) must
use Q(min{log n,log log n+log(1/¢)+loglog(1/8)}) bits of memory
with high probability.

Note the first term in the min of the lower bound of Theorem 1.1
is matched by a deterministic counter. We further note the space
usage of the Morris Counter is also a random variable which satisfies
a bound similar to Eq. (2). Next, we show that the Morris Counter
itself parametrized to use the same space bound also achieves (1) as
long as the counter N is sufficiently large, i.e. at least some value
Ns = Q(log(1/6)). This is a mild restriction, since one can simply
maintain a deterministic counter in parallel to the Morris Counter
up to the value Ng + 1. Then to answer queries, if the counter is at
most Ng, we return it; else if it equals Ns+1, we return the estimator
based on the Morris Counter. As we show in the appendix, this
minor tweak is necessary; without it, the Morris Counter would
not achieve success probability 1 — § in the desired space. We call
this slight tweak “Morris+”, which is similar to a method used in
[10]. Our next theorem provides an improved analysis of Morris+.
All logarithms in this paper are base 2, unless it is stated otherwise.

!In fact our analysis is more refined and produces explicit constant factors; see Theo-
rem 2.3 and Remark 2.5.
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Theorem 1.2. For any ¢,§ € (0,1/2) Morris+, instantiated with
appropriate parameters, uses loglog N + 2log(1/¢) + loglog(1/5) +
O(1) bits of memory with high probability and outputs N satisfying

p (|N -N| > sN) <. 3)

Though we provide two proofs of the same upper bound, we
believe both have value. One perhaps pedagogical advantage of
Theorem 1.1 is that the new algorithm we provide is designed with
the analysis in mind, leading to an overall proof of our novel optimal
upper bound that is both short and intuitive. That is, one reads the
argument and feels they clearly understand “why” the upper bound
is what it is. Meanwhile, the advantage of Theorem 1.2 is that it
provides a tight analysis of an algorithm commonly used in practice,
albeit at the pedagogical cost that the proof of the theorem boils
down to a technical calculation, and the reason the final bound
comes out the way it does is arguably less intuitive.

Given that most modern machines have much more than log N
bits of memory for even for N being on the order of the number of
particles in the universe, one might wonder whether approximate
counting is of real importance or merely a purely intellectual pur-
suit. An application to keep in mind is not that there is merely one
counter, but we may wish to maintain many such counters. In a real
such application the number of approximate counters could be very
large, and so cutting the number of bits per counter by even a con-
stant factor could be of value. Indeed this was Morris’ own original
motivation: he needed to keep track of not only one counter, but 263
counters, to keep trigram counts as part of the spellchecker typo
[14]. An example of a real such scenario in the modern day is the
implementation of the “Least Frequently Used” (LFU) cache evic-
tion policy in Redis, one of the most popular in-memory databases.
The Redis implementation of this eviction policy needs to keep
track of a counter for each key in the database, corresponding to
the number of times it has been queried recently. To save memory,
these counters are in fact implemented as approximate counters [?
].

This motivating perspective also reveals that typically the mem-
ory requirement to calculate the state transition of the approximate
counter after an increment, or to answer a query, is much less impor-
tant; rather, minimizing the memory required to maintain program
state is of higher practical relevance, as that affects total storage.
Furthermore, if we are maintaining M counters then it is natural to
want § < 1/M so that each counter is approximately correct with
high probability. If M is large, then requiring log(1/8) > log M bits
per counter may provide no benefit over a naive log N bit counter
for realistic values of N.

In addition to potential practical relevance, from a theoretical
perspective “maintaining a counter” is a natural problem and as
such the Morris Counter has found applications to other streaming
problems. For example, Jayaram and Woodruff showed that for
p € (0,1] an approximate counter can be used effectively as a
subroutine in an algorithm for approximating the pth moment of
an insertion-only stream up to 1+ ¢ in O(1/&% +log n) bits of space
[12], improving over a derandomization of an algorithm of Indyk
that uses O(e~2 log n) bits [11, 13]. Approximate counting also finds
use in approximating large frequency moments [4, 10], approximate
reservoir sampling [10], approximating the number of inversion
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when streaming over a permutation [3], and ¢ heavy hitters in
insertion-only streams [5].

1.1 Comparison with previous bounds from [9]

As we discuss in Subsection 1.2, the Morris Counter works by stor-
ing a counter X and incrementing it with probability 1/(1+a)X per
update for some parameter a > 0. The work [9] characterized the
behavior of the Morris algorithm exactly when a = 1. Unfortunately,
the Morris Counter for a = 1, which uses O(log log N) bits of mem-
ory with high probability (which is O(loglog N +loglog(1/6)) for
& = 1/poly(N)), does not enjoy constant factor approximation with
success probability any better than a constant even for large N, let
alone with probability 1 — 1/poly(N). This failure of the Morris
Counter to achieve very high success probability for a = 1 is im-
plied by the exact characterization of the algorithm given in [9]
itself; Proposition 3 of that work implies that the probability that X
fails to be in the interval [log, N — C,log, N + C] equals a constant
(depending on C), and X being in that interval is required for the
Morris Counter to provide a 2€-approximation. Thus, the failure
probability when a = 1 is not even 0(1). Our Theorem 1.2 reveals
though that the Morris Counter with a = ©(1/log N) does achieve
failure probability 1/poly(N), which is “for free” (up to a constant
factor) compared with a = 1 since this smaller setting of a still only
requires the Morris Counter to use O(loglog N) bits of memory
with high probability.

[9] does have some discussion on using smaller a. Specifically,
[9, Section 5] mentions that if one wants error better than the
1 to estimate N, one can either average independent
counters or change base, and that the former has “an effect similar
to” the latter. A variance bound is then given for estimating N
when using arbitrary a. This variance bound seems to reveal though
that the effects of averaging versus changing base are not similar
from a computational complexity perspective: the former requires
averaging Q(1/e%) copies of the counter, blowing up the space
complexity by 1/&2. The latter leads to a space bound depending
only on O(log(1/¢)). Both yield O(log(1/6)) space dependence on
the failure probability §. Equation (46) of [9] does give an explicit
sum-product formula for the exact probabilities Py, ¢ that the counter
exactly equals ¢ after n increments, but this formula is not readily
prescriptive for how a should be set in order to achieve relative
error 1 + ¢ with failure probability &.

case a =

1.2 Overview of approach

We first explain the idea behind the Morris Counter. The traditional,
deterministic and exact counter stores an integer X, initialized to
zero. After every increment to N, we increment X with probability
1.0%, ie. we always increment it. Thus we can “estimate” N as X,
and this estimator has zero variance and is unbiased, at the cost of
using log N memory. Morris instead increments X with probability
0.5%; this trades off variance for memory. Specifically, one can show
that E[2X-1] = N, though the variance only satisfies Var[2X-1] =
N(N-1)/2. Anatural idea of Morris is then to change the base of the
exponential when deciding the probability to increment X, which
turns out to provide a smooth tradeoff between memory and space
consumption. Specifically, for any a > 0 if incrementing X with
probability 1/(1+a)%, the expression a~ ((1+a)X —1) is an unbiased
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estimator of N with variance aN(N — 1)/2 (we call the Morris
Counter with this parameterization “Morris(a)”). Setting a = 2626,
one obtains the guarantee Eq. (1) via Chebyshev’s inequality. Note
that the space consumption S := [log, X7 is a random variable, but
is at most O(loglog N +log(1/¢) +1og(1/6)) with high probability.
This is because for C > 2, once X > Z := (log N/(2¢26))€, by
a union bound the probability that any of the remaining at most
N increments causes X to increment even once more is at most
N(1+2628)~%2 < e~ (logN/(2e28) ™! o N-w(1) (using that (1 —
r" < 1/e for r > 0). Thus, with high probability the Morris
Counter uses at most O(log Z) = O(loglog N+log(1/¢)+1og(1/6))
bits of memory.

We now describe our new algorithm. First, we consider a promise
decision problem: given some T > 1 and ¢ € (0, 1), decide whether
N < (1-¢/10)T or N > (1+¢/10)T when promised that one of the
two holds. We can solve this decision problem as follows. We store a

counter Y in memory, initialized to 0. Set @ = min{1, Clog(1/n)/(£>T)}

for C a large constant and € (0, 1) a parameter to be set. For each
increment to N, if Y < T then increment Y with probability «;
else do nothing. At query time, we declare N > (1 + ¢/10)T iff
Y > aT. A Chernoff bound shows that this procedure is correct
with probability at least 1 — 1. Furthermore the memory consumed
is guaranteed to be O(log(aT)) = O(log(1/¢) + loglog(1/n)).
Now to solve the full approximate counting problem, and not just
the decision problem, we solve multiple instantiations of the above
promise problem in sequence, where in iteration j we use the thresh-

oldT; = (1+¢)7 and increment probability aj = min{1, Clog(l/ryj)/(€3Tj)} :

forp; < C5/j? (chosen so that by a union bound, the probability
that we ever fail to solve the promise problem in any iteration j is
at most ), n7j < §). When Y reaches the value ;T}, we increase j
and correspondingly set Y « |Y - ajy1/aj] (which is “correct in
expectation”, since the number of increments we would have done
in expectation with parameter a1 is an @j/aj4+1 = 1+¢ factor less).
To answer a query for N, we simply return T;. The adjustment from
e toe’in a; is for technical reasons (see the proof of Theorem 2.1).

We next provide an improved analysis of Morris’ original algo-
rithm. To do so, we define the random variable Z; to be the number
of increments that Morris(a), run for an infinite number of incre-
ments, would have its counter X equal to i before incrementing
to X =i+ 1. Then Z; is a geometric random variable with param-
eter 1/(1 + a)!, and we are able to show the desired behavior of
Morris(a) by proving concentration bounds on prefix sums of the
Z; via analyzing its moment-generating function.

Our new lower bound comes from showing that a randomized
approximate counter using space S can be made deterministic with
no increased space cost at the cost of increasing its failure prob-
ability by factors that grow with S. If S is smaller than a certain
threshold (the lower bound we are trying to prove), this argument
leads to a correct space-o(log n) deterministic algorithm for the
problem, which is impossible, and thus the space-S algorithm for S
so small could not have existed.

1.3 Notation

We use C, C’, C” to denote universal positive constants, which may
change from line to line. We also use A + B to denote a value in the
interval [A— B, A+B], with D = A+ B signifying D € [A—B, A+B].
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As mentioned, we also use “Morris(a)” to refer to the Morris Counter
parameterized to increment X with probability 1/(1 + a)X.

2 IMPROVED UPPER BOUND FOR
APPROXIMATE COUNTING

In Subsection 2.1 we describe and analyze our new algorithm for ap-

proximate counting with space complexity O(loglog N +log(1/¢) +

loglog(1/5)). We then show that this upper bound is achieved by

the original Morris Counter itself in Subsection 2.2.

2.1 New algorithm description and analysis

Algorithm 1 Approximate counting algorithm.

1: procedure ApproxCount(e, §)
2: Init():
N 8,Xo  [In1ye(Cln(1/n)/e%)]

w

4 Y —0,X «— Xp,a0 — 1,T « [(1+¢)X]
5 Increment():

6: with probability a, update Y «— Y +1

7: if Y > oT then

8: Xe—X+1

9: T<—|'(1+£)X'|,r]<—)%

10: Qnew < %

11 Y « |Y apew/]

12: a — Qnew

13: end if

14: Query():
15: if X = X, then

16: return Y
17: else

18: return T
19: end if

20: end procedure

We describe our full approximate counting algorithm in Algo-
rithm 1. The counter is initialized via the Init() procedure, and each
increment to N and query for an estimate of N are described in the
pseudocode, following the ideas set forth in Subsection 1.2. Theo-
rem 2.1 shows that the relative error of the output of Algorithm 1
is 1+ O(e) with probability 1 — O(8). Eq. (1) follows by adjusting
&,0 by a constant factor. Our variable X is quite similar to that of
the Morris Counter: it represents (an approximation to) log,,, N.
The main difference is that whereas the Morris Counter decides to
increment X based on flipping a number of coins depending on X
itself, we use an auxiliary counter Y to guide when X should be
incremented.

First we define some notation that will be useful for the proof.
We divide the algorithm’s execution into epochs k = 0,1,2,...,
corresponding to the value of X — Xj. We mark the end of an epoch
immediately before line 8 is about to execute, and the beginning of
the new epoch immediately after line 13 has completed executing.
During a given epoch, we let T, ay., nx be the corresponding values
of T, a, n set in lines 7-12 of Algorithm 1. For example, Tp = 1, ap =
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1,n0 = 8. We also define Yy to be the value of Y when epoch k begins,
so that Yy = 0 and Y for k > 0 is set in line 11 of Algorithm 1.
To be precise, a particular epoch is said to begin after Algorithm 1
completes lines 4 or 12, and it ends at line 6 when the if statement
triggers. We say that N becomes a certain value once Increment()
has been called that number of times, and the most recent call
completed.

Theorem 2.1. There is a universal constant C’ > 0 such thatVe, 8 €
(0,1/2), the output N of Query() in Algorithm 1 satisfiesP(|[N—N| >
C’eN) < C'8.

ProoF. We first note that while remaining in epoch 0, i.e. as long
as 1 < N < Tp, Y stores N exactly and thus our output is exactly
correct. Our focus is thus on the case of larger N.

For k > 0, define the event & that once we enter epoch k,
the number of increments to N before we advance to the next
epoch is Ty — Ty_q + £2Tj_; (where we use the convention T_; = 0).
We henceforth condition on the event Ags(Eg. Since the T, are
in geometric series with base 1 + ¢ (up to =1 due to rounding),
we have ZI;ZO(Tr —~T1+eT_) C (1+ 1.5¢)Ty, i.e., only after
(1 £ 1.5¢) Ty, increments to N, could the algorithm possibly be in
epoch k. Thus, if k* is the final epoch when Query() is called, we
have N = Tj» and N = (1 + 1.5¢)Tg». That is, N = ﬁN, which
implies [N = N| < CeN when e < 1/2.

We finally bound

P(/O.\Sk) =1-P <O/—|8k > 1_ip(_‘8k)'
k=0 k=0 k=0

P(=&p) = 0, so we focuson k > 1. Note Vg = [ (lap_1Tp_1] +1) -
(e /ag—1)], which is @ Tp_; = O(1). The new threshold for Y to
enter epoch k+11is | ag Ty | + 1, which thus requires o (T, — T_1) +
O(1) more increments to Y, which is

eapTr_1 £ 0(1), (4)

since Ty — Tx_1 = €Tp_; = O(1) and a < 1. To upper bound the

probability that we already advance to the next epoch after calling

Increment() t; := Ty — Tj_; — £2Tj_; times, it suffices to con-

sider the following question: If we increment Y with probability

. independently for each of the t; Increment() calls, what is the

probability that we increment Y at least e Tj._; — O(1) times.?
The expected number of times Y is incremented is

oty = eapTp_1 — szaka,l +0(1),

which is ©(In(1/n)/€?). Advancing to the next epoch thus implies
deviating from the expectation by more than 2 Tp_; + O(1),
i.e., ¢ times the expectation. The Chernoff bound implies that the
probability of this occurring is at most . A similar calculation
shows that the probability that we have not advanced to the next
epoch after calling Increment() t5 := Ty, — Ty._; +£Ti._; times. Thus
P(=&) < 2. Thus P(Ve»0=Ex) < 2T mg = 2Xx 8/ (k+1)* =
0(9). O

2Note that in the actual execution of the algorithm, not all #; calls increment Y with
probability o, e.g., if we have advanced to the next epoch already, then the probability
becomes ag41. Nevertheless, the probability that we advance to the next epoch after
t1 Increment() calls is the same if we increment Y with aj probability for each call,
since it does not matter if we have already advanced to the next epoch.
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Remark 2.2. Before we give the space analysis, the astute reader
may notice that T itself is ideally approximately N and thus should
require ©(log N) bits to store. A similar statement could be made
about the Morris Counter: the output is ultimately given as a= ((1+
a)X — 1) (see Subsection 1.2), which is also ©(log N) bits. The key
is that in implementation, we never actually store T: we only store
X. Then our answer to a query is only to return X, which will be
an additive O(1) approximation to log;,, N with high probability,
which is enough for the querying party to specify an approximation
to N. Similarly, § is never stored or even given to the algorithm,
but rather the input should be A such that § = 27, and only A is
ever stored. Also, the correctness analysis only requires that a be at
least the value in line 10 and not exactly that (to apply the Chernoff
bound effectively). Thus « can be rounded up to the nearest inverse
power of 2 so that @ = 27 and only ¢ need be stored consuming
only log t = loglog(1/a) bits. We can then generate a Bernoulli(c)
random variable (line 6) by flipping a fair coin ¢ times and returning
1 iff all flips were heads; this takes 1 bit to keep track of the AND
and log t bits to keep track of the number of flips made so far. n
also need not be stored explicitly since its value is implicit from
other stored values (namely X, ¢, and A).

Of course the situation is even simpler in models of computation
other than word RAM, such as a finite automaton or branching
program: then program constants need not be stored in memory
(they only affect the transitions), and only the variables X, Y con-
tain program state that needs to be stored. Furthermore, what is
most important from the perspective of the practical motivation
in Section 1 when running a system storing many approximate
counters is the number of bits required to maintain program state;
it is reasonable to assume in practical applications that O(log N)
bit registers are available to be used temporarily while process-
ing updates and queries, which could lead to faster and simpler
implementation.

Theorem 2.3. For any ¢,§ € (0,1/2), the probability that Algo-
rithm 1 needs more than

loglog N +loglog(1/8) +3log(1/e) + Q(t)

bits of memory after N increments is at most (E/N)zt,for anyt > C-
(logloglog N +loglog(1/¢)), where C is a sufficiently large constant.

To see that this theorem implies the space bound stated in The-
orem 1.1, for any S > C(loglog N + log(1/¢) + loglog(1/98)) for
a sufficiently large C, we have t > (C — 3)(loglog N + log(1/¢) +
loglog(1/8)) > S/2. Hence, the probability that we use more than
S bits of memory after N increments is at most

(s/N)Zt <27 < exp(—C’ exp(C”'S)),

for some constants C’,C’" > 0.

PRroOF. As described in Remark 2.2, Algorithm 1 only explicitly
stores two variables X and Y. When X = X, Y is between 0 and
T = O(log(1/8)/€%). In this case, storing Y takes

loglog(1/8) +3log(1/e) + O(1)
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bits. When X = Xy + k for k > 1 (i.e., in epoch k), Y is between
arTr—1 —O(1) and a Ty + O(1). In this case, storing Y takes
log(a (T = T—1) + O(1))

<loglog(1/n) +2log(1/e) + O(1)

< loglog(1/6) + 2log(1/e) + 21loglog X + O(1)
bits. Thus, provided that X < Xnax, Algorithm 1 uses at most

max{log Xmax, log(1/¢)} + loglog(1/6)
+2log(1/¢) + 2loglog Xmax + O(1)

bits. In the following, we show that the final X is small with high
probability.

We will show that once we reach an epoch k for k large (cor-
responding to X = Xy + k), with high probability we will never
advance to epoch k + 1. Indeed, the probability that we do advance
is the probability that Y increments at least e Tj._; £ O(1) times
over the at most N remaining calls to Increment() (see Eq. (4)). By

a union bound over all (eagTi_; + O(1))-subsets of the remaining
increments, the probability that this occurs is at most

2eN eapTp_1£0(1)
(ka—l )

®)

N . carTr_1£0(1) <
eapTr_1 = 0O(1) k -
( C'N
< | —
e(1+e)X
For X > 2log;,.(N/e), it is at most
)®(log(X2/5)/£2)

)®(log(Xz/5)/€2)

( C'N

Q(1/€%)
e(1+¢6)X )

< (;
Tl +e)X
< (e—Q(EX))Q(l/Sz)

< e X)

By setting Xmax = ©(2 log;,,(N/¢)) for some integer t > C -
(logloglog N +loglog(1/e)), i.e., t > loglog Xmax + loglog(1/e),

log Xmax < loglog N +1log(1/¢) +1loglog(1/e) +t + O(1)
=loglog N +1log(1/¢) + O(t).
By Equation (5), the probability that Algorithm 1 needs more than
loglog N +loglog(1/6) +3log(1/¢e) + Q(¢)

bits of space is at most

]

Remark 2.4. In the proof, we assumed that the algorithm allocates
exactly log Xmax bits to store X, and then we bounded the proba-
bility that X exceeds Xmax after N increments. This assumption
requires us to have an upper bound on N in advance. In general,
when an upper bound on N is unknown, we will have to store
variable X that is also unbounded, and dynamically allocate bits
to the counter. This can be done by first encoding [log X using
O(loglog X) bits, then encoding X using [log X bits. Our proof
gives the same space bound in this case.

Remark 2.5. The source of the constant factor “3” multiplying
log(1/¢) in the space complexity is due to the cubic dependence
of apew on 1/¢ in Algorithm 1. This cubic dependence was due to
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the proof structure of Theorem 2.1: we conditioned on the events
&k that we spent a concentrated amount of time in each epoch.
To show that this happens with high probability, we performed a
union bound over all epochs. We feel this structure makes the proof
more intuitive, though it comes at the cost of a worsened constant
factor. One can show that the algorithm is still in fact correct with
anew depending only quadratically on 1/¢ by proving concentration
only on the total time spent on all the epochs combined, as opposed
to union bounding over epochs separately, by using an argument
similar to what we will see shortly in Subsection 2.2. One can also
see empirically via implementation that the algorithm of this section
and Morris+ behave nearly identically, including the constant factor
(see Section 4).

Remark 2.6. Our approximate counter is fully mergeable [2]. That
is, given two counters (Xj, Y1) and (X», Y2), which approximate two
(unknown) numbers N and N respectively, they can be merged
into a single data structure (X, Y) that follows the same distribution
as if it was incremented exactly N1 + N» times so that nothing is
lost in the parameters € and § (the Morris Counter enjoys this same
benefit [7, Section 2.1]). To see this, observe that each epoch of our
algorithm uses sampling, and the sampling rate is non-increasing.
Assuming X1 < X», we can simulate Nj extra increments to the
second counter by another subsampling with the correct probabili-
ties. More specifically, the first counter is in epoch k1 = X3 — X,
and we know the sampling probabilities ay, . . ., g, and the exact
number of increments that survived the sampling (caused Y; to
increment) in each epoch. We are going to insert all the survivors
to the second counter, which currently have sampling probability
ay, for ka = X3 — Xj. For each survivor in epoch i (for 0 < i < k),
we increment Y with probability g, /@;. Then effectively, we incre-
ment Y, with probability ay, for each of the original Nq increments.
Whenever Y, reaches the threshold aT, we increment X5, update
Y2, and adjust the probabilities. Hence, the final (X3, Y2) has the
same distribution as if it was incremented a total of N7 + N, times.

2.2 Morris Counter improved analysis

Here we analyze the Morris(a) algorithm for some a € (0,1), in
which X is incremented with probability (1 + a)™ and we output
N = ((1+ @)X — 1)/a. When the total number of increments N is
at most 8/a, the value of the counter can be explicitly maintained
in addition to the Morris Counter, which costs at most log(1/a) +
O(1) bits of space. In the following, we assume N is at least 8/q;
this is not a serious limitation since we can maintain a separate
counter exactly, deterministically up until this value (the “Morris+”
modification described in Section 1).

Let us consider Morris(a) on an infinite sequence of increments.
For any i > 0, X exceeds i with probability 1. Let Z; > 1 be the
random variable denoting the number of increments it takes for
X to increase from i to i + 1. Since when X = i, each increment
causes X to increase with probability p; = (1 + a)~%, Z; follows the
geometric distribution

P[Zi=1]1=(1-p)" "pi.
Therefore, we have

E[Zi] =1/pi = (1+a)’,
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and
etpi

Z,' — 1 .l— -
E[ef ]—Zet (1-pi) 1Pz—m,

I>1

for any ¢ such that e’ (1 — p;) < 1.
Next, let ¢ < 1/2, we bound

k k
P Z(;Zi > (1+e)Z(;l/pi .
i= i=

Following the proof of Chernoff bound, for ¢ such that e’ (1—py) < 1,
we have

(6)

sl <[ ]o]e

i=0
e(k+1)t l—li'czo pi

T, (1—ef(1-pi)
e(k+1)t (1 4 gy=k(k+1)/2

MM, (1—et(1-p)

By Markov’s inequality,

E [et T Z"]
et (146) 5 1/p;
E [et I Zi]
et (1+8) ((1+a)k*1-1) /a
e(k+1)t(1 +a)—k(k+1)/2

et (1+) ((1+a)*+1-1) /a Hf:o(l —et(1-(1+ a)_")).

(6) <

Now set t = ln( which satisfies e’ (1 — pg) < 1, we

1
1755(1+a)*’<)’

have

(6) < (1+a) kD72 (1 - 15(1 +a)7k

Xl_l

1- (1+a) i
l—fs(l+a) -k

= (1+q) Fk+D/2, (1 - %6‘(1 +a)7k

k
<[ |
i=0

— (14 ) kD2 (1 - 15(1 ra)*

1- %5(1 +a)7k
(1+a) - Le(1+a)k
)(1+£)((1+a)k+1—1)/a

k
l_ol (1+a)71(1- —e(l +a)~k+i)

k
< o be(+a)* (14e) (1+)** -1) /a | H . r
- 1-1e(1 4 q)k+i

)—(k+1)+(1+s)((1+a)k+1—1)/a

)(k+1)+(1+g) ((1+a)**1-1)/a

PODS ’22, June 12-17, 2022, Philadelphia, PA, USA

By the fact that 1/(1 —z) < 7 forall 0 < z < 1/2,

Le(1+a)™* (1+¢) ((1+a)**'~1) Ja . Zf;o(%€(1+a)'k+i+%€2(1+a)'2k+2i)

(6)<e

_ 3eOra” k((l+e)((1+a)k+1 1)/a=3k o (1+a)i+1e(1+a)~ k+21))

< e—%£(1+a)’k((l+5)((1+a)k+1—l)/a—(1+%£)((l+u)k”—1)/a))

— e—%sz(lﬂz)_k((l+a)k+1—1)/a.

For k > =, we have (6) < e™¢ “/8a,
Slmllarly, we next bound

k k
P Zz,- < (1—5)21/pi] .
i=0 i=0
By Markov’s inequality,
(7)=P [e*f Zf:o Z; > e*f(lff) Zf'(:o 1/Pi]
E [e’t I Zi]

e—t(1-) X5, 1/p;
e—t(k+1) (1+ a)—k(k+l)/2

e—t(1-8) ((1+a)**1-1)/a Hf:o(l —et(1 —Pi)).

Now set t = In(1+ %5(1 + a)_k), we have

—(k+1)+(1—¢) ((1+a)**1-1)/a
7 <1+ a)_k(k“)/2 . (l + %5(1 + a)_k)

Hf:o (1 -

=1+ a)_k(kH)/2 . (l + %g(l + a)_k

1
1-(1+a)~! )

1 -k
1+5&(1+a)

X

)—(k+l)+(1—e) ((1+a)**1-1)/a

1
e ((l+a)‘i+%£(1+a)‘k)
i=0 1 -

1+3e(1+a)7*

X

1 (1-¢) ((1+a)**1-1)/a
= (1+aq) kk+D/2. (1 +oe(ls a)*k)

1
M, (1 +a)7 (1 +3e(1+ a)—k+i)

)(l—e)((l+a)k+l—1)/a

X

1
= (l +—e(1+ a)_k
2
1
X .
Ik, (1+ %s(l+a)_k+l)

By the fact that 1/(1+z) < e forz > 0, we have
Mo (-

_ e§€(1+a)'k((1—s)((l+a)k+1—1)/a+]—]f=0(—(1+a)i+%€(1+a)'k+2i))

Le(1+a) 7k (1- e)((1+a)k+1—1)/a te(1+a)” k+’+ 2(1+a)2k+2t)

(7) < et

< e—ifz(1+a)’k((1+a)k+1—1)/a‘

When k > %, this is at most e~¢°/3,
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Therefore, for any k > 1/a, with probability at least 1 — e/ 8a

we have

k

sz —((1+ @) = 1)/d| < e((1+a)F* = 1)/a.

i=0
Now fix any N > 8/a, let k; be the largest k such that (1 +¢)((1+
a)**! — 1)/a < N, ky be the smallest k such that (1 — )((1 +
a)**! —1)/a > N. We have kq, k; > 1/a, then we apply the above
inequality to k; and k2, and by union bound, with probability at
least 1 — 26_52/8“, we have both

3
sz <(1+e)((1+a)F* —1)/a <N,
i=0

ie., X > kp after N increments, and
ka
Zz,— > (1-e)((1+a)** —1)/a > N,
i=0

ie, X < ky after N increments. Therefore, ((1 + a)X — 1)/ais a
(1 + 2¢) approximation of N with probability 1 — 2¢7¢"/8a,

By setting a = £2/(81n(1/5)), the space usage of Morris(a) is
loglog N+log(1/a)+0(1) = loglog N+2log(1/¢)+loglog(1/8) +
O(1) bits with high probability, and outputs a (1+2¢) approximation
with probability 1—2/8. By reparametrizing, we prove Theorem 1.2.

Remark 2.7. While it may be possible to improve the constant
factor “8” in the exponent of the tail bound above, note that this
constant in turn only affects the setting of a by a constant factor,
and the space complexity of Morris(a) only depends logarithmically
on 1/a. Thus, any improvement to the factor 8 can only improve
the analysis of the space complexity by an additive constant.

Remark 2.8. After seeing our proof, Eric Price pointed out that
it can be made even more succinct as follows: one can show that
geometric random variables are “subgamma”, so that a sum of
geometric random variables (as in Egs. (6) and (7)) is subgamma
with appropriate parameters (see [6, Section 2.4] for the definition
and relevant properties of subgamma random variables).

3 SPACE LOWER BOUND

Here we prove the matching lower bound for approximate counters.
Our lower bound states that even if the algorithm’s memory usage is
a random variable which only has a small chance of being small (i.e.
we allow it to use arbitrarily large memory with large probability
1= V5), it still cannot satisfy Eq. (1).

Theorem 3.1. Fixe, 8 € (0,1/2) and integer n. Let C be an approx-
imate counter which outputs N satisfying

P(IN = N| > &N) < 6,

forall N € {1,...,n}, and uses no more than S bits of space with
probability at least V6. We must have

S > min{logn — O(1), max{loglogn +log(1/¢) — O(loglog(1/¢)),
loglog(1/6) — O(logloglog(1/9))},
which is at least Q(min{log n,loglogn +log(1/¢) +loglog(1/5)}).
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The first observation is that conditioned on using no more than
S bits of space, we have

P([N=N| > &N | use at most S bits) < §/P(use at most S bits) < Vs,

Hence, we may assume that C always uses at most S bits of space,
at the cost of increasing the failure probability to V6, which is
inconsequential since the dependence on § in the space bound is
loglog(1/8). In the following, we assume that C never uses more
than S bits.

LetT = | min{n/4, %}J.Then foreveryN =1,...,T/2,

C outputs N that is less than T with probability 1 — &, and for
every N = 2T,2T +1,...,4T, C outputs N that is at least T with
probability 1 — 8. In particular, C distinguishes N € [1,T/2] and
N € [2T, 4T] with probability 1 — §. In the following, we show that
any C that distinguishes the two cases with probability 1 — § must
use log T — O(1) bits of space. We assume for contradiction that
S < log(T/4).

First, let us consider the following “derandomization” of C. C
uses no more than S bits of space, hence, it has at most 25 different
memory states. When Init() is called, the algorithm generates a
(possibly random) initial memory state. Each time Increment() is
called, the algorithm examines the current state and updates the
memory to a possibly different state (and possibly randomly). Let
the “deterministic” version of the algorithm Cgye; have the same
query algorithm as C, but when Init() or Increment() is called, it
examines the current state and the distribution of the new state (or
the initial state) according to C; instead of updating the memory
according to this distribution, Cye; always updates it to the state
with the highest probability in this distribution (in case of tie, pick
the lexicographically smallest).

Now let us analyze the error probability of Cye;. The initialization
and increment algorithms are called exactly N + 1 times in total.
Since Cget picks the state with the highest probability each time,
which has probability at least 25, the probability that the execution
of C follows the exact same path as Cge; is at least

(2‘5)N+1 .

Therefore, conditioned on the execution of C following the same
path, its error probability is at most

N+1
5 (25) .
When N < 4T, it is at most
8- (T/9)*T*! < 8- (log(1/8)/ (16 loglog(1/5)))l8(1/9)/loglog(1/6)+1
<1/3.

That is, the error probability of Cyet is at most 1/3, for every N €
[1,T/2] U [2T,4T].

On the other hand, since both initialization and increment al-
gorithms are deterministic, we may apply an argument similar
to the “pumping lemma” for DFAs. Since 25 < T/4, there exists
1 < N1 < Ny < T/2 such that Cye; reaches the same memory state
after Ny or N increments. Again by the fact that the increment
algorithm is deterministic, Cgey must reach the same memory state
after N1 +k(Nz — Np) increments, for all integer k > 0. In particular,
there exists N3 € [2T, 4T] such that Cget reaches this memory state
after N3 increments. However, by the assumption of the algorithm,
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the query algorithm distinguishes between N increments and N3 4 PHILOSOPHICAL DIGRESSION: THE VALUE

increments with probability at least 2/3, which is impossible as the OF IMPLEMENTATION
algorithm reaches the same memory state in the two cases. This

proves that S > log T — O(1), i.e.,
S > min{logn — O(1),loglog(1/6) — O(logloglog(1/5)))}. (8)
Finally, we show that S > min{logn, loglogn+log(1/¢)} —0O(1)

as long as § € (0,4/1/2). Let Nj = {(emgj - 1)/5], and consider
incrementing the counter N times for an unknown j. Observe that

for j > 0, we have 4 )
(1-&)Njs1 — (1+)N; B /

> (1-e)(eXU) 1) /e — (1+€) (X% = 1) /e — (1 +¢) - —

= (1= £)e™ — (1+4£))e' /e — (3+¢) o .

>((1-e)(1+16e) —(1+¢))/e—(3+¢) ° & D entie. © ®

=11-17¢

> 0. Figure 1: Results of experimental comparison of the Morris

counter and a simplified version of the algorithm of Subsec-

Therefore, for every j > 0 and j < (1/16¢)In(en + 1) (hence, tion 2.1.

Nj < n), C recovers j with probability 1 — & > 1/5, if the counter
is incremented N times. By fixing the random bits used by C, at
least 1/5 fraction of such j is successfully recovered. The algorithm

must reach a different final state for all such j, implying that We share in this section a historical note on the development of

this work, which may serve the reader as evidence of the value of

so 1 _ implementation. Chronologically, we first developed and analyzed

2z 5 (1/16¢) In(en +1) = Q((1/¢) log(en + 1)). the algorithm of Subsection 2.1 and proved the lower bound in
Section 3. In the days afterward, excited by the prospect of having

When ¢ < 1/n, it is Q((1/¢)(en)) = Q(n), and a new and improved algorithm for such a fundamental problem, we
implemented the Morris Counter as well as (a simplified version

S > logn—0(1). of) the algorithm of Subsection 2.1 (and this simplified algorithm

is itself similar to the algorithm of [8]) to compare. We ran sev-

When 1/n < £ < 1/4/7, we have eral experiments. In one, we did the following 5,000 times for each

algorithm, parameterized to use only 17 bits of memory: pick a
uniformly random integer N € [500000, 999999] (thus a 20-bit num-
ber) and perform N increments. The results of this experiment are
in Fig. 1. The orange plot represents our algorithm, and the blue

S >log(1/e) —O(1) > log(1/e) +loglogn — O(loglog(1/¢)).

When ¢ > 1/+/n, we have plot is the Morris Counter. For each respective algorithm’s color, a
dot plotted at point (x, y) means that in x% of the trial runs (out of
S > log(1/¢) +loglog(en) — O(1) > log(1/¢) +loglogn — O(1). 5,000), the relative multiplicative error of the algorithm’s estimate

was y% or less. In other words, we plotted the empirical CDFs of the
relative errors of each algorithm. For example, the plot indicates
that neither algorithm ever had relative error more than 2.37% in
5,000 runs. The experimental results are plainly apparent: the two
algorithms’ empirical performances are nearly identicall Witness-
ing this plot convinced us that the previously known analyses of

In all three cases, the bounds imply

S > min{logn—0(1),loglogn+log(1/¢) — O(loglog(1/¢e))}. (9)

Finally, by (8) and (9), we conclude that the Morris Counter, an algorithm that has been known for over 40
years and taught in numerous courses, were most likely subopti-
S > min{log n — O(1), max{loglog n +log(1/¢) — O(loglog(1/e)), mal and that the Morris Counter itself is most likely an optimal

algorithm for the problem. With the confidence gained from the

loglog(1/0) - O(loglog 10g(1/5))}experimental results, we sought a new and improved analysis of

= Q(min{log n, loglogn +log(1/¢) +loglog(1/6)}). the Morris Counter and succeeded. Thus it seems from this anec-
dote, implementation can sometimes be valuable even for purely
proving the claimed lower bound. theoretical work.
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A TWEAKING THE MORRIS COUNTER IS
NECESSARY

In this section we show that the modification from the vanilla
Morris Counter to “Morris+” described in Section 1 is necessary.
Recall the modification: when using Morris(a), we maintain a deter-
ministic counter X’ in parallel. During increments, we process the
increment both by Morris(a) and by deterministically incrementing
X', unless its value is N +1 in which case we do not alter it. During
queries, if X’ < Ng, we return X’; otherwise we return the estima-
tor from Morris(a) based on X. We set N, = 8/a, as suggested by
the analysis in Subsection 2.2.

We now show that if one does not modify the Morris Counter but
simply uses Morris(a) for a = £2/(81n(1/5)) as suggested in Sub-
section 2.2, then when § < 58/302/16, £ < 1/4 and the counter value
equals N = N/ := ce*/3/a > 2 for a constant ¢ < 278, the probabil-
ity that the Morris Counter outputs an estimator N < (1 — £)N is
much larger than . Note that our analysis requires switching from
a deterministic counter to the Morris Counter when N > Q(1/a)
and not Q(¢*/3/a), but the impact on memory complexity is at
most a factor of three (and less as N grows): using a deterministic
counter up until N = r requires an additional [log, r] bits. Thus
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the difference between r = ¢1/a versus r = 0254/ 3 /a is the differ-
ence between logr =log(c1) +3 + loglog(1/5) + 2log(1/¢) versus
logr =log(cz) + loglog(1/8) + % log(1/¢); i.e. the dependence on
log(1/e) differs by a factor of three. Thus our analysis here shows
that for small §, our choice of transition point r = 8/a from a deter-
ministic counter to using the Morris Counter is almost optimal, up
to affecting the memory by a multiplicative factor of at most three.

We now show why Morris(a) will fail with probability much
larger than §. Consider the event & that the Morris Counter in-
crements X in the first ¢ increment operations, and its value re-
mains equal to ¢ in the last N — ¢ increments, for ¢ = [In(1+ (1 —
28)64/30)/11’1(1 +a) . Recall the estimator is N = a~1((1 + @)X — 1).
Thus conditioned on &,

N=%WU+@’—U
< L (1+(1 —26)54/30— l)
a
=(1-2¢)N
<(1-¢N

On the other hand, note that r > In(1 + (1 — 2¢)e*/3¢)/In(1 +
a)—-12> %ln(l +(1-2¢)e*3c) —1,and t < N. The probability of
& is at least

-1
plel=[Ja+a™ (1-+a™)V
i=0
-1
> (1+ a)_t2 . (1 -(1+a) (l +(1- 28)54/30) )
L{cegd/3 _ 4/3

sat 1020 g ORI
B 1+ (1—2e)et/3¢
>(1+a) N 413, 4 (e -+ (1-200670) |1
= a . 5

4

which by the fact that In(1 + x) < x and In(1 +x) > x — x%/2 for
x<1,is
C€4/3—(1—26‘)6‘4/36+((1—2&‘)84/36)2/2)

£4/3

dl

¢ _ane [€Y3c)®
e .

4 4

\%

4/3 3 ln(4/(F4/36))< 7/3 .0 8/3,.2 )
& Cc -_
) 6_5(54/50)2 e = 2P c+ebPct 2

4
4/3 2 &2 (41/3 4/3
> &' c e im e @ (46’ cln(4/(¢ c))
4
e 2
> - e léa
4
4/3
& c \/—
= - Vé.
4

When § < €8/3¢%/16, this is larger than 6. Therefore, Morris(a)
fails to provide a (1 — ¢)-approximation for N with probability at
least §.

1
-2 In(1+(1-2¢)e*/3¢c)+1
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