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Abstract

We study helical structures in spin-spiral single crystals. In the continuum approach for the
helicity potential energy the simple electronic band splits into two non-parabolic bands. For low
exchange integrals, the lower band is described by a surface with a saddle shape in the direction
of the helicity axis. Using the Boltzmann equation with the relaxation due to acoustic phonons,
we discover the dependence of the current on the angle between the electric field and helicity axis
leading to the both parallel and perpendicular to the electric field components in the electrocon-
ductivity. The latter can be interpreted as a planar Hall effect. In addition, we find that the
transition rates depend on an electron spin allowing the transition between the bands. The elec-
tric conductivities exhibit nonlinear behaviors with respect to chemical potential pu. We explain
this effect as the interference of the band anisotropy, spin conservation, and interband transitions.
The proposed theory with the spherical model in the effective mass approximation for conduction
electrons can elucidate nonlinear dependencies that can be identified in experiments. We find the
excellent agreement between the theoretical and experimental data for parallel resistivity depend-
ing on temperature at the phase transition from helical to ferromagnetic state in a MnP single
crystal. In addition, we predict that the perpendicular resistivity abruptly drops to zero in the

ferromagnetic phase.



I. INTRODUCTION

Helical spin structures take place in crystals because of relativistic effects that include
spin-orbit coupling and anisotropy energy*** Mathematically equivalent problem occurs in
neutron dynamics in helical magnetic field® Helical structures usually appear in phase dia-
grams along with other phases such as ferromagnetic or antiferromagnetic states, skyrmions,
etc. depending on temperature, magnetic field, and pressure.” They take place, for example,
in a — CuVO7 2 MnSi,*' etc. Bee Eu metals can also exhibit a spin-spiral state® In the
latter case the number of helical layers is n = 7. To understand transport properties in
spin-spiral antiferromagnetic crystals, we use the approach where free conduction electrons

interact with the helical magnetic moments considered in the continuum approximation:#
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where J is an exchange integral between the conduction electrons and localized magnetic
moments, Sy. Here o,, are the Pauli matrices. The helicity period of the localized spin
rotation about the z-axis is 2w /2. The discreet helicity potential in the tight binding ap-
proximation for the conduction electrons was considered in Ref*¥. To explain experimental
data, Hamiltonian may not be sufficient. Fermi surfaces for realistic calculations can in-
clude non-parabolic (k) and multi-band structure where the number of bands depends on
the value of . We use the simplified model to elucidate some effects that could be identified
in experiments. The main purpose of this research is to study transport in helical system
using the semiclassical approach based on the Boltzmann equation where a realistic scatter-
ing mechanism is taken into account. In particular, we consider electron-acoustic phonon
scattering, which becomes spin-dependent in the helical potential energy. In addition, we
prove that there is no a Berry curvature, and therefore, such materials are non-topological.

We also prove that helical systems are insensitive to the chirality.

II. BERRY CURVATURE

It is important to understand whether helimagnets are topological materials causing an
abnormal Hall effect. To find a Berry curvature we use the Hamiltonian that includes

the helicity potential with the screw axis along z-direction. To diagonalize the Hamiltonian,



we use a unitary operator to satisfy the requirement

By direct substitution one can check that the following U fits:
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where ¢(z) is a polar angle for unit vector along the magnetization direction n = (cos ¢, sin ¢, 0).

Using the unitary transformation the Hamiltonian becomes:
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Now we determine the gradient vU:
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Then we find the product UV U as follows:
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In the adiabatic limit we neglect the off-diagonal matrix elements assuming that particle
does not change the band** Using this approximation and the first @ diagonal element we

obtain the following effective gauge field:

h
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As soon as the effective magnetic potential is a gradient, then the curl of it is zero. Thus

the Berry curvature does not produce any effective magnetic field.
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III. ELECTRONIC STRUCTURE

Hamiltonian Hy can be exactly diagonalized using the generalized Bloch theorem ™ This
Hamiltonian was considered earlier in Refs©, We provide the diagonalization procedure
for the reader’s convenience. To diagonalize the Hamiltonian we choose the z-axis along the
helical one. The magnetic moments are in planes perpendicular to the helical axis. The
directions of the magnetic moments are rotating about the helical axis with a period of
na = 27/, where a is the lattice constant. Schrodinger equation can be solved by
the separation of variables. Denoting ¥, = e™=* ¥, = ¢*w¥ and ¥l and ¥} as unknown

variables, where 1 and | signs denote the spin components, we find:
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where |a]? 4 |b]? = 1. Substituting these functions into Eq. we obtain:
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The solution of Eq. (10]) is presented below:
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where corresponds to the lower band and ”+"” to the upper band. The splitting between
bands at k = 0 is A = 2JSp, and helicity energy is defined as e = h?s?/2m. The

coefficients a and b for eigenfunctions are:

a; = 1/4 )
f (s >
(12)
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Then the eigenfunctions become:
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The k,-dependence of a; and b; is shown in Fig. [I For k, > 0 b ~ 0 and a; ~ 1. For

k., < 0b; =~ —1 and a; =~ 0. The intermediate region is about sepe /A.
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FIG. 1. The dependencies of coefficients, (a) spin-up a1 and (b) spin-down by of k, from Eq.

for the lower band.

From the mathematical analysis of the second derivatives of €12, we conclude that there
are two possibilities for the shape of the lower band ¢;: (a) the single minimum curve for
ener < A and (b) the saddle shape along the z-axis for €, > A as demonstrated in Figs.
a and b. In the x,y-plane, the crossection is still a paraboloid. The saddle shape is different
compared to Rashba interaction where £; has a Mexican-hat form*®. The upper band, s,
is always of a single minimum shape. From the Hamiltonian diagonalization, we find the
correspondence between the electron spin state and the k., component of the wave vector.
In the lower band for k, > 0 the spin of the electron is 1 (the red color), and for k, < 0
the spin is | (the blue color). For the upper band, the dependence is the opposite. In the

vicinity of k, ~ 0, there is a spin mixture.
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FIG. 2. Conduction electron energy bands in the k. direction for (a) epe; < A and (b) epe > A.

The red and blue colors correspond to the spin-up and spin-down states, respectively.

IV. CHARGE TRANSPORT

In this work we demonstrate that the transition rates are non-diagonal in 2D band space
resulting in the transitions from one band to another. This effect is essential to explain the
nonlinear behavior in current component perpendicular to the electric field. The main goal
of this section is to determine transport properties in helical spin-structures. To do this, we

use the semiclassical approach based of the nonequilibrium Boltzmann equation:1*

%eE ZZ ( kk:’fl (k') — Wyw k1 (k)> : (14)
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The transition rates Wy = (27/h) ‘<k3’1/ Ve_ph ku>‘ d(e, (k) — e (K')), fois the equi-

librium Fermi distribution function, f; is the nonequilibrium part of the total distribution

function, F is an applied electric field, and v is an electron velocity. Index v denotes an
energy band number (v = 1,2). Bearing in mind that the system is a metal with no impuri-
ties of any kind, the electron scattering, in this case, results only from the electron-acoustic

phonon interaction:

‘A/e—ph ~ -V <ﬁcrys + ﬁhel) s u. (15>

The same approach is valid for crystals with complex unit cell. Despite the presence of

optical phonons, they do not contribute to the relaxation rates because the optical phonon



frequency is higher than the temperatures considered in this work. For example, the esti-
mated phonon energy in MnP is hv = 0.0124 eV or 144 K > T = 69 K™ ]:Ic,,ys and Hj
are defined in Eq. . The atom displacement, u, can be expressed in terms of the phonon
normal coordinates*” In Appendix we have presented the derivation of the 2D transition
rate matrices with the nonvanishing off-diagonal elements. ,g,’;,’ can be analytically derived.
For calculations, we have used the Debye approximation where wp = vg (67%/Q0), v is a
velocity of sound, and € is a unit cell volume. We have chosen a Eu metal for numerical es-
timation where v, = 1860 m/s and Qg = 0.1nm?. The sound velocity, v, has been estimated
using the value of the Young modulus taken from Ref'. According to Ref™, we employ
the elastic scattering approximation for the numerical calculations where the transition rate

matrix elements are given by the following equations:
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where phonon wave vector ¢ = k' —k and K|, is determined by Eq. . K, corresponds
to k' = k — q and differs only in the sign in K/ ,.

P2 (0 ew) (0" ()0 () 07 ()07 (K)). (17
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Here a” and b” are determined by Eq. and

1

(Ngj) = ey (18)

It is important to note at this point that for v # v/ K, # 0. To solve the Boltzmann

v/
equation with the electron-acoustic phonon scattering matrix, we have written the
original codes where we have employed the nonuniform mesh.?Y The delta function was
evaluated numerically as the Gaussian-shape function with very small width compared to
the mesh size. Then, we have numerically calculated the 3D integrals to determine the
matrix elements. The main challenge is in computing the 3D integrals with the sharp o-

function. As soon as f; has been found, we have determined the parallel and perpendicular

conductivities assuming the angle between the z-axis and the electric field to be 6. As shown
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in Ref?!, the parallel and perpendicular to the electric field components of electric current

for an anisotropic crystal can be expressed as follows:
Jii = Joy + Js cos (26), J1 = Jj3sin (20). (19)

In these equations, the parallel component has the angle-independent part, o) which, as
follows from the calculations, is much greater than the amplitude j5. Moreover, from the
symmetry of the system in the x, y-plane, the angle-independent part of the perpendicular
component, similar to jg,, vanishes. Because of the time-reversal symmetry, (k) = ¢(—k),
the angular dependence is 26 instead of 6. The results of the calculations for electric con-
ductivities are presented in Figs. B and [f] In this figures we study the conductivity versus
chemical potential. The change in chemical potential can be implemented in experiments
by the change of gate voltage applied in the y-direction. To avoid additional scattering
mechanism due to charge impurities, we exclude doping as other way to change chemical
potential. The lower energy band, 1, with the single minimum is depicted in Fig. while
the case with the saddle shape for €, is presented in Fig. 2b. In Figs. [§land [5] the parallel
and perpendicular conductivities depend on chemical potential p (see the red curves) for
0 = m/4. For better understanding the nature of the transitions in the scattering rate matrix
W within the same energy band and between the bands, we introduce the auxiliary model
where we allow the transitions to take place only between the states within the same energy
band. The spin-dependence is not considered either. Such a procedure allows us to exclude
the interference due to the spin dependence within a single band. As shown in Fig. [2], the
transitions within one band from k, > 0 to k, < 0 are practically forbidden except the
states lying in the vicinity of k, = 0. Indeed, (a” (k)a” (k') +b" (k)b (k') in Eq. (17)
is a scalar product of the spin states with k and k’. For larger k., these states are either
(1,0) (k. > 0) or (0,1) (k. < 0). Then, the product, a” (k)a” (k') + b” (k)b (k') = 0,
resulting in W% = 0. Thus, the active phase volume for the electron scattering is reduced
approximately by a factor of 2, resulting in greater conductivity, as shown in Fig. [Bh. The
insertion in Fig. demonstrates the sharp minimum in doy/dpu.

From the analysis of Eq. , we find that the effective masses for both bands become
anisotropic. Indeed, m, > m corresponds to the lower band and m, < m is for the upper
band. The anisotropy of the bands is schematically depicted in Fig. In the case of the

band anisotropy, it was proven in Ref*!' that the current has a perpendicular component if



— o), with spin interference (@) (b) — o, with spin interference
— o), without spin interference 0.5k — o, without spin interference ||
20 | .
0 /
~ 15}
=
8
& 10l
Bl N=7,T=70K -
JSo =0.19 eV, m =0.5m,,
0 ! ! ! ! ! 2 ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

u(ev) u(ev)

FIG. 3. (a) Parallel and (b) perpendicular conductivities for exe; < A (the single minimum lower
band). The blue curves represent the conductivities for the spin-independent scattering and vanish-
ing transitions between the bands and the red curves demonstrate the results of the full calculations.

The insertion for the parallel component demonstrates doy/dp.
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FIG. 4. Energy surface cross-section in k;, k., plane for the lower band. 6 is an angle between the
applied electric field and the z-axis. The red and blue colors correspond to spin-up and spin-down

states, respectively.

the angle between z-axis and an electric field is nonzero (see Eq. (19)).

For the perpendicular component of the electric conductivity (see Fig. [3b), we find
the similar dependencies. Indeed, the current initially grows in amplitude. However, the
direction of the current is negative, i. e., leaning towards the z-axis because m, < m..
The similar behavior is observed for ¢, in the auxiliary model for low energies. Such
a dependence in the vicinity of k, = 0 can be explained by the transitions between the

electronic states where the wavefunctions are the linear combinations of the spin-up and



spin-down states. In this case, the active region of the k-space is the same for both models.
Then, the dependencies strongly diverge. For the general model (the red curves in Fig. |3)),
the amplitude of o, decreases while for the auxiliary model the trend toward the greater
negative values continues (the blue curve). It happens because in the realistic model, the
half of the phase volume becomes unavailable for the electron scattering. When p reaches
the bottom of the upper band (it is about 2.2 eV in Fig. Bh), there is a drop in o, and
the slower growth in o) (see the insertion in Fig. for the derivative). We explain the
slow down in growth by the interband transition of the carriers with high velocities from the
lower band (e7) to the electronic states of the upper band (e2) where the electron velocities
are small, and therefore, slightly contributing to the total current. It is important to note
that the peak or plateau in o, and o) (the red lines) are the result of the nondiagonal
transitions in the scattering rate matrix 1. Indeed, when these transitions are omitted (the
blue curves), we do not find any peaks. The perpendicular component changes the sign

leaning towards the z-axis with the inclusion of the upper band carriers (m. < m,).
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FIG. 5. (a) Parallel and (b) perpendicular conductivities for e, > A (the saddle shape case).
The blue curves represent the conductivities for the spin-independent scattering and vanishing
transitions between the bands and the red curves demonstrate the results of the full calculations.

The insertion for the parallel component shows do /dp.

The perpendicular component o behaves in the similar way as shown in Fig. [Bb. The
minimum in ¢, (Fig. [5p, the red curve) can be explained by the saddle point in & (k).
In this case the transitions within ; take place from higher k. to the lower ones close to
the saddle point. When the electron states are close to the saddle point, the velocities of

electrons are very small and therefore, slightly contribute to the electric current. This is the
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reason why we find the drop of the absolute value of o,. The same behavior is observed for
the auxiliary model. The existence of the maximum is the result of the switching on the
upper band 5. Then, we find a very unusual dependence where o, described by the red
curve, is very small in amplitude compared to the blue curve in the auxiliary model. Indeed,
at large k.s (epeh?k?/2m > A?/4) it is possible to approximate

72
2m

£ (k2 + K2+ (k. £ 3/2)%) (20)

¢~
2

resulting in the nonadiabatic basis set. These parabolas are depicted in Fig. as (1, 3)
and (2, 4), where the spin on each parabola is conserved. In the nonadiabatic basis set the
transitions take place within each parabola. For each nonadiabatic curve in Eq. there
is no anisotropy. In this case j; in Eq. is close to zero explaining the red curve behavior
at large p. For the auxiliary model, the basis set is still adiabatic, i. e., only transitions
(1-4) and (2-3) take place. The original bands ((1-4) and (2-3)) are highly anisotropic and
therefore, the perpendicular component is much greater.

We have found no chirality in helical systems because the transition rates are the even
functions with respect to s, i. e., j(+3) = j(—s). However, insensitivity to chirality is
a direct consequence of the inversion symmetry of the system. In systems with broken
inversion symmetry it is not applicable. This general statement has also been numerically

verified.

V. TEMPERATURE DEPENDENCE

The proposed theory allows to study the temperature dependence of conductivity. For
the calculations, we have chosen the temperature to be 7" ~ 69 K. We do not consider
very low temperatures because in a realistic situation other scattering mechanisms such
as scattering by impurities, will prevail over the electron-acoustic phonon scattering. At
higher temperatures, there might be a phase transition into another phase state rather than
a helical one. The temperature comes into the electron Fermi distribution function in the
expression for the electric current. Besides the Fermi distribution function, there is the
phonon Bose-Einstein distribution that appears in the transition rate expression due to the
acoustic phonons (see Appendix). At 7' = 69 K (the high temperature limit for bosons),
W ~ T, consequently, o ~ 1/T or p; ~ T"*
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FIG. 6. Parallel conductivity for e, < A with respect to the free electron density. The blue
curve represents helical magnetic structure and the red curve represents ferromagnetic material.

JSy=0.2eV, m" =0.5m., N =7, kgT = 0.006 eV.

There are some experimental data where it is possible to check the proposed theory at
structural phase transitions from helical to ferromagnetic state. Indeed, such transitions take
place in (a) MnP, T, = 50 K#23 (b) YMngSng, T. = 333 K#, and (c) MnCoSi, T, = 110
K4 In case (a) there is the observable discontinuity in the conductivity, while in cases (b)
and (c) there are the slope changes at the transition temperatures. The theory proposed
above is able to explain such nonanalytic behaviors in o(7"). Such effects are demonstrated
in Fig. [6] In this graph, o is shown with respect to the number of electrons rather than
chemical potential y. It is important to note that at phase transitions the chemical potential
can have discontinuity due to the change of effective mass, and therefore, it is not a proper
parameter to describe the conductivity dependencies. The quantity that is conserved at
phase transition is electron concentration. As shown if Fig. [6] there are three possible cases
where at the fixed number of electrons the conductivity change takes place as a discontinuity
with a positive (case 3) or negative (case 2) value or remains the same (case 1). In the latter

case we assume that the temperature dependencies will provide the slope change in o (7).

In Fig. [7h and b, we demonstrate the temperature dependence of the parallel and perpen-

dicular components of the resistivity at the phase transition from helical to ferromagnetic
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states for MnP, respectively (7. ~ 50 K).2* For the calculations we have chosen the following
values of the parameters: JSy = 0.02 eV, m* = 0.5m., n = 2 x 10*® cm™3, the period of the

spiral is 9 lattice constants.

25 j 2
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FIG. 7. Temperature dependence of resistivity, (a) parallel and (b) perpendicular to the electric
field components. The red and blue curves are theoretical and the black curve in (a) is experimental
(see Ref2). JSy = 0.02 eV, m* = 0.5me, n = 2 x 1018 cm™3, the period of the spiral is 9 lattice

constants.

As shown in Fig. [7h, the experimental (the black curve) and calculated (the red and blue
curves) temperature dependencies of the resistivity are in very good agreement. At T, ~ 50
K we observe a discontinuity in the calculated dependencies and smoothened discontinuity
in experimental (black) curve. Along with the explanation of the experimental data, we have
predicted the temperature dependence of the perpendicular component for the same values
of the parameters (see Fig. ) In the helical phase we observe the growing resistivity,
which abruptly vanishes at the phase transition. The perpendicular resistivity is absent in
the ferromagnetic state because of the spherical symmetry of ¢ (k) in the model. According
to Ref?! the physics of perpendicular component is related to the existence of anisotropy,
or absence of spherical symmetry in (k) (see Eq. (11)). Indeed, the violation of spherical
symmetry occurs in the k, direction in the helical state. Besides the rigorous mathematical
proof the absence of transverse component can be understood from the spherical symmetry
of (k) in the ferromagnetic case where the lack of specific direction perpendicular to the

electric field eliminates the transverse current.
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VI. CONCLUSIONS

In this research we propose the theory to study transport properties of helimagnets. The
system is described by Hamiltonian with free electron potential for conduction electrons.
In general, such an approximation may not be sufficient for the complete explanation of
experimental dependencies. Indeed, we have assumed a single spherical band where the
realistic and anisotropic multi-band picture is not considered. We study only electron-
acoustic phonon interaction as a scattering mechanism while there may be electron-magnon
scattering that has not been considered in this research. Nevertheless, the theory allows for
the explanation of the already found effects and prediction of the perpendicular to the field
electric conductivity where maxima and minima with respect to p can be found. We have
discovered that the Berry curvature vanishes indicating that symmetric helimagnets are not
topological materials. As a result of the helicity potential, the band splits into the two
bands## described by Eq. where the lower band can be either single-minimum curve
for epe; < A or a saddle shape for e, > A (see Fig. . These bands are anisotropic resulting
in the origin of the perpendicular component of the electric currents according to Eq. . If
we identify the transverse component of the current as a Hall effect where the magnetic field
is represented by the helicity direction (z) we might say that the transverse electric current
component can be interpreted as a planar Hall effect.?® We have proven that the electron
scattering by the acoustic phonons allows for the transitions between the electronic bands
with the spin-dependent transition rates. Both electric current components reveal nonlinear
behaviors with respect to u as demonstrated in Figs. [3 and [}l The change in chemical
potential can be implemented in experiments by the change of gate voltage applied in the
y-direction. To avoid additional scattering mechanism due to charge impurities, we exclude
doping as other way to change chemical potential. The perpendicular to the electric field
electroconductivity exhibits the unusual dependencies. Such behaviors have been explained
in terms of the anisotropy mass model combined with the k-space restricted by the spin
conservation. The proposed theory is capable of the explanation of the nonanalytic behaviors
in some materials where discontinuities and slope changes in conductivities take place at
phase transitions from helical to ferromagnetic states.?225 Indeed, as shown in Fig. [7 we
have found the excellent agreement between the experimental and calculated dependencies

of the parallel to the electric field resistivity at the phase transition for MnP at T, ~ 50 K.
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In addition, we have predicted the abrupt behavior of the perpendicular resistivity, which

drops to zero in the ferromagnetic phase.
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APPENDIX

To solve the Boltzmann equation, we need to find transition rates W, which are deter-

mined as follows: 1~
174 2
= (21 /h) [k, VN | AV [k, v, Ngj )| 6 (20 (k) — e (), (A.21)

where v and v/ denote band indecis (v = 1,2).The electron scattering is determined by the
interaction of electrons with acoustic phonons.

For the matrix element

(K'.v',N_;| AV |k, v, Ngj) | (A.22)

we denote k as an electron wave vector, and Ng; is phonon population number with the

wavevector ¢ and the branch j. For electron wavefunctions, we select the adiabatic basis

set determined by Eq. . Expression (A.22]) allows the transitions between the bands
(v #1).
The linear expansion with respect to the lattice vibrations of the total potential energy

that includes the crystal and helicity terms yields:

AViy = Vg (r) = Vig (1 +u) = —uVVy,

1

!/

iqr * _—iqr (A23)
\/NMZ eqj (agie®" + ag;e™ ") ,

qj

u =

where s, s’ are the spin projection indices. The displacement wu is presented in terms of

the normal coordinates. For acoustic phonons, M is a mass of the unit cell, 7/’ means
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that summation takes place only over the half of the Brillouin zone, V' is the potential of
the unperturbed lattice, and AV is perturbed potential in linear expansion.*” The matrix
element can be presented in terms of the phonon normal coordinates in the following
way:

(K',V/,N.;| AV |k, v, Ng;)

1 ’ / . .
— Vi 0, N(VV) - ] _igr * ,—iqr
N ;s/ / [ ke (1) |qj| N, (Qqi) (VV) %j eq; (aqie'™ + ag;e ") (A.24)

X s (1) H Wiy, (qu)] dr H dQg;-
aj aj

In this expression, d7 is the infenitesimal volume in the electron coordinates, )4; are normal
phonon coordinates, e4; is a phonon polarization vector, and ¥, (r) = ug, (r)e*" are
electron and ¥y, (Qg;) are phonon wave functions, respectively. The integration in Eq.

(A.24]) can be performed for the electron coordinates and the phonon coordinates separately:

(K'.v',No;| AV |k, v, Ngi)

1 T 1 X / /
TN > { N e /(Vv)ez(k“’_k Tugt (r) ug, () dT}

X / H\If + (Qqy) agy H U, (Qqj) Hquj] (A.25)

1 . / !
+ Ne'n . /(VV)ez(k_q_k )"’uzlz, (r)ug, (1) dT:|

X /H‘If* . (Qaqj) ag; H U, (@) Hqua‘] }7

The expressions in the first, second, third, and forth brackets are denotes as K ,, L, K ,,

and LT, respectively. For L, using quantum oscillator properties for lowering and raising

operator, we find non-vanishing matrix elements for L and L*:

hNg;
L = (Ngj — 1 aq; | Ng;) = ﬁ,
v (A.26)
h(Ngj +1)
LT = (Ngj + 1| ag; |Ng;) = #-
qj

For the electron coordinate integration:

1 . , . , ,
Ky = oStk [ahra i ey, Vi (1)t ()l (r) dry - (A20)

16



From the detailed analysis it can be proven that Vi, (1) u%, (r) u%, (r) is a periodic function

with respect to the unit lattice vector.

The summation over n in Eq. (A.27) yields the momentum conservation: k' = k + g,

resulting in
Ky =Y [ (6w OV ()t ) i (r) (A28)

where the integral is taken over a unit cell volume. The gradient in the Eq. (A.28) can be

presented in the following way:

K =% [ a9V ()t () e ()
:Zeqj /V UZkUZ//;:,/V;/S> dTO—Zeqj '/‘/ZGISV (u‘s’ku;’:,:,> dT(),

(A.29)

where k' = k 4+ g. The first integral in (A.30) can be presented as a surface integral and

vanishes because of the periodicity of the integrand. Then,
== Few: [ Va9 (i) (A.30)

Using the k - p representation for u%, and u%j, we arrive for the following equations for

u-functions:

7“12 h?
__V uly, + Vig () ufy, + Vi (r) uly — Z_k -Vl

hQ N hQ h2/€2
g T Vi (P Vi () = e Wt = (& ) = B

(A.31)

% % y
__V2UTk/ + ‘/TT< )U/Tk/ + VN(( )U\Lk/ —+ Z k VuTk:/ = <€ (k:l) —

2

h 2 * v h v 1. h2k"? v

Vi(r) = Vi (r) and V| (r) = V}4(r) because V is a Hermitian operator. Multiplying
the first equation in 1' by egq; - Vu?}c*,, the second one by egy; - Vui;c*/, the third one by

€eqj - Vufy, and the forth one by eq; - Vul, adding them up with the successive integration

17



over unit cell, we obtain:

!
€eqj E /VS/SV (uzkug,;;,) dry =
s,s’

5 i (o ) P o ] -

— 2%2 [(eqj Vusk/> (k- Vug,) — (eq; - Vuy,) (k Vu 3’“')] a

v h2k2 v x v v/ h2k/2 v v x
(#0550 ) (e vty utor (2 ()= ) (e vt ] |

Due to periodicity of the integrands and using the Gauss’ theorem, we transform Eq.

(A.32)

(A.32) into a simpler form:

K, =— Zzh—Q(k k) - / (Vuty) (eq - Vulit ) dry

m

h2k2 h2 k/2 (A33>
!/ 14
_E { v (k) — <2m_2m)]/u5k<eq] Vu )d’TQ
We use the representation of u%, in terms of the Bloch periodic functions
uf(r) = a”(k,)ug_ze. (T e”%z,
1(1) = a”(k2) g ze.(7) (A.34)

() = 0 (k. )ng ge, (r)e ™27,

where a” and b” are found in Eq. . It is important to note that uy is weakly dependent
on a k-vector. Indeed, in the free electron approximation employed in this work @ = 1/+/€,

where () is the unit cell volume. Then, we find the following expression for K ,:

vv!:

2

K+ =i 1(q e (a” (k) a” (k') + " (k)b (k:’)> / \Vil? dro

m 3
+ %qzeqﬁ (a” (k) a” (K') + b (k)b (k/>> (A.35)
— i e - ) - (o )| (e 0y )~ )0 k)

K, corresponds to k' = k — q and differs only in the sign in K ,.
For estimations [ |Vul”>dr ~ 1/a?, where a is the lattice constant. In the continuum
model for the helicity potential sa/2m < 1. Therefore, the second and the third terms in

Eq. (A.35) can be neglected. Finishing up the electron part we obtain that:

hz 2
K, =i
vy ZQmCL23

(q-eq)) (a” (k)a” (K') + b (k)b (k')) . (A.36)
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Substituting Eq. (A.36)) into the equation for the matrix element (A.25)), we find:

1 |hN,,;
K.V N,,—1AV |k, v, N,) = — KT, <t A.
< 71/7 q | V| 7V7 q> \/W 142% 2wq Y ( 37)

1 _ [A(Ng; +1)
k' Vv N,,+ 1AV |k .v,N,) = — Ko —2 A.
< ’Vy qr + | V| 71/) q’L> \/W vy 2wq ) ( 38)
where
1
(Ngj) = ——— (A.39)
efsT — 1

is the Bose-Einstein equilibrium distribution function. As soon as transition matrix ele-

ments (A.37)) (A.38)) are determined, we substitute them into the scattering rates (A.21]) for

the successive solution of the Boltzmann equation. It is important to note that W, is a

nondiagonal matrix allowing the transitions between the bands.

’ 2 1o / /
Wy = % (K N AV ke, v, N )| 6(ei(k) — e (k')

_ 2m 1 hNQj + |2 , b

R K2 6(2, () — 2 (K))S(K — K — q) A10)
2r 1 h(N_gi+1),,._ 2 / /
f NM zw_q ‘KVI/’ 6<8V(k) gy’(k: ))5(k k -+ q)7

where ¢ = k' — k and K, and K, are determined by Eq. (A.36). These transition

probabilities are used to solve the nonequilibrium Boltzmann equation.
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