
Optimizing Resource Allocation in Cloud

Yong Shi, Ignatius Jyosthna Lingareddy, Kun Suo, and Tu N. Nguyen
College of Computing and Software Engineering

Kennesaw State University
Marietta, USA

Contact: yshi5@ kennesaw.edu

Abstract— As an emerging technology, Cloud computing is
vastly superior to traditional self-hosting computing methods
because it separates computations from infrastructure. Every
cloud provider must provide task scheduling, a resource allocation
function that involves work being delegated to computational
resources within the cloud system through a broker. Only a few of
cloud task scheduling methods are accessible, such as Sufferage,
Max-Min, and Min-Min; nevertheless, each is constrained by
performance trade-offs. We propose a new task scheduling
algorithm MinPlus for resource allocation, which exceeds several
existing algorithms in terms of performance. Experiments are
conducted for the MinPlus algorithm with the free planform
CloudSim, and results are compared to existing algorithms that
show decreased turnaround time, enhanced resource load
balancing, and increased throughput.

Keywords— Task Scheduling, Resource Allocation, Min-Min,
MinPlus

I. INTRODUCTION

The cost barrier is lower with cloud computing than with
traditional computer solutions, and customers are only billed for
the resources they consume. Developers can more effectively
use their development time by removing the complexity of
procuring, configuring, providing, and maintaining computer
resources. Additional advantages of cloud computing include
scalability, high composability, and integrations with other
cloud services. Most providers allow users to completely tailor
their bandwidth, storage, computing power, etc. Cloud
computing is used in some way by numerous businesses and
organizations. Distributed/parallel computing, network
topology, and job scheduling are some of the elements of cloud
computing that are currently being researched.

In this paper, we first discuss existing algorithms for
resource allocation, then propose a new task scheduling
algorithm called MinPlus, followed by experimental results and
analysis, as well as conclusion and future work.

II. RELATED WORK

In cloud, tasks must be allocated to computer resources on
single-threaded processors as well as distributed or networked
computing systems. Every cloud provider seeks to maximize
productivity and cut costs by distributing tasks across resources
in a scalable, flexible way. The execution of activities by cloud
service providers involves both multiplexing and multitasking,
which mean doing numerous tasks at once and arranging

multiple flows synchronously. While load balancing and overall
service quality are both crucial elements, many algorithms
intend to increase throughput while shorten completion times.
The algorithms FCFS (First come First served), Min-min, Max-
min, Round Robin, and Sufferage are examples of those
developed by academics during the past few decades [1].

Every task scheduling technique is applied to minimize one
performance parameter while compromising on other metrics.
FCFS, which assigns tasks to resources on the order of request
time, is the simplest scheduling strategy. Round Robin is a
technique that enables tasks to share computing resources for an
equal amount of time, although it is more typically employed
with single-threaded systems, and for Round Robin, turnaround
times are lengthy. Using the Min-min technique, computer
resources are allocated for the job that has the highest likelihood
of being finished first. The Max-min strategy, on the other hand,
allocates resources to the task that has the lowest likelihood of
being finished first. According to a priority strategy, each job is
given a priority, and jobs with the same priority are finished in
the order they were added to the queue [2]. Tasks with higher
priorities are completed before those with lower priorities.

When designing task scheduling algorithms consideration
should be given to load balancing to maintain continuous
resource use and prevent any resources from being
overburdened or underutilized. For load balancing, various
factors will be assessed such as storage, CPU, and memory.
Numerous load balancing techniques have been developed by
researchers [5, 6]. The family of static algorithms falls under one
of these categories and requires the user to be familiar with the
system beforehand. Dynamic algorithms are another type that
doesn't need any prior knowledge [3].

Analysis shows that researchers have employed heuristic
algorithms to solve the scheduling issues [7]. Some research
focuses on VM deployment methods that consider disk
utilization when analyzing the features of data-intensive
processes and CPU usage when operating the cloud system
employed in KIAF [8]. For the scheduling and evaluation of
scheduling parameters, the authors of [9] employ a pre-
processing ETC matrix technique.

III. MINPLUS FOR RESOURCE ALLOCATION

 To minimize overhead, encourage quick performance, and
enhance load balancing for various resources across computer

resources, task scheduling aims to plan work on computing
resources as effectively and efficiently as feasible. In this
section, we will first discuss three well-known and related job
scheduling algorithms [10, 11]. Next, we will lay the
groundwork for the proposed algorithm, MinPlus, and provide a
thorough explanation of the reasoning behind each policy.

 Each job in the task queue must first be assigned to the
virtual machine that will finish it as quickly as possible,
according to the Min-Min scheduling principle. The run time of
a job on a virtual machine and how long it takes virtual machine
to become accessible are added to determine the completion
time. There must be a queue in which tasks need to wait before
being assigned, assuming a machine typically handles only one
job during a certain period. After every possible combination
has been tried, the assignment with the shortest turnaround time
is then handed to the virtual machine. Brokering is preferred
over high-requirement activities for tasks with low
computational requirements.

The Sufferage scheduling policy is based on the “sufferage”
number, which is generated for each queued job and reflects
tasks that “suffer” from the system by resulting in an inefficient
pairing. The sufferage heuristic describes the difference for each
queued work between the first computed minimum completion
duration and the second minimum completion duration.

In contrast to Min-min, which selects the task that will
appear to be completed first, Max-min decides which task will
be completed last. This prioritizes jobs that demand more
resources to prevent long execution queue wait times and
subsequent starvation.

The first completion time with the smallest delay, the first
completion time with the longest delay, or the completion time
with the largest sufferage value are the three most popular
techniques for distributing tasks to cloud resources. Some
approaches can cause the cloud system to behave unpredictably
such as starvation and other unexpected scenarios. Few of these
methods employs resource load balancing, rather they apply
straightforward heuristics based on completion lengths. More
complex heuristics must be employed to concentrate on several
performance indicators because the variety of the data and jobs
is more than anticipated. A unique strategy is needed to address
the problems with the existing algorithms.

 [12] proposes an algorithm BMin based on the Min-Min
algorithm. BMin distributes a specific task to a specific virtual
machine in each round given unassigned tasks and available
virtual machines by first figuring out how long it will take for
each task to be completed on each virtual machine. To choose
the “best” virtual machine for a particular task, they use a
different approach than the original Min-Min method.
Furthermore, it considers the variance and distribution of
completion times to make final decision which task should be
selected in the current round to acquire resource from the cloud.
BMin outperforms the original Min-Min algorithm [12].
However, it does not account for other factors that can have an
impact on how resources are allocated, like how long a given job
takes to run compared to other tasks running on the same virtual
machine, or how quickly various virtual machines complete a
same operation.

We propose a new algorithm MinPlus, which not only
calculate the completion time, but also take into consideration
other aspects such as comparison of execution time and analysis
of virtual machine available time. Details of our algorithm are
as follows.

MinPlus Algorithm:

Suppose we have a set of m tasks (same as cloudlets in the
CloudSim package) C = {c1, c2, …, cm}, and a set of n virtual
machines VM = {vm1, vm1, … vmn} in cloud, the goal of our
algorithm is to assign each task from C to a virtual machine in
VM and gain the best turnaround time, throughput, and virtual
machine load balance.

Like Min-Min and BMin, the first step of MinPlus is to
compute the time required for all tasks in C to be executed on all
virtual machine in VM. For a given task ci, i=1, 2, …, m, and a
given virtual machine vmj, j = 1, 2, …, n, the completion time
Tij of ci, on vmj is based on two items. One is how much time
(Eij) it takes for vmj to execute ci once vmj is free, the other is at
what time (Rj) vmj is free. Thus, Tij = Eij + Rj. Since tasks are
constantly assigned to virtual machines, each virtual machine’s
availability (Rj) changes dynamically. Our algorithm will
monitor each machine’s availability (Rj) and at the same time
dynamically assign tasks to virtual machines.

Our algorithm is executed step by step. In each step, we
select a task and assign it to a virtual machine. So, we will need
to make two decisions at each step: 1) which task should we
select? 2) which virtual machine should we assign this task to?

In each step, for each task ci in C that has not been assigned,
we first check which virtual machine vmj in VM we should
tentatively assign ci to. We consider the following factors:

A. Tij, the completion time of ci on vmj

B. Eij, the execution time of ci on vmj

C. Rj, the availability of vmj

We calculate

ti = minj (Tij * (Eij / Rj +1) * (Eij / Sumi (Eij))) 

The right side of equation 1 contains three factors. The first
factor is the completion time Tij, which shows at what time ci
will be tentatively completed in vmj. This is the criteria the
original Min-Min algorithm adopts to decide which virtual
machine should we assign a task to. The second factor is Eij / Rj
+1, that shows how dramatically assigning ci to vmj will affect
the workload of vmj. If Rj has a large value and Eij has a small
value, assigning ci to vmj will not change the workload of vmj
much. However, if Rj has a small value and Eij has a large value,
assigning ci to vmj will greatly change the workload of vmj,

which is something we should avoid. The third factor is Eij /
Sumi (Eij), which shows compared to other tasks, how much time
it takes vmj to execute ci. We favor a virtual machine that yields
relatively small execution time of ci, compared to execute times
for other tasks on the same virtual machine.

In equation 1 we consider three factors. It is because we not
only should consider the tentative completion time of ci on vmj,
and how assigning a task affects the workload of a virtual
machine, but also should analyze how a virtual machine
executes different tasks. If a virtual machine, compared to other
virtual machines, takes much less time to execute ci than
executing other tasks, this virtual machine should be possibly
considered to receive ci.

After we calculate ti for all unassigned tasks in C (in this
process, a virtual machine is tentatively selected for each task),
we will consider which task ci will be selected for resource
allocation in the current step. We calculate

 pi = ti / (var (Tij)+(Tij - Ti1) + (Tij - Ti2)) 

in which Ti1 is the completion time for ci on all virtual machines
that is closest to Tij, and Ti2 is the completion time for ci on all
virtual machines that is second closest to Tij. The reason we
should consider these factors is that, we should not only consider
the variance of completion time of ci on all virtual machines (we
favor high variance since it means we should assign ci to the best
option virtual machine), but also take into account how far Tij is
from its nearest neighbors (we also favor high values of Tij - Ti1

and Tij - Ti2 since it means we should assign ci to the best option
virtual machine).

The value pi calculated in equation 2 is used to determine
which unassigned task from C to choose for resource allocation
in the current step. When a task is selected and associated to its
preferred VM (from equation 1), we will label task as
“assigned”, and update the availability Rj of that virtual
machine. Next, we will update the tentative completion times of
all unassigned task on this virtual machine since its availability
is updated. At this point, the current step is finished, and we go
into the next step, selecting the next unassigned task from C
(using equation 2) for resource allocation (using equation 1). We
summarize our algorithm in figure 1.

IV. EXPERIMENTAL RESULTS

MinPlus is tested with i7-1185G7 CPU operating at
3.00GHz, 32.0 GB of RAM, and the Java cloud computing
simulation framework CloudSim. The algorithms are assessed
using CloudSim, which can simulate a wide range of cloud
components [4]. It facilitates us to conduct research by reducing
the number of variables in the model that are unknown. In
addition to the features and add-ons offered in the core package,
CloudSim is quite extensible and provides a wide range of new
functionality.

Fig. 1. MinPlus Algorithm

Throughput, turnaround time, and load balancing are a few

of the performance traits that are gathered and evaluated
throughout the simulation to compare MinPlus to BMin and
Min-Min. The time between submitting and receiving an
assignment is known as the turnaround time. The virtual
machine workload standard deviation is calculated to evaluate
load balancing. Throughput means how many jobs are executed
within a predetermined period. We design a separate program to
create datasets that contains virtual machines with various
processing powers, tasks with different sizes, etc. In our
experiments, we apply virtual machines numbers as 3, 6, …, all
the way to 30, and task (Cloudlet) number between 10 and 100.

A. MinPlus Experiment Results

Figure 2 illustrates how throughput increases as the number
of VMs increases. Figure 3 demonstrates how the average
turnaround time lowers as the number of VMs rises. Both figures
show different cases of cloudlet numbers ranging from 10 to
100.

Fig. 2. Scalable performance of MinPlus in terms of throughtput

Fig. 3. Scalable performance of MinPlus in terms of turnaround time

We compare the performance of MinPlus with BMin and Min-
Min. The examples in Figures 4, 5, 6, 7, 8 and 9 show that
MinPlus frequently outperforms BMin and Min-Min in terms
of throughput when evaluated on various numbers of cloudlets.

Fig. 4. Running result of BMin, Min-min and MinPlus (throughput, 10 tasks)

Fig. 5. Running result of BMin, Min-min and MinPlus (throughput, 20 tasks)

Fig. 6. Running result of BMin, Min-min and MinPlus (throughput, 40 tasks)

Fig. 7. Running result of BMin, Min-min and MinPlus (throughput, 50 tasks)

Fig. 8. Running result of BMin, Min-min and MinPlus (throughput, 70 tasks)

Fig. 9. Running result of BMin, Min-min and MinPlus (throughput, 90 tasks)

Figure 10, 11, and 12 show that MinPlus often times
outperforms BMin and Min-Min in terms of turnaround time.

Fig. 10. Running result of BMin, Min-min and MinPlus (turnaround time, 10
tasks)

Fig. 11. Running result of BMin, Min-min and MinPlus (turnaround time, 20
tasks)

Fig. 12. Running result of BMin, Min-min and MinPlus (turnaround time, 40
tasks)

We also compare MinPlus with BMin and Min-Min in terms
of virtual machine workload standard deviation. Figure 13, 14,
15, and 16 show that a lot of cases, MinPlus outperform BMin
and Min-Min in this category as well.

Fig. 13. Running result of BMin, Min-min and MinPlus (VM load standard
deviation, 10 tasks)

Fig. 14. Running result of BMin, Min-min and MinPlus (VM load standard
deviation, 20 tasks)

Fig. 15. Running result of BMin, Min-min and MinPlus (VM load standard
deviation, 30 tasks)

Fig. 16. Running result of BMin, Min-min and MinPlus (VM load standard
deviation, 90 tasks)

V. CONCLUSION

We propose MinPlus, a new task scheduling algorithm
designed to gain better throughput, load balancing, and
turnaround time. Experiments that use the CloudSim framework
and compare MinPlus' performance to that of its predecessors
demonstrate the algorithm's advantages. In the future, we will
continue revising our algorithm to achieve better performance
for resource allocation.

ACKNOWLEDGEMENT

This research was supported in part by US NSF grants CNS-
2103405, AMPS-2229073, CPS-2103459, and SHF-2210744.

REFERENCES
[1] P. Salot, “A survey of various scheduling algorithm in cloud computing

environment”, M.E, computer engineering, India.

[2] R. M. Singh, S. Paul and A. Kumar, “Task scheduling in cloud
computing”, International Journal of Computer Science and Information
Technologies, Vol. 5 (6), 2014.

[3] R. P. Padhy, P. G. P. Rao, “Load Balancing in Cloud Computing
Systems”, National Institute of Technology, Rourkela, May,2011.

[4] The Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
University of Melbourne. http://www.cloudbus.org/intro.html

[5] E. J. Ghomi, A. M. Rahmani, and & N. N. Qader, (2017). Load-balancing
algorithms in cloud computing: a survey. Journal of Network and
Computer Applications, 88, 50-71.

[6] Q. Xu, R. V. Arumugam, K. L. Yong, Y. Wen, Y. S. Ong, and W. Xi
(2015). Adaptive and scalable load balancing for metadata server cluster
in cloud-scale file systems. Frontiers of Computer Science, 9(6), 904-918.

[7] J. Bushra, I. Humaira, S. Mohammad, M. Kashif, and B. Rajkumar,
"Resource Allocation and Task Scheduling in Fog Computing and
Internet of Everything Environments: A Taxonomy, Review, and Future
Directions," ACM Comput. Surv. 54, 11s, Article 233 (January 2022), 38
pages. https://doi.org/10.1145/3513002

[8] MH. Kim, JY. Lee, S.A. Raza Shah et al. "Min-max exclusive virtual
machine placement in cloud computing for scientific data environment," J
Cloud Comp 10, 2 (2021). https://doi.org/10.1186/s13677-020-00221-7

[9] V. Gajera, Shubham, R. Gupta and P. K. Jana, "An effective Multi-
Objective task scheduling algorithm using Min-Max normalization in
cloud computing," 2016 2nd International Conference on Applied and
Theoretical Computing and Communication Technology (iCATccT),
2016, pp. 812-816, doi: 10.1109/ICATCCT.2016.7912111.

[10] E. K. Tabak, B. B. Cambazoglu and C. Aykanat, "Improving the
Performance of Independent Task Assignment Heuristics
MinMin,MaxMin and Sufferage," in IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 5, pp. 1244-1256, May 2014. doi:
10.1109/TPDS.2013.107

[11] M. Maheswaran, S. Ali, H. J. Siegal, D. Hensgen and R. F. Freund,
"Dynamic matching and scheduling of a class of independent tasks onto
heterogeneous computing systems," Proceedings. Eighth Heterogeneous
Computing Workshop (HCW'99), San Juan, Puerto Rico, USA, 1999, pp.
30-44. doi: 10.1109/HCW.1999.765094

[12] Y. Shi, K. Suo, S. Kemp and J. Hodge, "A Task Scheduling Approach for
Cloud Resource Management," 2020 Fourth World Conference on Smart
Trends in Systems, Security and Sustainability (WorldS4), 2020, pp. 131-
136, doi: 10.1109/WorldS450073.2020.9

