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ABSTRACT

This paper discusses the relationship between planning and discovery in science using examples drawn
from equatorial aeronomy in general and research at the Jicamarca Radio Observatory in particular. The
examples reveal a pattern of discoveries taking place despite rather than because of careful planning.
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1 INTRODUCTION

Edward Lorenz is famous because of a shortcut he took in 1961. Integrating a small system of
differential equations numerically, he initialized the calculations using values from the middle of a
prior run to save time. Surprisingly, the solution he found departed rapidly from the prior tabulated
result. He traced the discrepancy to miniscule roundoff errors in the values he used for initial
conditions. (His computer stored floating point numbers to six decimal places, but he had only
printed and then rekeyed them to three.) That small changes in the initial conditions could lead
so quickly to drastic changes in the behavior of the system defied common sense. The finding led
to chaos theory, raised deep questions about determinism, and doomed prospects for long-range
weather forecasting, Lorenz’s original problem [42].

Undoubtedly, other investigators had encountered similar phenomena in the early days of
numerical computing but dismissed them, concentrating instead on the immediate problem at
hand. Lorenz is remarkable for having set aside the comparatively routine task before him in favor
of getting to the bottom of the “error.” His keen judgment, and his freedom to move “off task,” led
to one of the most important scientific results of the 20th century with impacts beyond Lorenz’s
discipline.

History is full of scientific endeavors which were important because they did not go according to
plan. A short list of examples includes Rutherford’s discovery of the nucleus, Penzias’ and Wilson’s
discovery of cosmic background radiation, and the Michelson Morley experiment. Space physics and
aeronomy is no exception, and it is worth recounting a few more modest but more contemporary
examples as reminders of how plans gone wrong remain hallmarks of scientific discovery.
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2 EXAMPLES FROM EQUATORIAL AERONOMY AND SPACE PHYSICS

Built at about the same time as the Arecibo Observatory, the Jicamarca Radio Observatory was
constructed outside Lima, Peru, to demonstrate the possibility of studying the upper atmosphere
through the scattering of electromagnetic waves from free electrons [19]. This was to be a cost-
effective way of learning about the environment that new spacecraft were being designed to inhabit.
For a detailed history of early developments at Jicamarca, see Woodman et al. [57].

The motivation for Jicamarca’s location was its proximity to the magnetic equator where it would
be relatively inexpensive to build a flat antenna to illuminate the ionosphere at an angle normal to
the earth’s magnetic field. Early intuition about the scattering mechanism held that different ion
species, gyrating about the magnetic field lines, would give distinct peaks in the autocorrelation
function of the backscattered signal. The ionosphere would in effect become a giant ion mass
spectrometer. The required sensitivity of the radar was expected to be substantial, and so a design
employing 5 MW transmitter power and an antenna field with a 300 m-squared area was selected.
The tests were not expected to take very long.

During the build-out of Jicamarca, extensive experiments were performed, and both the theory
of scattering from thermal electron fluctuations in a plasma (now known as incoherent scatter)
and the experimental techniques required to observe it underwent substantial development. The
ion gyroresonances were not observed however. As Farley [13] and Dougherty [11] would show
independently, the gyroresonances are largely destroyed by ion Coulomb collisions. Even when the
Coulomb collision frequency is much less than the ion gyrofrequency, the gyroresonance cannot
be observed if the deviation of the electron position over a gyroperiod is comparable to the radar
wavelength divided by 47. Later, Farley [15] would observe the gyroresonance for H+ ions (see also
Rodrigues et al. [49]), but the O+ gyroresonance cannot be detected given nominal ionospheric
conditions.

So early experiments at Jicamarca did not go according to plan, but were they a failure? Hardly.
To begin with, the experiments provided a basis for much deeper quantitative understanding
of incoherent scatter and the practical methods required to make it useful. These include an
understanding of the interpretation of the scattering cross section, practical means of measuring
absolute electron densities, and theory and methods for inferring ion composition and electron and
ion temperatures from the autocorrelation function [5, 4, 14]. Within a few years, the incoherent
scatter technique had fulfilled its promises and could be used to measure the most important state
parameters of ionospheric plasmas. The techniques were equally applicable at non-equatorial sites.
ISR remains the most incisive tool for ground-based remote sensing of the ionosphere.

Had construction waited on a more complete knowledge of ISR theory, it is unlikely that an
incoherent scatter radar would have been built at the magnetic equator. It is fortunate that it was
because this led directly to an enormous range of discoveries in aeronomy that would otherwise
have been greatly delayed. Some of these discoveries are at the center of contemporary research in
equatorial aeronomy, space physics, and space weather.

2.1 The temperature ratio problem

By the 1980s, plasma state parameter estimates including electron and ion temperature, ion
composition, plasma drift, and electron number density were being measured at ISR facilities
around the world and deposited in databases. The procedure involved measuring and fitting the
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scattered signal autocorrelation function to ISR theory. An inconsistency appeared in the results for
Jicamarca, however, were the electron-to-ion temperature ratio at night was found to be consistently
less than unity. This is not physically reasonable. There seemed to be a problem, but was it with
the experiment or with ISR theory?

Other facilities were not reporting difficulties with the temperature ratio, and archival data from
early measurements at Jicamarca did not exhibit the problem either, so it was assumed that a
bias had crept into the modern experiment. A painstaking analysis of errors and biases in the
methodology did not reveal a mistake, however [47]. Furthermore, new experiments showed that
the problem nearly vanished when the angle between the radar beam and the perpendicular-to-B
direction was increased. Eventually, records were unearthed indicating that the temperature ratio
problem had always existed at Jicamarca but had been artificially “corrected” in the database [9]!
Indeed, the temptation to simply “correct” the problem in the modern era was strong too.

The temperature radio problem ultimately pointed to a subtle problem with ISR theory at small
magnetic aspect angles arising from the neglect of electron Coulomb collisions [54, 55, 33, 44]. The
effect of Coulomb collisions on the ISR spectrum at small magnetic aspect angles is difficult to
capture and has not been formulated in closed form, and numerical estimates of the experimental
effects are expensive to calculate and store. There remains no completely satisfactory resolution to
the problem, although interim methods allow us to infer electron and ion temperatures from ISR
autocorrelation function measurements sufficiently well for most intents and purposes so long as
the magnetic aspect angle is not too small.

More importantly, the problem is now being investigated using a variety of avante garde methods
including large particle-in-cell (PIC) simulations, producing fundamental insights into transport
properties in kinetic plasmas and effective means of exploring them (see Longley et al. [40, 39]).
The research will very likely be more impactful in the end than the ionospheric energy balance
problem that motivated electron and ion temperature ratio measurements in the first place.

2.2 lonospheric irregularities

Due to its frequency and its equatorial geometry, Jicamarca immediately encountered intense,
ubiquitous, and unexpected radar “clutter.” Fig. 1 shows a typical range-time-intensity plot
illustrating coherent backscatter observed at Jicamarca over a 24-hour period. The enhanced
backscatter comes from plasma density irregularities excited by different mechanisms including
neutral turbulence and plasma instabilities. Coherent scatter signifies free energy in the upper
atmosphere and is a distinctive telltale of space weather.

Incoherent scatter cannot be measured in regions of strong clutter which comes through the main
lobe and/or the sidelobes of all of Jicamarca’s antenna pointing positions. This prohibits a number
of desirable experiments from being performed. The scientific tradeoff of the clutter is favorable,
however, since coherent scatter offers keen insights into important processes in equatorial aeronomy
and space weather that might have gone unnoticed otherwise.

Near 100 km altitude, the equatorial electrojet, a strong current system confined to low magnetic
latitudes, flows. The current gives rise to both configuration-space and phase-space instabilities,
gradient drift and Farley Buneman instabilities respectively [53, 12]. The resulting plasma density
irregularities are strongly magnetic field aligned, as are irregularities in the F region and above.
The two instabilities are also closely coupled and described by a unified dispersion relation [16].
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Figure 1. Range time intensity plot for Sep. 14, 2010, showing backscatter signal-to-noise ratio
versus altitude and time. Note that UT = LT + 5 hr. Cyan hues mainly represent incoherent scatter
whereas blue and green hues represent coherent scatter (see text).

The irregularities can be studied in detail near the magnetic equator where it is straightforward
to distinguish echoes from different altitudes and where interferometry and imaging methods can
be applied. Primary gradient drift waves can be observed at Jicamarca using interferometry and
aperture-synthesis imaging, for example [31, 25]. Following their discovery at Jicamarca, similar
instabilities were found to operate the auroral zone and, later, at middle latitudes. Farley Buneman
instability has important implications outside equatorial aeronomy, altering the conductance of the
auroral £ region important for MI coupling [38] and causing heating in the solar chromosphere (e.g.
43)).

Below the electrojet irregularities are intermittent irregularities in the mesosphere. These
represent fluctuations in the index of refraction driven by mesospheric turbulence and exaggerated
by the presence of free electrons in the D region. While they are not unique to the equatorial zone,
they can be readily observed at Jicamarca due to the 50 MHz frequency and the high sensitivity of
the facility [58]. Neutral turbulence can be observed at Jicamarca in the mesosphere, stratosphere,
and troposphere, and the discovery gave rise to the field of MST-radar techniques. Using these
techniques, it is possible to measure neutral wind speeds, turbulence parameters, and turbulent
fine structure [17, 52, 20, 34].

Above the electrojet and throughout the F region, ionospheric interchange instability driven by
free energy in the postsunset bottomside F' region density gradient produces deep deformations
in the bottomside that can penetrate into the topside, producing towering plumes of coherent
backscatter (see Fig. 1). The phenomenon underlies equatorial spread F' (ESF) which is among the
earliest space weather effects detected [3]. The association with interchange instability enjoyed
considerable speculation but was not established until Woodman and La Hoz [59] produced
definitive range-time-intensity (RTI) radar imagery of the process. (The authors reportedly needed
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to justify the recent purchase of an expensive new Versatec printer and invented RTI-style figures
for this paper! The figures were very persuasive and remain the standard means of presentation.)

ESF remains the cause célebre of equatorial aeronomy as it disrupts modern radio communication,
navigation, and imaging systems. Despite the fact that the underlying physics appears to be
well understood, accurate forecasts remain elusive [56]. Jicamarca contributes to the research
by measuring simultaneously both the causes (background ionospheric structure, vertical, and
east-west plasma drifts via ISR) and the effects (irregularity morphology via coherent scatter and
aperture synthesis imaging).

The interchange instabilities responsible for ESF are very similar to the E x B and current
convective instabilities that create irregularities in the auroral F' region, i.e., the irregularities
monitored by the SuperDARN radar network. (The predecessor to SuperDARN, STARE, was an
effort to infer high-latitude convection patterns from auroral electrojet echoes on the basis of earlier
experiences from Jicamarca.) Some of the other irregularities in Fig. 1, meanwhile, are unique to
the equatorial zone. Their discoveries were contrary to orthodoxy and deserve special attention.

2.2.1 150-km echoes

Balsley [1] identified another persistent source of radar clutter in the daytime valley region between
about 140-170 km altitude in the early days of Jicamarca. Royrvik and Miller [51], Royrvik [50]
would associate the clutter with field-aligned plasma density irregularities, but it was not until a
decade later that mysterious “150-km echoes” would receive serious scientific attention. (Mysterious
because they exist in a homogeneous stratum of the ionosphere where gradient drift-type instability
should not occur.) Kudeki and Fawcett [32] investigated the layers with a new, high-resolution mode
and found them to be highly structured, exhibiting a stunning necklace shape that plunged with
decreasing solar zenith angle. Most remarkably, the Doppler shifts of the echoes seemed to match the
vertical plasma drifts. This suggested a means of measuring ionospheric dynamics using relatively
low power radar systems going forward. The correspondence between the 150-km echo Doppler
shifts at zenith with the vertical plasma drifts was established by Woodman and Villanueva [60].
Later, Chau and Woodman [8] would show that both the vertical and zonal plasma drifts could be
estimated accurately on the basis of line-of-sight 150-km echo Doppler shift measurements.

The source of the echoes remained a mystery for many more years. Two important clues helped
expedite the research. One was the discovery of two distinct types of echoes — one spectrally narrow
and field-aligned, and the other broad like a naturally enhanced ion line [6, 7]. The other was the
observation that the layer height and intensity reacted to solar flares [48] (see also [46]). The echoes
were clearly not due to some variant of gradient drift instability.

A pivotal finding came from Oppenheim and Dimant [45] who identified energetic photoelectrons
as the likely source of free energy behind the echoes. Their simulations reproduced narrow and
broad spectral features and predicted both enhanced ion and electron lines. The authors tentatively
associated their findings with upper hybrid instability [2, 29]. That association was made more
explicitly by Longley et al. [41] who pointed out that the gaps in the echo necklace structure
could be explained by cyclotron damping where the upper hybrid frequency matches an electron
gyroharmonic frequency. As shown by Lehmacher et al. [36], this implies that not only plasma drifts
but also plasma density profiles can be inferred from the 150-km echoes using low-power radar.
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2.2.2 Bottom-type layers

Woodman and La Hoz [59] identified several types of coherent scatter echoes associated with
postsunset F-region instability. Among these were “bottom-type” or thin scattering layers that
serve as precursors for intense plume events. The layers do not have signatures in ionograms, total
electron content (TEC) measurements, radio scintillations, or airglow imagery and were neglected
by the aeronomy and space-weather communities. Since “ESF” is a term taken from ionospheric
sounding, if a phenomenon does not affect ionograms, it is not regarded as ESF. The bottom-type
layers were just another unfortunate source of clutter.

For decades after their discovery, it was taken for granted that bottom-type layers signified
marginal collisional interchange instability. There are several problems with this explanation,
however. First, the layers exhibit little or no vertical development over time whereas interchange
instabilities are convective instabilities and require vertical development. Second, the intensity of
the layers does not vary directly with the strength of the background zonal electric field as is
expected for the ionospheric interchange instability [61]. Thirdly, the layers form at the base of the
F region, near the valley, rather than in the steepest part of the bottomside where the growth rate
for interchange instability is greatest.

Thu Aug 31 08:45:59 2017

400

Altitude (km)

200

S
—400 —200 0 200 400 456

Zomnal distance (km) N, (cmia)

Figure 2. ALTAIR radar images showing bottom-type layers at the base of the F region just prior
to the onset of ESF. The data were acquired during NASA project WINDY [28].

Three clues shed light on the significance of the layers. The first was that fine structure in
backscatter from the layers often exhibits horizontal striations [23]. This might be expected for
gradient drift-type instability driven by zonal winds near a horizontal density gradient. The second
was that the layers are not continuous but are patchy with horizontal scales of tens to hundreds of
km [27] (see Fig. 2). The third was that they exist at altitudes and times where the plasma flow is
westward — opposite the direction of the zonal neutral winds. Vertical shear flow predominates in
the postsunset bottomside ionosphere, and associated with the shear flow is strong vertical current
that is usually neglected in stability analysis [21].

Hysell and Kudeki [26] showed that the aforementioned vertical current destabilizes the ionosphere
to irregularities propagating at angles intermediate between the vertical and the horizon. The
instability has a larger growth rate than the ionospheric interchange instability but is confined to
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a narrow stratum. The instability causes the bottomside to be corrugated and unstable to wind-
driven gradient drift instability in the ascending phases, explaining the bottom-type layers. Most
importantly, the irregularities precondition the ionosphere to interchange instability which can grow
more rapidly than it would otherwise. Numerical simulations show that this auxiliary instability is
required for ESF depletions and radar plumes to develop and penetrate the topside as quickly after
sunset as they do [24].

2.2.3 High-altitude echoes

In 2008, a problem was discovered with some of Jicamarca’s routine ISR experiments. Noise
estimates were being calculated using samples from distant range gates above about 1,500 km. At
night, the noise estimates would sometimes become anomalously large. It appeared that the distant
range gates were being contaminated by signals of some kind. Further investigation showed that
intense scattering layers were present at very high altitudes, most often between midnight and
sunrise. At the time, a different method for estimating noise was introduced. The layers did not
receive special attention and eventually disappeared.

However, the high-altitude echoes returned during the next solar minimum, and this time they
were investigated further in a series of experiments beginning in 2018 and continuing to the present
[10]. It was found that, during low solar flux conditions, the echoes are common in the pre-dawn
sector between about 1,500-2,200 km altitude. The echoes exhibit Doppler shifts between about
+150 m/s and zonal drift rates of a few tens of m/s determined by multi-beam experiments. They
are not obviously related to ESF.

Most importantly, the echoes exhibit sidebands upshifted and downshifted from the carrier by
the lower hybrid frequency for protons. This is a remarkable result that is not well understood.
One candidate mechanism is lower hybrid drift instability [30, 18], a streaming instability similar
to modified two-stream instability, excited in this case by ion diamagnetic drift in the vicinity of
existing plasma density irregularities. Another candidate is linear mode conversion and /or resonance
instability in the vicinity of existing irregularities driven by lightning-induced whistlers [35]. The
former mechanism is related to one invoked to explain small-scale irregularities in ESF [22]. The
latter mechanism is similar to one invoked to explain explosive spread F [37]. In either case, pre-
existing irregularities are required to bootstrap the instability. The source of these could be ESF
although this is merely speculation at this point.

The high-altitude echoes represent frontier science in equatorial aeronomy with overtones for
adjacent research domains like lightning research and even magnetic reconnection. For many years,
however, they were just an overlooked source of radar clutter. In fact, the high-altitude echoes were
recognized in the early days of Jicamarca experiments but were neglected because of more pressing
problems making ISR experiments work.

3 CONCLUSIONS

This paper reviewed a number of discoveries in equatorial aeronomy and space physics going back
to the 1960s. In each case, the discoveries came from projects and experiments that did not go
according to plan. These were not merely serendipitous discoveries. Nor should they be considered
negative outcomes of hypothesis tests. Rather, in most cases, they were the byproducts of the
failures of assumptions that were not in doubt. Gyroresonances were supposed to be part of the
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243 incoherent backscatter spectrum. Coulomb collisions were supposed to be negligible. ESF was
244 supposed to be driven entirely by ion interchange instability. The equatorial valley region and
245 the inner plasmasphere were supposed to be stable. Pursuing the problems furthermore required
246 deliberate departures from planned research. In some cases, this occurred only after long delays.

247 How can research be structured to make allowances for plans gone wrong and subsequent off-
248 plan excursions? The premise seems to be at odds with contemporary trends which favor decadal
249 planning for funding agencies, meticulous planning in research proposals, and long-range research
250 plans for applicants for even junior positions. Perhaps, as Fisenhower famously said, plans are
251 useless, but planning is indispensable. The important point is that it is essential to have the
252 freedom to pivot when plans fail and to pursue the discoveries which may lie beneath.
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