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ABSTRACT
5G radio access network (RAN) slicing is gaining momentum
in finding applications in a wide range of domains, especially
those requiring high-speed data transmissions such as space-
air-ground integrated networks (i.e., drone-based systems).
A key challenge in building a robust RAN slicing to support
these applications is, therefore, designing a RAN slicing (RS)-
configuration scheme that can utilize information such as re-
source availability in substrate networks as well as the inter-
dependent relationships among slices to map (embed) virtual
network functions (VNFs) onto live substrate nodes. With
such motivation, we propose a machine-learning-powered
RAN slicing scheme that aims to accommodate maximum
numbers of slices (a set of connected VNFs) within a given
request set. We present a deep reinforcement scheme that is
called Deep Allocation Agent (DAA). In short, DAA utilizes
an empirically designed deep neural network that observes
the current states of the substrate network and the requested
slices to schedule the slices of which VNFs are then mapped
to substrate nodes using an optimization algorithm. DAA
is trained towards the goal of maximizing the number of
accommodated slices in the given set by using an explicitly
designed reward function. Our experiment study shows that,
on average, DAA is able to maintain a rate of successfully
routed slices above 80% in a resource-limited substrate net-
work, and about 60% in extreme conditions, i.e., the available
resources are much less than the demands.

CCS CONCEPTS
• Networks→ Network control algorithms; Network
design and planning algorithms;Network performance
modeling.

KEYWORDS
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1 INTRODUCTION
Unmanned Aerial Vehicle (UAV) communications can assist
the existing cellular communications for the rapid service
recovery in a high-speed fashion as shown in Fig. 1. However,
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Figure 1: DAA deep neural network architecture

networks with components mounted on UAV’s may suffer
from problems such as the lack of computational resources
as well as endurance capabilities. Therefore, fault-tolerant
communication schemes that can quickly recover from fail-
ures are of importance for UAV-assisted communications.
Radio Access Network (RAN) slicing is a critical technol-
ogy for the new generation 5G network. There have been
efforts to develop an integrated network architecture from
the drone-assisted, air-based network and ground-based net-
work where RAN slicing plays a critical role [1–4]. In partic-
ular, a RAN slice that is independent from others consists of
a set of VNFs. Upon receiving requests from the enterprise,
the mobile network operator (MNO) works with the RAN
enforcement to allocate the substrate network resources to
VNFs and virtual links between VNFs.

There have been efforts to design algorithms for the RAN
resource allocation problem in drone-based systems that
tend to consider only the available resources of the substrate
network to design a mapping plan and disregard the VNF
connectivity and bandwidth requirements [5–12]. However,
mapping VNF strategy will not only hinge on substrate nodes
resource allocation but also rely on the substrate connection
and the bandwidth requirement of the virtual links between
VNFs. This is a key research challenge we will tackle in the
proposed research. In particular, for an RAN slicing (RS)-
configuration in a cellular network, we would like to explic-
itly account for the mapping plan of VNFs, with the goal of
providing stable performance for drone-based applications.
With such motivation, in this paper, we present a deep

reinforcement scheme, Deep Allocation Agent (DAA), that
is able to embed VNFs of a slice while being aware of the
interdependency among slices. We model the problem of
maximizing the number of accommodated network slices as
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a reinforcement learning problem: 1) Environment States
include information on the current substrate network, i.e.,
available resources in all substrate nodes, and a set of pending
slices to be accommodated, i.e., VNFs in each slice and their
demands. 2) Episodes are the accommodation of all slices
in a given set. An episode ends by allocating resources to
all slices in the given set, or by entering an environment
state in which no pending slices can be further resolved.
Each step in an episode refers to the allocation of a slice. 3)
Actions that the agent makes at each step include selecting
then allocating resources to VNFs in the slice. 4) Rewards
that the agent receives after an action are designed to guide
the agent to generate schedule that maximize the number of
allocated slices in a given set.

The neural network of DAA first observes the current en-
vironment state to select a pending slice to accommodate. Its
VNFs are then mapped to substrate nodes using an algorithm
that maximizes the flexibility of the substrate network and
the allocability of the remaining VNFs. We train the deep
network of DAA as a deep reward network (DRN). In this
case, the neural network predicts the true reward obtained if
a slice is selected. The training of DRN is guided by the pre-
viously mentioned reward function. Our experiment study
shows that, on average, DAA models are able to maintain
a rate of successfully accommodated slices about 80% in a
resource-scarce case (i.e., the available resources are less
than the demands from the slices), and approximately 60% in
extreme conditions of network (available resources are much
less than demands). Specifically, the paper has the following
contributions and intellectual merits:

(1) We tackle the problem of maximizing the number of
slices in network slicing using deep reinforcement
learning to support the space-air-ground integrated
networks such as drone-assisted systems. Specifically,
we propose a reinforcement learning model with spe-
cific designs of environments, actions, and rewards,
that guide the agents towards a schedule that fulfills
the most slices in a given set.

(2) We present DAA, a deep reinforcement scheme that
consists of an empirically designed deep neural net-
work that schedules slices and an allocation algo-
rithm that maps VNFs to substrate nodes while being
aware of the network’s flexibility. The deep network
of DAA is trained as a deep reward network to max-
imize the number of accommodated slices. Further-
more, DAA enjoys the scalability of a deep architec-
ture (polynomial time) that is an advantage over tra-
ditional optimization methods which is highly impor-
tant especially in the context of UAV/drone-assisted
communications.

Organization: The rest of the paper is organized as follows.
Section §2 discusses the concepts related to our work, and
mathematically formalizes our research problem. We discuss
DAA in Section §3 then present the experiment study in
Section §4. Finally, we conclude our paper in Section §5 and
discuss future application in Section §6.

2 MODEL AND RESEARCH PROBLEM
In the following sections, an overview of the quantum net-
work and basic mathematical notations are introduced. For-
mal research problem is also defined to demonstrate the key
ideas behind the proposed model and methodology.

2.1 Network Model
Given a substrate network G = {N ,R} in which we have
a set of nodes N = {N1,N2, . . . ,N𝑛} and a set of resources
R = {R1,R2, . . . ,R𝑛}. A node N𝑖 has maximum resources
available of R𝑖 . In other words, any node N𝑖 can allocate
a maximum amount R𝑖 of resources to VNFs. A VNF in a
specific slice is not available and accessible by other network
slices for the isolation purpose.

Let𝐺 = {𝐺1,𝐺2, . . . ,𝐺𝑙 } be the set of 𝑙 RAN slices of which
resources need to be allocated in G. Each slice𝐺𝑖 = {𝑉 𝑖 , 𝑅𝑖 }
consists of a VNF set 𝑉 𝑖 = {𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑙𝑖 } and a resource
set 𝑅𝑖 = {𝑟 𝑖1, 𝑟 𝑖2, . . . , 𝑟 𝑖𝑙𝑖 } in which the demanded resources
for VNF 𝑣𝑖𝑗 is 𝑟

𝑖
𝑗 . In other words, 𝑣𝑖𝑗 needs to be assigned

to a substrate node N𝑘 with R𝑘 ≥ 𝑟 𝑖𝑗 to be considered suc-
cessfully mapped. To mathematicize the allocation of a VNF
𝑣𝑖𝑗 to a substrate node N𝑘 , we introduce a binary variable
𝑚

𝑖, 𝑗

𝑘
. 𝑚𝑖, 𝑗

𝑘
= 1 when 𝑣𝑖𝑗 is mapped to N𝑘 , and 𝑚

𝑖, 𝑗

𝑘
= 0 oth-

erwise. A VNF can only be allocated to one substrate node,
therefore we have the constraint

∑𝑛
𝑘=1𝑚

𝑖, 𝑗

𝑘
= 1. The maxi-

mum resources available in each substrate node cannot be
exceeded when allocating VNFs, which leads to another con-
straint

∑𝑙,𝑙𝑖
𝑖=1, 𝑗=1𝑚

𝑖, 𝑗

𝑘
∗ 𝑟 𝑖𝑗 ≤ R𝑘 . We further assume the slice

𝐺𝑖 to be successfully allocated only when all 𝑣𝑖𝑗 ∈ 𝑉 𝑖 are
successfully allocated. Consequently, we introduce a binary
variable 𝐴𝑖 . 𝐴𝑖 = 1 when

∑𝑙𝑖 ,𝑛

𝑗=1,𝑘=1𝑚
𝑖, 𝑗

𝑘
= 𝑙𝑖 , and 𝐴𝑖 = 0 other-

wise. In other words, 𝐴𝑖 = 1 when slice 𝐺𝑖 has all its VNFs
successfully mapped to the substrate network.

2.2 Problem Formulation
In this work, we advocate a novel allocation scheme− dubbed
Deep Reinforce Allocation Scheme (QAS) − that implements
a deep reinforcement learning model to circumvent the com-
putability limitations of heuristic conventional resource al-
location schemes, while concurrently maximizing service-
ability of the network. In other words, our allocation scheme
aims to maximize the number of network slices that are
successfully allocated with resources to operate properly.
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Figure 2: An example on a VNFs embedding problem
and its non-optimal and optimal solutions

Given 𝐺 = {𝐺1,𝐺2, . . . ,𝐺𝑙 } be the set of 𝑙 RAN slices of
which resources need to be allocated in G. Our goal is to
maximize QRS as follows:

QAS = max
𝑖∈{1,2,...,𝑙 }

∑︁
𝐴𝑖 (1)

We further constraint the number of VNFs in all slices in𝐺
to be equal 𝑙𝑖 = 𝑠 ∀ 𝑖 . It should be noted that this constraint
does not reduce the generality of the research problem, since
a slice 𝑗 VNFs with 𝑗 < 𝑠 can be padded with VNFs of 0
demands to meet the size requirement. In this problem, we
also do not constraint that all slices in 𝐺 can be allocated
successfully in G. This means that a complete allocation
solution may not exist for a mapping from 𝐺 to G.

We break the problem into two tasks which are 1) to sched-
ule slices to allocate and 2) to map VNFs in the selected slice
to substrate nodes. Fig. 2(b) shows the substrate network G
of five nodes, each with 4 resource blocks. There are two
slices that need accommodations. Fig. 2(c) demonstrates the
case in which slice 1 is accommodated first with the VNFs
are randomly mapped to substrate nodes that satisfy the
resource constraint. This solution is not optimal as slice 2
cannot be accommodated anymore. Fig. 2(d) shows the opti-
mal solution in which slice 2 is accommodated first. Slice 1
can then be accommodated successfully as well. This exam-
ple shows the importance of scheduling the RAN slices as
well as a mapping strategy that conserves resources based
on future unallocated slices and VNFs.

3 DEEP ALLOCATION AGENT
Given a substrate network G with the node set N and the
resource set R, and a set of RAN slices 𝐺 , we refer to the
accommodation of all slices 𝐺𝑖 in 𝐺 as an episode. At each
step 𝑡 , DAA makes an action 𝑎 (𝑡 ) to allocate resources to one
slice 𝐺∗ based on the current environment state including

the current available resources R (𝑡 ) and the demands of
pending slices 𝑅 (𝑡 ) . An episode ends when all slices are
resolved, or when no pending slices can be accommodated.
In the following sections, we first discuss our VNF mapping
algorithm. Then, we describe the DNN architecture of DAA
in terms of input states, output actions, reward function,
architecture, and training.

3.1 VNF Allocation Algorithm
The allocation of resources to a VNF, i.e., mapping a VNF to
a substrate node, may significantly alter the performance of
network slicing. Consequently, we derive mapping algorithm
that select a substrate node for a given VNFwhile considering
the flexibility of the substrate network and the allocability
of the remaining VNFs. We first describe the concepts of
flexibility and allocability in the context of our problem.
Substrate Network Flexibility. We define the flexibility
of a substrate network as the capability to accommodate
pending VNFs. Mathematically, given a substrate node N𝑘

with available resource R (𝑡 )
𝑘

at step 𝑡 , and a RAN slice set𝐺
with VNFs {𝑣𝑖𝑗 |𝑖 ∈ {1, 𝑙}; 𝑗 ∈ {1, 𝑠}}, the flexibility F (N𝑘 ) of
N𝑘 is defined as

F (N𝑘 ) =
𝑙,𝑠∑︁

𝑖=1, 𝑗=1
1𝑘𝑖,𝑗 (2)

where 1𝑘𝑖,𝑗 is a binary indicator as follows

1𝑘𝑖,𝑗 =

{
1 𝑟 𝑖𝑗 ≤ R𝑘
0 otherwise

(3)

The flexibility F S of the substrate network is then calcu-
lated as the sum of all substrate nodes’ flexibility:

F S =

𝑛∑︁
𝑘=1
F (N𝑘 ) (4)

VNF Allocability. We define the allocability of a VNF as
the number of substrate nodes that can accommodate the
VNF. Mathematically, the allocability A(𝑣𝑖𝑗 ) of a VNF 𝑣𝑖𝑗 is
defined as

A(𝑣𝑖𝑗 ) =
𝑛∑︁

𝑘=1
1𝑘𝑖,𝑗 (5)

with 1𝑘𝑖,𝑗 defined previously. It can be seen that the lower
A(𝑣𝑖𝑗 ), the less substrate nodes can accommodate 𝑣𝑖𝑗 , and
when A(𝑣𝑖𝑗 ) = 0, 𝑣𝑖𝑗 , and subsequently 𝐺𝑖 , are completely
blocked from being successfully allocated with resources.
Therefore, to minimize the possibility of a VNF and its slice
being blocked, as well as further increase the possible solu-
tions for future mappings of remaining VNFs, we will derive
mapping solution based on the minimum allocability across
all VNFs at each step 𝑡

AS (𝑣𝑖𝑗 ) = min
𝑖, 𝑗
A(𝑣𝑖𝑗 ) (6)
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VNF Allocation Algorithm. Given a VNF that needs re-
sources, a substrate node is selected so that, after the allo-
cation, both the substrate network flexibility F S and the
AS (𝑣𝑖𝑗 ) of the current network are maximized. More specifi-
cally, at step 𝑡 , given a VNF 𝑣𝑖𝑗 of demanding resource 𝑟 𝑖𝑗 and
the substrate nodes N = {N1,N2, . . . ,N𝑛} with resources
R (𝑡 ) = {R (𝑡 )1 ,R (𝑡 )2 , . . . ,R (𝑡 )𝑛 }, the process is as follows.

(1) Temporarily allocate 𝑣𝑖𝑗 to eachN𝑘 that satisfiesR𝑘 ≥
𝑣𝑖𝑗 and update R (𝑡 ) to obtain R (𝑡+1)(𝑘) with R (𝑡+1)

𝑘 (𝑘) ←
R (𝑡 )
𝑘
− 𝑟 𝑖𝑗 . Calculate the flexibility F S (𝑘) and alloca-

bility AS (𝑘)
(2) Sort the substrate nodes N in descending order of
AS (𝑘) then F S (𝑘) (AS (𝑘) is prioritized)

(3) Select the first substrate node N∗ in the sorted N to
be the mapping solution for 𝑣𝑖𝑗

3.2 Deep Reward Network Architecture
Input State. At step 𝑡 in an episode E, an input state to DAA
consists of 1) the current available resource in each substrate
node R (𝑡 ) and 2) the current demanding resources from all
slices 𝑅 (𝑡 ) . The data representations for R (𝑡 ) and 𝑅 (𝑡 ) are
straightforward. R (𝑡 ) is modeled as a vector

R (𝑡 ) = {R (𝑡 )1 ,R (𝑡 )2 , . . . ,R (𝑡 )𝑛 } (7)

whereas 𝑅 (𝑡 ) is modeled as a 𝑙 × 𝑠 matrix

𝑅 (𝑡 ) =


𝑟
1(𝑡 )
1 𝑟

1(𝑡 )
2 . . . 𝑟

1(𝑡 )
𝑠

. . . . . . . . . . . .

𝑟
𝑙 (𝑡 )
1 𝑟

𝑙 (𝑡 )
2 . . . 𝑟

𝑙 (𝑡 )
𝑠

 (8)

If a slice𝐺𝑖 is already accommodated, its corresponding row
𝑅
(𝑡 )
𝑖

in 𝑅 (𝑡 ) is replaced with a 0 vector. Slices of less than 𝑠

VNFs can be padded with 0’s to ensure the input matrix size.
Output Action. At each step 𝑡 in an episode, DAA selects
one among the pending slices𝐺 (𝑡 ) then mapping its VNFs to
the substrate network. We utilize a hybrid approach, that is
to use the deep network DRN for scheduling the slices, and
the algorithm presented previously to map the VNFs.

In terms of scheduling, DRN outputs a reward vector 𝜌 (𝑡 )

of size 𝑙 : 𝜌 (𝑡 ) = {𝜌 (𝑡 )0 , 𝜌
(𝑡 )
1 , . . . , 𝜌

(𝑡 )
𝑙
} in which 𝜌

(𝑡 )
𝑖

represents
the reward at the end of step 𝑡 if DAA selects slice 𝑖 to ac-
commodate. Then, the pending slice with the highest re-
ward value is selected in each step, 𝑎 (𝑡 ) = argmax

𝑖∈𝐺 (𝑡 )
𝑃

(𝜌 (𝑡 )
𝑖
),

where𝐺 (𝑡 )
𝑃

is the set of pending slices at 𝑡 . With 𝑎 (𝑡 ) selected,
the VNFs in the chosen slice are sorted in descending order
of demanding resources. Then, each VNF is mapped to the
substrate network using the allocation algorithm that is de-
scribed in Section §3.1. The reason we first sort the VNFs
in descending order of demanding resources is that, VNFs
of higher demands will have less allocability and thus less

𝑟1
1 𝑟2

1 … 𝑟𝑠
1

… … … …
𝑟1
𝑙 𝑟2

𝑙 … 𝑟𝑠
𝑙

𝐺(𝑡)

ℛ1
𝑡

ℛ2
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Embedding Embedding
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Concatenation Fully-Connected

𝜌1
𝑡

𝜌2
𝑡

… 𝜌𝑙
𝑡

𝑎(𝑡)

Figure 3: DAA deep neural network architecture

mapping options. Therefore, they should be accommodated
first to avoid being blocked.

At the end of each action, the input states are updated for
the next step 𝑡 + 1. First, the row that associates to the slice
resolved by 𝑎 (𝑡 ) in 𝑅 (𝑡 ) is replaced with 0’s to obtain 𝑅 (𝑡+1) .
Then, R (𝑡 ) is updated with the new available resource values
after accommodating all VNFs in the selected slice.
Reward Function. The reward function is specifically de-
signed to increase the number of accommodated slices by
the substrate network. Mathematically, let the reward at step
𝑡 be 𝑃 (𝑡 ) , then

𝑃 (𝑡 ) = 𝑛
(𝑡 )
𝑟 𝛼 + (𝑙 − 𝑛 (𝑡 )𝑟 )𝛽 𝑓 + 𝜆𝑃 (𝑡+1) (1 − 𝑓 ) (9)

where 𝑛 (𝑡 )𝑟 is the number of slices that are resolved from
the beginning of the episode through step 𝑡 , 𝑓 is a binary
indicator that is 1 when 𝑡 is the ending step of and episode
and 0 otherwise, 𝛼 > 0 is the reward term, 𝛽 < 0 is the
penalty term, and 𝜆 ∈ [0, 1] is a discount factor. Both 𝛼 , 𝛽 ,
and 𝜆 are hyper-parameters to be selected during the training
phase. Overall, the reward function design encourages the
agent to find schedules that accommodate more slices, and
penalizes schedules that end too early - the less slices solved,
the heavier the penalties.
Reward Network Architecture. In this subsection, we de-
scribe the architecture of DRN. First, each input component
among R (𝑡 ) and 𝑅 (𝑡 ) are fed into a different embedding net-
work. In short, an embedding network consists of multiple
fully-connected layers which transform an input vector into
embedding vectors, usually of lower dimensionality. Let the
mappings represented by the embedding networks for R (𝑡 )
and 𝑅 (𝑡 ) be 𝐸𝑚𝑏R (·) and 𝐸𝑚𝑏𝑅 (·), respectively, then

𝐸𝑚𝑏R (R (𝑡 ) ) = 𝑈
(𝑡 )
R =

[
𝑢
R (𝑡 )
1 𝑢

R (𝑡 )
2 . . . 𝑢

R (𝑡 )
𝑒R

]
𝐸𝑚𝑏𝑅 (𝑅 (𝑡 ) ) = 𝑈

(𝑡 )
𝑅

=


𝑢
(𝑡 )
1,1 𝑢

(𝑡 )
1,2 . . . 𝑢

(𝑡 )
1,𝑒𝑅

. . . . . . . . . . . .

𝑢
(𝑡 )
𝑙,1 𝑢

(𝑡 )
𝑙,2 . . . 𝑢

(𝑡 )
𝑙,𝑒𝑅


(10)

where 𝑒R is the size of the output embedding for R (𝑡 ) , and
𝑒𝑅 is the size of the output embedding for 𝑅 (𝑡 ) .
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For DRN to further learn the interrelationships among
all the pending slices, 𝑈 (𝑡 )

𝑅
is input into a Multi-Head Self-

Attention (MHSA) block [13]. In short, a MHSA block outputs
a "context" matrix in which each row represents the "context
score" of a slice given the rest in 𝑅 (𝑡 ) . The MHSA block
allows DAA to further analyze all pending slice requests
while selecting the optimal one to accommodate. Let the
mapping by the MHSA block be 𝑆 (𝑡 )

𝑅
, then

𝑆
(𝑡 )
𝑅

=


𝜎
(𝑡 )
1,1 . . . 𝜎

(𝑡 )
1,𝑙

. . . . . . . . .

𝜎
(𝑡 )
𝑙,1 . . . 𝜎

(𝑡 )
𝑙,𝑙

 (11)

where 𝜎 (𝑡 )
𝑖, 𝑗

is the context score of 𝐺𝑖 with respect to slice
𝐺 𝑗 . We repeat 𝑢R (𝑡 ) 𝑙 times, then concatenate them with the
rows in𝑈 (𝑡 )

𝑅
and 𝑆 (𝑡 )

𝑅
to form the embedding for each slice:

𝑈 (𝑡 ) =


𝑢
R (𝑡 )
1 ... 𝑢

R (𝑡 )
𝑒R 𝑢

(𝑡 )
1,1 ... 𝑢

(𝑡 )
1,𝑒𝑅 𝜎

(𝑡 )
1,1 ... 𝜎

(𝑡 )
1,𝑙

. . . . . . . . . . . . . . . . . .

𝑢
R (𝑡 )
1 ... 𝑢

R (𝑡 )
𝑒R 𝑢

(𝑡 )
𝑙,1 ... 𝑢

(𝑡 )
𝑙,𝑒𝑅

𝜎
(𝑡 )
𝑙,1 ... 𝜎

(𝑡 )
𝑙,𝑙

 (12)

Finally,𝑈 is input into a block of fully-connected layers that
output a vector of |D| values 𝜌 (𝑡 ) = {𝜌 (𝑡 )0 . . . 𝜌

(𝑡 )
𝑙
} that rep-

resent the reward if DAA selects each slice. The architecture
of DAA’s deep neural network is shown in Fig. 3.
Training Algorithm.We train DAA deep neural network
as a supervised deep neural network. More specifically, DRN
is trained as a supervised model to predict the true reward
of taking an action. In an episode, we first randomize the
slice set𝐺 . Then, for each step in an episode, the input states
are fed to the model to generate actions then updated for
the next step as described in Section §3-B. At the end of
an episode, the reward values for each step are computed
backward using equation (9).
In terms of training objective, we utilize Mean Squared

Error function. Because the model only knows the reward of
actions that it has taken, we utilize amask vector𝑚 (𝑡 ) of size
𝑙 in which𝑚 (𝑡 )

𝑖
= 1 if slice 𝑖 is selected in𝑎 (𝑡 ) , and 0 otherwise.

𝑚 (𝑡 ) prevents non-selected slices from contributing to the
loss value. The loss for one episode E𝑖 is computed as

L𝑖 =
∑︁

𝑡 ∈episode
(𝑃 (𝑡 ) ∗𝑚 (𝑡 ) − 𝑃 (𝑡 ) ∗𝑚 (𝑡 ) )2 (13)

where 𝑃 (𝑡 ) is the predicted reward vector that is output by
DRN, and ∗ represents an element-wise multiplication.
To improve performance of the training process, we fur-

ther apply the Experience Relay strategy. More specifically,
after being used, data (input states and output rewards) of
an episode is stored in a memory dataset. After the memory
has more than 𝑛𝑏 episodes, with 𝑛𝑏 being the training batch
size, (𝑛𝑏 − 1) among the generated episodes are randomly
sampled and combine with the current episode to train DRN.
Finally, the loss of the batch is averaged across its episodes.

4 EXPERIMENT AND EVALUATION
We extensively test DAA in slicing a substrate network in
different conditions from easy to more difficult. More specifi-
cally, we start from substrate networks of 100 nodes of which
available resources are randomized in [10, 30] and average
at 20, and a slice set of 20 slices each of which consists of 10
VNFs with demands randomized in [1, 19] and averaged at 10.
As both the available resources and demands total at 2, 000,
this is the case where resources are plenty. Then, we test
DAA in use cases that resources are scarcer compared to the
demands from VNFs in the slices that need accommodations:

(1) Number of slices increases from 20 to 25
(2) Number of VNFs per slice increases from 10 to 15
(3) Amount of demanding resources from the VNFs in-

creases, from averaging at 10 to averaging at 15
(4) Available resources in the substrate nodes decrease,

from averaging at 20 to averaging at 15

After fine-tuning, the selected deep network architectures
are as 1) all embedding blocks have three fully-connected
layers; each layer in the substrate embedding block has a
size of 𝑛, and each layer in the slice embedding block has a
size of 𝑠 . 2) the MHSA has five attention heads of each has
a size of 𝑠 . And 3) the fully-connected block that outputs
return values has three layers, each has 3(𝑛 + 𝑠) neurons.
The hyper-parameters 𝛼 , 𝛽 , and 𝜆, for the reward function
in Eq. (9) are set at 0.2, −1, and 0.9, respectively. Finally, the
mini-batch size in all experiments,𝑛𝑏 is 256. In all cases, DRN
is trained with ADAM optimization algorithm with learning
rate of 10−6 for 500 epochs.
We implement four baseline strategies to compare with

DAA. The first (All) performs VNF mapping purely based
on their demands: all VNFs across all slices are sorted in
descending order then allocated to substrate nodes using
the algorithm in Section §3A. The second, third, and forth
baselines sort the slices in descending order of their VNFs’
max demands (Max), min demands (Min), and total demands
(Total). Then, in the currently selected slice, the VNFs are
embedded in descending order of their individual demands.
We use the average number of accommodated slices across
100 testing episodes as the evaluation metric. The results of
all experiments are illustrated in Fig. 4. As shown in Fig. 4, in
all experiment settings, DAA yields an accommodation rate
that is significantly higher than that of all the naive baselines.
In Fig. 4(a) DAA maintains an accommodation rate of over
18 in all cases, whereas the other four’s performances drop
gradually. In Fig. 4(b) and (c), the decreasing patterns of all
models are fairly similar (except for the All baseline); how-
ever, DAA still outperforms the others. In Fig. 4(d), we can
see DAA has the lowest decreasing rate while still yielding
the highest performances.
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Figure 4: Models’ performance on slicing networks
with increasingly scarcer resources

5 CONCLUSION
Given a high demand in the applications, where UAV/drone
communications can assist the cellular networks, RAN slic-
ing plays a critical role in these applications. This paper
addresses a fundamental challenge in RAN slicing: how to
enhance the embedding performance of RAN slicing to sup-
port the space-air-ground integrated networks in terms of
mapping VNFs while concurrently meeting the variation of
resource demands and requirement of the RAN slices. In
terms of architecture, we proposed a deep reinforcement
scheme (DAA) that consists of two components, an empiri-
cally designed deep neural network that was used to observe
the current input states to decide the schedule, and VNFs
of the selected slice were then determined by an allocation
algorithm that was aware of the substrate network’s flexibil-
ity and the VNFs’ allocability. We further trained the deep
network of DAA as a deep reward network to predict reward
the agent took after selecting and accommodating a slice.
Experiment results show that, on average, DAA is able to
maintain a fulfilling rate at above 80% in a resource-limited
network, and about 60% in extreme conditions, i.e., insuffi-
cient resources at the substrate.

6 APPLICATIONS AND BEYOND
With the rapid growth of new services and Internet applica-
tions, especially massive Internet of Things such as smart
grid, traditional cellular networks are now facing a major
challenge of supporting applications with multitude of con-
nections such as between smart devices and the controller

in the smart grid or between UAV/drones and land vehi-
cles in drone-assisted communications systems. The new
paradigm proposed in this research offers promising new
approaches for developing stable mapping plans for VNFs
that are central to any drone-mounted infrastructures and sys-
tems, with enhanced capabilities to satisfy the increasing
recoverability and stability demands of services and Internet
applications, while meeting their service level objectives un-
der both normal operations and abnormal operations with
failures in the network. In addition, this research provides
new AI and ML based architectures for dynamic operations
in drone communications using network slicing technolo-
gies. The proposed work has the potential to impact and
strengthen the development of different applications such
as smart grid and UAV/drone-assisted communications.
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