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Point defects such as missing atoms (vacancies) in a crystal 
lattice play an important role in semiconductor physics and 
often determine a system’s electronic, optical and transport 

properties. Defect properties have proven to be an essential tun-
ing knob for optimizing the efficiency of solar cells, semiconduc-
tor transistors, light-emitting diodes and catalysts. Recently, point 
defects in extremely thin materials and two-dimensional (2D) 
materials have attracted wide research interest, mainly due to the 
presence of intriguing optoelectronic, spin-optotronic and catalytic 
properties. These emergent properties enable novel applications in 
energy technologies and, more importantly, quantum information 
technology—a new generation of information technology based on 
quantum bits (qubits) as information carriers and processor reg-
isters. Two-dimensional materials bring additional benefits com-
pared with traditional bulk materials, allowing, for example, easier 
integration into smaller solid-state devices because of their atomi-
cally thin thickness. Among the many well-known 2D materials, 
hexagonal boron nitride (hBN)1–3 and transition metal dichalco-
genides (TMD)4–6 are considered two of the most promising mate-
rial platforms for hosting point defects that can be used to emit a 
single quantum of light or photon (single-photon emitters, SPEs) at 
room temperature4,5,7 or potentially used as solid-state qubits. These 
SPEs and qubits are the building blocks for quantum information 
technology devices. More importantly, the strong magnetic-field-
dependent photoluminescence observed in hBN indicates the pres-
ence of optically addressable defects with unpaired spins, which are 
defined as spin defects8. These observations make defects (more 
specifically spin defects) in 2D materials promising for next-gener-
ation SPEs and qubits9,10.

However, major challenges persist and need to be addressed for 
the further rational design and development of defects in 2D mate-
rials as SPEs or qubits (also referred to as 2D quantum defects). 
These challenges include (1) difficulty in identifying the chemical 
nature of an experimentally observed SPE signal and (2) for model-
ing in particular, the scarcity of reliable theory that can accurately 
predict the critical physical properties for defects in 2D materi-
als. To address the first of these challenges, tremendous efforts 

have been made to identify the origin of experimentally observed 
SPEs. Possible candidates include carbon impurities11–13, boron 
dangling bonds14,15 and N anti-sites with vacancies (N substitution 
of B accompanying a nitrogen vacancy (NV))16–18 for hBN, chal-
cogen vacancies for TMDs6,19,20, as well as dislocations and Stone–
Wales impurities for other 2D materials21,22. Notably, the negatively 
charged boron vacancy in hBN has uniquely emerged as an intrinsic 
triplet ground-state defect that is promising for quantum informa-
tion science applications23–25. Meanwhile, tremendous progress has 
been made to address the second challenge in relation to theory and 
computational modeling; this will be the focus of this Review.

We will first discuss the theoretical design criteria for 2D defects 
and, with these principles in mind, we will consider how recent 
methodological developments can help in the rational design of 
2D defects. To rationally design promising defects in 2D materi-
als for quantum information science applications, several important 
conditions need to be met: deep defect levels, high spin states, high 
radiative recombination rates, weak electron–phonon coupling and 
long spin relaxation (T1) and coherence (T2) times9. Deep defect lev-
els help increase the fidelity of stored quantum information, which 
means that the quantum defects must be designed with their energy 
levels well separated from the band edges to avoid resonance with 
the bulk band edges9,10. High spin states (for example, two parallel 
unpaired spins) are necessary for the initialization, operation and 
readout of spin qubits26. The radiative recombination rate being 
greater than the non-radiative rate ensures a high quantum effi-
ciency of the SPEs and high readout efficiency of spin qubits9. Weak 
coupling with the environmental bath (for example, phonons and 
nuclear spins) provides a long spin lifetime (spin relaxation time 
T1 and coherence time T2) at room temperature, thus maximizing 
the lifetime of the stored information and minimizing qubit error. 
By using these criteria to screen all possible candidates in the peri-
odic table, new quantum defects in 2D materials can be proposed 
from first-principles calculations, that is, only relying on quan-
tum mechanics, without prior input parameters. Promising can-
didates can be further validated by means of various experimental  
techniques, including materials synthesis, scanning microscopy for 
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analyzing the electronic structure and local atomic structure, as well 
as optical characterization (Fig. 1). The experiment–theory feed-
back loop is an effective strategy for new spin defect development 
and spin qubit design.

Compared with 3D systems, there are unique theoretical chal-
lenges in accurately predicting critical defect properties in 2D mate-
rials, stemming from the highly anisotropic dielectric screening and 
strong many-body interactions in two dimensions, including elec-
tron–hole, exciton–phonon and defect–exciton interactions (Fig. 2),  
which are beyond the capability of standard density functional 
theory (DFT) codes at the mean-field theory level. Specifically, the 
confined dimension leads to weak screening along the out-of-plane 
direction. This causes problems when using mean-field theory-
based methods, such as failure of the electronic structure descrip-
tion, severe periodic image charge interactions for charged defects 
and inaccurate description of optical signatures from defect–exci-
ton couplings. Accordingly, advanced methods beyond the treat-
ment of electrons at the DFT level, such as many-body perturbation 
theory with the GW approximation (G is Green’s function and W is 
screened Coulomb interaction) for electronic states and solving the 
Bethe–Salpeter equation (BSE) for two-particle absorption spectra, 
are often necessary for the accurate description of such interactions. 
We will discuss potential ways to address these theoretical chal-
lenges in the following.

Thermodynamics modeling of 2D quantum defects
Defect formation energy and charge transition levels. Defect 
formation energies (Ef) and charge transition levels (CTLs) are the 
fundamental properties of defects in solids, with the former rep-
resenting how easily a defect can form under a specific chemical 
condition (such as temperature and oxygen partial pressure) and 
the latter how easily a defect can be ionized to form a charged 
state. Two-dimensional charged defects are ubiquitous and of 
essential technical relevance. For example, the experimentally 
identified B vacancy in hBN is negatively charged and provides 

an important magnetic-field-dependent optical response for spin 
qubit applications23–25.

With periodic boundary conditions, isolated defects are created 
computationally by placing defects in large cells composed of many 
crystal unit structures (defect ‘supercell’ calculation) so as to reduce 
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Fig. 1 | A proposed feedback loop between theory and experiments for new spin defect discovery in 2D materials. The first-principles design of spin 
defects, targeting physical properties to obtain bright SPEs and stable spin qubits for quantum information applications, validated by experiments 
including surface characterization techniques, materials synthesis and optical characterization. Specifically, calculations of defect levels, charge state and 
atomic structure can be validated by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS) and scanning transmission electron 
microscopy (STEM) measurements. The defect thermodynamic stability, obtained by computing the defect formation energy, can be confirmed by 
materials synthesis. Finally, the calculated exciton lifetime, optical spectra (including absorption and photoluminescence spectroscopy, PL), spin relaxation 
time (T1), spin coherence time (T2) and the Huang–Rhys (HR) factor can be validated by optical characterization techniques from experiments.
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Fig. 2 | Reduced dielectric screening in 2D systems leads to strong many-
body interactions, profoundly affecting defect properties. a, The electric 
field lines (blue) between an electron (e−) and a hole (h+), which together 
compose a bound exciton, are mostly outside the material (monolayer hBN 
is used as an example, with green spheres denoting B atoms and white 
spheres N atoms). Outside the material, the dielectric screening is weak, 
with a dielectric constant (ε0) equal to 1. b, Owing to the weak screening in 
a, the electron–hole, exciton–phonon and defect–exciton interactions are 
much stronger, which fundamentally determines the physical properties of 
quantum defects in 2D materials.
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the interactions between defects in the central supercell and their 
periodic images. The corresponding defect formation energy Ef at a 
particular charge state q and geometry R can be expressed as

Efq (Rq) = Etot (Rq)− Etot (host)−
∑

i
niμi + qϵF +∆q (1)

where Etot is the total energy of the defect supercell or the pristine 
host (host), ni are the differences in the number of atoms for each 
element between the pristine and defective systems, μi are their ele-
mental chemical potentials and ϵF is the Fermi level of the pristine 
host. The interaction between defects in the central supercell and 
their periodic images decays more slowly with monopole (charged 
defects) than neutral defects. Such spurious interactions lead to 
large errors, for example, on the order of several electronvolts27. Δq 
is the defect charge correction that corrects for the spurious interac-
tions between periodic charges.

The calculation of Δq is critical for reliable supercell convergence 
of a charged defect at a non-interacting limit. Owing to the weak and 
highly anisotropic screening in 2D systems, the charge correction Δq 
is more difficult than for their 3D counterparts and needs to recover 
the proper electrostatic interaction of a charge in an ultrathin 2D 
plane. Several different strategies have been proposed for 2D defect 
charge corrections28–37. Their underlying principles mainly fall into 
two categories. One approach is to derive analytical expressions for 
the electrostatic energies of point charges in a 2D dielectric medium 
as a function of supercell size, then the correct limit can be obtained 
by supercell extrapolation based on these expressions28. The other 
approach is to use the model charge electrostatic self-energy differ-
ence between isolated (open boundary condition, Viso) and periodic 
(Vper) boundary conditions to approximate the spurious interactions 
introduced by an extra electron or hole, and then remove the self-
energy difference between the two boundary conditions from the 
defect formation energy29–34. Sundararaman and Ping35 analytically 
derived an exact expression for the isolated boundary condition for 
2D systems using a spectral expansion technique that eliminated 
supercell extrapolation, where a high-order polynomial fit is spe-
cifically needed for 2D systems31. Wu et al.33 defined an anisotropic 
dielectric profile for ultrathin 2D systems, which can be directly 

derived from regularized DFT electrostatic potentials and applied 
to the charged defect formation energy in ultrathin hBN (Fig. 3a). 
The model charge method in the second category only needs one 
supercell calculation, which is substantially cheaper than the former 
extrapolation method, which requires several supercell calculations. 
However, the model charge distribution is more properly defined 
when the excess charge is relatively localized.

Recently, self-consistent charged defect correction methods have 
been proposed for 2D defects, where a self-consistent potential cor-
rection is applied in the calculations of total energies, eigenvalues and 
forces36,38. Analogous to the model charge method described in the 
previous paragraph, Viso and Vper are used to determine the corrective 
potential due to charged defects. The major difference is that the extra 
charge in the supercell (δρ) is determined from the difference between 
the electronic density of the charged defect system (ρchg) and the ref-
erence (neutral, ρref) system on a real-space grid, δρ(r) = ρchg(r) − ρref, 
instead of a model charge such as a point or Gaussian charge as used 
in previous calculations29–34. The corrective potential is then added to 
the total potential and solved self-consistently. This method prevents 
the formation of an artificial state in the vacuum (as sometimes arises 
as a result of the applied counter charge potential), which could not 
be removed by previous methods. Note that, although the different 
charge correction schemes result in similar results for charge correc-
tion (for example, within 0.1 eV), as benchmarked previously31,39, they 
have very different computational costs and applicability.

The thermodynamic CTL. A CTL is defined as the value of the 
electron chemical potential (ϵq′|q) at which the stable charge state of 
the defect changes from q to q′. Accordingly, the ionization energy 
of a defect can be computed by measuring the distance between 
the CTL and the band edges in the band diagram. The CTL can be 
mathematically calculated by imposing that the formation energies 
of the q and q′ states are equal, as given by

ϵq
′|q =

Efq (Rq)− Efq′
(
Rq′

)
= Efq (Rq)− Efq′ (Rq)

︸ ︷︷ ︸
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+Efq′ (Rq)− Efq′
(
Rq′
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Fig. 3 | Calculation of the CTLs of defects in 2D systems. a, The CTL (denoted ϵq′/q) in a 2D system, obtained with charge correction (solid line, corrected) 
or using the supercell extrapolation method to converge the supercell sizes (dashed line, supercell extrapolation). The band edge can be obtained more 
accurately at the GW level or approximately with DFT with semi-local exchange correlation functionals. b, The defect formation energy (Ef) as a function 
of configuration coordinate (R) at charge states q and q′. Rq (Rq′) denotes the equilibrium structure at charge state q (q′). The vertical excitation energy 
between two charge states (vertical red and blue lines) is related to the IP in charge state q at coordinate Rq (IPq(Rq)) or Rq′ (IPq(Rq′)) or alternately is 
related to the EA in charge state q′ at coordinate Rq (EAq′(Rq)) or Rq′ (EAq′(Rq′)). The relaxation energy at one charge state from a configuration coordinate 
away from equilibrium to the equilibrium position is denoted by Erxq′. The CTL ϵq′|q related to the energy difference between the minima at two formation-
energy surface curves can be calculated by two pathways (red and blue), which involve computing accurate IP or EA values and a relaxation energy (Erx). 
c, The CTL position (ϵ0|1, with red lines) and band edge of bulk states (blue levels) shift systematically as a function of number of hBN layers, and the 
ionization energy (energy difference between ϵ0|1 and the conduction band edges) decreases consistently with increasing layer thickness.
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where Rq (Rq′) are the ionic coordinates of charge states q (q′) and 
Efq is the formation energy of a charged defect at charge state q, as 
defined in equation (1). The total energy difference at different 
charge states as inputs for equation (2) involves the electron ion-
ization potential (IP) and electron affinity (EA)29, which cannot be 
accurately obtained at the standard DFT level, although the total 
energy differences between different structures at the same charge 
state are much more accurate with DFT. Accordingly, ϵq

′|q can be 
separated into two parts, as shown in the right side of equation (2) 
and schematically with a red curve in Fig. 3b, with a vertical excita-
tion energy (EQP) from the q state to the q′ state at the equilibrium 
geometry of charge state q (Rq), plus a geometry relaxation energy 
(Erx) at the same charge state q′. A second pathway to separate into 
EQP and Erx is depicted with a blue curve in Fig. 3b; in principle, this 
provides identical results37,38. Erx can be obtained with reasonable 
accuracy by standard DFT as long as a reliable charge correction Δq 
has been obtained, as discussed already.

To obtain an accurate quasiparticle energy EQP (vertical ion-
ization or EA energy) for defects in 2D materials, accurate elec-
tron correlation needs to be taken into account. Considering that 
point defects often have molecular orbitals such as wavefunctions 
around defect centers, they contribute negligibly to the dielectric 
screening of whole systems. Accordingly, the criteria for choosing 
a methodology are largely determined by how well they describe 
the corresponding 2D host systems. Note that the anisotropic 
screening in 2D systems makes conventional DFT methods such 
as the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional with 
a fixed Hartree–Fock exchange40 rather unreliable. For example, 
with increasing number of layers from monolayer to bulk hBN, the 
electronic bandgap obtained at the HSE level is rather unchanged, 
with a variation of within 0.2 eV, which is in sharp contrast to the 
results with the GW level, with a lowering of 1 eV from monolayer 
to bulk34. This is because the parameterization in HSE is performed 
for bulk systems with isotropic screening and a fixed Hartree–Fock 
(HF) exchange ratio, which fails to capture the dielectric screening 
in highly anisotropic ultrathin 2D materials. This ratio needs to be 
reparameterized depending on the thickness and specific 2D mate-
rials used, as based on several recent proposals34,39,41–45. This drastic 
layer-dependent dielectric screening in 2D materials has also been 
demonstrated by comparing bilayer WSe2/SnS2 interfaces with their 
superlattices, where a type II (bilayer) transition to a type III (super-
lattice) band alignment was obtained by GW calculations, consis-
tent with experimental conductivity measurements46. The reason 
for this is that, within the GW approximation, the dielectric screen-
ing is accurately included for disparate systems through nonlocal 
dynamical dielectric matrices, so the layer-dependent quasiparticle 
energies of 2D materials are accurately described. However, GW 
calculations of supercells with defects are rather computationally 
intensive, especially for 2D materials, for which numerical conver-
gence is even slower than for their 3D counterparts47. Therefore, 
efficient numerical techniques such as without-explicit-empty-state 
methods based on density functional perturbation theory can make 
the computation much more scalable and affordable48–50, as done 
in recent work on charged defects in hBN33,34. Note that explicit 
benchmarking of energy levels of defects in 2D materials against 
experiments has been difficult to perform due to the challenge of 
identifying exact defects experimentally.

Photophysics modeling of 2D quantum defects
Strong optical transitions and a high quantum yield, where a given 
defect has a faster radiative recombination rate (with emission of 
photons) relative to its non-radiative rate (without photon emis-
sion), are required for efficient quantum information readout. 
Accurately predicting these properties for defects in 2D materials 
presents additional challenges compared with their 3D counter-
parts because of anisotropic and reduced dielectric screening. In 2D  

systems, electron–hole pairs generated by absorbed light strongly 
bind to defect centers because of the large exciton binding energies 
in 2D systems. Theoretical and computational methodologies for 
the accurate description of excitonic effects and electron correlation 
are thus required.

Optical excitations for defects in two dimensions. Point defects 
in TMDs are among the most intriguing candidates as SPEs. There 
are outstanding questions regarding intrinsic point defects related 
to the nature of the host materials, where rich excitonic phys-
ics exists. Owing to broken inversion symmetry and large spin–
orbit couplings51, monolayer TMDs feature spin–valley locking 
and selective excitation of states in different valleys by circularly 
polarized light52,53. Meanwhile, the bandgaps of TMDs are rather 
moderate (1–2 eV) while the exciton binding energy is often large 
(>500 meV), so optical transitions between bulk states and defect 
states can hybridize and cause ‘valley depolarization’6. Figure 4 
shows an example of the optical spectra of a Se vacancy in MoSe2 
computed by solving the BSE with spin–orbit coupling6. The transi-
tion between bulk and defect states from a single Se vacancy leads 
to incomplete circular dichroism for the A and B excitons and a 
difference of emission intensity between left (blue curve, Fig. 4b) 
and right (red curve, Fig. 4b) circularly polarized light. In addition, 
these 2D defects can possess much larger spin–orbit splitting than 
the bulk states, as obtained in GW calculations and experimen-
tal scanning tunneling spectroscopy (STS) measurements for a S 
vacancy in WS2 (ref. 51).

From a computational perspective, similar to GW calculations, 
numerical convergence of BSE calculations for the absorption spec-
tra of defects in 2D materials is also extremely challenging. In par-
ticular, k-point sampling convergence is even slower than for GW 
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(blue) from an exciton state excited by right circularly polarized light of 
the monolayer MoSe2 with the Se vacancy. The presence of the Se vacancy 
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calculations. To solve this issue, a non-uniform k-point sampling 
technique was proposed for ultrathin 2D materials to speed up the 
k-point convergence and obtain a more accurate description of opti-
cal absorption spectra at the long-wavelength limit (photon wave-
vector q → 0)54. The difficulties of convergence with the bands and 
the dielectric matrix in solving the BSE may be overcome by formu-
lating the BSE without empty states55–58, which uses density-matrix 
perturbation theory and the projective dielectric eigenpotential 
method to avoid explicit empty states and inversion of the dielectric 
matrix, with a favorable O(N4) scaling. Use of the Liouville–Lanczos 
algorithm58 further speeds up the calculation of absorption spectra 
over a wide range of frequencies. Recently, this approach was fur-
ther developed with a direct evaluation of the screened Coulomb 
interaction in a finite field59 that eliminates the need to compute 
dielectric matrices altogether and substantially reduces the cost 
even further. Furthermore, GW and BSE calculations for open shell 
systems, such as defects with triplet ground states, carry additional 
challenges60; for example, calculations of the characteristic multiplet 
structure require a precise knowledge of the frequency dependence 
of the self-energy, necessary to locate its poles61, which requires fur-
ther methodology development for a general solution.

Another theoretical challenge is to estimate the lifetime of opti-
cally excited states. The lifetime, which influences the quantum 
efficiency of SPEs and the readout efficiency of qubits, is deter-
mined by the relative ratio of the radiative recombination rate to 
the non-radiative recombination rate. In the following sections, 
we discuss the recent developments in calculating radiative and  
non-radiative lifetimes.

Radiative lifetime. Similar to optical excitations, defect–exciton 
interactions strongly affect the electron–hole radiative recom-
bination lifetime at defect centers. The radiative lifetime can be 
calculated using Fermi’s golden rule, through which the radiative 
decay rate (the inverse of the lifetime) from an initial excited state 
|S (Q) , 0⟩ (Q is the exciton momentum) to the electronic ground 
state |G, 1q,λ⟩ is given by

γ (Q) =
2π

h̄
∑

q,λ

∣
∣
∣

〈

G, 1q,λ
∣
∣
∣Hint

∣
∣
∣ S (Q) , 0

〉∣
∣
∣

2
δ(h̄Es (Q)− h̄cq), (3)

where Hint is the Hamiltonian describing the interaction between 
electrons and photons, and Es is the exciton energy at finite exci-
ton momentum. By invoking momentum and energy conservation 
between a photon and exciton, the dimensionality of the system will 
yield a different power-law dependence of the radiative rate at the 
long-wavelength limit of the photon wavevector (q → 0), denoted 
as γ0, on the excitation energy. The exciton dipole moment (transi-
tion matrix elements), as well as exciton energies Es, can be obtained 
by solving the BSE, which includes excitonic effects62–64. Excellent 
agreement between theoretical predictions and experiments for the 
exciton radiative lifetime has been reported for several pristine 2D 
semiconductors at finite temperatures65. Interestingly, the calcula-
tions by Wu et al.63 show that accurate exciton energy dispersion 
in momentum space may be important for the finite-tempera-
ture exciton lifetime of low-dimensional systems63. On the other 
hand, for defects in 2D systems, the description of electron–hole 
recombination between two defect levels is rather similar to mol-
ecules embedded in a 2D dielectric environment at the dilute limit, 
although this is different from recombination between defect levels 
and bulk states. Therefore, the radiative lifetime between two defect 
levels has an expression similar to zero-dimensional systems with 
a modification of the dielectric constant from the host materials. 
The effect of defect–exciton coupling on the radiative lifetime has 
been discussed previously66,67 for point defects in hBN, where the 
exciton binding energy was shown to be substantially stronger for 

defects (for example, over 2 eV) than for bulk states66,67. The impor-
tance of the excitonic effect on radiative lifetime may vary substan-
tially among defects: in defects with a reasonably short lifetime (for 
example, tens of nanoseconds for the N anti-site defect in hBN), the 
inclusion of excitonic effects (and GW correction) may change the 
lifetime by less than an order of magnitude, but for defects with a 
long radiative lifetime (for example, 1 μs for Ti substitution of the 
divacancy in hBN), the excitonic effect can change the lifetime by 
several orders of magnitude66. The theoretical radiative lifetimes for 
several proposed SPE candidates in hBN are on the scale of tens 
of nanoseconds, that is, an order of magnitude longer than known 
experimental photoluminescence lifetimes68,69. It is possible that this 
overestimation of lifetime may be either due to the lack of exciton–
phonon coupling in current calculations, which may be important 
at room temperature70, or due to the missing consideration of non-
radiative lifetime, which will affect the photoluminescence lifetime 
and will be discussed next.

Non-radiative lifetime. Non-radiative processes of quantum 
defects in 2D materials are mostly phonon-assisted transitions. 
The multi-phonon emission process is often necessary for energy 
conservation between electronic and phonon energies, especially 
for deep defect levels in 2D wide-bandgap semiconductors. Under 
Fermi’s golden rule, with electron–phonon coupling, non-radiative 
phonon-assisted recombination rates can be expressed by71,72

γ =
2π

h̄ g
∑

m
ωm

∑

n

∣
∣
∣ΔHe−ph

im;fn

∣
∣
∣

2
δ (Eim − Efn) (4)

where ωm is the Bose–Einstein occupation of the vibrational state 
m, and Eim and Efn are the energies of the initial and final vibronic 
states. ΔHe−ph

im;fn  is the electron–phonon coupling matrix element73, 
which has been further simplified using the static coupling approxi-
mation72, where the electronic transition occurs between adiabatic 
eigenstates for fixed nuclear coordinates. Two main issues remain 
in the practical implementation. The first issue is the high cost of 
calculating electron–phonon coupling matrix elements for large 
supercells containing one point defect, which may be mitigated by 
a new variational principle algorithm74. The second issue is the har-
monic approximation for the phonon modes assumed at different 
defect charge states. Several methods have been proposed to address 
this issue, including solving the Schrödinger equation using the 
Fourier grid method along the 1D reaction coordinates75 or taking 
into account the local phonon-mode variations for different charge 
states of a defect with full phonon calculations76. In contrast to 3D 
systems, defects in 2D systems such as hBN experience more domi-
nant defect-to-defect state recombination over defect-to-bulk state 
recombination17. Another unique feature of defects in 2D materials 
is their high tunability of the non-radiative lifetime as a function of 
strain17, as shown in Fig. 5a. The calculated non-radiative lifetime 
of the NBVN defect in hBN (τNR) decreases an order of magnitude by 
1% strain with an expanding strain perpendicular to its C2 axis17 due 
to increased electron–phonon couplings. More importantly, it can 
lower the quantum yield with the relation QY = 1/τR

1/τR+1/τNR . The the-
oretically predicted17 strain signature of NBVN was also validated by 
subsequent experiments, showing a similar redshift in the zero pho-
non line and wider photoluminescence spectra77 (indicating stronger 
electron–phonon coupling, as depicted at the bottom of Fig. 5a).

Another important non-radiative process for spin qubits takes 
place through spin–orbit-mediated singlet–triplet intersystem 
crossing (ISC), as shown by γISC in the many-electron-state diagram 
of a spin defect in Fig. 5b. A rate equation similar to equation (4) can 
be derived for the ISC rate, γISC:

γISC = 4π h̄λ
2X̃if(T), (5)
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where X̃if(T) contains the phonon wavefunction overlap and energy 
conservation between the electronic and phonon states, T is tem-
perature, i and f represent the initial and final states, respectively, 
and λ is the spin–orbit coupling constant, which can be computed 
by time-dependent DFT78. Equation (5) implicitly assumes that the 
spin–orbit coupling constant remains fixed, independent of the 
coordinates of the atoms, analogous to the Condon approximation 
on optical excitation79,80. X̃if  can be further expressed with phonon 
wavefunction overlaps, and then computed with the Huang–Rhys 
approximation79,81 or (recently) with explicit phonon wavefunc-
tions66. The latter method does not require the same phonon fre-
quency for the initial and final defect states, unlike the Huang–Rhys 
method. Excellent agreement with experimental ISC rates of the 
NV center has been obtained by both above methods66,79. All of the 
radiative (γR) and non-radiative (γNR, γISC)2 rates (depicted in Fig. 5b)  
determine, together, the efficiency of spin state initialization and 
quantum information readout through photons. Alternately, non-
radiative rates can be computed using ab initio non-adiabatic 
molecular dynamics with the decoherence-corrected surface-hop-
ping algorithm82,83. This approach was pioneered by the groups of 
Prezhdo and Batista84,85 and has been widely adopted in the quantum 
chemistry community for photochemistry, for example, for excited 
electron relaxation. Within non-adiabatic molecular dynamics, the 
fewest-switches surface-hopping approach within the single-parti-
cle description86,87 is combined with the classical-path approxima-
tion, which assumes a classical equilibrium path and that surface 
hops do not significantly influence the nuclear dynamics. Using 
such methods, strategies to suppress non-radiative recombination 
have been discussed in recent works for defects in 2D materials88,89. 
For example, in WSe2 monolayers, it was found that a W vacancy 
and SeW anti-site defects accelerate charge trapping, which means 
that materials engineering should avoid such defects to properly 
advance the design of WSe2 photoactive devices88. On the other 
hand, in monolayer black phosphorus, defect states do not sig-
nificantly accelerate charge recombination due to the flexibility of  
the material89.

The role of exciton–phonon coupling. For defect properties in 2D 
materials, exciton–phonon coupling may play an important role 

in determining the excited-state geometry, radiative/non-radia-
tive lifetimes and photoluminescence lineshape (Fig. 2). Several 
distinct methodologies for exciton–phonon coupling have been 
developed81,90–93 and successfully applied for relatively simple bulk 
systems81,91–93 or molecules94. Computing excited-state forces by 
solving the BSE has shown promising results for the excited-state 
geometry of small molecules94 and, in principle, is applicable to 
extended systems such as defects in 2D materials (if computation-
ally affordable). Other methods based on many-body perturbation 
theory that solve the BSE on top of the Fan or Debye–Waller self-
energy81,95 or based on exciton–phonon coupling matrix elements 
with perturbation theory at a first-order approximation93 have 
shown success in capturing accurate finite-temperature absorp-
tion spectra and the phonon-assisted photoluminescence lineshape. 
However, for defect-related excited-state properties, anharmonicity 
or multi-phonon processes may be important, beyond a first-order 
approximation. Other important features such as phonon satel-
lites in the strong exciton–phonon coupling regime can be difficult 
to capture using Fan–Migdal and Debye–Waller self-energies96. 
Methods based on finite-difference exciton–phonon coupling91 or 
the stochastic importance sampling Monte Carlo method92, which 
can capture electron–phonon coupling to high orders, may be prom-
ising for treating defects. In particular, the stochastic importance 
sampling Monte Carlo method92 only needs one BSE calculation on 
a single optimal supercell configuration of atomic positions through 
stochastic sampling to obtain temperature-dependent optical spec-
tra, which, in the future, would be computationally more affordable 
than other methods for large supercell defect calculations.

Further challenges in the field
Looking ahead, there are many avenues for future research into 2D 
quantum defects. For example, an important challenge that needs to 
be addressed is the accurate description of strongly correlated states. 
The strong correlation of defect states arises from the interaction 
of defect orbitals with extended defect resonances and band states, 
such as the excited singlet state at the NV center in diamond. These 
strongly correlated states are difficult to treat with methods using 
a single Slater determinant, such as DFT or GW/BSE. Methods 
such as dynamical mean-field theory, quantum Monte Carlo and 
configuration interactions have been proposed to address this, but 
they are computationally expensive for defect supercell calculations. 
Quantum-embedding theory97, which combines the above high-
level theories for selected degrees of freedom (defined by a chosen 
active space, related to spin defects) with mean-field theories for the 
rest of the system98,99, is a promising pathway for balancing accu-
racy and computational cost, and has been applied to a few solid-
state defects such as the NV center in diamond100 and a negatively 
charged B vacancy (VB

−) in hBN23.
Another important challenge is the accurate description of 

excited-state potential energy surfaces and dynamics. Special care is 
needed for complex potential energy surfaces at excited states, with 
dynamical Jahn–Teller distortion and spin–orbital-induced ISC. 
Most available calculations of excited-state geometry have largely 
been computed with constrained DFT with fixed occupation num-
ber, the accuracy of which has yet to be extensively benchmarked 
against higher levels of theory, such as the density-matrix renormal-
ization group101 technique or experimental transient spectroscopy. 
In-depth and comprehensive investigations have been carried out 
for NV centers in diamond and corroborated with experiments102, 
and comparative investigations are in an early stage for 2D defects.

For quantum information applications, the accurate computa-
tion of spin relaxation (T1) and coherence (T2) times for 2D defects 
is essential but challenging. T1 and T2 are critical parameters for 
the stable operation of spin qubits, as it is critical for times to be 
long enough to avoid loss of information. Theoretical predictions 
of these quantities are thus key to the rational design of spin defects 
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Fig. 5 | Photoluminescence spectra and excited-state decay rates 
at quantum defects in 2D systems. a, Strain modification of the 
photoluminescence spectra and non-radiative lifetime (γNR) of the NBVN 
defect in hBN. The non-radiative rate (blue line) is strongly increased by an 
applied strain (blue arrow), and the quantum yield (red line) is decreased 
due to the enhanced non-radiative process. The photoluminescence 
lineshape (L(ω)) as a function of photon frequency ω L from an SPE in hBN 
shows a smaller zero phonon line energy (to the left) after applied strain as 
well as broader spectra (‘After’, blue curve) with reduced intensity77, which 
may be related to the increased electron–phonon coupling (shorter non-
radiative lifetime), as theoretically predicted17. b, The radiative (γR) and non-
radiative (γNR) recombination rates, including triplet–singlet ISC rates (γISC) 
for a spin-triplet defect. Ψ3

0
, Ψ3

1
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 represent the triplet ground state, 

triplet excited state and singlet excited state, respectively.
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(as shown in Fig. 2). At low temperature and with a strong mag-
netic field, spin decoherence is dominated by electron spin–nuclei 
spin interactions, which induce a fluctuating magnetic field. Recent 
developments on combining spin Hamiltonians with first-princi-
ples inputs and a cluster expansion technique were able to provide 
an accurate spin Hahn-echo coherence time T2 that showed excel-
lent agreement with low-temperature experiments for NV centers 
in diamond103. The T2 for spin defects in 2D materials increases 
with a reduction in layer thickness, and this enhancement relative 
to bulk is more prominent at lower nuclear spin concentrations104. 
At elevated temperatures, other effects start to play an important 
role, such as electron–phonon couplings, which cause spin relax-
ation and decoherence through spin–orbit interactions. A recent 
development in relation to spin–phonon relaxation time (T1) with 
the density-matrix formalism established the first-principles frame-
work for the spin relaxation time of general solid-state systems105. 
The T1 due to spin–spin interactions has been computed based 
on Fermi’s golden rule for the NV center in diamond, by combin-
ing a spin Hamiltonian with the effective spin–phonon interac-
tion potential106. Real-time density-matrix dynamics with various 
scattering processes will provide a more complete picture of the 
dominant mechanism under different conditions of temperature, 
external field and impurity concentrations. For defects in 2D mate-
rials in particular, the electron–hole interaction will again be critical 
in relaxation and decoherence processes and, in the density-matrix 
formalism, will require a two-particle density matrix and screened 
nonlocal exchange interactions between an electron and hole. 
Computationally, this is very challenging, yet it is urgently needed 
for the reliable predictions of quantum decoherence for spin defects 
in 2D materials.

Two-dimensional defects can exhibit rich many-body physics 
and, in recent years, they have stimulated active theoretical devel-
opments. First-principles predictions of their electronic, optical and 
spin properties will provide unbiased and unprecedented insights 
for designing new quantum defects and for effectively controlling 
existing ones (such as spin qubits or SPEs), which will be critical 
for emerging quantum information technologies and spin-optoelec-
tronic applications.
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