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Optimal Control of Wave Energy Converters
Ossama Abdelkhalik, and Habeebullah Abdulkadir

Abstract—The control logic of a Wave Energy Converter
(WECs) usually aims to increase the energy converted from
waves. For optimal energy conversion, most WEC control meth-
ods require reactive power; that is a power flow from the WEC
to the ocean, at times, in order to increase the overall harvested
energy over a period of time. The power take off (PTO) unit
that has the capability of providing reactive power is usually
expensive and complex. In this work, an optimal control analysis
is presented in which the objective of the optimal control problem
is to maximize the harvested energy while constraining the power
flow to be only in the positive direction; that is adding a constraint
of no reactive power. The optimal control derivation is presented
for the case of a solo WEC. Low fidelity numerical simulations are
presented comparing the proposed control to the known Bang-
Bang (BB) control and the Bang-Singular-Bang (BSB) control.

Index Terms—Wave energy converter, Optimal control, Positive
power control, Reactive power, Pontryagin Minimum principle.

I. INTRODUCTION

IN 2016 the global ocean energy capacity was 536 MW;
which is less than 0.03% of the total renewable energy,

in the same year. One of the reasons ocean wave energy
technology is not yet widely used is the relatively high cost of
electricity generated using wave energy converters [8]. For an
array of WECs, automatic control is one of the most pressing
problems and least studied because of dynamic modelling
difficulties. One of the challenges in the design of the control
system for WECs is the need for reactive power. This is when
a WEC would put power into the ocean at times in order to
harvest more energy over a longer period of time [9]. A PTO
unit that can provide reactive power is usually complex and
expensive. This study aims to eliminate the need for reactive
power, and hence enable the use of relatively simple PTO
units, while still attempting to maximize the converted energy.

In general, a WEC would harvest most energy when its
motion is in resonance with the incident waves. A control
logic typically attempts to achieve this resonance. For instance,
the Latching control approach, which was proposed by Budal
and Falnes [5] [4] in the 1980s, works by locking the buoy
at some moments to keep its motion in phase [2] [12]. This
control does not need reactive power. The only power required
is that needed to operate the latching mechanism. Reference
[14] implements a latching type control on a floating wave
energy converter in deep water. Actively controlled motion-
compensated platform was used as a reference for power
absorption and latching.

A control approach may also change the natural frequency
of the device to make it closer to the resonance conditions.
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Recent researches try to achieve energy harvesting maximiza-
tion by formulation the problem as a constrained optimization
problem [11] [15] [3]. These optimization based controllers
generally optimize the absorbed power, which is the product of
force and velocity [19]. Reference [21] presented a constrained
and unconstrained optimal control formulation for a single-
degree-of-freedom WEC device using Pontryagin’s minimum
principle; the control was tested in the cases of periodic
and non-periodic excitation forces. The constraint considered
in [21] is not on the power; rather it is on the maximum
displacement of the buoy. The results in [21] showed that
the optimal control is in one of two modes: singular arc
and bang-bang and hence is referred to as the bang-singular-
bang (BSB) control; the Numerical results show that the BSB
control performs better than Bang-Bang (BB) control in terms
of the amount of extracted energy. Reference [18] presented
a model predictive controller for the Wavestar wave energy
converter that maximizes its power generation. Two other
controllers (Optimal controller and Optimal gain controller)
were implemented on the buoy wave energy absorber model to
compare. This was in order to justify what prediction horizons
are suitable for a finite horizon MPC and to see which of
the controllers maximizes the power. Reference [7] presented
an optimal control solution to maximize energy absorption
while taking into account the actuator limits and the general
limitations of a WEC design. The control for a single WEC
device in [7] employs a moment-based phasor transform.

In this paper, an optimal control maximizing the harvested
energy while eliminating the reactive power is derived rigor-
ously using optimal control theory. The paper is organized as
follows. In section II, a dynamic model of simplified WEC
device is established. The proposed positive power control
formulation is presented in section III. Section IV shows the
simulation results. Conclusions are presented in Section V.

II. SYSTEM DYNAMICS FOR A SOLO WEC
A simple WEC model can be represented as a second order

mass-spring-damper system, as shown in fig. 1. The motion
of the floater is similar to the motion of ship which is more
complex because of the anomaly shape.

If the wave height and motion are small, the motion of
the floater is restricted to heave motion only, and the linear
equation of motion for a 1-DoF (heave only) solo WEC is [6]:

mẍ(t) =

∫ ∞
−∞

hf (τ)η(t− τ, x)dτ

+ fs − u−µẍ(t)−
∫ t

−∞
hr(τ)ẋ(t− τ)dτ (1)

where x is the heave displacement of the buoy from the
sea surface, t is the time, m is the buoy mass, u is the
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Fig. 1. Schematic of a simplified WEC device

control force, and fs is the difference between the gravity
and buoyancy force and it reflects the spring-like effect of
the fluid. The pressure effect around the immersed surface of
the floater is called the excitation force, fe, where η is the
wave surface elevation at buoy centroid and hf is the impulse
response function defining the excitation force in heave. The
radiation force, fr, is due to the radiated wave from the moving
float, where µ is a frequency dependant added mass, and hr
is the impulse response function defining the radiation force
in heave. The dynamics of the motion of the floater can be
written as [10]:

mẍ = fe + fr + fs + u (2)

The hydrostatic force, fs, reflects the spring like effect of the
fluid. The hydrostatic force is proportional to the displacement:

fs = −Kx (3)

The excitation force, fe, which can be decomposed as
pressure effect around the immersed surface of the floater. In
our paper the excitation force will be constructed using Fourier
series:

fe =
n∑
i=1

Aisin(wit+ φ) (4)

III. POSITIVE-POWER CONSTRAINT OPTIMAL CONTROL
FORMULATION

The derivation presented in this section follows the standard
process of deriving the necessary conditions of optimality in
optimal control theory. The derivation below is different from
that in reference [21] in that here there is a constraint on the
PTO power to be always positive (no reactive power); this
constraint was not considered in [21].

In the case of a single WEC device, which is the case in
this paper, the objective function can be written as:

Min J(u(t)) =

∫ tf

0

{−u(t)x2(t)}dt (5)

Subject to the dynamics Eq. (1) and the positive power
constraint:

u(t)x2(t) ≥ 0 (6)

This constraint Eq. (6) is on the power, such that there is
no reactive power supplied from the WEC PTO unit to drive
the motion of the buoy at any time during the operation of
the device. The Pontryagin’s minimum principle [17] [16] is
used to solve the optimal control problem. The positive power
constraint can be re-written in the following form:

−u(t)x2(t) ≤ 0 (7)

then converted to an equality constraint as:

−u(t)x2(t) + α = 0 (8)

where α is a slack variable. Similar to the work done in [13]
and [21], if we define x1 as the position of the floater and x2
as its velocity, then the equation of motion for the system in
fig. 1 can be re-written in state space form as [20]:

ẋ1 = x2 (9)

ẋ2 =
1

m
(fe(t)− cx2 − kx1 − u) (10)

where fe is excitation force, where the wave in this case
is assumed a regular wave, and u is the control input. This
system is non-autonomous because of fe. We can replace
the time variable from the equation of motion by defining
another variable which is x3. The state space of the system
will become:

ẋ1 = x2 (11)

ẋ2 =
1

m
(fe(x3)− cx2 − kx1 − u) (12)

ẋ3 = 1 (13)

Based on the equations of motion of the buoy, we need to
formulate the optimal control problem as follow:

Min : J((x(t), u(t)) =

∫ tf

0

{−u(t)x2(t)}dt (14)

Subject to: Eq. (11), Eq. (12),Eq. (13), and Eq. (6).
To start solving, we need to write out the Hamiltonian of

the problem [1]:

H = −ux2 + λ1x2 +
λ2
m

(fe(x3)− cx2 − kx1 − u)

+ λ3 + γ(−ux2 + α) (15)

Based on the Hamiltonian, the necessary condition of the
problem corresponding to (x∗1,x∗2,x∗3,u∗,λ∗1,λ∗2,λ∗3,γ∗) which
satisfy the Euler-Langrange equation is derived as:

Hλ = ẋ (16)

Hx = −λ̇ (17)
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Hu = 0 (18)

Hγ = 0 (19)

By solving for the necessary conditions for optimality, we
obtain the equations below and also the state space equation:

λ̇1 =
k

m
λ2 (20)

λ̇2 = −λ1 +
c

m
λ2 + u+ γu (21)

λ̇3 = − 1

m

∂fe(x3)

∂x3
λ2 (22)

x2 +
λ2
m

+ γx2 = 0 (23)

Eq. (23) can be further simplified as

λ2
m

+ (1 + γ)x2 = 0 (24)

−ux2 + α = 0 (25)

Since Hu = 0, the solution in Eq. (24) does not yield an
expression for the control u, which means the control is either
on a singular arc or at its boundaries (limits).

From Eq. (24),

λ̇2
m

+ (1 + γ)ẋ2 = 0 (26)

combining Eq. (20) and Eq. (24),

λ̇1 =
k

m
λ2 ⇒ −k(1 + γ)x2 ⇒ −k(1 + γ)ẋ1 (27)

Integrate Eq. (27)

λ1 = −k(1 + γ)x1 + const. (28)

Substitute Eq. (28) into Eq. (21)

λ̇2 = k(1 + γ)x1 − const.+
c

m
λ2 + (1 + γ)u (29)

solving Eq. (12) for u and substituting in Eq. (29)

λ̇2 = k(1 + γ)x1 − const.+
c

m
λ2 + (1 + γ)[−mẋ2

−cx2 − kx1 + fe(x3))]
(30)

substituting Eq. (24) and Eq. (26) into Eq. (30) and
simplifying

const = −2c(1 + γ)x2 + (1 + γ)fe(x3)) (31)

differentiating

0 = −2c(1 + γ)ẋ2 + (1 + γ)
∂fe(x3)

∂x3
(32)

0 = −2cẋ2 +
∂fe(x3)

∂x3
(33)

substitute for ẋ2 from Eq. (12)

0 = −2c

m
[fe(x3)− cx2 − kx1 + u] +

∂fe(x3)

∂x3
(34)

Solving for u in Eq. (34), we can find the optimal control
to be

u = fe(x3)− cx2 − kx1 −
m

2c

∂fe(x3)

∂x3
(35)

From Eq. (25)

α = ux2 (36)

Note that α is the the positive power variable.

α = x2

[
fe(x3)− cx2 − kx1 −

m

2c

∂fe(x3)

∂x3

]
(37)

If there is a saturation on the control, and the buoy is subject
to oscillatory excitation forces, then it is possible to state that
the optimal control can be defined as:

u =


usa, Hu = x2 −

Fex

2c
= 0, α ≥ 0;

Υ, Hu = x2 −
Fex

2c
> 0, α < 0, x2 > 0;

−Υ, Hu = x2 −
Fex

2c
< 0, α < 0, x2 < 0;

where Υ is the maximum available control level, and usa
is the singular arc control. If the states of the buoy at any
given time does not satisfy the constraints, then the optimal
control solution will switch to bang-bang solution.A bang-
bang control uses the maximum control available at every time.
The optimal solution will switch between the bang-bang mode
and the singular arc mode.

IV. SIMULATION

The positive power control developed in Section III is
simulated. There is a saturation limit on the control. The
numerical parameters are chosen as follows: The mass of the
buoy m = 200000 kg, the stiffness of hydrostatic force is
k = 120000 N/m, and the damping coefficient is chosen to be
c = 100000 Nm/s. The maximum control force is Υ = 100000
N.

Fig. 2 and Fig. 3 presents the displacement and the veloc-
ity of the buoy when Bang-Bang, Bang-Singular-Bang, and
Positive power control algorithms were applied to control the
device.

As discussed earlier, a single degree of freedom oscillator
will undergo its maximum movements when it is in reso-
nance with the wave excitation force; however maintaining
this resonance may require reactive power. This can be seen
from the results in Fig. 2; it can be observed that the buoy
displacement is largest when the Bang-Singular-Bang control
is used; this BSB control requires reactive power. However,
the displacement of the buoy when controlled using either
the Bang-Bang (BB) control or the Positive power control
(PBSB) is smaller than that of the BSB control. Note that both
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Fig. 2. Comparison of buoy heave displacement when using Bang-Bang
control (BB), Bang-Singular-Bang control (BSB) and Positive power control
(PPBSB).
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Fig. 3. Comparison of buoy heave velocity when using BB, BSB and PPBSB
controls.

the BB and PPBSB controls do not require reactive power. It
is observed that the PPBSB control causes the buoy to have
slightly higher motion at some times.
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Fig. 4. The Power extraction by the PTO unit when using BB, BSB and
PPBSB controls.

Fig. 4 shows the power generation by the three control
algorithms. The BSB control gives better results with the
highest power curve; the power curve below zero represents
the reactive power that has to be provided by the PTO. The
PPBSB control power curve is always above zero; same is the
power curve of the BB control. Referring to Fig. 5, the BSB
control clearly has the highest energy extraction as expected.
The performance of the PPBSB control is better compared to
BB control.
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Fig. 5. The energy extracted over time by BB, BSB and PPBSB controls.

Fig. 6 shows the control force generated using each one
of the three control methods. Comparing the BB control and
the PPBSB control, it is observed that the BB control quickly
switches between the maximum and minimum limits of the
control force. This rapid switch may cause rapid degradation of
the device and thereby reducing the overall effective lifespan.
The PPBSB control algorithm is slightly better in that regard.
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Fig. 6. Comparison of variation of control force applied when using BB,
BSB and PPBSB controls.

V. CONCLUSION

A new control algorithm that attempts to maximize the
power output from wave energy converters without the use
of reactive power is developed in this paper; here it is referred
to as the positive power control. This positive power control
is derived analytically within the context of optimal control
theory. Simulation results presented in this paper show that the
overall performance of the positive power control is slightly
better compared to the Bang-Bang control. The implementa-
tion of the positive power control eliminates the complexity
of designing a bi-directional PTO system needed to provide
reactive power. Future work will develop the positive power
control for arrays of wave energy converters.
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