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Nuclear spin polarization and control in hexagonal
boron nitride

Xingyu Gao', Sumukh Vaidya', Kejun Li?, Peng Ju', Boyang Jiang?, Zhujing Xu',
Andres E. Llacsahuanga Allcca’, Kunhong Shen', Takashi Taniguchi®4, Kenji Watanabe ©5,
Sunil A. Bhave ©®357, Yong P. Chen'3%78, Yuan Ping®° and Tongcang Li®3672<

Electron spins in van der Waals materials are playing a crucial role in recent advances in condensed-matter physics and spintron-
ics. However, nuclear spins in van der Waals materials remain an unexplored quantum resource. Here we report optical polariza-
tion and coherent control of nuclear spins in a van der Waals material at room temperature. We use negatively charged boron
vacancy (V) spin defects in hexagonal boron nitride to polarize nearby nitrogen nuclear spins. We observe the Rabi frequency of
nuclear spins at the excited-state level anti-crossing of V; defects to be 350 times larger than that of an isolated nucleus, and dem-
onstrate fast coherent control of nuclear spins. Further, we detect strong electron-mediated nuclear-nuclear spin coupling that is
five orders of magnitude larger than the direct nuclear-spin dipolar coupling, enabling multi-qubit operations. Our work opens new

avenues for the manipulation of nuclear spins in van der Waals materials for quantum information science and technology.

materials have been a focus of materials research for the last

two decades'. Owing to their weak interlayer interaction,
vdW materials can be readily exfoliated and integrated with dif-
ferent materials and structures*’. Electron spins in vdW materi-
als played essential roles in recent development in spintronics
and condensed-matter physics, including topological insulators®,
two-dimensional (2D) magnets>'’ and spin liquids'"'">. Most vdW
materials also have non-zero nuclear spins, which have applications
in quantum sensing and quantum information processing if they can
be efficiently polarized and coherently controlled'*~*. Nuclear spins
in liquids have been used to perform quantum algorithms with con-
ventional nuclear magnetic resonance (NMR) systems'®. However,
the thermal polarization of nuclear spins is extremely low in realis-
tic magnetic fields at room temperature because of their small gyro-
magnetic ratio'®. Recently, it was theoretically proposed to couple
a 2D lattice of nuclear spins to a diamond nitrogen-vacancy centre
for large-scale quantum simulation'®. However, the achieved cou-
pling has been too weak to use a diamond nitrogen-vacancy centre
to polarize nuclear spins in a vdW material so far'’. To the best of
our knowledge, there is still no report on the efficient polarization
and coherent control of nuclear spins in a vdW material.

Here we report the experimental demonstration of optical polar-
ization and coherent control of nuclear spins in a vdW material. We
utilize the recently discovered boron vacancy (V5) spin defects in
hexagonal boron nitride (hBN)**-* to polarize the three nearest “N
nuclear spins around each V electron spin (Fig. 1). Note that hBN
has a crystalline structure similar to that of graphene but has a large
bandgap typically in the range of 5-6 eV, making it an ideal vdW
material host for optically addressable spin defects'®**-*. So far, the
most studied spin defect in hBN is the V; defect****, which can be

S ince the discovery of graphene, van der Waals (vdW) layered

generated by ion implantation®* and other methods'®*. Note that
V spin defects have a high optically detected magnetic resonance
(ODMR) contrast”, and have been used for the quantum sensing*>*
and quantum imaging of 2D magnetic materials*"*. Different from
diamond that has sparse nuclear spins®, all the atoms in hBN have
non-zero nuclear spins. Because they have longer coherence times
than those of electron spins, nuclear spins are promising resources
for quantum sensing, network, computing and simulation if they
can be polarized and coherently controlled'>**-%°.

In this Article, we optically polarize nuclear spins in hBN at
room temperature using the hyperfine interaction (HFI) between
nuclear spins and V}; electron spins (Fig. 1). Our hBN sample is ion
implanted using 2.5keV helium ions with a dose density of 10" cm™.
Roughly 10° V5 defects are polarized by a tightly focused 532nm
laser. We only consider N nuclei in this work since 99.6% of natu-
ral nitrogen is "N, which has spin 1. We use plasmonic enhance-
ment to speed up optical polarization and readout of Vi spin defects
(Supplementary Fig. 1)¥. The achieved average polarization of the
three nearest N nuclear spins around each V5 spin defect is about
32% near the excited-state level anti-crossing (ESLAC) and is even
larger near the ground-state level anti-crossing (GSLAC). Thus,
these nuclear spins are cooled to less than 1 mK with optical pump-
ing when the environment is at room temperature. With polarized
nuclear spins in hBN, we implement the optically detected nuclear
magnetic resonance (ODNMR). The measured ODNMR spectra
of the three trigonal nearest nitrogen nuclear spins show strong
nuclear-nuclear coupling mediated by electron spins®, which is
10°times larger than the direct nuclear-spin dipolar coupling. We
also perform ab initio calculations®* to support our observations.
Last, we resonantly drive the nuclear spin transition and realize
coherent control of nitrogen nuclear spin states. Remarkably, the
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Fig. 1] Optical polarization of nuclear spins in hBN with V" spin defects. a, lllustration of nuclear spins around a V; defect in a 2D hBN lattice. Both
nitrogen (blue) and boron (green) atoms have non-zero nuclear spins. The electron spin of the V" defect (red sphere) couples to the three nearest
nitrogen nuclear spins via HFI. b, GS electron spin density of a V" defect. ¢, ES spin density of a V~ defect. d, Simplified diagram illustrating the dynamics
of optical spin polarization at ESLAC. The red dashed lines indicate non-radiative transitions and the green solid lines represent optical transitions that
conserve nuclear spins. The grey arrows show the transverse HFI that hybridize the electron-nuclear spin states. e,f, ODMR spectra of V" defects at
ESLAC (e) and in a weak magnetic field far from ESLAC (f). The dashed lines are guides for eyes, showing the expected positions of hyperfine peaks. The
horizontal dashed arrow shows the centre shift under laser excitation with different powers. The microwave power is Py, =5mW.

Rabi oscillation of nuclear spins is enhanced by a factor of about
350 near ESLAC due to HFI. Utilizing hyperfine enhancement, we
achieve megahertz-level fast coherent control of nuclear spins.

Optical polarization of nuclear spins in hBN. As shown in Fig. 1a,a
V5 spin defect is formed by missing a boron atom in the hBN lattice.
The V defect has a spin-triplet ground state (GS) with zero-field
splitting (ZFS) of Dgs=3.45 GHz (ref. *), and a spin-triplet excited
state (ES) with ZFS of Dig=2.1 GHz (refs. *-**). The spin-dependent
state recombination and photon emission allow optical initializa-
tion and readout of the electron spin state (Supplementary Fig. 2).
The V5 electron spin couples to nuclear spins via HFI. As the HFI
with farther nuclear spins is much weaker’', we only consider the
three nearest “N nuclear spins in this work. The spin system of Vg
defects can be described by the same form of the Hamiltonian for
both GS (Fig. 1b) and ES (Fig. 1c and Supplementary Figs. 3 and 4)
using different parameters. The GS (as well as ES) Hamiltonian in
the presence of an external magnetic field B, includes electron spin—
spin interaction (ZFS), electron-nuclear HFI, electron and nuclear
Zeeman splitting, and nuclear-spin quadrupole interaction:

H=D[S:—S(S+1)/3] + . SAJLj+7.BoS:

=123
(1)
- X rabBli+ X QI - L(L + 1)/3).
=123 =123

Here D is the ZFS parameter, S and S, are the electron spin-1 opera-
tors, I, and I; (j=1,2,3) are the nuclear spin-1 operators of the
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three nearest "N nuclei, A, is the HFI tensor, y,=28 GHz T is the
electron-spin gyromagnetic ratio, y,=3.076 MHz T is the gyro-
magnetic ratio of “N nuclear spin and Q; is the quadrupole coupling
constant. The z axis is perpendicular to the hBN nanosheet.

Asshown in Fig. 1d, in a magnetic field corresponding to the level
anti-crossing (about 74 mT for ES and 124 mT for GS), the sublevels
with electron spin m,= —1 approach the sublevels with electron spin
m,=0. The transverse HFI then hybridizes the state |[m,=0,m,) and
state |m,=-1,m;+ 1) (here we denote m, as the total z component
of the three nearest N nuclei). Continuous optical pumping keeps
initializing the electron spin state into the m,=0 state as nuclear
spin m, is conserved. Meanwhile, by means of state mixing, the total
spin state has a chance to evolve into |m,=-1,m;+ 1) in each optical
cycle*. In the ideal case, the spin system is eventually polarized into
an un-mixed |m,=0, m,=3) state.

In the experiment, we use a 532nm laser to polarize nuclear
spins at room temperature and use ODMR to measure the nuclear
spin distribution. First, we use a low-power laser (100 pW) for spin
initialization and readout (Figs. le and 2a), which avoids power
broadening and has a mild effect on nuclear spin polarization. As
a result, the hyperfine structure is clearly resolved and the ODMR
spectrum is almost symmetric around the centre peak (m;=0),
indicating low nuclear spin polarization. When we increase the laser
power, substantial distortion and shift of the ODMR spectrum are
observed at 74mT (Figs. le and 2b), indicating large polarization
of nuclear spins. In contrast, in a 10mT magnetic field, the centre
nearly remains at the same position under different laser-power
excitation levels (Fig. 1f).
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Fig. 2 | Polarization of the three nearest nitrogen nuclear spins. a,b,
ODMR spectrum at ESLAC under laser excitation of 100 pW (a) and

600 uW (b). The experimental data are fit using seven Lorentzian curves
corresponding to m,=+3, +2, +1, 0, =1, =2, —3. The frequency of each
hyperfine peak is obtained from the fitting results using the data of 100 pW,
and does not change for higher laser powers. The centre dashed vertical
line marks the hyperfine peak at m;=0. ¢, Measured average polarization of
the three nearest nitrogen nuclear spins as a function of the magnetic field.
The nuclear spin polarization increases when the magnetic field increases
from 7 to 110 mT. A strong laser excitation (7 mW, red curve) produces a
larger polarization than that with a weak laser excitation (200 pW, blue
curve). d, Nuclear spin polarization as a function of excitation laser power
at ESLAC (74 mT, blue curve) and in a small magnetic field (10 mT, red
curve). The microwave power is Py, =5 mW.

The average polarization of the three nearest *N nuclear spins is
measured as Pep = >_,, mup,, /(3> _,, Py,)> where the summation
is performed over the seven hyperfine peaks in the ODMR spec-
trum. Here p,, denotes the fitted relative population of the m, states
(Fig. 2 and Methods). Figure 2c shows the nuclear spin polarization
P, as a function of magnetic fields. In a weak magnetic field that is

exp
far from ESLAC, P, is small. Around ESLAC, P,,, increases when

the laser power increl:)ases, and reaches 32% under high-laser-power
excitation (6mW) (Fig. 2d). This polarization would require a
magnetic field of about 10°T if they were polarized by thermal
distribution at room temperature. The nuclear spin polarization
increases further and exceeds 50% near the GSLAC. Supplementary
Figs. 5 and 6 provide numerical simulation data of the optical
polarization process.

Optically detected NMR. With polarized nuclear spins, we conduct
ODNMR experiments to gain more insights into the coupled elec-
tron-nuclear spin system in hBN (Fig. 3). We first implement the
electron-nuclear double resonance (ENDOR) technique to obtain
the ODNMR spectroscopy of the three nearest N nuclei (Fig. 3d).
After initializing the system into the |m,=0, m;) state using a 7mW
laser pulse, a selective microwave (MW) =t pulse is applied on the
electron spin to transfer the population to the |m,=-1,m,) state.
Then, we use a radio-frequency (RF) pulse to drive nuclear spin
transitions to change the nuclear spin state from m;, to m’. Finally,
optical readout is performed after applying another MW & pulse
that transfers the population back from |m,=-1,m’) to |m;=0,m’).
The ODNMR spectrum is presented in Fig. 3e. We observe a broad
peak at around 45MHz due to nuclear spin transitions among
the |m,=-1,m,) states. The centre of the peak is close to the HFI
constant A_ =47 MHz. Meanwhile, there is another broad peak at
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around 5 MHz due to nuclear spin transitions among the |m,=0, m,)
states. To confirm our observation, we perform another ODNMR
measurement without the MW pulse as the ‘reference’ (Fig. 3d.e).
Under this condition, the electron spin stays in the m,=0 state after
laser initialization. Therefore, there is no HFI. As a result, the signal
at around 45 MHz in the reference ODNMR spectrum is negligible.
Meanwhile, the magnitude of the peak at around 5MHz increases
because more electron spins stay in the m;=0 state. These results
confirm that the electron spins of V defects are polarized to the
m,=0 state instead of the m =+ 1 states after laser initialization.

We support our experimental findings by modelling the sys-
tem using the full Hamiltonian (equation (1)) that consists of a Vg
electron spin and the three nearest N nuclear spins. Due to HFI
between the three N nuclear spins and electron spin, there are
27 energy sublevels for the m;=—1 branch (Fig. 3c). As presented
in Fig. 3f, these sublevels result in many allowed nuclear spin tran-
sitions over a broad frequency range. This causes broadening in
our measured ODNMR spectrum (Fig. 3g). Our simulated NMR
spectrum agrees well with the experimental results (Fig. 3h and
Supplementary Figs. 7 and 9). With a weaker but longer RF pulse,
we can resolve a narrow peak near 52 MHz (Fig. 3i).

The broad distribution of allowed transitions in ODNMR is
due to the strong nuclear-nuclear coupling mediated by the elec-
tron spin®. These three N nuclear spins are strongly coupled to
the same electron spin via HFI. When the system is far away from
the GSLAC (|Dgs—7.BI> A, A, A,), the effective nuclear-nuclear
spin coupling constant is Cyn = Az |Dgs — 7.B| for the m,=—1
branch, where A,,,=(A,,+A,)/2=68MHz is the transverse HFI
constant (Supplementary Table 1). At 74mT, Cy= 3.4 MHz, which
is 10°times larger than the direct nuclear-spin dipolar coupling
constant dxn = (7, ) 1/(2ran) =34 Hz (Supplementary Fig. 12).
Here p, is the vacuum permeability, = h/(2x) and ryy is the sepa-
ration between two nearest nitrogen nuclei. Further, Cyy is large
near GSLAC, but decreases when the magnetic field is very large:
Cuw=50kHz at 3.3 T. Thus, the profiles of our measured ODNMR
spectra at 74 mT are very different from the results obtained at 3.3 T
using a commercial pulsed electron spin resonance spectrometer
(Supplementary Fig. 9 provides a detailed numerical analysis)*.
Because of the small Cyy in a large magnetic field, the former work
with V spin defects at 3.3 T did not observe nuclear-nuclear spin
interaction®. Our observation of strong megahertz-level nuclear—
nuclear coupling will be important for multi-qubit quantum gates.

Coherent control of nuclear spins in hBN. We now perform
the coherent control of nuclear spins in hBN. For an isolated "N
nucleus, its Rabi frequency is y,/y, =9,110 times smaller than that of
an electron spin, making it challenging to perform coherent control.
However, the Vj electron spin can increase the Rabi frequency of
the nearby nuclear spins by hyperfine enhancement. Because of the
large y./y, ratio, even a slight coupling can lead to large enhancement
in the Rabi frequency’>". We use the m,=—1 electron state because
it gives larger hyperfine enhancement (Supplementary Fig. 11).
We observe Rabi oscillations by performing ODNMR experiments
using a 52 MHz RF drive with a varying pulse length. Figure 4a—c
illustrates the Rabi oscillations of the nuclear spin state under dif-
ferent RF driving powers. By fitting the Rabi oscillation, we estimate
the inhomogeneous coherence time T5, of nuclear spins to be about
3.5 ps at room temperature. This T5, is much longer than the inho-
mogeneous coherence time T, of V}; electron spins, which is about
96 ns (Supplementary Fig. 10). The Rabi frequency shows a good
linear dependence on the square root of the RF power (Fig. 4d). By
comparing the Rabi frequencies of electron spin and nuclear spin,
we find that the Rabi frequency of the N nuclear spin is enhanced
by a factor of 350 at ESLAC, which enables fast coherent control. A
simplified theoretical model predicts the hyperfine enhancement of
nuclear spins coupled to the m;=—1 electron state to be about 420
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Fig. 3 | ODNMR spectroscopy of the three nearest nitrogen nuclear spins. a, Schematic of a V~ defect coupled to three nearest nitrogen nuclear spins.
An external static magnetic field (B) is applied perpendicular to the hBN flake. An RF pulse generates an in-plane a.c. magnetic field that drives nuclear
spin transitions. An MW pulse drives electron spin transitions. b, Energy-level diagram for an electron spin coupled to a nuclear spin in a magnetic field.
The interactions include ZFS, electron-spin Zeeman effect, HFI, quadrupole interaction and nuclear-spin Zeeman effect (Z,)). ¢, Simulated electron-spin
energy levels around ESLAC, which has 27 lines for the m,=—1 branch; h denotes the Planck constant. d, Schematic of the ODNMR pulse sequences.

e, Large-range scan of the ODNMR spectrum. Using the ENDOR sequence, a broad peak at around 45 MHz is observed (red curve), whereas this peak
disappears when there are no MW = pulses (blue curve). f, Simulated nuclear spin transitions. g, More detailed measurement of the ODNMR spectrum
for the m;=—1branch. h, Comparison between the experimental result and numerical simulation, which shows good agreement. i, Isolating a nuclear spin
transition by using a weak RF drive (P = 0.06 W) for a longer duration. The microwave power is Py, = 0.35W. The external magnetic field is 74 mT.

at ESLAC (Supplementary Fig. 11). Thus, the experimental result  with hyperfine enhancement. The polarized nuclear spins in vdW
shows good agreement with the theoretical prediction. materials have potential applications in quantum sensing, network,

In conclusion, we have optically polarized nuclear spins in a  computing and simulation'*~'>*=**. Nitrogen nuclear spins in the
vdW material with intrinsic electron spin defects. By making use of

ESLAC and GSLAC of V5 spin defects in hBN, we are able to polar-

ize the three nearest '“N nuclear spins at room temperature over a  a b
broad range of magnetic fields. Our ODNMR measurements show @ b 035 W g 047 b~ 050W
the NMR spectrum using the intrinsic spin defects of hBN. This 5 05} R B 061 o
. . . o faap; = 0.85 MHz o] frabi = 1.00 MHz

further reveals the strong nuclear-nuclear spin coupling mediated £ e £ 08l .
by electron spin, which could enable multi-qubit operations. We & 1.0 - X 2
also demonstrate megahertz-level coherent control of nuclear spins 2 e 2 1.0
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Fig. 4 | Coherent control of nuclear spins in hBN. a-c, ODNMR contrasts Time (us) Time (us)
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0.35W (a), 0.50 W (b) and 0.80 W (c). The frequency of the RF drive is g0 P -080W §°2
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(c), the Rabi oscillation contains more than one frequency component and o z
the faster oscillation term dominates. d, Rabi frequency as a function % 1or * %
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triangular lattice of hBN are suitable for the large-scale quantum
simulation of different magnetic states', including spin liquids'"'".

Their coherence time can be improved further by reducing the tem-

perature® and engineering strain and isotope compositions**.
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Methods

Sample preparation. Here hBN nanosheets were exfoliated from a high-quality
hBN single crystal synthesized by a high-pressure process to 10-100 nm thickness
with tapes and transferred onto a Si substrate. The sample was ion implanted using
2.5keV helium ions with a dose of 10'*cm~2. Then, the hBN flakes with spin-active
defects were transferred onto the silver co-planar waveguide (CPW) using a stamp
consisting of a thin polycarbonate (PC) film mounted on a polydimethylsiloxane
block on a glass slide. The hBN flakes and PC stamp were aligned and made to have
contact using a micropositioner under a microscope. The temperature was raised
up to 80°C to make hBN flakes adhere to the PC film as it is lifted off the substrate.
Then, a silver CPW was placed on the heater and aligned with the hBN flakes.
After making the PC stamp and CPW come into contact, the temperature was
slowly heated up to 150 °C, which allows the PC stamp to melt and attach onto the
CPW. Finally, we lifted off the glass slide with the polydimethylsiloxane block and
chloroform was used to dissolve the PC from the CPW. All the data shown in the
main text were obtained from the same hBN nanosheet.

Experimental setup and ODMR measurement. All the measurements were
carried out at room temperature using a home-built confocal microscope system.
A 532 nm laser was sent through a 650 nm dichroic mirror and focused onto

the sample using a high numerical aperture (NA =0.9) objective lens with X100
magnification. An acousto-optic modulator (ISOMET, M1205-T110L-1) was used
as a fast optical switch. The photoluminescence was separated from the laser by a
dichroic mirror and the residual laser light was blocked by two 550 nm long-pass
filters. Afterwards, the photoluminescence was coupled into a single-mode optical
fibre and guided to a single-photon counter (Excelitas, SPCM-AQRH). MWs are
generated by a Stanford Research Systems SG386 signal generator. The amplitude
is modulated by two fast RF switches (Mini-Circuits, ZASWA-2-50DRA+) and
then amplified by amplifiers (Mini-Circuits, ZHL-10W-202s, ZHL-16 W-43-S+
and ZVE-6W-83+). As the amplification factor depends on the frequency, we
adjust the input MW power to compensate for this. The MW power measured at
the output port of the CPW is calibrated a few times to minimize the frequency
dependence of power fluctuation. For ODMR measurements, a pulse steamer
(Swabian Instruments, Pulse Streamer 8/2) sends pulses to modulate the RF
switches, signal generator and acousto-optic modulator. A permanent magnet
was mounted on a linear translation stage behind the sample to apply a tunable
external d.c. magnetic field perpendicular to the hBN flake surface. In ODNMR
measurements, another Stanford Research Systems SG386 signal generator is used
to generate the RF signal. Similarly, the amplitude is modulated by two fast RF
switches (Mini-Circuits, ZASWA-2-50DRA+) and then amplified by an amplifier
(Mini-Circuits, LZY-22+). Then, the RF signal is combined with the MW using a
power splitter (Mini-Circuits, ZFRSC-42-S+).

Nuclear-spin polarization fitting. A seven Lorentzian fitting of the ODMR
spectrum gives the population of each nuclear spin state. At low laser power,
seven peaks are clearly resolved, which provide the frequency information of each
hyperfine peak. Under high-power laser excitation, linewidth broadening makes
it hard to resolve each peak. Therefore, we use the known frequencies obtained
from the low-laser-power ODMR to fit the spectrum and determine the relative
population of each nuclear spin state. Finally, the polarization is calculated using
the fitted relative populations of the hyperfine basis states:

Zm,ml/’m,

Pop = ———»
- 3Zm,/}m1

where the summation is performed over all the hyperfine peaks in the ODMR
spectrum.

Ab initio calculation. In this work, we used the open-source plane-wave code
Quantum Espresso (QE)™ and the Vienna ab initio simulation package' to
calculate the hyperfine parameters and compare the results. In the calculations
by the Vienna ab initio simulation package, we used projector-augmented-wave
pseudopotentials with a kinetic-energy cutoff of 500 eV for the wavefunctions.
Atomic forces were converged to 0.001 eV Ain geometry optimization. In the
calculations by QE, we used the projector-augmented-wave pseudopotentials
with a kinetic-energy cutoff of 55 Ry for the wavefunctions, which is sufficient to
converge the hyperfine tensor (A). The default force threshold of 0.001 Ry Bohr™!
was set for geometry optimization. Three supercell sizes, namely, 6 X6x 1,
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8x8x%1and 10X 10X 1, were chosen to ensure the supercell size convergence of
defect calculations. A single k-point (I') was sampled in the Brillouin zone for the
supercell calculations. All the calculations were done with the Perdew-Burke-
Ernzerhof exchange-correlation functional. The excited state was calculated with
constrained-occupation density functional theory calculations. Spin density was
obtained from the spin-up and spin-down difference of the defect-wavefunction
module square. Finally, hyperfine parameters by QE were calculated by using the
QE-GIPAW code.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper. All other data that support the
plots within this paper and other findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The custom codes that support the findings of this study are available from the
corresponding author upon reasonable request.
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