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Abstract

We study helical structures in spin-spiral single crystals. In the continuum approach for the

helicity potential energy the simple electronic band splits into two non-parabolic bands. For low

exchange integrals, the lower band is described by a surface with a saddle shape in the direction

of the helicity axis. Using the Boltzmann equation with the relaxation due to acoustic phonons,

we discover the dependence of the current on the angle between the electric field and helicity axis

leading to the both parallel and perpendicular to the electric field components in the electrocon-

ductivity. The latter can be interpreted as a planar Hall effect. In addition, we find that the

transition rates depend on an electron spin allowing the transition between the bands. The elec-

tric conductivities exhibit nonlinear behaviors with respect to chemical potential µ. We explain

this effect as the interference of the band anisotropy, spin conservation, and interband transitions.

The proposed theory with the spherical model in the effective mass approximation for conduction

electrons can elucidate nonlinear dependencies that can be identified in experiments. We find the

excellent agreement between the theoretical and experimental data for parallel resistivity depend-

ing on temperature at the phase transition from helical to ferromagnetic state in a MnP single

crystal. In addition, we predict that the perpendicular resistivity abruptly drops to zero in the

ferromagnetic phase.
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I. INTRODUCTION

Helical spin structures take place in crystals because of relativistic effects that include

spin-orbit coupling and anisotropy energy.1–7 Mathematically equivalent problem occurs in

neutron dynamics in helical magnetic field.8 Helical structures usually appear in phase dia-

grams along with other phases such as ferromagnetic or antiferromagnetic states, skyrmions,

etc. depending on temperature, magnetic field, and pressure.9 They take place, for example,

in α− CuVO7,10 MnSi,11 etc. Bcc Eu metals can also exhibit a spin-spiral state.12 In the

latter case the number of helical layers is n = 7. To understand transport properties in

spin-spiral antiferromagnetic crystals, we use the approach where free conduction electrons

interact with the helical magnetic moments considered in the continuum approximation:3,4,6

Ĥ0 = Ĥcrys + Ĥhel =
~2k2

2m
− JS0 (σx cos(κz) + σy sin(κz)) =

~2k2

2m
− JS0σ̂ · n (r) , (1)

where J is an exchange integral between the conduction electrons and localized magnetic

moments, S0. Here σx,y are the Pauli matrices. The helicity period of the localized spin

rotation about the z-axis is 2π/κ. The discreet helicity potential in the tight binding ap-

proximation for the conduction electrons was considered in Ref.13. To explain experimental

data, Hamiltonian (1) may not be sufficient. Fermi surfaces for realistic calculations can in-

clude non-parabolic ε(k) and multi-band structure where the number of bands depends on

the value of µ. We use the simplified model to elucidate some effects that could be identified

in experiments. The main purpose of this research is to study transport in helical system

using the semiclassical approach based on the Boltzmann equation where a realistic scatter-

ing mechanism is taken into account. In particular, we consider electron-acoustic phonon

scattering, which becomes spin-dependent in the helical potential energy. In addition, we

prove that there is no a Berry curvature, and therefore, such materials are non-topological.

We also prove that helical systems are insensitive to the chirality.

II. BERRY CURVATURE

It is important to understand whether helimagnets are topological materials causing an

abnormal Hall effect. To find a Berry curvature we use the Hamiltonian (1) that includes

the helicity potential with the screw axis along z-direction. To diagonalize the Hamiltonian,
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we use a unitary operator to satisfy the requirement

Û † (σ̂ · n) Û = σ̂ · ez. (2)

By direct substitution one can check that the following Û fits:

Û =
1

2

 1 e−iϕ

eiϕ −1

 , (3)

where ϕ(z) is a polar angle for unit vector along the magnetization direction n = (cosϕ, sinϕ, 0).

Using the unitary transformation the Hamiltonian becomes:

Û †ĤÛ =
Û †p2Û

2m
− Jσz =

(
Û †pÛ

)2

2m
− Jσz

=

(
p− i~Û †

(
∇Û

))2

2m
− Jσz.

(4)

Now we determine the gradient ∇Û :

∇Û =
i

2

 0 −e−iϕ

eiϕ 0

∇ϕ. (5)

Then we find the product Û †∇Û as follows:

Û †∇Û =
i

4

 1 −e−iϕ

−eiϕ −1

∇ϕ (6)

In the adiabatic limit we neglect the off-diagonal matrix elements assuming that particle

does not change the band.14 Using this approximation and the first (6) diagonal element we

obtain the following effective gauge field:

A↑↑ = Aad =
~
4e

(∇ϕ). (7)

As soon as the effective magnetic potential is a gradient, then the curl of it is zero. Thus

the Berry curvature does not produce any effective magnetic field.
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III. ELECTRONIC STRUCTURE

Hamiltonian Ĥ0 can be exactly diagonalized using the generalized Bloch theorem.15 This

Hamiltonian was considered earlier in Refs.3,4,6. We provide the diagonalization procedure

for the reader’s convenience. To diagonalize the Hamiltonian we choose the z-axis along the

helical one. The magnetic moments are in planes perpendicular to the helical axis. The

directions of the magnetic moments are rotating about the helical axis with a period of

na = 2π/κ, where a is the lattice constant. Schrodinger equation (1) can be solved by

the separation of variables. Denoting Ψx = eikxx, Ψy = eikyy, and Ψ↑z and Ψ↓z as unknown

variables, where ↑ and ↓ signs denote the spin components, we find:

− ~2

2m

(
Ψ↑z
)′′
zz
− JS0e

−iκzΨ↓z = εzΨ
↑
z,

− ~2

2m

(
Ψ↓z
)′′
zz
− JS0e

+iκzΨ↑z = εzΨ
↓
z,

(8)

where εz = ε (k)−
(
~2k2

x + ~2k2
y

)
/2m. Then we present

Ψ↑z = aeikzze−i
κ
2
z, Ψ↓z = beikzzei

κ
2
z, (9)

where |a|2 + |b|2 = 1. Substituting these functions into Eq. (8) we obtain:

a
~2

2m

(
kz −

κ
2

)2

− bJS0 = aεz,

b
~2

2m

(
kz +

κ
2

)2

− aJS0 = bεz,

(10)

The solution of Eq. (10) is presented below:

ε1,2
z =

~2k2
z

2m
± ∆

2

√
1 + 4

εhel
∆2

~2k2
z

2m
+
εhel
4
, (11)

where ”-” corresponds to the lower band and ”+” to the upper band. The splitting between

bands at k = 0 is ∆ = 2JS0, and helicity energy is defined as εhel = ~2κ2/2m. The

coefficients a and b for eigenfunctions are:

a1 = b2 =
1√
2

√
∆
2

√
1 + 4 εhel

∆2

~2k2z
2m

+ ~2
2m

κkz√
∆
2

(
1 + 4 εhel

∆2

~2k2z
2m

)1/4
,

a2 = −b1 = − 1√
2

√
∆
2

√
1 + 4 εhel

∆2

~2k2z
2m
− ~2

2m
κkz√

∆
2

(
1 + 4 εhel

∆2

~2k2z
2m

)1/4
.

(12)
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Then the eigenfunctions become:

Ψ1 =

a1 (kz) e
−iκz

2

b1 (kz) e
+iκz

2

 eik·r,

Ψ2 =

a2 (kz) e
−iκz

2

b2 (kz) e
+iκz

2

 eik·r.

(13)

The kz-dependence of a1 and b1 is shown in Fig. 1. For kz > 0 b1 ≈ 0 and a1 ≈ 1. For

kz < 0 b1 ≈ −1 and a1 ≈ 0. The intermediate region is about κεhel/∆.

FIG. 1. The dependencies of coefficients, (a) spin-up a1 and (b) spin-down b1 of kz from Eq. (12)

for the lower band.

From the mathematical analysis of the second derivatives of ε1,2, we conclude that there

are two possibilities for the shape of the lower band ε1: (a) the single minimum curve for

εhel < ∆ and (b) the saddle shape along the z-axis for εhel > ∆ as demonstrated in Figs. 2

a and b. In the x,y-plane, the crossection is still a paraboloid. The saddle shape is different

compared to Rashba interaction where ε1 has a Mexican-hat form16. The upper band, ε2,

is always of a single minimum shape. From the Hamiltonian diagonalization, we find the

correspondence between the electron spin state and the kz component of the wave vector.

In the lower band for kz > 0 the spin of the electron is ↑ (the red color), and for kz < 0

the spin is ↓ (the blue color). For the upper band, the dependence is the opposite. In the

vicinity of kz ' 0, there is a spin mixture.
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FIG. 2. Conduction electron energy bands in the kz direction for (a) εhel < ∆ and (b) εhel > ∆.

The red and blue colors correspond to the spin-up and spin-down states, respectively.

.

IV. CHARGE TRANSPORT

In this work we demonstrate that the transition rates are non-diagonal in 2D band space

resulting in the transitions from one band to another. This effect is essential to explain the

nonlinear behavior in current component perpendicular to the electric field. The main goal

of this section is to determine transport properties in helical spin-structures. To do this, we

use the semiclassical approach based of the nonequilibrium Boltzmann equation:17

∂f0

∂ε
eE · vν =

∑
ν′

∑
k′

(
W νν′

kk′f ν
′

1 (k′)−W ν′ν
k′kf

ν
1 (k)

)
. (14)

The transition rates W νν′

kk′ = (2π/~)
∣∣∣〈k′ν ′∣∣∣ V̂e−ph ∣∣∣kν〉∣∣∣2 δ(εν(k) − εν′(k

′)), f0 is the equi-

librium Fermi distribution function, f1 is the nonequilibrium part of the total distribution

function, E is an applied electric field, and v is an electron velocity. Index ν denotes an

energy band number (ν = 1, 2). Bearing in mind that the system is a metal with no impuri-

ties of any kind, the electron scattering, in this case, results only from the electron-acoustic

phonon interaction:

V̂e−ph ≈ −∇
(
Ĥcrys + Ĥhel

)
· u. (15)

The same approach is valid for crystals with complex unit cell. Despite the presence of

optical phonons, they do not contribute to the relaxation rates because the optical phonon
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frequency is higher than the temperatures considered in this work. For example, the esti-

mated phonon energy in MnP is hν = 0.0124 eV or 144 K > T = 69 K.18 Ĥcrys and Ĥhel

are defined in Eq. (1). The atom displacement, u, can be expressed in terms of the phonon

normal coordinates.17 In Appendix we have presented the derivation of the 2D transition

rate matrices with the nonvanishing off-diagonal elements. W νν′

kk′ can be analytically derived.

For calculations, we have used the Debye approximation where ωD = v0 (6π2/Ω0), v0 is a

velocity of sound, and Ω0 is a unit cell volume. We have chosen a Eu metal for numerical es-

timation where vs = 1860 m/s and Ω0 = 0.1nm3. The sound velocity, vs, has been estimated

using the value of the Young modulus taken from Ref.19. According to Ref.17, we employ

the elastic scattering approximation for the numerical calculations where the transition rate

matrix elements are given by the following equations:

W νν′

kk′ =
2π

~
∣∣〈k′, ν ′, N ′qj∣∣∆V ∣∣k, ν, Nqj

〉∣∣2 δ(εν(k)− εν′(k′))

=
2π

~
1

NM

~Nqj

2ωq

∣∣K+
νν′

∣∣2 δ(εν(k)− εν′(k′))δ(k′ − k − q)

+
2π

~
1

NM

~ (N−qj + 1)

2ω−q

∣∣K−νν′∣∣2 δ(εν(k)− εν′(k′))δ(k′ − k + q),

(16)

where phonon wave vector q = k′−k and K+
νν′ is determined by Eq. (17). K−νν′ corresponds

to k′ = k − q and differs only in the sign in K+
νν′ .

K+
νν′ = i

~2

2ma2

2

3
(q · eqj)

(
aν (k) aν

′
(k′) + bν (k) bν

′
(k′)

)
. (17)

Here aν and bν are determined by Eq. (12) and

〈Nqj〉 =
1

eεph/kBT − 1
. (18)

It is important to note at this point that for ν 6= ν ′ K+
νν′ 6= 0. To solve the Boltzmann

equation (14) with the electron-acoustic phonon scattering matrix, we have written the

original codes where we have employed the nonuniform mesh.20 The delta function was

evaluated numerically as the Gaussian-shape function with very small width compared to

the mesh size. Then, we have numerically calculated the 3D integrals to determine the

matrix elements. The main challenge is in computing the 3D integrals with the sharp δ-

function. As soon as f1 has been found, we have determined the parallel and perpendicular

conductivities assuming the angle between the z-axis and the electric field to be θ. As shown
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in Ref.21, the parallel and perpendicular to the electric field components of electric current

for an anisotropic crystal can be expressed as follows:

js‖ = js0‖ + js2 cos (2θ), js⊥ = js2 sin (2θ). (19)

In these equations, the parallel component has the angle-independent part, js0‖, which, as

follows from the calculations, is much greater than the amplitude js2. Moreover, from the

symmetry of the system in the x, y-plane, the angle-independent part of the perpendicular

component, similar to js0‖, vanishes. Because of the time-reversal symmetry, ε(k) = ε(−k),

the angular dependence is 2θ instead of θ. The results of the calculations for electric con-

ductivities are presented in Figs. 3 and 5. In this figures we study the conductivity versus

chemical potential. The change in chemical potential can be implemented in experiments

by the change of gate voltage applied in the y-direction. To avoid additional scattering

mechanism due to charge impurities, we exclude doping as other way to change chemical

potential. The lower energy band, ε1, with the single minimum is depicted in Fig. 2a while

the case with the saddle shape for ε1 is presented in Fig. 2b. In Figs. 3 and 5, the parallel

and perpendicular conductivities depend on chemical potential µ (see the red curves) for

θ = π/4. For better understanding the nature of the transitions in the scattering rate matrix

W within the same energy band and between the bands, we introduce the auxiliary model

where we allow the transitions to take place only between the states within the same energy

band. The spin-dependence is not considered either. Such a procedure allows us to exclude

the interference due to the spin dependence within a single band. As shown in Fig. 2, the

transitions within one band from kz > 0 to kz < 0 are practically forbidden except the

states lying in the vicinity of kz = 0. Indeed,
(
aν (k) aν

′
(k′) + bν (k) bν

′
(k′)

)
in Eq. (17)

is a scalar product of the spin states with k and k′. For larger kz, these states are either

(1, 0) (kz > 0) or (0, 1) (kz < 0). Then, the product, aν (k) aν
′
(k′) + bν (k) bν

′
(k′) = 0,

resulting in W νν′

kk′ = 0. Thus, the active phase volume for the electron scattering is reduced

approximately by a factor of 2, resulting in greater conductivity, as shown in Fig. 3a. The

insertion in Fig. 3a demonstrates the sharp minimum in dσ‖/dµ.

From the analysis of Eq. (11), we find that the effective masses for both bands become

anisotropic. Indeed, mz > m corresponds to the lower band and mz < m is for the upper

band. The anisotropy of the bands is schematically depicted in Fig. 4. In the case of the

band anisotropy, it was proven in Ref.21 that the current has a perpendicular component if
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FIG. 3. (a) Parallel and (b) perpendicular conductivities for εhel < ∆ (the single minimum lower

band). The blue curves represent the conductivities for the spin-independent scattering and vanish-

ing transitions between the bands and the red curves demonstrate the results of the full calculations.

The insertion for the parallel component demonstrates dσ‖/dµ.

kz

kx E
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j

FIG. 4. Energy surface cross-section in kx, kz plane for the lower band. θ is an angle between the

applied electric field and the z-axis. The red and blue colors correspond to spin-up and spin-down

states, respectively.

the angle between z-axis and an electric field is nonzero (see Eq. (19)).

For the perpendicular component of the electric conductivity (see Fig. 3b), we find

the similar dependencies. Indeed, the current initially grows in amplitude. However, the

direction of the current is negative, i. e., leaning towards the x-axis because mx < mz.

The similar behavior is observed for σ⊥ in the auxiliary model for low energies. Such

a dependence in the vicinity of kz = 0 can be explained by the transitions between the

electronic states where the wavefunctions are the linear combinations of the spin-up and
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spin-down states. In this case, the active region of the k-space is the same for both models.

Then, the dependencies strongly diverge. For the general model (the red curves in Fig. 3),

the amplitude of σ⊥ decreases while for the auxiliary model the trend toward the greater

negative values continues (the blue curve). It happens because in the realistic model, the

half of the phase volume becomes unavailable for the electron scattering. When µ reaches

the bottom of the upper band (it is about 2.2 eV in Fig. 3a), there is a drop in σ⊥ and

the slower growth in σ‖ (see the insertion in Fig. 3a for the derivative). We explain the

slow down in growth by the interband transition of the carriers with high velocities from the

lower band (ε1) to the electronic states of the upper band (ε2) where the electron velocities

are small, and therefore, slightly contributing to the total current. It is important to note

that the peak or plateau in σ⊥ and σ‖ (the red lines) are the result of the nondiagonal

transitions in the scattering rate matrix W . Indeed, when these transitions are omitted (the

blue curves), we do not find any peaks. The perpendicular component changes the sign

leaning towards the z-axis with the inclusion of the upper band carriers (mz < mx).
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FIG. 5. (a) Parallel and (b) perpendicular conductivities for εhel > ∆ (the saddle shape case).

The blue curves represent the conductivities for the spin-independent scattering and vanishing

transitions between the bands and the red curves demonstrate the results of the full calculations.

The insertion for the parallel component shows dσ‖/dµ.

The perpendicular component σ⊥ behaves in the similar way as shown in Fig. 3b. The

minimum in σ⊥ (Fig. 5b, the red curve) can be explained by the saddle point in ε1(k).

In this case the transitions within ε1 take place from higher kz to the lower ones close to

the saddle point. When the electron states are close to the saddle point, the velocities of

electrons are very small and therefore, slightly contribute to the electric current. This is the
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reason why we find the drop of the absolute value of σ⊥. The same behavior is observed for

the auxiliary model. The existence of the maximum is the result of the switching on the

upper band ε2. Then, we find a very unusual dependence where σ⊥, described by the red

curve, is very small in amplitude compared to the blue curve in the auxiliary model. Indeed,

at large kzs (εhel~2k2
z/2m� ∆2/4) it is possible to approximate

εna1,2 ≈
~2

2m

(
k2
x + k2

y + (kz ± κ/2)2) , (20)

resulting in the nonadiabatic basis set. These parabolas are depicted in Fig. 2b as (1, 3)

and (2, 4), where the spin on each parabola is conserved. In the nonadiabatic basis set the

transitions take place within each parabola. For each nonadiabatic curve in Eq. (20) there

is no anisotropy. In this case js2 in Eq. (19) is close to zero explaining the red curve behavior

at large µ. For the auxiliary model, the basis set is still adiabatic, i. e., only transitions

(1-4) and (2-3) take place. The original bands ((1-4) and (2-3)) are highly anisotropic and

therefore, the perpendicular component is much greater.

We have found no chirality in helical systems because the transition rates are the even

functions with respect to κ, i. e., j(+κ) = j(−κ). However, insensitivity to chirality is

a direct consequence of the inversion symmetry of the system. In systems with broken

inversion symmetry it is not applicable. This general statement has also been numerically

verified.

V. TEMPERATURE DEPENDENCE

The proposed theory allows to study the temperature dependence of conductivity. For

the calculations, we have chosen the temperature to be T ≈ 69 K. We do not consider

very low temperatures because in a realistic situation other scattering mechanisms such

as scattering by impurities, will prevail over the electron-acoustic phonon scattering. At

higher temperatures, there might be a phase transition into another phase state rather than

a helical one. The temperature comes into the electron Fermi distribution function in the

expression for the electric current. Besides the Fermi distribution function, there is the

phonon Bose-Einstein distribution that appears in the transition rate expression due to the

acoustic phonons (see Appendix). At T = 69 K (the high temperature limit for bosons),

W ∼ T , consequently, σ ∼ 1/T or ρ‖ ∼ T 17
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FIG. 6. Parallel conductivity for εhel < ∆ with respect to the free electron density. The blue

curve represents helical magnetic structure and the red curve represents ferromagnetic material.

JS0 = 0.2 eV, m∗ = 0.5me, N = 7, kBT = 0.006 eV.

There are some experimental data where it is possible to check the proposed theory at

structural phase transitions from helical to ferromagnetic state. Indeed, such transitions take

place in (a) MnP, Tc = 50 K22,23, (b) YMn6Sn6, Tc = 333 K24, and (c) MnCoSi, Tc = 110

K25. In case (a) there is the observable discontinuity in the conductivity, while in cases (b)

and (c) there are the slope changes at the transition temperatures. The theory proposed

above is able to explain such nonanalytic behaviors in σ(T ). Such effects are demonstrated

in Fig. 6. In this graph, σ is shown with respect to the number of electrons rather than

chemical potential µ. It is important to note that at phase transitions the chemical potential

can have discontinuity due to the change of effective mass, and therefore, it is not a proper

parameter to describe the conductivity dependencies. The quantity that is conserved at

phase transition is electron concentration. As shown if Fig. 6, there are three possible cases

where at the fixed number of electrons the conductivity change takes place as a discontinuity

with a positive (case 3) or negative (case 2) value or remains the same (case 1). In the latter

case we assume that the temperature dependencies will provide the slope change in σ(T ).

In Fig. 7a and b, we demonstrate the temperature dependence of the parallel and perpen-

dicular components of the resistivity at the phase transition from helical to ferromagnetic
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states for MnP, respectively (Tc ≈ 50 K).23 For the calculations we have chosen the following

values of the parameters: JS0 = 0.02 eV, m∗ = 0.5me, n = 2× 1018 cm−3, the period of the

spiral is 9 lattice constants.

�✁✂✄☎✂✁✆✝✞ ✟✠✡ ☛✄✁✂✝✞
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FIG. 7. Temperature dependence of resistivity, (a) parallel and (b) perpendicular to the electric

field components. The red and blue curves are theoretical and the black curve in (a) is experimental

(see Ref.23). JS0 = 0.02 eV, m∗ = 0.5me, n = 2 × 1018 cm−3, the period of the spiral is 9 lattice

constants.

As shown in Fig. 7a, the experimental (the black curve) and calculated (the red and blue

curves) temperature dependencies of the resistivity are in very good agreement. At Tc ≈ 50

K we observe a discontinuity in the calculated dependencies and smoothened discontinuity

in experimental (black) curve. Along with the explanation of the experimental data, we have

predicted the temperature dependence of the perpendicular component for the same values

of the parameters (see Fig. 7b). In the helical phase we observe the growing resistivity,

which abruptly vanishes at the phase transition. The perpendicular resistivity is absent in

the ferromagnetic state because of the spherical symmetry of ε (k) in the model. According

to Ref.21, the physics of perpendicular component is related to the existence of anisotropy,

or absence of spherical symmetry in ε(k) (see Eq. (11)). Indeed, the violation of spherical

symmetry occurs in the kz direction in the helical state. Besides the rigorous mathematical

proof the absence of transverse component can be understood from the spherical symmetry

of ε(k) in the ferromagnetic case where the lack of specific direction perpendicular to the

electric field eliminates the transverse current.
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VI. CONCLUSIONS

In this research we propose the theory to study transport properties of helimagnets. The

system is described by Hamiltonian (1) with free electron potential for conduction electrons.

In general, such an approximation may not be sufficient for the complete explanation of

experimental dependencies. Indeed, we have assumed a single spherical band where the

realistic and anisotropic multi-band picture is not considered. We study only electron-

acoustic phonon interaction as a scattering mechanism while there may be electron-magnon

scattering that has not been considered in this research. Nevertheless, the theory allows for

the explanation of the already found effects and prediction of the perpendicular to the field

electric conductivity where maxima and minima with respect to µ can be found. We have

discovered that the Berry curvature vanishes indicating that symmetric helimagnets are not

topological materials. As a result of the helicity potential, the band splits into the two

bands3,4,6 described by Eq. (11) where the lower band can be either single-minimum curve

for εhel < ∆ or a saddle shape for εhel > ∆ (see Fig. 2). These bands are anisotropic resulting

in the origin of the perpendicular component of the electric currents according to Eq. (19). If

we identify the transverse component of the current as a Hall effect where the magnetic field

is represented by the helicity direction (z) we might say that the transverse electric current

component can be interpreted as a planar Hall effect.26 We have proven that the electron

scattering by the acoustic phonons allows for the transitions between the electronic bands

with the spin-dependent transition rates. Both electric current components reveal nonlinear

behaviors with respect to µ as demonstrated in Figs. 3 and 5. The change in chemical

potential can be implemented in experiments by the change of gate voltage applied in the

y-direction. To avoid additional scattering mechanism due to charge impurities, we exclude

doping as other way to change chemical potential. The perpendicular to the electric field

electroconductivity exhibits the unusual dependencies. Such behaviors have been explained

in terms of the anisotropy mass model combined with the k-space restricted by the spin

conservation. The proposed theory is capable of the explanation of the nonanalytic behaviors

in some materials where discontinuities and slope changes in conductivities take place at

phase transitions from helical to ferromagnetic states.22–25 Indeed, as shown in Fig. 7, we

have found the excellent agreement between the experimental and calculated dependencies

of the parallel to the electric field resistivity at the phase transition for MnP at Tc ≈ 50 K.

14



In addition, we have predicted the abrupt behavior of the perpendicular resistivity, which

drops to zero in the ferromagnetic phase.
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APPENDIX

To solve the Boltzmann equation, we need to find transition rates W , which are deter-

mined as follows:17

W νν′

kk′ = (2π/~)
∣∣〈k′, ν ′, N ′qj∣∣∆V ∣∣k, ν, Nqj

〉∣∣2 δ(εν(k)− εν′(k′)), (A.21)

where ν and ν ′ denote band indecis (ν = 1, 2).The electron scattering is determined by the

interaction of electrons with acoustic phonons.

For the matrix element

〈
k′, ν ′, N ′qj

∣∣∆V ∣∣k, ν, Nqj

〉
, (A.22)

we denote k as an electron wave vector, and Nqj is phonon population number with the

wavevector q and the branch j. For electron wavefunctions, we select the adiabatic basis

set determined by Eq. (13). Expression (A.22) allows the transitions between the bands

(ν 6= ν ′).

The linear expansion with respect to the lattice vibrations of the total potential energy

that includes the crystal and helicity terms yields:

∆Vss′ = Vss′ (r)− Vss′ (r + u) = −u∇Vss′ ,

u =
1√
NM

∑
qj

′
eqj
(
aqje

iqr + a∗qje
−iqr) , (A.23)

where s, s′ are the spin projection indices. The displacement u is presented in terms of

the normal coordinates. For acoustic phonons, M is a mass of the unit cell, ”′” means
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that summation takes place only over the half of the Brillouin zone, V is the potential of

the unperturbed lattice, and ∆V is perturbed potential in linear expansion.17 The matrix

element (A.22) can be presented in terms of the phonon normal coordinates in the following

way:〈
k′, ν ′, N ′qj

∣∣∆V ∣∣k, ν, Nqj

〉
= − 1√

NM

∑
s,s′

∫ [
ψν

′∗
k′s′ (r)

∏
qj

Ψ∗N ′
qj

(Qqj) (∇V ) ·
∑
qj

′
eqj
(
aqje

iqr + a∗qje
−iqr)

×ψνks (r)
∏
qj

ΨNqj
(Qqj)

]
dτ
∏
qj

dQqj.

(A.24)

In this expression, dτ is the infenitesimal volume in the electron coordinates, Qqj are normal

phonon coordinates, eqj is a phonon polarization vector, and ψνks (r) = uνks (r) eik·r are

electron and ΨNqj
(Qqj) are phonon wave functions, respectively. The integration in Eq.

(A.24) can be performed for the electron coordinates and the phonon coordinates separately:

〈
k′, ν ′, N ′qi

∣∣∆V ∣∣k, ν, Nqi

〉
= − 1√

NM

∑
ss′

∑
qj

′
{[

1

N
eqj ·

∫
(∇V )ei(k+q−k′)·ruν

′∗
k′s′ (r)uνks (r) dτ

]

×

[∫ ∏
qj

Ψ∗N ′
qj

(Qqj) aqj
∏
qj

ΨNqj
(Qqj)

∏
qj

dQqj

]

+

[
1

N
eqj ·

∫
(∇V )ei(k−q−k

′)·ruν
′∗

k′s′ (r)uνks (r) dτ

]
×

[∫ ∏
qj

Ψ∗N ′
qj

(Qqj) a
∗
qj

∏
qj

ΨNqj
(Qqj)

∏
qj

dQqj

]}
,

(A.25)

The expressions in the first, second, third, and forth brackets are denotes as K+
νν′ , L, K−νν′ ,

and L+, respectively. For L, using quantum oscillator properties for lowering and raising

operator, we find non-vanishing matrix elements for L and L+:

L = 〈Nqj − 1| aqj |Nqj〉 =

√
~Nqj

2ωqj

,

L+ = 〈Nqj + 1| aqj |Nqj〉 =

√
~ (Nqj + 1)

2ωqj

.

(A.26)

For the electron coordinate integration:

K+
νν′ =

1

N

∑
s,s′

∑
n

ei(k+q−k′)an

∫
ei(k+q−k′)r (eqj ·∇Vs′s (r))uνsk (r)uν

′∗
s′k′ (r) dτ0 (A.27)
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From the detailed analysis it can be proven that Vs′s (r)uνsk (r)uν
′∗
s′k′ (r) is a periodic function

with respect to the unit lattice vector.

The summation over n in Eq. (A.27) yields the momentum conservation: k′ = k + q,

resulting in

K+
νν′ =

∑
s,s′

∫
(eqj ·∇Vs′s (r))uνsk (r)uν

′∗
s′k′ (r) dτ0, (A.28)

where the integral is taken over a unit cell volume. The gradient in the Eq. (A.28) can be

presented in the following way:

K+
νν′ =

∑
s,s′

∫
(eqj ·∇Vs′s (r))uνsk (r)uν

′∗
s′k′ (r) dτ0

=
∑
s,s′

eqj ·
∫

∇
(
uνsku

ν′∗
s′k′Vs′s

)
dτ0 −

∑
s,s′

eqj ·
∫
Vs′s∇

(
uνsku

ν′∗
s′k′

)
dτ0,

(A.29)

where k′ = k + q. The first integral in (A.30) can be presented as a surface integral and

vanishes because of the periodicity of the integrand. Then,

K+
νν′ = −

∑
s,s′

eqj ·
∫
Vs′s∇

(
uνsku

ν′∗
s′k′

)
dτ0. (A.30)

Using the k · p representation for uνsk and uν
′∗
s′k′ we arrive for the following equations for

u-functions:

− ~2

2m
∇2uν↑k + V↑↑ (r)uν↑k + V↑↓ (r)uν↓k − i

~2

m
k ·∇uν↑k =

(
εν (k)− ~2k2

2m

)
uν↑k,

− ~2

2m
∇2uν↓k + V↓↑ (r)uν↑k + V↓↓ (r)uν↓k − i

~2

m
k ·∇uν↓k =

(
εν (k)− ~2k2

2m

)
uν↓k,

− ~2

2m
∇2uν

′∗
↑k′ + V ∗↑↑ (r)uν

′∗
↑k′ + V ∗↑↓ (r)uν

′∗
↓k′ + i

~2

m
k ·∇uν

′∗
↑k′ =

(
εν

′
(k′)− ~2k′2

2m

)
uν

′∗
↑k′ ,

− ~2

2m
∇2uν

′∗
↓k′ + V ∗↓↑ (r)uν

′∗
↑k′ + V ∗↓↓ (r)uν

′∗
↓k′ + i

~2

m
k ·∇uν

′∗
↓k′ =

(
εν

′
(k′)− ~2k′2

2m

)
uν

′∗
↓k′ .

(A.31)

V ∗↓↑ (r) = V↑↓ (r) and V ∗↑↓ (r) = V↓↑ (r) because V̂ is a Hermitian operator. Multiplying

the first equation in (A.31) by eqj ·∇uν
′∗
↑k′ , the second one by eqj ·∇uν

′∗
↓k′ , the third one by

eqj ·∇uν↑k, and the forth one by eqj ·∇uν↓k, adding them up with the successive integration
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over unit cell, we obtain:

− eqj ·
∑
s,s′

∫
Vs′s∇

(
uνsku

ν′∗
s′k′

)
dτ0 =

=
∑
s

∫
dτ0

{
− ~2

2m

[(
eqj ·∇uν

′∗
sk′

)
∇2uνsk + (eqj ·∇uνsk)∇2uν

′∗
sk′

]
−

− i~
2

m

[(
eqj ·∇uν

′∗
sk′

)
(k ·∇uνsk)− (eqj ·∇uνsk)

(
k ·∇uν

′∗
sk′

)]
−

−
[(
εν (k)− ~2k2

2m

)(
eqj ·∇uν

′∗
sk′

)
uνsk +

(
εν

′
(k′)− ~2k′2

2m

)
(eqj ·∇uνsk)uν

′∗
sk′

]}
(A.32)

Due to periodicity of the integrands and using the Gauss’ theorem, we transform Eq.

(A.32) into a simpler form:

K+
νν′ =−

∑
s

i
~2

m
(k − k′) ·

∫
(∇uνsk)

(
eqj ·∇uν

′∗
sk′

)
dτ0

−
∑
s

[
εν (k)− εν′ (k′)−

(
~2k2

2m
− ~2k′2

2m

)]∫
uνsk

(
eqj ·∇uν

′∗
sk′

)
dτ0.

(A.33)

We use the representation of uνsk in terms of the Bloch periodic functions ũk:17

uν↑k(r) = aν(kz)ũk−κ
2
ez(r)e−i

κ
2
z,

uν↓k(r) = bν(kz)ũk+κ
2
ez(r)e+iκ

2
z,

(A.34)

where aν and bν are found in Eq. (12). It is important to note that ũk is weakly dependent

on a k-vector. Indeed, in the free electron approximation employed in this work ũ = 1/
√

Ω0,

where Ω0 is the unit cell volume. Then, we find the following expression for K+
νν′ :

K+
νν′ = i

~2

m

1

3
(q · eqj)

(
aν (k) aν

′
(k′) + bν (k) bν

′
(k′)

)∫
|∇ũ|2 dτ0

+
~2κ2

4m
qzeqjz

(
aν (k) aν

′
(k′) + bν (k) bν

′
(k′)

)
− iκ

2

[
εν (k)− εν′ (k′)−

(
~2k2

2m
− ~2k′2

2m

)](
aν (k) aν

′
(k′)− bν (k) bν

′
(k′)

) (A.35)

K−νν′ corresponds to k′ = k − q and differs only in the sign in K+
νν′ .

For estimations
∫
|∇u|2 dτ0 ≈ 1/a2, where a is the lattice constant. In the continuum

model for the helicity potential κa/2π � 1. Therefore, the second and the third terms in

Eq. (A.35) can be neglected. Finishing up the electron part we obtain that:

K+
νν′ = i

~2

2ma2

2

3
(q · eqj)

(
aν (k) aν

′
(k′) + bν (k) bν

′
(k′)

)
. (A.36)
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Substituting Eq. (A.36) into the equation for the matrix element (A.25), we find:

〈k′, ν ′, Nqi − 1|∆V |k, ν, Nqi〉 = − 1√
NM

K+
νν′

√
~Nqj

2ωq

, (A.37)

〈k′, ν ′, Nqi + 1|∆V |k, ν, Nqi〉 = − 1√
NM

K−νν′

√
~ (Nqj + 1)

2ωq

, (A.38)

where

〈Nqj〉 =
1

e
εph
kBT − 1

(A.39)

is the Bose-Einstein equilibrium distribution function. As soon as transition matrix ele-

ments (A.37) (A.38) are determined, we substitute them into the scattering rates (A.21) for

the successive solution of the Boltzmann equation. It is important to note that Wνν′ is a

nondiagonal matrix allowing the transitions between the bands.

W νν′

kk′ =
2π

~
∣∣〈k′, ν ′, N ′qj∣∣∆V ∣∣k, ν, Nqj

〉∣∣2 δ(εi(k)− εi′(k′))

=
2π

~
1

NM

~Nqj

2ωq

∣∣K+
νν′

∣∣2 δ(εν(k)− εν′(k′))δ(k′ − k − q)

+
2π

~
1

NM

~ (N−qj + 1)

2ω−q

∣∣K−νν′∣∣2 δ(εν(k)− εν′(k′))δ(k′ − k + q),

(A.40)

where q = k′ − k and K+
νν′ and K−νν′ are determined by Eq. (A.36). These transition

probabilities are used to solve the nonequilibrium Boltzmann equation.
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