
SmartWatch: Accurate Traffic Analysis and Flow-state Tracking
for Intrusion Prevention using SmartNICs

Sourav Panda
‡
, Yixiao Feng

†
, Sameer G Kulkarni

★
, K. K. Ramakrishnan

‡
, Nick Duffield

†
, Laxmi N. Bhuyan

‡
‡
University of California, Riverside,

†
Texas A&M University,

★
Indian Institute of Technology, Gandhinagar

ABSTRACT
Despite advances in network security, attacks targeting mission

critical systems and applications remain a significant problem for

network and datacenter providers. Existing telemetry platforms

detect volumetric attacks at terabit scales using approximation tech-

niques and coarse grain analysis. However, the prevalence of low

and slow attacks that require very little bandwidth, makes flow-

state tracking critical to overall attack mitigation. Traffic queries

deployed on network switches are often limited by hardware con-

straints, preventing them from carrying out flow tracking features

required to detect stealthy attacks. Such attacks can go undetected

in the midst of high traffic volumes.

We design SmartWatch, a novel flow state tracking and flow

logging system at line rate, using SmartNICs to optimize perfor-

mance and simultaneously detect a number of stealthy attacks.

SmartWatch leverages advances in switch based network telemetry

platforms to process the bulk of the traffic and only forward suspi-

cious traffic subsets to the SmartNIC. The programmable network

switches perform coarse-grained traffic analysis while the Smart-

NIC conducts the finer-grained analysis which involves additional

processing of the packet as a ’bump-in-the-wire’. A control loop

between the SmartNIC and programmable switch tunes the queries

performed in the switch to direct the most appropriate traffic subset

to the SmartNIC. SmartWatch’s cooperative monitoring approach

yields 2.39 times better detection rate compared to existing plat-

forms deployed on programmable switches. SmartWatch can detect

covert timing channels and perform website fingerprinting more

efficiently compared to standalone programmable switch solutions,

relieving switch memory and control-plane processor resources.

Compared to host-based approaches, SmartWatch can reduce the

packet processing latency by 72.32%.

CCS CONCEPTS
•Networks→Networkmonitoring;Programmable networks.

KEYWORDS
intrusion prevention, SmartNICs, programmable switches

ACM Reference Format:
Sourav Panda, Yixiao Feng, Sameer G Kulkarni, K. K. Ramakrishnan, Nick

Duffield, Laxmi N. Bhuyan. 2021. SmartWatch: Accurate Traffic Analysis

and Flow-state Tracking for Intrusion Prevention using SmartNICs. In The
17th International Conference on emerging Networking EXperiments and Tech-
nologies (CoNEXT ’21), December 7–10, 2021, Virtual Event, Germany. ACM,

New York, NY, USA, 16 pages. https://doi.org/10.1145/3485983.3494861

1 INTRODUCTION
Network-borne attacks that aim to disrupt mission-critical systems

and applications are a persistent problem for both network and

datacenter (DC) operators. To counter threats, operators must de-

ploy infrastructure to monitor systems and network traffic, driving

analyses to detect anomalies and specific attacks in a timely man-

ner. The infrastructure may directly protect against some attacks or

provide alerts that trigger intervention, either automated or human,

to block or ameliorate the impact of those attacks.

The main challenge addressed by our work is on designing a

cost-efficient traffic monitoring and analysis infrastructure that

can detect a range of network attacks within a high-rate traffic

stream. Systems must detect not only relatively crude volumetric

attacks that overwhelm the network through sustained network

activity (e.g., SYN flooding), but also more sophisticated attacks

that probe for system weaknesses (e.g., SSH Brute forcing, port

scan [55]), or attacks that exploit protocol dynamics (e.g., low-rate
TCP attacks [60]). We seek to design a framework that can:

• detect low and slow attacks using state tracking;

• accurately track flow-state changes caused by each and every

packet to ensure attacks cannot bypass the monitor;

• scale to monitor Terabit scale traffic by cooperative monitoring

using multiple components including programmable switches,

sNICs and hosts.

• provide flow-logging for rapid volumetric attack detection as

well as comprehensive inspection of all flows offline;

• support a large number of monitoring features running simulta-

neously on the platform.

A number of different algorithms and monitoring platforms have

been designed in the past to address this. Programmable switches

have been used for telemetry queries at Terabit scale [39, 50] while

SmartNICs (sNIC) enable end-hosts to scale to more modest, 40/100

Gbps, rates[76, 91]. Since sNICs support more operations [14] than

switches, we use them for stateful packet processing, to complement

the coarse-grained query processing of programmable switches.

sNICs have become critical components of DC operations due to the

performance boost they provide for the tasks offloaded from server

CPUs[48]. We create a network monitoring system that leverages

the sNIC capabilities of programmability, co-designed the scalabil-

ity of programmable switches and flexibility of host-based CPU

processing. Programmable switches are used to forward just the

’right’ traffic subset for fine-grained sNIC-based monitoring.

This paper proposes SmartWatch, a network monitoring plat-

form architecture, comprising a commodity-class host and sNIC,

working cooperatively with programmable switches. SmartWatch

makes the following contributions:

• To detect or prevent stealthy attacks such as low-rate port scans,

SmartWatch performs lossless state-tracking and flow logging.

SmartWatch yields 2.39 times better detection rate compared

to existing programmable switch based platforms. Compared to

host-based approaches, SmartWatch reduces packet processing

latency by 72.32%.

60

https://doi.org/10.1145/3485983.3494861

• SmartWatch works cooperatively with P4 switches for network-

basedmonitoring. SmartWatch uses iterative-refinement between

the programmable switch and sNIC to judiciously use switch

resources while operating at Terabit line rates. Switches direct

the right traffic subset to the sNIC for processing. Less than 16%

of packets processed by the sNIC go to the host.

• SmartWatch reduces the memory requirements of programmable

switches for monitoring, thus allowing it to be used for common

data center operations. This is done by running coarse grained

queries in the switch. Fine grained processing is done by the

sNIC-host subsystem.

2 OVERVIEW
We discuss the typical needs of network monitoring and the ap-

proach taken by existing platforms. Thenwe describe the key design

principles behind SmartWatch.

2.1 Requirements for Monitoring
2.1.1 Terabit-Scale Traffic. In this work, we refer to a programmable

switch that can run telemetry queries written in P4 as a P4Switch.

Examples include Intel/Barefoot Tofino switches[7]. The P4Switch

enables examining traffic at intensities much higher than would be

possible with sNIC or Host alone [76]. A P4Switch’s forwarding

ASICs are able to quickly forward and perform simple computa-

tions on packets at line-rate, thus enabling the analysis of billions of

packets at the Tbps rates[33]. But, they have accompanying mem-

ory and processing constraints, that limit the ability to do all the

monitoring on the P4switch alone. Impediments to fine-grained

traffic analysis are described in § 2.2.1.

Table 1: Slow Attacks requiring flow-state tracking

Attack Challenges
SSH Brute Forcing SSH connections are encrypted

Detector requires conn-attempt outcome[53],

which is determined heuristically using

protocol state transitions and traffic volume[6].

Stealthy Port Scan Detector probes whether conn-attempt

from a remote node elicits suitable response

from local nodes[55].

Forged TCP RST Detector identifies race conditions between RST

(In-sequence) packets and in-flight data packets[82].

2.1.2 Fine Grained Traffic Analysis. Network trafficmonitoring has

been widely explored [40, 44, 46, 59, 61, 63, 64, 68, 71, 74, 80, 85, 86].

Based on these, we first summarize the key requirements for net-

work monitoring and then explain how fine-grained analysis is

critical for effective monitoring.

Stateful Packet Processing: Low and slow attacks such as in-
sequence forged TCP RSTs require state to be maintained to de-

tect them. The relative timing between a potentially forged TCP

RST packet and in-flight data packets must be measured [82]. Nei-

ther switch queries [39, 50] nor Sketches[59] can effectively detect

such attacks due to hardware constraints and the need for non-

volumetric, stateful detection.

Flow Logging: Flow logging maintains an accurate count of ev-

ery packet of the flow received by SmartWatch, in the Flowcache,

and stores the connection’s 5-tuple, packet count, timestamp, and

required-state depending on the specific attack being monitored.

Volume based attacks such as DDOS [43] can be detected using

Sketches[63, 80, 85] and using switch-based detection with the ap-

propriate queries[39, 50]. They have been shown to identify attack

indicators and can trigger alerts quite well for heavy hitters and

other volumetric attacks. However, it can be challenging with mon-

itoring applications that require high fidelity traffic matrices to

carry out statistical analysis on network traffic [71, 73].

As an example, we motivate the need of a combination of fine-

grained and coarse-grained traffic analysis by studying monitoring

for the Slowloris Attack [21]. This attack keeps a very large number

of connections to a target web server open, rendering it difficult

for legitimate web requests to be served. We study the difference

between a coarse and fine grained detector as outlined below.

Coarsed Grained Detector: This detector identifies end-points
that use many TCP connections, each with low traffic volume (e.g.,

𝐶𝑜𝑛𝑛𝑠 𝐸𝑠𝑡 .
𝐵𝑦𝑡𝑒𝑠 𝑆𝑒𝑛𝑡

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) [50]. Also, instead of tracking this traffic

volume for each and every host IP, it tracks it at a coarser-grained IP

prefix level, such as the first 16 bits of the host IP address. Tracking

aggregate activity consumes less memory, making it suitable to run

on a P4Switch.

Fine Grain Detector: A widely used IDS, such as Zeek[27], mea-

sure HTTP request duration and identifies "stalling" flows (e.g.,

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 > 10 seconds). This is a memory and compute intensive

activity, and such a fine-grained indicator is necessary to accurately

detect the existence of the attack, the victims, and the attacker [25].

A host or sNIC is suitable to deploy such a detector. We list a few

additional attacks in Table 1 and their flow state tracking challenges.

2.1.3 Penalize least number of flows. Since most connections are

benign, a compute and memory intensive monitoring capability

in the data path will unduly penalize user traffic. For this, it is de-

sirable to minimize the number of packets that are forwarded to a

sNIC-Host system for monitoring beyond the processing performed

on the packet already in the switch. Between the host and sNIC, pro-

cessing packets in the sNIC avoids expensive host processing, data

copies and PCIe transactions that impact end-to-end latency[62].

2.2 Challenges with Standalone Systems
We desire a monitoring platform that can detect low and slow

attacks that hide in the presence of large volumes of traffic. Here,

we explain the challenges faced by other platforms.

2.2.1 P4Switch. Switches have been widely explored for monitor-

ing [33, 39, 50, 84]. Here, we study hardware constraints that limits

its ability to conduct fine-grained analysis.

Memory Constraints: The SRAM memory enables P4 programs

to retain state across packets and to hold the exact-match tables [33].

Tracking traffic flows at fine granularity on P4Switches requires suf-

ficient memory. As noted in [57], given the limited on-chip SRAM

on a typical P4Switch ASIC (of the order of 100MB SRAM[65],

even though it can forward traffic at very high rates), it may re-

quire multiple such switches, which adds to cost. To accommodate

such P4Switch memory constraints, Sonata[50] carries out dynamic

query refinement, so that it only focuses on the subsets of traffic

that actually satisfy a query, while ignoring the rest of the traffic,

just like the coarse-grained detector above.

61

Flexibility accessing state: Accessing all available registers on

a P4Switch can be a complex task since registers in one stage

cannot be accessed at a different stage [33]. Next, the number of

match-action pipeline stages limits the number of sequential pro-

cessing steps (10 − 20). Thus, the amount of P4Switch computation

is bounded[89]. To maintain line rate, programmable switches al-

low only a small constant number of memory accesses per packet.

This makes it infeasible to update multiple data structures for each

packet[39]. Therefore, it is preferable for switches to perform coarse-

grained analysis like in [39, 63] as they minimize per-packet mem-

ory operations.

2.2.2 sNIC. Programmable NICs have also been used for moni-

toring in [47, 76, 91]. sNICs do not have explicit stages and have

more memory compared to a P4Switch, meaning they have fewer

constraints. However, a pure sNIC solution can only scale to Giga-

bit traffic[91]. But, they outperform host-based solutions[76, 91].

Unlike SmartWatch, other sNIC solutions generally do not focus on

stealthy and slow attacks. Except for Pigasus [91], but they focus

on a different approach, pattern matching, for intrusion detection.

2.3 Key techniques of SmartWatch
We build a monitoring framework to detect a wide range of anom-

alies, caused both by volumetric attacks as well as specific slower

targeted attacks which are increasingly successful [1] in the middle

of a high traffic volume. For this goal, SmartWatch leverages the

following key capabilities.

2.3.1 Cooperative Monitoring. The 3 components (i.e., sNIC, host,
P4Switch) cooperatively perform monitoring. The sNIC offloads

processing, reducing load on the host, and the P4Switch directly

forwards the bulk of benign flows to their destination, preventing

any unnecessary performance impact.

Two-Stage detector: The first stage relies on obtaining coarse-

grained flow information. Flow subsets with attack indicators at

a coarser granularity are forwarded for fine-grained processing,

starting with the next monitoring interval. The first detection stage

is performed on the P4Switches, where the focus is on processing

high volumes of traffic. We are cognizant of the impact on latency

critical user traffic, so that our in-line monitoring application min-

imizes the number of operations per packet and is lightweight.

Following the broad approach of Sonata[50], Nitro Sketch[63], and

BeauCoup[39], this first stage then steers traffic subsets that satisfy

aggregate-traffic queries for finer grained analysis. The next stage

is implemented on the sNIC-host subsystem of SmartWatch where

processor and memory intensive operations are performed on the

packet. The ability to add more monitoring functions as needed,

ensuring efficiency and low latency, are all important.

Control Loop: SmartWatch is responsible for configuring P4Switches,

including specifying queries to be run by the switch. A more spe-

cific query would direct more targeted, and thereby less, traffic to

SmartWatch from the P4Switch. We effectively create a control-

loop (Fig. 1) where the sNIC-Host subsystem receives different

amounts of traffic based on the degree of specificity of the query

that SmartWatch installs on the P4Switch. The P4Switch queries

are implemented using P4 tables where stateful operations are per-

formed using P4 registers. At the end of a P4Switch monitoring

interval, processing of the switch queries will determine some traf-

fic subsets deemed as being suspicious (e.g., a threshold is crossed).

Subsequent packets of these traffic subsets are forwarded to the

sNIC-host subsystem. Over time, flows that get classified as benign

by SmartWatch (e.g., after successful authentication) no longer

have to be forwarded for fine-grained inspection by the sNIC-host

subsystem. A P4 table in the P4Switch whitelists benign flows, thus

reducing the overall traffic forwarded to the sNIC-host subsystem.

This also reduces any performance impact on those flows.

SmartWatchP4Switch

P4Switch

P4Switch

P4Switch

P4Switch

End
Host

End
Host

End
Host

End
Host

Traffic Subset

Switch Config

Monitoring Host

sNIC sNIC

Monitoring Host

sNIC sNIC

Monitoring Host

sNIC sNIC

Figure 1: SmartWatch Control Loop.

2.3.2 Lossless flow monitoring. SmartWatch is a flexible network

monitor for tracking flow state and logging flows with the Smart-

NICs (sNIC). This enables us to detect both stealthy as well as

large-scale, volumetric network attacks. SmartWatch innovates by

designing novel data structures in a P4-programmable Netronome

sNIC. With the 40 Gbps Netronome sNIC, we are able to perform

loss-less flow-state tracking and logging at ’near line rate’ - a max-

imum 43 Mpps achieved with 64 Byte packets. This is consistent

with [66] where even without any extra processing, line rate is only

achievable using packets larger than 128B (This paper uses the same

NIC). The bottleneck is most likely in the packet scatter-gather func-

tionality across themicro-engines [66]. Similar limitations were also

observed with the Intel XL710 NIC-based systems [8, 63]. Higher

packet rates can be supported using a 100 Gbps sNIC (which we

plan to do) or by sampling as in [39, 63]. However, such sampling

techniques would not be able to support flow-state tracking.

Partitioning of Functions (Host vs. sNIC): The sNIC acts as

an accelerator and helps track flow-state significantly faster than

performing these functions on a host (e.g., TurboFlow [76] vs. Kro-

nonat [31]). On the other hand, the host has a much larger memory

reservoir [57]. sNIC operations are also limited as there are no

recursive functions or floating point operations available in the

packet processing pipeline [14]. To ensure efficient state-tracking

at line rate, we consider an sNIC cycle-budget for each and every

packet. A violation of the cycle-budget potentially leads to dropping

of packets at higher arrival rates. To achieve flow state-tracking at

high packet arrival rates, SmartWatch designs a novel in-memory

data structure on the sNIC with a flow eviction policy. This frees

up a significant fraction of the time and cycle-budget on the sNIC

for operations required by monitoring tasks.

sNIC FlowCache: We leverage the sNIC’s memory to design a

FlowCache that consist of a hash table and ring buffers. An incom-

ing packet/flow processed by each sNIC packet processing entity

updates the FlowCache using a hash of the 5-tuple. We use the sNIC

memory (DRAM) to support 25 million flow entries. We propose

a two-level cache on the sNIC (e.g., like a CPU’s L1-L2 cache) and

empirically select an eviction policy by examining the performance

62

with a number of CAIDA traces[4]. The ring buffers accommodate

evictions from the hash table and are used to periodically flush

snapshots of the hash table to the host.

Reconfigurable FlowCache: Beyond providing a large reservoir

of memory for tracking flow state and logging flow information, the

host is also responsible for processing packets that the sNIC alone

cannot process. Therefore, we need to minimize the cycles spent

on the host for logging flows (e.g., handling flow records exported

from sNIC to host). We develop a reconfigurable FlowCache that

trades-off between sNIC packet processing throughput and the

host’s processing requirement. We do this adaptively by changing

the eviction rate on the sNIC in response to the packet arrival rate.

To the best of our knowledge, this work is the first of its kind to

cooperatively monitor traffic using a combination of programmable

devices that span the range of memory and compute capabilities.

3 SMARTWATCH ARCHITECTURE
3.1 P4-based Co-operative Monitoring
In our cooperative monitoring scheme a P4Switch helps to identify

attack indicators at a coarse granularity, effectively utilizing its

limited memory and simple packet processing capabilities. Attacks

listed in Table 2 may only be detected at a coarse granularity by ag-

gregate traffic queries using a framework typified by SONATA [50],

ConQuest [38], and Beaucoup [39].

0 20 40 60 80 100 120
P4Switch to sNIC Traffic (Gbps)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Sw
itc

h
St

at
e

(G
B)

Year
2015
2016
2018
2019

(a) SSH Bruteforcing

0 20 40 60 80 100 120
P4Switch to sNIC Traffic (Gbps)

0

2

4

6

8

Sw
itc

h
St

at
e

(G
B)

Year
2015
2016
2018
2019

(b) Port Scan

Figure 2: P4Switch State (Benign Flows)

Selective ’Bump-in-the-wire’ processing: In general, packets

processed in the P4Switch are directly forwarded to their intended

destinations without any involvement of the P4-capable sNIC or the

host. The P4 pipeline in the P4Switch passively monitors the traffic

and computes the outcome of switch queries such as "is the number

of ssh connections above a threshold?". If the threshold is crossed,

subsequent packets of this traffic subset are steered to the sNIC

(e.g., such as excessive SSH traffic destined to the same destination

IP prefix). Therefore, only traffic that requires further inspection

is forwarded to the sNIC-host subsystem, and are subjected to the

higher latency due to this ’bump-in-the-wire’-like processing. At

the sNIC-host subsystem we identify the SSH connection attempt

outcomes (e.g., failure or success) and determine if there is a SSH-

guess attempt. SmartWatch will then program the P4Switch to

avoid benign flows (e.g., successful SSH authentication) from being

subjected to the additional latency of sNIC’s processing.

When installing rules in the P4Switch that whitelists benign

flows, SmartWatch needs to be wary of the amount of state used in

the P4Switch. To solve this problem, we borrow the ’hoverboard’ in-

tuition from Andromeda [42]. Selecting heavy flows that are benign

(e.g., top-k) as opposed to mice flows helps reduce the amount of

redirected traffic to SmartWatch, with relatively few rules installed

in the P4Switch. Figs. 2a and 2b shows the P4Switch state vs. the

traffic volume directed from P4Switch to the sNIC for the SSH brute-

forcing and port scan attacks, respectively. We use CAIDA traces

from different years [4] for this experiment. We see that there exists

a knee, beyond which whitelisting flows does not reduce P4Switch

state further. We describe these attacks in greater detail later in

this paper. Furthermore, the sNIC FlowCache data structure is re-

sponsible for identifying the top-k heavy benign flows, which we

describe in this section.

Switch Query Refinement:We borrow the iterative refinement

approach from Sonata[50] to selectively steer flows from the P4Switch

to sNIC or host. Let us consider an example where we have to track

the number of SSH connections per destination IP. Treating these

as key-value pairs, each destination IP is a key and the number of

SSH connections is the associated value. Now, instead of tracking

each individual destination IP (dIP), we aggregate them to a less-

specific subset, such as based on their 16-bit prefix (dIP/16). This

coarse grained analysis requires less state on the P4Switch due to

fewer key-value pairs. Steering traffic that satisfies a query at the

coarser dIP/16 granularity instead a dIP/32 granularity will cause

much more traffic to be redirected, since dIP/32 is more specific.

Iterative-Refinement zooms into traffic by filtering just the correct

flows to allow multiple queries to run on the P4Switch despite its

limited memory. If we compare Sonata’s iterative-refinement to

SmartWatch, in Sonata[50], the P4Switch memory is reused for

traffic subsets at a more specific granularity (e.g., /16 instead of

/8). The rest of the traffic is not examined. Instead of reusing the

switch memory and only analyzing a narrow window of traffic in

the P4Switch as in Sonata[50], in our design we send the narrow

window of traffic to the sNIC-host subsystem, but have the switch

continue to examine the coarser subset of traffic. SmartWatch reuses

Sonata’s[50] interface to load switch queries on the P4Switch.

15 30 60 120 240 580 1160 2320
Packet arrival rate (Mpps)

0

50

100

150

200

CP

U
Co

re
s

Host
SmartWatch (No P4Switch)
SmartWatch
P4Switch and Host

(a) #CPU cores required

15 30 60 120 240 580 1160 2320
Packet arrival rate (Mpps)

0

10

20

30

40

50

sN
IC

Host
SmartWatch (No P4Switch)
SmartWatch
P4Switch and Host

(b) #sNIC required

Figure 3: Scaling to Terabit traffic

Resource Usage:We simulated four different scenarios, including

1) standalone host based monitoring system, 2) SmartWatch with-

out a P4Switch, 3) SmartWatch, and 4) host with P4Switch. The

P4Switch runs the iterative query refinement algorithm derived

from [50]. In this experiment, we speedup the CAIDA 2018 trace to

emulate different packet arrival rates. Our findings are in Figure 3a

and 3b. The y-axis is the amount of resources (i.e., CPU cores and

sNIC respectively) required to sustain different packet arrival rates

(x-axis). There is only one P4Switch in this simulation experiment.

We observe that the P4Switch helps SmartWatch reduce the number

of sNIC and CPU cores by at least 14 times by forwarding the bulk

of the traffic through to the destination when the packet arrival

rate is 2320 Mpps. The number of required sNIC and CPU cores

are 4 and 6, respectively. This makes SmartWatch practical to scale

to Terabit level traffic. The detection rate of our approach is also

better, as shown in Section 5.4.

63

3.2 sNIC FlowCache Design
SmartWatch utilizes both the host-CPU and sNIC’s packet pro-

cessing engines, referred to as Micro-Engines (ME), to track flows

in a loss-free manner and minimize communication overhead be-

tween host and the sNIC. The sNIC has a P4 match-action table

sequence and a FlowCache data structure, which is designed using

C functions. An incoming packet is first scheduled to a packet-

processing micro-engine, (PME), by a ’global’ load-balancer where

packets are serviced in a "run-to-completion" manner (e.g., non-

preemptive). The P4 match action tables provide specific packet

processing/forwarding rules for the incoming flow. Packets are also

processed by the FlowCache for monitoring tasks.

sNIC FlowCache: We leverage the sNIC’s memory to design a

FlowCache that consist of a hash table and ring buffers. The cache

is in contiguous memory and is allocated at compile time. An incom-

ing packet/flow processed by each PME updates the FlowCache

using a hash of the 5-tuple. We use the sNIC memory (DRAM)

to support 25 million flow entries. The ring buffers accommodate

evictions from the hash table and are used to periodically flush

snapshots of the hash table to the host. We dedicate 8 ring buffers

each with 64K entries. Having these 8 ring buffers mitigates the

access contention for ring buffers among the 80 PMEs.

Primary
Buffer

Eviction
Buffer

Hit

Hit

Miss

Ring
Buffer

1

1

2

1

2 3

(a) Adaptive Data structure (b) FlowCache latency dist.

Figure 4: FlowCache structure and operations

LRU (12,0)LPC (12,0) FIFO (4,8)
LRU-LPC (4,8)

Eviction Policy

0

10

20

30

40

50

60

Ra
te

 (M
pp

s)

Primary / Eviction Buffer Hits
Miss (Evictions to Host)

(a) Hit and Miss counts

50th 75th 99th
Percentile

0

2

4

6

8

10

12

14

Pa
ck

et
 L

at
en

cy
 (μ

s)

LRU (4,0)
LPC (4,0)

FIFO (4,0)
LRU-LPC (4,8)

(b) Latency profile
Figure 5: FlowCache Caching Policies

Data Structure:We use a large hash table with an array of buckets

to cache flow records within the sNIC. To keep the per-packet la-

tency low, we restrict the entries for a hash index to at most 12 buck-

ets, ensuring the sNIC can maintain high throughput and minimize

packet drops. As observed in other programmable dataplanes[57],

Cuckoo hashing is not suitable for caching flow records in the sNIC

because it can often require multiple memory accesses. In a Cuckoo

hash table, a hash collision will cause a hash entry to be moved

to its secondary location, causing a write operation. On the other

hand, in our proposed mechanism while there may be multiple

read operations, there is just one write operation. Empirically, with

a limit of 12 recursive insertions (with Cuckoo hash) vs. 12 buck-

ets (with FlowCache), the 99.9 percentile latency for a CAIDA DC

trace[4] was observed to be 2.43 times lower with FlowCache. This

is because sNIC write operations are relatively expensive compared

to reads. Unlike a write, for a read the calling thread yields so that

another thread can continue its work while the memory is being

read [23]. Note that each PME has 4 threads.

Partitioning& Eviction Policies: The key insights from previous

work with typical Internet data center (DC) traffic characteristics

and the CAIDA packet traces are: 1) a few large flows account

for a majority of the packets, 2) numerous small flows frequently

compete for a hash entry, and 3) packets of elephant flows arrive

over several bursts. We experiment with a number of widely used

eviction policies: Least Recently Used (LRU), Least Packet Count

(LPC) and First-In-First-Out (FIFO) on the hash table with 2
21

rows

× 12 buckets per row. We further devise a split of the hash table into

two buffers, namely a Primary P and an Eviction E buffer (Figure 4a).
Note: we use the notation (𝑥 , 𝑦) to designate a configuration with

𝑥 buckets in P and 𝑦 buckets in E per row, respectively. Figure 5a
shows the hit and miss rate when the sNIC is subjected to 43 Mpps

(64 Byte packets) CAIDA 2018 trace [4]. Note that all four poli-

cies have the same memory footprint. Misses cause evictions of

flow records to the host, and therefore we seek to minimize them.

Figure 5b also shows the latency when processing CAIDA 2018

traffic. Among the four policies, LRU has the highest hits, but LPC

has lower latency. In order to effectively reap the benefits of LRU

(i.e., handle a continuous train of packets from a flow) and at the

same time benefit from the low latency with LPC (large number

of hits coming a small set of elephant flows), we installed a hybrid

LRU-LPC policy in P and E respectively, which provides the highest
hit rate and lowest latency (median and 75%ile).

Data Operations: Figure 4a shows the structuring of the sNIC

data structure and the corresponding packet update operations.

Each packet processed by a PME results in one of three possible

outcomes and the corresponding updates in FlowCache:

• P hit: The packet’s 5-tuple matches one of the bucket’s five tuples

in P. Then, we update the flow state.

• E hit: The packet’s 5-tuple finds a match in E after scanning

buckets of P at the same hash index. Then, we swap this entry with

the LRU entry in P and update the flow state.

• Miss: The packet can not find a match in P or E. Then, we evict
the LPC entry from E and replace it with the LRU entry from P to
accommodate the new flow in P. The evicted flow from E will be
stored in a FlowCache ring buffer.

Figure 4b shows that the packet processing latency for cache ’Hit’

is lower than that of cache ’Miss’. The LRU-LPC cache replace-

ment policy outperforms other eviction policies in terms of hit

rate (Fig. 5a), and increases the PME cycles available to support

additional monitoring features.

Pinning Flow Records: Low and slow attacks require per-packet

flow state updates to accurately detect malicious flows. We seek to

avoid host involvement to keep packet processing latency small, by

dynamically pinning flow records in the sNIC FlowCache. This pre-

vents the eviction of a flow record which potentially would result

in inaccurate tracking of a suspect flow’s state. In an event where

all flow records of a row are pinned and one flow must be evicted,

the packet being processed is sent to the host, which we strive to

minimize. If a we cannot find a flow entry for a packet (Miss) either

64

because it was evicted or not-pinned, then we create a new flow

entry. We will not retrieve packet counters from the host as this

tremendously increases packet latency.

Table 2: SmartWatch Resource Summ. (No P4Switch)
Attack sNIC Host

Cycles(%) Processed(%)
Heavy Hitter, Heavy Changes,

Cardinality, Flow Size Estimation 80.32 0

and Slowloris

Zeek SSH Bruteforcing 1.79 1.24

Zeek Expiring SSL certificate 1.98 1.35

Zeek FTP Bruteforcing 1.85 1.19

Zeek Kerberos Ticket Monitoring 1.99 2.9

In-Sequence Forged TCP RST 1.94 0.95

TCP Incomplete Flows 2.01 8.3

Stealthy Port Scan 1.99 0

DNS Amplification 1.93 0

Micro-bursts 2.08 0

EarlyBird Detection Worms 2.06 0

Reduce Host Packet Processing with FlowCache We bench-

mark 15 attack detectors simultaneously running in SmartWatch.

Table 2 (Host Processed col.) shows the percentage of trace packets

(CAIDA 2018) processed by the host. Most are processed by the

sNIC. Thus, there is a dramatic reduction in host overhead. Depend-

ing on the flow-state, select packets are forwarded to the host. The

average packet processing latency reduces to just 28% compared to

when everything runs on the host. PCIe transactions and packet

copies contribute to the host-based processing being slower [62].

3.3 sNIC Reconfigurable FlowCache
Increasing the number of buckets accommodates more flows with

fewer evictions from the sNIC to the host. But, it lowers throughput

due to higher processing latency. We designed a reconfigurable

FlowCache with two operational modes on the sNIC. Fig. 7a illus-

trates the transition from General Mode (4,8) to Lite Mode (2,0) while
reordering bucket entries. To adapt to fluctuating packet arrival

rates, we dynamically mutate between the General and Lite mode,

with minimal overhead. General Mode has 12 buckets per row in

(4,8) configuration. This captures most of the large flows and op-

erates in a loss-free mode for arrival rates upto 30Mpps. But, it

is insufficient to keep up with the maximum achievable line-rate

(43Mpps) for the 40Gbps NIC. But, it also has the benefit of a lower

eviction rate (i.e., reduced transfers to host). The Lite Mode on the

other hand supports higher packet rates. Fig. 6a, shows that both

(2,0) and (1,0) meet near line-rate for 64B packets. So, we select

(2,0) as Lite mode. Unfortunately, the Lite mode results in a higher

eviction rate because of a lack of buckets to resolve collisions, de-

spite having the same memory footprint. Figure 7b shows that the

CPU time [19] for the host thread responsible for snapshotting

flow records increases by 2.08 times when we employ the Lite (2,0)

mode compared to the General mode of the sNIC FlowCache. This

is because of the 47% increase in eviction rate.

Map Offline Tasks to Micro-engines. There are a total of 80

sNIC MEs usable for i) packet processing (PMEs) or ii) custom

processing (CMEs), separated from the packet processing pipeline.

Fig. 6b shows the variation of throughput as we change the number

of PMEs. We are able to allocate a total of 3 MEs for custom pro-

cessing (as CMEs) without any degradation in the maximum packet

processing throughput. We use CMEs for the task of switching

between the two modes. Later, we also show their utility for other

monitoring tasks such as reporting flows that cause micro-bursts.

1 3 6 12 24 48 96 192 384 768
Memory (MB)

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

pp
s)

General (4,8)
General (6,6)
General (8,4)

Lite (1,0)
Lite (2,0)
Lite (4,0)

(a) Tput vs. MEM

71 72 73 74 75 76 77 78 79 80
Number of PME

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

pp
s)

General (4,8)
Lite (1,0)
Lite (2,0)

(b) Tput vs.# PME

Figure 6: FlowCache Throughput vs. sNIC resources

Correct State-Tracking without Flow Duplicates Alg. 1 shows
the candidate buckets for the two modes. For the General Mode,
packets have to be checked against bucket [0, 12) across P (e.g.

[0,4)) and E (e.g. [4,12)). For the Lite Mode, only two buckets are

checked at an offset determined by the higher order bits of the

hash digest. Clearly, the candidate buckets for the Lite Mode are a
subset of the General Mode. Thus, there is no overhead to switch

from the Lite Mode to General Mode, and there is less flow-matching

penalty in the Lite Mode. On the contrary, flow entries will have to

be reordered when transitioning from General to Lite Mode. The
contiguous memory and the logical partitioning between P and E
allows us to move the logical boundary between them and resize

the number of rows in the hash table. We use a global variable

mode for the current operation mode. A CME periodically tracks

the packet arrival rate (EWMA with 𝛼 = 0.75 over a window of

100 samples) and compares with a threshold to switch modes (see

Alg. 4 in Appendix 9.4).

General (4, 8)

Primary
Buffer

Eviction
Buffer

Lite (2, 0)

Switch
Over

...
...

...
...

(a) General to lite mode

1 2 4 8 16 24 48 96 192 384 768
sNIC FlowCache (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

Ti
m

e
(s

ca
le

d) General (4,8)
Lite (1,0)
Lite (2,0)

(b) Host snapshotting overhead
Figure 7: FlowCache overheads

General to Lite TransitionWhen the packet arrival rate exceeds

the rate supported by the General mode, the CME triggers a switch
over to Lite mode. The CME marks all the hash table rows as ’dirty’.

The first PME that finds a bucket within a ’dirty’ row performs

the cleanup, which involves reordering the flow entries and then

marking the row as ’clean’. The PME gains exclusive access to the

row (i.e., allow no concurrent flow updates) and reorders the flow

records honoring the Lite mode’s logical boundary.We do this lazily,

as packets arrive, as it is slower for a single CME to reorder all flow

records, taking at most 14`s (see Alg. 3, Appendix 9.3). The 80 PME

on the sNIC process packets in parallel for other FlowCache rows

even if one PME has exclusive access to a specific row. However,

some packets end up waiting for the clean up process to relinquish

the exclusive access to a row. We observed this wait time to be less

than 5`s, before it can make its own state updates.

Lite to General Transition When the packet arrival rate drops

below a threshold, the CME initiates the transition to General mode.

65

Flow entries do not have to be reordered and the eviction process

can run as usual. For example, a General mode’s row consists of 12

buckets, which is sub-divided to support six rows of two buckets

each in the Lite mode. Alg. 1 Line 4 show that both the Lite and

General modes share the same hash index. Therefore, the packet is

forwarded to the same ’12 buckets’ in physical memory. Since all 12

buckets will be probed in the General Mode and since the candidate

buckets in the Lite mode are a subset of the General mode (Alg. 1

Line 6 and 9), correctness is ensured.

Algorithm 1 Candidate Bucket Selection

1: Initialize:
𝐵 ← 12 ⊲ General Mode buckets

𝑏 ← 2 ⊲ Lite Mode buckets

𝑥 ← 21 ⊲ Number of bits (Hash Digest)

𝑟𝑜𝑤 ← 2
𝑥 ⊲ Hash Table Rows

2:

3: procedure Bucket_Selector(ℎ𝑎𝑠ℎ_𝑑𝑖𝑔𝑒𝑠𝑡)
4: ℎ𝑎𝑠ℎ_𝑖𝑛𝑑𝑒𝑥 ← ℎ𝑎𝑠ℎ_𝑑𝑖𝑔𝑒𝑠𝑡 & (𝑟𝑜𝑤𝑠 − 1)
5: if General Mode then
6: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑏𝑢𝑐𝑘𝑒𝑡𝑠 ← [0, 𝐵)
7: else if Lite Mode then
8: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← ((ℎ𝑎𝑠ℎ_𝑑𝑖𝑔𝑒𝑠𝑡 >> 𝑥) 𝑚𝑜𝑑

⌈
𝐵
𝑏

⌉
) × 𝑏

9: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑏𝑢𝑐𝑘𝑒𝑡𝑠 ← [𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 𝑏)

3.4 Sub-components for Host Support
The host can provide a large amount of memory (> 200GB) and

storage (∼2TB) compared to the switch and sNIC. We leverage the

host as a global pool to collect and store all flow-related information

over multiple snapshots for detailed forensics. We leverage the sNIC

to aggregate flow records and export them to the host periodically

(e.g., every 5 seconds). Since the sNIC may export a particular flow’s

entry several times due to eviction or being aged out, the host is

responsible to correctly aggregate each flow’s information. We

DMA flow records by borrowing the implementation from [69].

The host caches these flows with a 2
30 × 1 hash table. The entries

from host cache are periodically (per measurement interval) flushed

to a Redis [20] datastore for flow-logging. The host CPU also has the

capability to process packets through SR-IOV ports (DPDK [49]).

Some IDS/IPS components cannot be offloaded to the sNIC as they

require complex operations (See §2.3.2). We dedicate distinct SR-

IOV ports for each supported function on the host. Host NFs include:

1) Zeek[27] for IDS/IPS scripts, 2) Timing Wheel[81] to buffer and

release packets, and 3) NFs using the host’s larger memory pool.

4 IMPLEMENTATION
Low Cost to Add Monitoring Features. The required state for

baseline flow logging is 768𝑀𝐵 to cache 25 million flow records,

including timestamps and packet counters. Given the sNIC has 8

GB memory and supports bulk operations, additional attributes can

be added to the flow entry to track flow-state, enabling support

of additional monitoring features. However, the packet processing

overhead must be minimized to perform lossless tracking. The base-

line FlowCache, without any additional monitoring features, which

supports flow logging consumes most of the sNIC cycles (80.32% of

the total cycles). Flow logs exported to the host (always enabled)

can be analyzed offline for heavy hitter detection, heavy changes,

cardinality estimation, flow size estimation, and Slowloris. Our evic-

tion policy ensures FlowCache processes packets at near-line-rate.

Table 2 shows that the cycles consumed by other monitoring fea-

tures is very small compared to FlowCache, and therefore do not

reduce packet processing throughput. This is because of the parallel

processing across a large number of PMEs on the sNIC, including

hardware support of atomic operations. More on the FlowCache

lockless flow record update scheme can be found in Appendix §9.1.

Symmetric Hash Function:Detectors require session based flow-
state tracking. We need to ensure IP packets in the reverse direction

map to the same bucket as that of the forward direction. Hence, we

use a symmetric hash function[83].

Table 3: sNIC Comparison
Attribute / sNIC Bluefield LiquidIO Netronome

MBF1L516A OCTEON Agilio
-ESNAT TX2 DPU LX

Processor 2.5 GHz [17],[2] 2.2 GHz [10] 1.2 GHz [13]

Parallelism 16 cores [17] 36 cores [10] 96 cores [13]

L1 Size 32 KB [17] 32 KB [62] 64 KB [9]

L1 Access Time 5.0 ns [62] 8.3 ns [62] 13 ns [23]

L2 Size 1 MB [17] 24 MB [10] 256 KB [9]

L2 Access Time 25.6 ns [62] 55.8 ns [62] 51 ns [23]

DRAM Size 16 GB [62] 16 GB [62] 8 GB [15]

DRAM Access Time 132.0 ns [62] 115.0 ns [62] 137 ns [23]

Atomic Primitives Yes [62] Yes [62] Yes [23]

Programmability GNU [17] GCC [10] Micro C/P4 [9]

4.1 Generality of sNIC Implementation
In this section, we study the generality of our implementation on

the Netronome sNIC, the potential for adoption with other, such

as BlueField and LiquidIO sNICs. The details of the 3 sNICs are

listed in Table 3. Using this, we ran a discrete event simulation

with a CAIDA trace[4] containing almost 2 billion packets, where

all packets are reduced to 64B to create a worst case stress test.

All 3 sNICs support programmability and atomic primitives with a

cache structure and multiple packet processing cores. We model the

number of cycles consumed in the FlowCache for the BlueField and

LiquidIO sNICs by performing themeasurements on our Netronome

sNIC (e.g., no. cycles for hits / misses). We then estimate the packet

processing latency and the number of packets processed per second

across all compute units based on the different processor speeds and

memory access latencies (Table 3 specification). Using our trace-

driven simulation, we derive the packet throughput for BlueField

and LiquidIO sNICs to be 40.7 and 42.2 Mpps respectively, compared

to the throughput for Netronome sNICs, which was 43 Mpps. The

reason for their slightly lower throughput compared to Netronome

is because of the fewer number of processing cores. SmartWatch is

a monitoring platform. But, thanks to its P4 and SR-IOV capability,

it can support common data plane functionalities such as switching,

tunneling, and QoS, which are typically supported by OVS [42] in

today’s DCs. All three sNICs support OVS offload and SR-IOV [10,

11, 13, 17]. SmartWatch and OVS can act as the monitoring and

connection tracking modules of the pipeline, respectively.

5 EVALUATION
Testbed: We evaluate the effectiveness of SmartWatch on our local

testbed consisting of Linux servers (kernel ver. 4.4.0-142), each with

10 Intel Xeon 2.20GHz CPU cores, 256GB memory and Netronome

Agilio LX 2×40 GbE sNICs with 8GB DDR3 memory and 96 highly

threaded flow processing cores. We use three packet generators,

each running Moongen[45] to replay PCAP traces at the high rate

66

(43 Mpps using 64B packets) for our stress tests. Attack and back-

ground traces are timestamp shifted and then merged using edit-

cap [5] and mergecap [12], respectively. To truncate packets to 64B,

we use tcprewrite[22].

First, we compare SmartWatch against monitoring systems de-

ployed on the host, such as Zeek. Second, we show how SmartWatch

can reduce the memory (SRAM) pressure on a P4Switch for coop-

erative monitoring for detecting covert timing channels [84] and

website fingerprinting [33]. Third, we show how FlowCache helps

improve long (5 sec) and short (<200`s) timescale traffic analysis.

Lastly, we compare cooperative monitoring technique to Sonata[50]

in terms of accuracy. In our experiments, all detectors that are based

on flow logging are processed offline on the host, while other at-

tacks, such as SSH Brute Forcing, are detected online.

EvaluationTraces:We use four different traces: 1) CAIDATraces [4]

(years 2015 to 2019) containing 1 to 1.9 billion packets., 2) For stress

testing, we created traces with 64B packets with CAIDA traces, 3)

For targeted attacks, we used official test traces from Zeek IDS [27],

and 4) Univ. of Wisconsin DC measurement traces [35].

5.1 Stateful Attack Detection: SmartWatch vs.
Host-based Detection

We study three monitoring usecases and detail how SmartWatch

outperforms traditional Zeek[27] or NFs deployed on the host.

5.1.1 SSH brute-forcing.
Attack: Many nodes with distinct source IPs use different user-

name/password combinations on SSH login servers [53]. For this

attack we leverage the host running Zeek[27] and partition pro-

cessing tasks between the sNIC and host. The host is only involved

in the authentication phase, and if successful packets avoids PCIe

transactions to the host.

Detection: Track the number of failed SSH login attempts,𝜓 , by a

remote node in a given time interval. Raise an alert when𝜓 exceeds

a threshold[28].

P4Switch Role: For the SmartWatch framework, the P4Switch

measures if the number of SSH connections attempts have exceeded

a threshold. Flow subsets with significant number of authentica-

tion attempts observed in P4Switch are forwarded to the sNIC.

The P4Switch cannot conduct fine-grained analysis by itself as it

cannot determine the number of failed SSH connection attempts

𝜓 for a specific remote node, since they are encrypted. It is not

possible to heuristically determine connection attempt outcomes in

the P4Switch as it requires per-packet state transitions (see §2.2.1).

SmartWatch Role: As a new SSH connection arrives, we pin the

flow entry within the sNIC until the outcome of the connection

attempt is determined. FlowCache ensures that subsequent packets

of pinned entries are forwarded to a host NF running Zeek. Zeek

heuristically guesses the login attempt outcome by tracking con-

nection state transitions and the amount of data communicated [6].

If the host NF detects authentication success, FlowCache unpins

the flow entry (evicted as needed) and does not send subsequent

packets to the host NF by updating the match action table. If 𝜓

exceeds a threshold, the P4 table blacklists the source IP. Here, the

gain is experienced by all packets beyond the SSH authentication

phase. The sNIC tracks approved vs. non-approved flows, causing

only 1.24% packets in the SSH trace to go to the host (Table 2). The

remaining packets of the trace avoid costly transfers to the host.

Evaluation: Figure 8a shows the SSH packet latency for three sce-

narios: 1) successful authentication with SmartWatch 2) successful

authentication with baseline Zeek, and 3) multiple authentication

failure attempts with SmartWatch. Here, 3 failure attempts in 30

minutes generates an SSH_GUESS _ATTEMPT event. We utilize

traces available in the Zeek package for this experiment. Once a

SSH connection is approved by Zeek (SSH_AUTH _SUCCESS), pack-
ets are no longer processed in the Zeek NF, reducing the average

packet processing latency by 77% compared to baseline Zeek. In

Fig. 8a, SYN packets result in unavoidable latency spikes up to

∼2250`s because of the need to remove connection state.

SimilarAttacks: Expiring SSL certificates[29], FTP brute-forcing[24],
and Kerberos ticket traffic[26]. Similar to SSH connections, Zeek

can scrutinize the validity of the connection in the host. Following

Zeek’s approval, their packets are entirely processed in the sNIC.

5.1.2 TCP Forged Resets.
Attack: An adversary disrupts TCP connections by sending a

forged TCP RST packet to either end of a connection. We leverage

the host running a timing wheel where potentially forged RST pack-

ets can be buffered until the RST packet is classified as malicious

or benign. In this example, the sNIC is responsible for steering the

smallest possible traffic subset to the host, thus reducing the high

latency PCIe transactions.

Detection: This can be detected using 1) RST packets with outdated

SEQ numbers; 2) Multiple RST packets with increasing SEQ number;

3) race conditions between the RST packet and in-flight end-host

data packets. Here, we focus on the race condition between the RST

packet and data packet as it requires the most flow-state tracking

and is difficult for attackers to avoid. Race conditions are unlikely

if the RST packet has been generated by an end-host. Hence, it is

recommended that a monitor maintain state for a time interval T=2

seconds from the arrival of the RST packets to determine whether

the RST is genuine or forged [82]. On the host, we implement a

timing wheel [81] to buffer RST packets.

P4Switch Role: In the SmartWatch framework, the P4Switch mea-

sures if the number of RST packets exceeded a threshold. Flow

subsets with a large number of RST packets seen in the P4Switch

are forwarded to the sNIC. The P4Switch by itself cannot conduct

this fine-grained analysis (see §2.2.1). The precise victim in the flow

subset requires tracking the arrival of RST packets and inspecting

the sequence of subsequent packets [82].

SmartWatch Role: FlowCache steers TCP RST packets to the host

via a dedicated SR-IOV port and pins the flow entry in sNIC Flow-

Cache. The RST packet is released by the timing wheel after 𝑇 = 2

seconds if no race conditions are identified (i.e., not forged). On

arrival of a genuine data packet right after a forged RST packet,

sNIC FlowCache notifies the timing wheel (i.e., state-tracking) after

which the forged RST packet is discarded from the timing wheel,

without reaching the destination. sNIC FlowCache records are un-

pinned when the buffered RST packet is released to its destination,

or when a forged RST is actually detected. The gain is experienced

by all packets arriving prior to the monitor seeing a RST packet in

a connection. In our experiments, only 0.95% packets of the CAIDA

67

(a) SSH Brute-forcing (b) Forged TCP RST

5 10 1000 15000 300000
Average Scan Delay (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
te

ct
ion

 R
at

e

SmartWatch P4Switch

(c) Port Scan

Figure 8: SmartWatch Resource Requirement and Latency

data center trace go to the host and experience the additional pro-

cessing delay of the monitoring NF and PCIe transaction (Table 2).

Evaluation: Only unique RST packets should be inserted into the

timing wheel while duplicate RST or data-after-RST must be imme-

diately notified to operator (i.e., an attack). Ensuring uniqueness

requires the timing wheel to be scanned while buffering the RST

packet, potentially degrading packet processing latency. This pro-

cessing can be bypassed for some packets using a Bloom Filter,

accelerating the RST buffering operation. Fig. 8b shows the packet

processing latency and percentage of packets experiencing it for

different values of 𝑇 for the 2018 CAIDA trace [4]. As 𝑇 increases,

so does the scanning time, as more buffered RST packets have to

be checked. The blue vertical line is the mean round-trip latency

for packets processed solely in sNIC FlowCache. This accounts for

99.053% packets of the trace. As for RST packets, uniqueness identi-

fied using the Bloom Filter incurs an avg. 411 ns extra processing

time and accounts for 69.7% of RST packets. Remaining RST packets

incur extra latency due to the scan operation on the timing wheel,

which is necessary to identify the previous (unexpired) RST packet.

Similar Attacks: Similarly, we can detect TCP Incomplete Flows.

Instead of looking for race conditions, we check if a SYN packet

wasn’t followed by DATA packet for some time [72]. SYN packets

aren’t blocked, as in forged TCP RST.

5.1.3 Port Scan Attacks.
Attack: Port scan is a common method for discovering exploitable

channels (i.e., open ports) on network servers[55]. SmartWatch

partitions the monitoring between the host and the sNIC. The sNIC

inspects and reports to the host the outcome of TCP three-way

handshake (i.e., incomplete vs. established). The host tracks this

over longer time scales, to classify if the remote node is a scanner

or benign. But, no packets are forwarded to the host.

Detection: [55] describes a detection scheme using the number of

failed connection attempts (i.e., failed three-way handshake) as an

indicator to identify scanners. It determines the outcome of the 𝑖th

connection attempt from remote server 𝑟 as an indicator variable𝜙𝑟
𝑖
.

[55] then runs a hypothesis test determining whether the remote

node 𝑟 is an attacker or not.

P4Switch Role: For the SmartWatch framework, the P4Switch

measures the number of connection attempts. Flow subsets with

significant number of connection attempts observed in the P4Switch

will be forwarded to the sNIC. The P4Switch itself cannot conduct

fine grained analysis as it cannot track the connection outcomes

which requires flow-state tracking over long time scales, requiring

significant amounts of P4Switch memory (see §2.2.1).

SmartWatch Role: FlowCache computes 𝜙𝑟
𝑖
by tracking flow state

on a per-packet basis. It waits a short period of time to see the

responses for the SYN packet: a SYN ACK (successful); a RST (incor-

rect service); or no response (incorrect destination/port) from the

destination. The flow record is pinned until 𝜙𝑟
𝑖
is determined (e.g.,

1 if it completes the three-way establishment handshake, 0 other-

wise). The indicator variable 𝜙𝑟
𝑖
for the flow is stored in the flow

record and gets exported to the host. The host then classifies the

remote node 𝑟 as an attacker/benign using hypothesis testing[55].

Evaluation: We use NMAP [16] to generate scanning traffic with

different scanning intervals. We merged this attack traffic with

the Univ. of Wisconsin datacenter measurement trace [35]. Thus,

the attack traffic is hiding in a much larger data stream. Larger

scanning intervals become more difficult to detect (i.e., paranoid

scanner). Figure 8c shows the detection rate in relation to different

scanning delays comparing SmartWatch and (standalone) P4Switch.

As SmartWatch carries out memory intensive operations, it can

track protocol state transitions, allowing for it to compute the

indicator variable 𝜙𝑟
𝑖
and detect scans with long scanning intervals.

Similar Attacks: Detecting DNS amplification by computing the

amplification factor
𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)
𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡) instead of 𝜙𝑟

𝑖
[56].

0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Platform
SmartWatchFlowLens
SmartWatchNetWarden

FlowLens
NetWarden
Memory
Low Mem
High Mem

(a) Covert Timing

2 6 10 14 18 22 26 30 34 38
P4Switch SRAM %

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

SmartWatchFlowLens
SmartWatchNetWarden

FlowLens
NetWarden

(b) Website Fingerprinting

Figure 9: Covert Channels

5.2 Reducing P4Switch memory pressure
We study two monitoring usecases in this section and detail how

SmartWatch assists a P4Switch (NetWarden[84] or FlowLens[33])

consume less SRAM and control plane cores, aiding common for-

warding operations in the DC.

68

5.2.1 Covert Timing Channel.
Evasion Covert timing channels can exfiltrate secret data by mod-

ulating the inter-packet delays (IPDs) of network traffic, e.g., by

using large (small) IPDs to encode ones (zeros)[84]. SmartWatch

helps achieve the same True Positive and False Positive Rate (TPR

and FPR) with 8 times less P4Switch SRAM occupancy to collect

the IPD distribution. Further, no control-plane or co-located server

resources are used.

Detection: Since the modulated traffic trace would have different

IPD distributions (bimodal) from those of usual traffic (normal), tim-

ing channel detectors look for statistical deviations (KS-Test[30])

between a given IPD distribution and a known-good distribution

as obtained from training data[84]. We use a CAIDA[4] workload,

where 90% flows are benign and the other 10% are modulated by

the attacker to leak data. The modulation ranges from 1µs to 100µs.

P4Switch Role: Since iterative-refinement does not support IPD

collection, we compare against two implementations of the P4Switch.

FlowLens maintains a flow lookup table, assigning a flow offset to

each flow ID. The flow offset locates the flow’s set of bins to store

the IPD distribution. NetWarden is similar, but instead of using k

bins for each connection, it uses k CountMin Sketches to collect

the IPD for all connections. The NetWarden dataplane consists

of pre-checks that executes range checks on the IPD distribution.

On the other hand, FlowLen’s control plane reads the batch of

collected data from the switch when a timer expires. We have ex-

tended these two P4Switch data structures (𝑆𝑚𝑎𝑟𝑡𝑊𝑎𝑡𝑐ℎ𝐹𝑙𝑜𝑤𝐿𝑒𝑛𝑠 ,

𝑆𝑚𝑎𝑟𝑡𝑊𝑎𝑡𝑐ℎ𝑁𝑒𝑡𝑊𝑎𝑟𝑑𝑒𝑛) to forward packets to SmartWatch’s sNIC

subsytem when a pre-check[84] range query is satisfied.

SmartWatch Role: On the sNIC, we program the flow IDs that

were determined suspicious on the switch (e.g., pre-check). For all

the programmed flows, we maintain fine-grained bins (e.g., bin size

= 1`s), intended to detect modulation between 1-100`s. Since the

number of flows directed to the sNIC is small, this is feasible. On

the sNIC’s CME, when a timer expires we carry out the complete

statistical test (KS-Test) within the sNIC and classify the channel

as benign or if it is being modulated by an attacker to leak informa-

tion. Flows programmed on the sNIC are pinned on SmartWatch’s

FlowCache to prevent evictions. The benefit of this sNIC-based co-

design is less SRAM resource consumption on the P4Switch along

with the complete elimination of the need to use CPU cores in the

switch’s control-plane (or co-located host) to run the statistical test.

Evaluation: P4Switches have a limited amount of SRAM (order of

100MB [65]) that is required for tables and registers [33]. FlowLens

and Sonata occupy less than 40% and 20% (e.g., 8 of 32 Mb per

stage) SRAM, respectively[33, 50]. As SmartWatch concurrently

leverages both their data structures for the P4Switch deployment, it

would leave only 40% SRAM total to support common forwarding

behaviors, like access control, rate limiting or encapsulation. We

show SmartWatch can have the P4Switch operate with substan-

tially more, 75% SRAM available for general operations (instead

of only 40%) while achieving similar True and False Positive Rate

(TPR/FPR). We consider a high and low memory implementation

of NetWarden and FlowLens. For high memory FlowLens imple-

mentation, we set the quantization level (QL - influencing bin size

and number of bins) to 0, causing each flow to take up 3000 bytes.

In contrast, we set the QL to 3 for the low memory implementation

(376 bytes per flow). For NetWarden, the low-memory implementa-

tion uses a CountMin Sketch with 8 times less memory (0.5 MB as

opposed to 4 MB) by altering the Sketch’s dimensions. The sNIC

fine-grained bins alongside the CME running the KS-Test ensures

the complete statistics calculation is carried out for packets for-

warded to the sNIC-host subsystem, attaining similar TPR and FPR,

despite substantially lower SRAM occupancy (Fig. 9a). In Smart-

Watch, when a timing covert channel is detected, we simply copy

over the packet contents to the sNIC memory and create a new

packet after a random delay. However, given the limited sNIC mem-

ory, when the sNIC ’s buffers exhaust, we then do this on a host NF.

5.2.2 Website Fingerprinting.
Evasion: Allows users to hide the destination address behind a

proxy and the content of website visits from external observers

using encryption [33]. SmartWatch helps achieve the same accuracy

with 14% P4Switch SRAM occupancy compared to 30% needed for

FlowLens and NetWarden.

Detection: Identify which sites are access by collecting the flows’

packet length distributions (PLD) and feeding them to a Naive

Bayes classifier[33]. We use widely used traces containing web

page accesses over OpenSSH [70, 92].

P4Switch/SmartWatch Role:The P4Switch and SmartWatch play

the same role as with the covert timing channel detection case,

except we now collect PLD instead of IPD, and the sNIC CME runs

a Naive Bayes classifier instead of KS-Test.

Evaluation: The CME classifies destination IPs as a “hidden desti-

nation address” or not. We calculate the accuracy using a Multino-

mial Naive-Bayes classifier, which leverages the PLD of the incom-

ing and outgoing data of a connection as features [33]. Fig. 9b shows

the website fingerprinting accuracy with respect to the P4Switch

SRAM occupancy. With SmartWatch, we can bring down this oc-

cupancy to 14% from 30% and still achieve good accuracy (> 90%).

SmartWatch sees a steep drop in accuracy around 10% SRAM occu-

pancy because the range checks cannot identify what traffic needs

to be sent to the sNIC-host subsystem (Fig. 9b).

5.3 Traffic Analysis
In this section, we compare SmartWatch’s FlowCache to common

Sketch designs for traffic measurement over long-timescales (5 sec)

and examine its ability to perform fine-grained traffic measurement

(< 200`𝑠) compared to a P4Switch.

5.3.1 Volumetric Analysis. For packet rates below the capacity of

SmartWatch, we support completely lossless flow-logging (distinct

from flow state tracking). When simultaneously running all mon-

itoring functions shown in Table 2, the packet throughput is not

impacted by additional features since they consume minute frac-

tions of the cycles compared to FlowCache (Table 2). The baseline

FlowCache has flow-logging always active, so it can be used for

heavy hitter, heavy change detection, etc. As each PME operates at

1.2 GHz[13], the small number of cycles used for additional moni-

toring features has only a small impact on packet processing latency.

Throughput: Fig. 11b compares SmartWatch to Sketch basedmech-

anisms. We implemented Elastic Sketch [85], Nitro Sketch [63],

and MVSketch [80]. We compare SmartWatch running FlowCache

in both the General and Lite modes: In this experiment, all the

69

0 10 20 30 40 50 60
Number of Packets (Million)

per montioring interval

0.0

0.2

0.4

0.6

0.8

M
ea

n
Re

la
tiv

e
Er

ro
r Elastic Sketch

MV Sketch
SmartWatch (General)
SmartWatch (Lite)

(a) Heavy Hitter Detection

0 10 20 30 40 50 60
Number of Packets (Million)

per montioring interval

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

la
tiv

e
Er

ro
r Elastic Sketch

MV Sketch
SmartWatch (General)
SmartWatch (Lite)

(b) Heavy Change Detection

100 − 101

101 − 102

102 − 103

103 − 104

104 − 105

105 − 106

Flow Size

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

la
tiv

e
Er

ro
r

Elastic Sketch
MV Sketch
SmartWatch (General)
SmartWatch (Lite)

(c) Flow Size Distribution
Figure 10: Volumetric Analysis (Accuracy)

monitoring functions listed in Table 2 are simultaneously running

in SmartWatch. We also compare SmartWatch with a host based

processing alternative (using an Intel NIC) to show the benefit of

partitioning the functionality with a sNIC. We use Fig. 11b to guide

us in only using 3 of the total 80 MEs for background processing

(e.g., tracking the packet rate for switching between Lite and Gen-

eral mode). The remaining are PMEs (x-axis). The General Mode

supports loss-less monitoring for packet rates below 30Mpps. For

higher rates, up to the max. of 43Mpps, SmartWatch performs loss-

less monitoring using the Lite mode. The control-loop (i.e., specific

query adaptation with P4Switch) ensures that the traffic sent to

SmartWatch is limited to what it can process. The only platform

that yields higher throughput than SmartWatch is Nitro Sketch [63],

but that is because it performs packet sampling to reduce the aver-

age memory operations per packet. CountMIN Sketch throughput

is low due to multiple hash calculations per packet [63].

200.0 800.0 1400.0 2000.0
Burst Classification Threshold (μs)

93

94

95

96

97

98

99

100

Fl
ow

s C
ap

tu
re

s (
%

)

Window Size (μs)
70
80
90
100

(a) Microburst Error

72 74 76 78 80
Number of sNIC PME

15

20

25

30

35

40

45

50

55

60

Th
ro

ug
hp

ut
 (M

pp
s)

NitroSketch (Host)
ElasticSketch (Host)

CountMIN Sketch
SmartWatch (General)
SmartWatch (Lite)

Elastic Sketch
Nitro Sketch

(b) Throughput

Figure 11: SmartWatch Traffic Analysis

Accuracy for Volumetric Analysis: Figure 10 shows the accu-

racy of our platform compared with the invertible Sketch based

solutions, Elastic Sketch [85] and MV Sketch [80]. For all experi-

ments we use the CAIDA traces[4] from years 2015 to 2019, and

reduce the packet size to 64 Bytes, to be replayed at 43 Mpps. First,

we conduct heavy hitter detection. We use a predefined threshold

for a heavy hitter (0.001% of total packets received in the mon-

itoring interval) and vary the monitoring interval from 2 to 64

million packets. Second, we conduct heavy change detection. The

predefined threshold for heavy change is 0.05% of the total changes

across two consecutive intervals. Third, we compared the platforms

based on the collected flow size distribution. For heavy hitter and

heavy change detection, as the monitoring interval increases so

does the error in Sketch based methods due to more hash colli-

sions. SmartWatch’s lossless monitoring approach instead evicts

flow records to the host, preventing any accuracy drop. For heavy

hitter and heavy change detection, both modes of SmartWatch have

overlapping lines, with zero mean relative error. For flow size dis-

tributions, Elastic and MV Sketch prioritize the retention of heavy

flows, causing the small flows to be inaccurate. SmartWatch, on

the other hand, tracks all flows in a lossless manner and has lower

error rate. However, for flow size distributions, the Lite mode has a

higher accuracy compared to General mode as the latter does not

sustain the high packet arrival rate in this experiment.

5.3.2 Micro-bursts.
Anomaly: Micro-bursts are congestion events that (typically) last

< 200`𝑠 , 40% of inter-burst gaps are < 100`s [90]. In this task the

sNIC is responsible for reporting the culprit flows in a microburst

without any approximation.

Detection: ConQuest [38] and BurstRadar [54] propose detecting

micro-bursts when queuing delays go above an operator-specified

threshold and then report the responsible flows.

P4Switch Role: In SmartWatch, the P4Switch identifies the link

experiencing the microbursts and forwards the flow subsets that

suffered the microburst event to the sNIC. Fine-grained analysis

at sNIC accurately identifies the source of micro-burst (unlike the

overestimation in [38]).

SmartWatch Role: FlowCache works with a linear array, L, of
size 96MB storing the unique IP 5-tuple entries, to accurately report

details of flows causing microbursts to the host, along with the

packet count. We use a doubly-linked entry (i.e., reference from

FlowCache entry to L entry and vice versa) to ensure connection

uniqueness in L and to quickly locate flow entries in FlowCache

from L. SmartWatch monitors the queuing delay on the sNIC as

a trigger to activate micro-burst analysis. The PMEs calculate the

difference between the current timestamp and the MAC ingress

timestamp to compute per-packet queuing delay. When this de-

lay exceeds the threshold, PMEs flag it, and generate an identifier

for this micro-burst event. Subsequent packets update FlowCache

and then L. Once the micro-burst ends, the CME is responsible

for scanning L. The small size of L allows for rapid scanning for

computing metrics of interest (within 200ms). A micro-burst ends

when the queuing delay drops below a threshold. Following this,

the contributing flows are identified by scanning the log, and all

FlowCache records are allowed to be evicted to the host.

70

Evaluation: We use the Wisconsin trace [35], replayed at 10x the

original rate, to detect and identify contributing flows of the micro-

burst patterns as in [37]. We test each burst event by quantifying

the flows present in the ground truth vs. the fraction in L, reflecting
how SmartWatch identifies (and reacts to) bursts. Then, there is no

error introduced in SmartWatch when reporting the flow respon-

sible for the queue build-up. But, there may be false micro-bursts

identified due to a conservative setting of the threshold (i.e., of
queuing delay). The number of bursts estimated in SmartWatch

vs. ground truth was higher by 1.32% to 8.23%, for queuing de-

lay thresholds ranging from 2000`s to 200`s. Fig. 11a shows that

as we reduce the queuing threshold to classify a micro-burst, we

miss a fraction of the flows that were a part of the burst in the

ground truth. A burst classification threshold of 200`s, captured

92.7% of the flows in the ground truth. But, a burst classification

above 1700`s identifies all 100% of flows.

Similar Attacks: Worm detection where we lookup the hash of

the combined payload and destination IP and check whether the

worm signature match (i.e., stored in L)[75].

5.4 Effectiveness of Co-op Monitoring
5.4.1 Detection Rate. SmartWatch and Sonata allow processing

traffic across multiple links incident on the switch, achieving an

aggregate terabit scale monitoring. The standalone host will have

the highest detection rate because of the highest degree of flexibility

and most memory. However, it is the least scalable option, as shown

in Figure 3a. Of all the stealthy attacks detected by the host, we show

the fraction of such attacks that are detected by SmartWatch and

Sonata in Table 4. The drop in detection rate for Sonata is because

of the lack of fine-grained processing. In SmartWatch, the higher

detection rate is due to fine-grained processing for flow-subsets.

The slight reduction in detection rate for SmartWatch relative to

standalone host is due to the attacks expiring within the P4Switch

before those packets are forwarded to the sNIC.

Table 4: Detection rate relative to host
Attack Sonata SmartWatch
Slowloris 0.44 0.94

Zeek SSH Bruteforcing 0.24 0.79

Zeek Expiring SSL certificate 0.68 0.68

Zeek FTP Bruteforcing 0.25 0.81

Zeek Kerberos Ticket Monitoring 0.73 0.78

In-Sequence Forged TCP RST 0.11 0.80

TCP Incomplete Flows 0.84 0.93

Stealthy Port Scan 0.4 0.90

DNS Amplification 0.38 0.88

EarlyBird Detection Worms 0.59 0.70

6 RELATEDWORK
Switch Queries: Recent work that support a wide range a queries

such as Sonata [50], NetQRE [88], OpenSOC [18] Gigascope [41],

Omnimon [52], PINT [34], NetWarden [84], FlowLens [33] and

BeauCoup [39] exploit programmable switches. However, these

systems do not conduct protocol-level inspection and thus cannot

detect a wide range of stealthy attacks. Marple [68] performs queries

on a programmable switch at line-rate, using a large backing store

for evictions from the switch data structure (implemented as a hash

table). Omnimon[52] conducts network-wide measurement at full

accuracy, but is also limited in detecting low-rate attacks because of

P4Switch limitations. SmartWatch can complement Omnimon for

a more comprehensive network-centric monitoring solution. Tur-

boflow [76] uses a sNIC with a hash table to store every packet by

having microflow records (mFRs). But their very high eviction rate

puts a substantial load on the host. SmartWatch instead partitions

the aggregation function between sNIC and host and stores flow

records in the host without loss. Trumpet [67] and Pathdump [78]

offload query processing to end-hosts, limiting its processing capac-

ity. NetWarden[84] and FlowLens[33] can carryout website finger-

printing and detect covert timing channels, but consume significant

data plane memory and control plane CPU resources. SmartWatch

significantly reduces this.

Sketches: Sketch-based solutions like Elastic [85], MVSketch [80],

Univmon [64], Sketchlearn [51], and NitroSketch [63] focus on iden-

tifying heavy hitters and heavy change accurately, and less on low

rate or low volume attacks. SmartWatch instead seeks to ensure

all the flows are tracked, to support both volumetric analysis and

specialized monitoring tasks including slow-rate attack detection

and prevention. The sNIC data structure in SmartWatch adapts to

packet arrival rate, ensuring loss-free, near line-rate processing.

NIDS over SmartNICs: Pigasus[91] and others [32, 36, 77, 79, 87]

support high rate pattern matching capabilities. This paper assumes

that data center traffic is encrypted[3], making these NIDS not

valid[58]. We only focus on a generic caching algorithm to support

anomaly detectors based on traffic analysis.

7 CONCLUSIONS
Providing a comprehensive monitoring infrastructure that can de-

tect stealthy attacks in the midst of high traffic volumes is a chal-

lenge. State-of-the-art monitoring techniques either detect stealthy

attacks at very low packet rates or limit their detection capabili-

ties to volumetric attacks for high packet arrival rates. SmartWatch

bridges this dichotomy by cooperatively splitting up the monitoring

tasks between P4 programmable networking switches, P4-capable

SmartNICs and the host. Our proposed control loop helps avoid

having to make a trade-off between detection rate vs. packet pro-

cessing rate. Furthermore, SmartWatch helps reduce the SRAM

memory pressure on programmable switches, by reducing the re-

quired state on the switches. On the other hand, the SmartNIC

helps reduce the packet processing latency even further, by offload-

ing flow-state tracking and flow-logging tasks from the host to

the network-centric components of sNIC and P4Switch. In sum-

mary, SmartWatch selects the correct monitoring-granularity and

monitoring-target to detect both volumetric and stealthy attacks.

SmartWatch’s network switch and host co-design for cooperative

monitoring yields 2.39 times better detection rate compared to

just programmable switches, thanks to SmartWatch’s fined-grained

processing without compromising packet processing throughput.

Compared to host-based fine-grained approaches, SmartWatch re-

duces the packet processing latency by 72.32%.

8 ACKNOWLEDGEMENTS
We sincerely thank the US NSF for their generous support through

grants CRI-1823270, CNS-1618030 and CCF-1815643. We thank

our shepherd Professor Salvatore Pontarelli and the anonymous

reviewers for their suggestions and comments. We also thank Victor

G. Hill, Aditya Dhakal, Vivek Jain, and Viyom Mittal for invaluable

help setting up the testbed, including the sNIC.

71

REFERENCES
[1] 2020 DDOS attacks. https://www.globenewswire.com/news-release/2020/06/23/

2052054/0/en/Imperva-Research-Labs-Reveals-Abnormal-Increase-in-DDoS-

Attack-Length-Despite-Popularity-of-Short-Term-Attacks.html

[2] ARM Cortex-A72 Architecture. https://www.tomshardware.com/reviews/arm-

cortex-a72-architecture,4424.html

[3] Azure Encryption. https://docs.microsoft.com/en-us/azure/security/

fundamentals/encryption-overview

[4] The CAIDA Anonymized Internet Traces. http://www.caida.org/data/passive/

passive_dataset.xml.

[5] Editcap. https://www.wireshark.org/docs/man-pages/editcap.html

[6] How Zeek can provide insights despite encrypted communications.

https://corelight.blog/2019/05/07/how-zeek-can-provide-insights-despite-

encrypted-communications/.

[7] Intel Tofino 2. https://www.intel.com/content/www/us/en/products/network-

io/programmable-ethernet-switch/tofino-2-series.html

[8] Intel XL710 Datasheet. https://www.intel.com/content/www/us/en/

design/products-and-solutions/networking-and-io/ethernet-controller-

xl710/technical-library.html?grouping=EMT_Content%20Type&sort=title:asc

[9] Mapping P4 to SmartNICs. https://opennetworking.org/wp-content/uploads/

2020/12/p4_d2_2017_nfp_architecture.pdf

[10] Marvell LiquidIO III. https://www.marvell.com/content/dam/marvell/en/public-

collateral/embedded-processors/marvell-liquidio-III-solutions-brief .pdf

[11] Marvell User Guide. https://www.marvell.com/content/dam/marvell/en/public-

collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-

41000-series-user-guide.pdf

[12] Mergecap. https://www.wireshark.org/docs/man-pages/mergecap.html

[13] Netronome Agilio LX. https://www.netronome.com/media/documents/

PB_Agilio_LX_2x40GbE-7-20.pdf

[14] Netronome MicroC. https://cdn.open-nfp.org/media/documents/the-joy-of-

micro-c_fcjSfra.pdf

[15] Netronome NFP-6000 Flow Processor. https://www.netronome.com/media/

documents/PB_NFP-6000-7-20.pdf

[16] NMAP. https://nmap.org/

[17] NVIDIA Mellanox BlueField. https://www.mellanox.com/files/doc-2020/pb-

bluefield-vpi-smart-nic.pdf

[18] OpenSOC. http://opensoc.github.io/

[19] PROFILING CPU USAGE IN REAL TIME WITH PERF TOP. https:

//access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/

html/monitoring_and_managing_system_status_and_performance/profiling-

cpu-usage-in-real-time-with-top_monitoring-and-managing-system-status-

and-performance

[20] Redis. https://redis.io/

[21] Slowloris. https://www.cloudflare.com/learning/ddos/ddos-attack-tools/

slowloris/

[22] TCPRewrite. https://linux.die.net/man/1/tcprewrite

[23] Towards Machine Learning Inference in the Data Plane. https://www.diva-

portal.org/smash/get/diva2:1328601/FULLTEXT01.pdf

[24] Zeek FTP Bruteforcing. https://docs.zeek.org/en/v3.2.4/scripts/policy/protocols/

ftp/detect-bruteforcing.zeek.html

[25] Zeek HTTP Stalling Detection. https://github.com/corelight/http-stalling-

detector

[26] Zeek Kerberos. https://docs.zeek.org/en/master/scripts/base/protocols/krb/

main.zeek.html

[27] The Zeek Network Security Monitor. https://www.zeek.org/

[28] Zeek SSH Bruteforcing Script. https://docs.zeek.org/en/current/scripts/policy/

protocols/ssh/detect-bruteforcing.zeek.html

[29] Zeek SSL Certificate. https://docs.zeek.org/en/lts/scripts/policy/protocols/ssl/

expiring-certs.zeek.html

[30] 2008. Kolmogorov–Smirnov Test. Springer New York, New York, NY, 283–287.

https://doi.org/10.1007/978-0-387-32833-1_214

[31] Fabien André, Stéphane Gouache, Nicolas Le Scouarnec, and Antoine Monsifrot.

2018. Don’t share, Don’t lock: Large-scale Software Connection Tracking with

Krononat. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 453–466. https://www.usenix.org/conference/atc18/

presentation/andre

[32] Zachary K. Baker and Viktor K. Prasanna. 2005. High-Throughput Linked-

Pattern Matching for Intrusion Detection Systems. In Proceedings of the 2005
ACM Symposium on Architecture for Networking and Communications Systems
(ANCS ’05). Association for Computing Machinery, New York, NY, USA, 193–202.

https://doi.org/10.1145/1095890.1095918

[33] Diogo Barradas, Nuno Santos, Luís Rodrigues, S. Signorello, Fernando M. V.

Ramos, and André Madeira. 2021. FlowLens: Enabling Efficient Flow Classifica-

tion for ML-based Network Security Applications. In NDSS.
[34] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,

Minian Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic In-Band Net-

work Telemetry. In Proceedings of the Annual Conference of the ACM Special

Interest Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM ’20). As-
sociation for Computing Machinery, New York, NY, USA, 662–680. https:

//doi.org/10.1145/3387514.3405894

[35] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic

Characteristics of Data Centers in the Wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (IMC ’10). ACM, New York, NY,

USA, 267–280. https://doi.org/10.1145/1879141.1879175

[36] Milan Ceška, Vojtech Havlena, Lukáš Holík, Jan Korenek, Ondrej Lengál, Denis

Matoušek, Jirí Matoušek, Jakub Semric, and Tomáš Vojnar. 2019. Deep Packet

Inspection in FPGAs via Approximate Nondeterministic Automata. In 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 109–117. https://doi.org/10.1109/FCCM.2019.00025

[37] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-

tenstreich. 2018. Catching the Microburst Culprits with Snappy. In Proceedings
of the Afternoon Workshop on Self-Driving Networks (SelfDN 2018). Association
for Computing Machinery, New York, NY, USA, 22–28. https://doi.org/10.1145/

3229584.3229586

[38] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rotten-

streich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-Grained Queue

Measurement in the Data Plane. In Proceedings of the 15th International Con-
ference on Emerging Networking Experiments And Technologies (CoNEXT ’19).
Association for Computing Machinery, New York, NY, USA, 15–29. https:

//doi.org/10.1145/3359989.3365408

[39] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. 2020.

BeauCoup: Answering Many Network Traffic Queries, One Memory Update at a

Time. In Proceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM ’20). Association for Computing Ma-

chinery, New York, NY, USA, 226–239. https://doi.org/10.1145/3387514.3405865

[40] B. Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC 3954. RFC

Editor. http://www.rfc-editor.org/rfc/rfc3954.txt http://www.rfc-editor.org/rfc/

rfc3954.txt.

[41] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.

2003. Gigascope: A Stream Database for Network Applications. In Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD
’03). Association for Computing Machinery, New York, NY, USA, 647–651. https:

//doi.org/10.1145/872757.872838

[42] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman

Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,

James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,

Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,

Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vah-

dat. 2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud

Network Virtualization. In 15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18). USENIX Association, Renton, WA, 373–387.

https://www.usenix.org/conference/nsdi18/presentation/dalton

[43] Shi Dong, Khushnood Abbas, and Raj Jain. 2019. A Survey on Distributed Denial

of Service (DDoS) Attacks in SDN and Cloud Computing Environments. IEEE
Access 7 (2019), 80813–80828. https://doi.org/10.1109/ACCESS.2019.2922196

[44] Nick Duffield, Carsten Lund, Mikkel Thorup, and Mikkel Thorup. 2003. Esti-

mating Flow Distributions from Sampled Flow Statistics. In Proceedings of the
2003 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM ’03). ACM, New York, NY, USA, 325–336.

https://doi.org/10.1145/863955.863992

[45] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and

Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet Generator. In

Internet Measurement Conference 2015 (IMC’15). Tokyo, Japan.
[46] Cristian Estan and George Varghese. 2001. New directions in traffic measurement

and accounting. ACM SIGCOMM Computer Communication Review 32, 75–80.

https://doi.org/10.1145/505202.505212

[47] Yixiao Feng, Sourav Panda, Sameer G Kulkarni, K. K. Ramakrishnan, and

Nick Duffield. 2020. A SmartNIC-Accelerated Monitoring Platform for In-

band Network Telemetry. In 2020 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN. 1–6. https://doi.org/10.1109/

LANMAN49260.2020.9153279

[48] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack

Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-

uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,

Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-

erated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). USENIX Association,

Renton, WA, 51–66. https://www.usenix.org/conference/nsdi18/presentation/

firestone

[49] Linux Foundation. Data Plane Development Kit (DPDK). http://www.dpdk.org

72

https://www.globenewswire.com/news-release/2020/06/23/2052054/0/en/Imperva-Research-Labs-Reveals-Abnormal-Increase-in-DDoS-Attack-Length-Despite-Popularity-of-Short-Term-Attacks.html
https://www.globenewswire.com/news-release/2020/06/23/2052054/0/en/Imperva-Research-Labs-Reveals-Abnormal-Increase-in-DDoS-Attack-Length-Despite-Popularity-of-Short-Term-Attacks.html
https://www.globenewswire.com/news-release/2020/06/23/2052054/0/en/Imperva-Research-Labs-Reveals-Abnormal-Increase-in-DDoS-Attack-Length-Despite-Popularity-of-Short-Term-Attacks.html
https://www.tomshardware.com/reviews/arm-cortex-a72-architecture,4424.html
https://www.tomshardware.com/reviews/arm-cortex-a72-architecture,4424.html
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://www.wireshark.org/docs/man-pages/editcap.html
https://corelight.blog/2019/05/07/how-zeek-can-provide-insights-despite-encrypted-communications/
https://corelight.blog/2019/05/07/how-zeek-can-provide-insights-despite-encrypted-communications/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-controller-xl710/technical-library.html?grouping=EMT_Content%20Type&sort=title:asc
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-controller-xl710/technical-library.html?grouping=EMT_Content%20Type&sort=title:asc
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-controller-xl710/technical-library.html?grouping=EMT_Content%20Type&sort=title:asc
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-41000-series-user-guide.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-41000-series-user-guide.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-41000-series-user-guide.pdf
https://www.wireshark.org/docs/man-pages/mergecap.html
https://www.netronome.com/media/documents/PB_Agilio_LX_2x40GbE-7-20.pdf
https://www.netronome.com/media/documents/PB_Agilio_LX_2x40GbE-7-20.pdf
https://cdn.open-nfp.org/media/documents/the-joy-of-micro-c_fcjSfra.pdf
https://cdn.open-nfp.org/media/documents/the-joy-of-micro-c_fcjSfra.pdf
https://www.netronome.com/media/documents/PB_NFP-6000-7-20.pdf
https://www.netronome.com/media/documents/PB_NFP-6000-7-20.pdf
https://nmap.org/
https://www.mellanox.com/files/doc-2020/pb-bluefield-vpi-smart-nic.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-vpi-smart-nic.pdf
http://opensoc.github.io/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/profiling-cpu-usage-in-real-time-with-top_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/profiling-cpu-usage-in-real-time-with-top_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/profiling-cpu-usage-in-real-time-with-top_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/profiling-cpu-usage-in-real-time-with-top_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/profiling-cpu-usage-in-real-time-with-top_monitoring-and-managing-system-status-and-performance
https://redis.io/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://linux.die.net/man/1/tcprewrite
https://www.diva-portal.org/smash/get/diva2:1328601/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1328601/FULLTEXT01.pdf
https://docs.zeek.org/en/v3.2.4/scripts/policy/protocols/ftp/detect-bruteforcing.zeek.html
https://docs.zeek.org/en/v3.2.4/scripts/policy/protocols/ftp/detect-bruteforcing.zeek.html
https://github.com/corelight/http-stalling-detector
https://github.com/corelight/http-stalling-detector
https://docs.zeek.org/en/master/scripts/base/protocols/krb/main.zeek.html
https://docs.zeek.org/en/master/scripts/base/protocols/krb/main.zeek.html
https://www.zeek.org/
https://docs.zeek.org/en/current/scripts/policy/protocols/ssh/detect-bruteforcing.zeek.html
https://docs.zeek.org/en/current/scripts/policy/protocols/ssh/detect-bruteforcing.zeek.html
https://docs.zeek.org/en/lts/scripts/policy/protocols/ssl/expiring-certs.zeek.html
https://docs.zeek.org/en/lts/scripts/policy/protocols/ssl/expiring-certs.zeek.html
https://doi.org/10.1007/978-0-387-32833-1_214
https://www.usenix.org/conference/atc18/presentation/andre
https://www.usenix.org/conference/atc18/presentation/andre
https://doi.org/10.1145/1095890.1095918
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1109/FCCM.2019.00025
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3387514.3405865
http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc3954.txt
https://doi.org/10.1145/872757.872838
https://doi.org/10.1145/872757.872838
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://doi.org/10.1109/ACCESS.2019.2922196
https://doi.org/10.1145/863955.863992
https://doi.org/10.1145/505202.505212
https://doi.org/10.1109/LANMAN49260.2020.9153279
https://doi.org/10.1109/LANMAN49260.2020.9153279
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
http://www.dpdk.org

[50] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. 2018. Sonata: Query-driven Streaming Network Telemetry.

In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’18). ACM, New York, NY, USA, 357–371. https:

//doi.org/10.1145/3230543.3230555

[51] Qun Huang, Patrick Lee, and Yungang Bao. 2018. Sketchlearn: relieving user

burdens in approximate measurement with automated statistical inference. 576–

590. https://doi.org/10.1145/3230543.3230559

[52] Qun Huang, Haifeng Sun, Patrick P. C. Lee, Wei Bai, Feng Zhu, and Yungang

Bao. 2020. OmniMon: Re-Architecting Network Telemetry with Resource Effi-

ciency and Full Accuracy. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 404–421. https:

//doi.org/10.1145/3387514.3405877

[53] Mobin Javed and Vern Paxson. 2013. Detecting stealthy, distributed SSH brute-

forcing. 85–96. https://doi.org/10.1145/2508859.2516719

[54] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.

BurstRadar: Practical Real-Time Microburst Monitoring for Datacenter Networks.

In Proceedings of the 9th Asia-PacificWorkshop on Systems (APSys ’18). Association
for Computing Machinery, New York, NY, USA, Article Article 8, 8 pages. https:

//doi.org/10.1145/3265723.3265731

[55] Jaeyeon Jung, V. Paxson, Arthur Berger, and Hari Balakrishnan. 2004. Fast

portscan detection using sequential hypothesis testing. 211 – 225. https://doi.org/

10.1109/SECPRI.2004.1301325

[56] Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos

Gritzalis. 2007. Detecting DNS Amplification Attacks. In Proceedings of the
Second International Conference on Critical Information Infrastructures Security
(CRITIS’07). Springer-Verlag, Berlin, Heidelberg, 185–196. https://doi.org/10.1007/
978-3-540-89173-4_16

[57] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas

Sekar, and Srinivasan Seshan. 2020. TEA: Enabling State-Intensive Network

Functions on Programmable Switches. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM
’20). Association for Computing Machinery, New York, NY, USA, 90–106. https:

//doi.org/10.1145/3387514.3405855

[58] Tiina Kovanen, Gil David, and Timo Hämäläinen. 2016. Survey: Intrusion Detec-

tion Systems in Encrypted Traffic. In Internet of Things, Smart Spaces, and Next
Generation Networks and Systems, Olga Galinina, Sergey Balandin, and Yevgeni

Koucheryavy (Eds.). Springer International Publishing, Cham, 281–293.

[59] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003.

Sketch-based change detection: Methods, evaluation, and applications. In Pro-
ceedings of the 2003 ACM SIGCOMM Internet Measurement Conference, IMC 2003.
234–247.

[60] Aleksandar Kuzmanovic and Edward W. Knightly. 2003. Low-Rate TCP-Targeted

Denial of Service Attacks: The Shrew vs. the Mice and Elephants. In Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (SIGCOMM ’03). Association for Computing

Machinery, New York, NY, USA, 75–86. https://doi.org/10.1145/863955.863966

[61] Jihyung Lee, Sungryoul Lee, Junghee Lee, Yung Yi, and KyoungSoo Park. 2015.

FloSIS: A Highly Scalable Network Flow Capture System for Fast Retrieval and

Storage Efficiency. In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC ’15). USENIX Association, USA, 445–457.

[62] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and

Karan Gupta. 2019. Offloading Distributed Applications Onto smartNICs Using

iPipe. In Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM ’19). ACM, New York, NY, USA, 318–333. https://doi.org/10.1145/

3341302.3342079

[63] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,

Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and General Sketch-

based Monitoring in Software Switches. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM ’19). ACM, New York, NY, USA, 334–

350. https://doi.org/10.1145/3341302.3342076

[64] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir

Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow

Monitoring with UnivMon. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). ACM, New York, NY, USA, 101–114. https://doi.org/10.1145/

2934872.2934906

[65] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-

ing ASICs. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). Association for Computing Machinery,

New York, NY, USA, 15–28. https://doi.org/10.1145/3098822.3098824

[66] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and Kyoung-

Soo Park. 2020. AccelTCP: Accelerating Network Applications with State-

ful TCP Offloading. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 77–92.

https://www.usenix.org/conference/nsdi20/presentation/moon

[67] MasoudMoshref, Minlan Yu, RameshGovindan, andAmin Vahdat. 2016. Trumpet:

Timely and Precise Triggers in Data Centers. In Proceedings of the 2016 ACM
SIGCOMM Conference (SIGCOMM ’16). Association for Computing Machinery,

New York, NY, USA, 129–143. https://doi.org/10.1145/2934872.2934879

[68] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.

Language-Directed Hardware Design for Network Performance Monitoring. In

Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM ’17). Association for Computing Machinery, New York, NY,

USA, 85–98. https://doi.org/10.1145/3098822.3098829

[69] R. Neugebauer, G. Antichi, J. F. Zazo, Yury Audzevich, S. López-Buedo, and

A. Moore. 2018. Understanding PCIe performance for end host networking.

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (2018).

[70] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.

Website Fingerprinting in Onion Routing Based Anonymization Networks. In

Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society
(WPES ’11). Association for Computing Machinery, New York, NY, USA, 103–114.

https://doi.org/10.1145/2046556.2046570

[71] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. 2007.

Sensitivity of PCA for Traffic Anomaly Detection. In Proceedings of the 2007 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’07). Association for Computing Machinery, New York,

NY, USA, 109–120. https://doi.org/10.1145/1254882.1254895

[72] Volker Roth and Randy H. Katz. 2004. Listen and Whisper: Security Mechanisms

for BGP. In First Symposium on Networked Systems Design and Implementation
(NSDI 04). USENIX Association, San Francisco, CA. https://www.usenix.org/

conference/nsdi-04/listen-and-whisper-security-mechanisms-bgp

[73] F. Silveira and C. Diot. 2010. URCA: Pulling out Anomalies by their Root

Causes. In 2010 Proceedings IEEE INFOCOM. 1–9. https://doi.org/10.1109/

INFCOM.2010.5462151

[74] Fernando Silveira, Christophe Diot, Nina Taft, and Ramesh Govindan. 2010. AS-

TUTE: Detecting a Different Class of Traffic Anomalies. SIGCOMM Comput. Com-
mun. Rev. 40, 4 (Aug. 2010), 267–278. https://doi.org/10.1145/1851275.1851215

[75] Sumeet Singh, C. Estan, G. Varghese, and S. Savage. 2005. The EarlyBird System

for Real-time Detection of Unknown Worms.

[76] John Sonchack, Adam J. Aviv, Eric Keller, and JonathanM. Smith. 2018. Turboflow:

Information Rich FlowRecordGeneration onCommodity Switches. In Proceedings
of the Thirteenth EuroSys Conference (EuroSys ’18). ACM, New York, NY, USA,

Article 11, 16 pages. https://doi.org/10.1145/3190508.3190558

[77] Haoyu Song, T. Sproull, M. Attig, and J. Lockwood. 2005. Snort offloader: a recon-

figurable hardware NIDS filter. In International Conference on Field Programmable
Logic and Applications, 2005. 493–498. https://doi.org/10.1109/FPL.2005.1515770

[78] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016. Simplifying Dat-

acenter Network Debugging with PathDump. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX Association,

Savannah, GA, 233–248. https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/tammana

[79] Lin Tan and T. Sherwood. 2005. A high throughput string matching architecture

for intrusion detection and prevention. In 32nd International Symposium on
Computer Architecture (ISCA’05). 112–122. https://doi.org/10.1109/ISCA.2005.5

[80] L. Tang, Q. Huang, and P. P. C. Lee. 2019. MV-Sketch: A Fast and Compact

Invertible Sketch for Heavy Flow Detection in Network Data Streams. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications. 2026–2034. https:
//doi.org/10.1109/INFOCOM.2019.8737499

[81] G. Varghese and Tony Lauck. 1987. Hashed and hierarchical timing wheels: Data

structures for the efficient implementation of a timer facility. ACM SIGOPS Oper-
ating Systems Review 21 (11 1987), 25–38. https://doi.org/10.1145/37499.37504

[82] Nicholas Weaver, Robin Sommer, and Vern Paxson. 2009. Detecting forged TCP

reset packets.

[83] S. Woo and K. Park. 2012. Scalable TCP Session Monitoring with Symmetric

Receive-side Scaling.

[84] Jiarong Xing, Qiao Kang, and Ang Chen. 2020. NetWarden: Mitigating Net-

work Covert Channels while Preserving Performance. In 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, 2039–2056. https:

//www.usenix.org/conference/usenixsecurity20/presentation/xing

[85] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,

Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast Network-

wide Measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’18). ACM, New York, NY,

USA, 561–575. https://doi.org/10.1145/3230543.3230544

[86] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-

ment with OpenSketch. In Presented as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13). USENIX, Lombard, IL, 29–

42. https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/

yu

73

https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3230543.3230559
https://doi.org/10.1145/3387514.3405877
https://doi.org/10.1145/3387514.3405877
https://doi.org/10.1145/2508859.2516719
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1109/SECPRI.2004.1301325
https://doi.org/10.1109/SECPRI.2004.1301325
https://doi.org/10.1007/978-3-540-89173-4_16
https://doi.org/10.1007/978-3-540-89173-4_16
https://doi.org/10.1145/3387514.3405855
https://doi.org/10.1145/3387514.3405855
https://doi.org/10.1145/863955.863966
https://doi.org/10.1145/3341302.3342079
https://doi.org/10.1145/3341302.3342079
https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/3098822.3098824
https://www.usenix.org/conference/nsdi20/presentation/moon
https://doi.org/10.1145/2934872.2934879
https://doi.org/10.1145/3098822.3098829
https://doi.org/10.1145/2046556.2046570
https://doi.org/10.1145/1254882.1254895
https://www.usenix.org/conference/nsdi-04/listen-and-whisper-security-mechanisms-bgp
https://www.usenix.org/conference/nsdi-04/listen-and-whisper-security-mechanisms-bgp
https://doi.org/10.1109/INFCOM.2010.5462151
https://doi.org/10.1109/INFCOM.2010.5462151
https://doi.org/10.1145/1851275.1851215
https://doi.org/10.1145/3190508.3190558
https://doi.org/10.1109/FPL.2005.1515770
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/tammana
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/tammana
https://doi.org/10.1109/ISCA.2005.5
https://doi.org/10.1109/INFOCOM.2019.8737499
https://doi.org/10.1109/INFOCOM.2019.8737499
https://doi.org/10.1145/37499.37504
https://www.usenix.org/conference/usenixsecurity20/presentation/xing
https://www.usenix.org/conference/usenixsecurity20/presentation/xing
https://doi.org/10.1145/3230543.3230544
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu

[87] Ruan Yuan, Yang Weibing, Chen Mingyu, Zhao Xiaofang, and Fan Jianping. 2010.

Robust TCP Reassembly with a Hardware-Based Solution for Backbone Traffic. In

2010 IEEE Fifth International Conference on Networking, Architecture, and Storage.
439–447. https://doi.org/10.1109/NAS.2010.53

[88] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and Boon Thau

Loo. 2017. Quantitative Network Monitoring with NetQRE. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 99–112. https:

//doi.org/10.1145/3098822.3098830

[89] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy. 2020. Gallium: Auto-

mated Software Middlebox Offloading to Programmable Switches. In Proceedings
of the Annual Conference of the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’20). Association for Computing Machinery, New

York, NY, USA, 283–295. https://doi.org/10.1145/3387514.3405869

[90] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-

Resolution Measurement of Data Center Microbursts. In Proceedings of the 2017
InternetMeasurement Conference (IMC ’17). Association for ComputingMachinery,

New York, NY, USA, 78–85. https://doi.org/10.1145/3131365.3131375

[91] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine

Sherry. 2020. Achieving 100Gbps Intrusion Prevention on a Single Server. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 1083–1100. https://www.usenix.org/conference/osdi20/

presentation/zhao-zhipeng

[92] Zhongliu Zhuo, Yang Zhang, Zhi-li Zhang, Xiaosong Zhang, and Jingzhong

Zhang. 2018. Website Fingerprinting Attack on Anonymity Networks Based on

Profile Hidden Markov Model. IEEE Transactions on Information Forensics and
Security 13, 5 (2018), 1081–1095. https://doi.org/10.1109/TIFS.2017.2762825

9 APPENDIX
While we believe the main body of the paper is self-contained, we

have included a number of additional details here in the Appendix

for the sake of completeness, which we did not include in the main

part of the paper (both to maintain the flow of the paper, and the

limit on the length of the paper).

9.1 Flow record update scheme on sNIC
A global load balancer on the sNIC distributes incoming packets

among a large number of PMEs, which allows different PMEs (each

with 4 concurrent threads) to process incoming packets in parallel.
Multiple PMEs may process packets for the same flow, resulting in:

• multiple PMEs update an existing flow’s counter in P.

• acquire a bucket in P to insert a new flow and possibly evict one

of the existing entries from P and E to make room for the new flow

in P.

To ensure correctness, we need to guarantee there are no dupli-

cate flow entries in a row and all memory updates (e.g., counters) are
serialized, avoiding overwrites. However, a naive approach using a

lock per row in the hash table severely impacts performance. Since

a train of packets of the same flow arrive often, several PMEs may

contend for the lock. Further, a lock per row results in unnecessary

serialization when PMEs need to update different bucket entries in

a row. We distinguish two kinds of operations demanding distinct

serialization for the two scenarios mentioned above.

Lockless updates on sNIC: For an update operation, we only

need to ensure memory updates for a bucket within a row are se-

rialized. We designed a lock free update scheme to allow multiple

PMEs to update the packet count, timestamp, or other variables in

parallel by taking advantage of the atomic writememory operations

supported by the sNIC to serialize memory operations in hardware.

However, a bucket with one or more ongoing update operations

must not be evicted by another PME. Thus, we also keep a counter

up_th_ctr for tracking of the number of threads across different

PMEs that are concurrently accessing the same bucket.

Flow record Insertion and Eviction in sNIC:When the flow

can not find a match in P, we probe E and accordingly select the

eviction candidates from both P and E to insert the new flow in P.
For correctness:

• only one PME performs the insertion of a new flow and evict an

existing flow entry in a row.

• no other threads are currently performing updates.

Before inserting a flow entry, a PME first acquires exclusive ac-

cess to the row using the lockless test-and-set hardware primitive

and check to ensure no other threads are waiting. To avoid the

write thread of a PME from being stalled by packets performing

updates on the eviction candidate in P, we preclude any further

updates on the eviction candidate. After this the eviction candidate

is evicted and replaced. Meanwhile subsequent updates of the re-

cently evicted flow fallback to inserting the flow entry. However,

this is extremely unlikely as the least recently used flow record is

selected for eviction.

9.2 Flow Record Update

Algorithm 2 Flow records Operation

1: procedure Update(𝑓)
2: if 𝑃_ℎ𝑖𝑡 then
3: if 𝑓 𝑒𝑡𝑐ℎ_𝑎𝑛𝑑_𝑎𝑑𝑑 (𝑢𝑝_𝑡ℎ_𝑐𝑡𝑟, 1) == 0 then
4: while 𝑡𝑒𝑠𝑡_𝑎𝑛𝑑_𝑠𝑒𝑡 (𝑚𝑡_𝑒𝑥𝑐𝑙_𝑖𝑛𝑠𝑡) == 1 do
5: 𝑓𝑐 ← 𝑓𝑐 + 1 ⊲ increment counters of flow 𝑓

6: if 𝑓 𝑒𝑡𝑐ℎ_𝑎𝑛𝑑_𝑠𝑢𝑏 (𝑢𝑝_𝑡ℎ_𝑐𝑡𝑟, 1) == 1 then
7: 𝑚𝑡_𝑒𝑥𝑐𝑙_𝑖𝑛𝑠𝑡 ← 0

8: else
9: Insert(𝑓)
10: procedure Insert(𝑓)
11: 𝑝 ← 𝑛𝑒𝑤_𝑓 𝑙𝑜𝑤 ⊲ 𝐸_𝐻𝑖𝑡 or𝑀𝑖𝑠𝑠

12: while 𝑡𝑒𝑠𝑡_𝑎𝑛𝑑_𝑠𝑒𝑡 (𝑟𝑜𝑤) == 1 do
13: 𝑘𝑒𝑦 ← 0 ⊲ stop further update on this entry

14: while 𝑡𝑒𝑠𝑡_𝑎𝑛𝑑_𝑠𝑒𝑡 (𝑚𝑡_𝑒𝑥𝑐𝑙_𝑖𝑛𝑠𝑡) == 1 do
15: 𝐸 ← 𝑝𝑣𝑖𝑐𝑡𝑖𝑚 ⊲ write victim flow from 𝑃 into 𝐸

16: 𝑝𝑣𝑖𝑐𝑡𝑖𝑚 ← 𝑝 ⊲ insert new flow into 𝑃

17: 𝑚𝑡_𝑒𝑥𝑐𝑙_𝑖𝑛𝑠𝑡 ← 0, 𝑟𝑜𝑤 ← 0

Algorithm 2 is used to select an eviction candidate and swap en-

tries in the Primary 𝑃 and Eviction 𝐸 buffers. It then conditionally

moves the eviction candidate entry from 𝐸 to the ring buffer 𝑅 in a

lockless manner. Variable 𝑢𝑝_𝑡ℎ_𝑐𝑡𝑟 tracks the number of threads

accessing the flow entry. Variable𝑚𝑡_𝑒𝑥𝑐𝑙_𝑖𝑛𝑠𝑡 is 1 if at least one

thread accesses the flow entry, otherwise 0. Variable 𝑟𝑜𝑤 is set to

1 by the thread that has exclusive access to the row for the pur-

posed of evicting flow entries. Atomic operations include: atomic

increment 𝑓 𝑒𝑡𝑐ℎ_𝑎𝑛𝑑_𝑎𝑑𝑑 , atomic decrement 𝑓 𝑒𝑡𝑐ℎ_𝑎𝑛𝑑_𝑠𝑢𝑏, and

an instruction that writes to a memory location and return its old

value atomically 𝑡𝑒𝑠𝑡_𝑎𝑛𝑑_𝑠𝑒𝑡 .

The algorithm updates flow entries in the Primary Buffer 𝑃

in a lockless manner, allowing multiple PMEs to update the flow

74

https://doi.org/10.1109/NAS.2010.53
https://doi.org/10.1145/3098822.3098830
https://doi.org/10.1145/3098822.3098830
https://doi.org/10.1145/3387514.3405869
https://doi.org/10.1145/3131365.3131375
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://doi.org/10.1109/TIFS.2017.2762825

counters in parallel. In the event of a flow entry miss, a new flow

entry is inserted in the Primary Buffer while ensuring there are

no other PMEs simultaneously updating the flow attribute of the

Primary Buffer eviction candidate. This Primary Buffer eviction

candidate replaces an Eviction Buffer victim and the Eviction Buffer

victim is sent to the Ring Buffer that is read by the host. In the event

of an Eviction Buffer hit, the Primary Buffer victim is swapped

against the incoming packet’s flow entry.

9.3 Cleaning the Hash Row

Algorithm 3 Clean

1: Initialize:
𝑠𝑖𝑧𝑒 [𝑏𝑖𝑛𝑠] ← 0, 𝑏𝑖𝑛𝑠 = 0, . . . , 𝑃 − 1
𝑡𝑒𝑚𝑝 [𝑏𝑖𝑛𝑠] [𝑐𝑎𝑝] ← −1, 𝑏𝑖𝑛𝑠 = 0, . . . , 𝑃 − 1,

𝑐𝑎𝑝 = 0, . . . , 𝑆 − 1
𝑡𝑜_𝑒𝑣𝑖𝑐𝑡 [𝑖] ← −1, 𝑖 = 0, . . . , 𝑟𝑜𝑤_𝑙𝑒𝑛 − 1

2: procedure Clean(𝐵, 𝑃 , 𝑆)
3: 𝑒 ← 0

4: for 𝑖 ← 0, 𝑟𝑜𝑤_𝑙𝑒𝑛 do
5: 𝑛𝑒𝑤_𝑏𝑖𝑛 ← ℎ𝑎𝑠ℎ_𝑏𝑖𝑛(𝐵𝑖)
6: if 𝑠𝑖𝑧𝑒 [𝑛𝑒𝑤_𝑏𝑖𝑛] < 𝑆 then
7: 𝑡𝑒𝑚𝑝 [𝑛𝑒𝑤_𝑏𝑖𝑛] [𝑠𝑖𝑧𝑒 [𝑛𝑒𝑤_𝑏𝑖𝑛]] ← 𝑖

8: 𝑠𝑖𝑧𝑒 [𝑛𝑒𝑤_𝑏𝑖𝑛] ← 𝑠𝑖𝑧𝑒 [𝑛𝑒𝑤_𝑏𝑖𝑛] + 1
9: else
10: 𝑜𝑙𝑑𝑒𝑠𝑡 ← GetOldest(𝑡𝑒𝑚𝑝 [𝑛𝑒𝑤_𝑏𝑖𝑛], 𝑖)
11: if 𝑜𝑙𝑑𝑒𝑠𝑡 ≠ 𝑖 then
12: 𝑡𝑜_𝑒𝑣𝑖𝑐𝑡 [𝑒] ← 𝑜𝑙𝑑𝑒𝑠𝑡

13: Swap(𝑜𝑙𝑑𝑒𝑠𝑡, 𝑖)
14: else
15: 𝑡𝑜_𝑒𝑣𝑖𝑐𝑡 [𝑒] ← 𝑖 , 𝑒 ← 𝑒 + 1

Cleanup process:We leverage the ‘dirty bit’ marking by the CME

to determine the need to re-order the bucket entries across the Lite

mode rows according to the higher order bits of the hash digest. The

first PME that finds a bucket with the ’dirty’ bit (based on the hash

ℎ(𝐾) of the incoming packet) will perform the cleanup operation

described in the Algorithm 3. First, the PME gains exclusive access

to the row, then locks all of the buckets in the row and copies

over the bucket entries to a local buffer 𝐵. Thereafter, it iteratively

computes the hash and identifies the right Lite row based on the

higher order bits. If there are collisions, we retain the recent entry

in the hash table and evict the oldest of the entries to the ring

buffers to be moved to the host. Since the cleanup is performed in

the critical (packet processing) path by the PMEs, The key to this

algorithm is that it is necessary to perform cleanup with very little

overhead.

We use three local variables 𝑠𝑖𝑧𝑒 , 𝑡𝑒𝑚𝑝 , and 𝑡𝑜_𝑒𝑣𝑖𝑐𝑡 to store the

occupied size of each row, the bucket index we wish to store in

that Lite row and the buckets we wish to evict to the ring buffer,

respectively. The ‘Clean’ procedure maps each of the buckets 𝐵𝑖
into the correct Lite row 𝑛𝑒𝑤_𝑏𝑖𝑛 and stores the entry currently

in this bucket index into the corresponding Lite row, if it is not

already occupied. Otherwise, only the recent packet entry (based

on the latest update timestamp stored in the bucket) is preferred

over the other entry (output of the GetOldest(𝑡𝑒𝑚𝑝 [𝑛𝑒𝑤_𝑏𝑖𝑛], 𝑖));
and the older entry is evicted to the ring buffer.

Algorithm 3 enables FlowCache to seamlessly transition from

the General mode of operation to a Lite mode of operation.

9.4 Switch Over
Algorithm 4 is loaded on a CME that evaluates the exponential

moving average on the packet arrival rate and then selects the

appropriate mode of operation.

Algorithm 4 SwitchOver

1: procedure SwitchOver(𝐴𝑡)

2: 𝐹𝑡+1 = 𝛼𝐴𝑡 + (1 − 𝛼)𝐹𝑡
3: if 𝐹𝑡+1 > [1 then
4: for 𝑖 ← 0, 𝑅𝑜𝑤 do
5: 𝐷𝑖𝑟𝑡𝑦 [𝑖] ← 1

6: 𝑀𝑜𝑑𝑒 ← 𝐿𝑖𝑡𝑒_𝑚𝑜𝑑𝑒

7: else if 𝐹𝑡+1 < [2 then
8: 𝑀𝑜𝑑𝑒 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑙_𝑚𝑜𝑑𝑒

Note: The switchover from General to Lite happens only when

the packet rate exceeds the configured thresholds.

75

	Abstract
	1 Introduction
	2 Overview
	2.1 Requirements for Monitoring
	2.2 Challenges with Standalone Systems
	2.3 Key techniques of SmartWatch

	3 SmartWatch Architecture
	3.1 P4-based Co-operative Monitoring
	3.2 sNIC FlowCache Design
	3.3 sNIC Reconfigurable FlowCache
	3.4 Sub-components for Host Support

	4 Implementation
	4.1 Generality of sNIC Implementation

	5 Evaluation
	5.1 Stateful Attack Detection: SmartWatch vs. Host-based Detection
	5.2 Reducing P4Switch memory pressure
	5.3 Traffic Analysis
	5.4 Effectiveness of Co-op Monitoring

	6 Related Work
	7 Conclusions
	8 Acknowledgements
	References
	9 Appendix
	9.1 Flow record update scheme on sNIC
	9.2 Flow Record Update
	9.3 Cleaning the Hash Row
	9.4 Switch Over

