5G Network Slicing and Drone-Assisted Applications:
A Deep Reinforcement Learning Approach

Linh Le, Tu N. Nguyen, Knn Sno and Tine (Selena) He*

Kennesaw State Univel
{linh le, tu.nguyen, ks

ABSTRACT

5G radio access network (RAN) slicing is gaining momentu
in finding applications in a wide range of domains, especiall
those requiring high-speed data transmissions such as spac
air-ground integrated networks (i.e., drone-based system:
A key challenge in building a robust RAN slicing to suppo:
these applications is, therefore, designing a RAN slicing (RS
configuration scheme that can utilize information such as r
source availability in substrate networks as well as the inte
dependent relationships among slices to map (embed) virtu
network functions (VNFs) onto live substrate nodes. Wit
such motivation, we propose a machine-learning-powere
RAN slicing scheme that aims to accommodate maximuz
numbers of slices (a set of connected VNFs) within a give
request set. We present a deep reinforcement scheme that ..
called Deep Allocation Agent (DAA). In short, DAA utilizes
an empirically designed deep neural network that observes
the current states of the substrate network and the requested
slices to schedule the slices of which VNFs are then mapped
to substrate nodes using an optimization algorithm. DAA
is trained towards the goal of maximizing the number of
accommodated slices in the given set by using an explicitly
designed reward function. Our experiment study shows that,
on average, DAA is able to maintain a rate of successfully
routed slices above 80% in a resource-limited substrate net-
work, and about 60% in extreme conditions, i.e., the available
resources are much less than the demands.

CCS CONCEPTS

+ Networks — Network control algorithms; Network
design and planning algorithms; Network performance
modeling,.

KEYWORDS

5G RAN slicing, deep reinforcement learning, embedding,
VNFs mapping, UAV/drone-assisted communications.

1 INTRODUCTION

Unmanned Aerial Vehicle (UAV) communications can assist
the existing cellular communications for the rapid service
recovery in a high-speed fashion as shown in Fig. 1. However,

“Corresponding author: Tu N. Nguyen. This research was supported in part
by US NSF grants CNS-2103405, AMPS-2229073, CPS-2103459, SHF-2210744,
and was also supported in part by a grant from SunTrust/Truist Banks, Inc.
and the KSU Institute for Cybersecurity Workforce Development.

"‘ﬂ/\\’h/ Air

5G
e
ol Sl B Ao
Lo B El B EL B Bl B

e g ————
* RAN

()
A z .ol

Figure 1: DAA deep neural network architecture

networks with components mounted on UAV’s may suffer
from problems such as the lack of computational resources
as well as endurance capabilities. Therefore, fault-tolerant
communication schemes that can quickly recover from fail-
ures are of importance for UAV-assisted communications.
Radio Access Network (RAN) slicing is a critical technol-
ogy for the new generation 5G network. There have been
efforts to develop an integrated network architecture from
the drone-assisted, air-based network and ground-based net-
work where RAN slicing plays a critical role [1-4]. In partic-
ular, a RAN slice that is independent from others consists of
a set of VNFs. Upon receiving requests from the enterprise,
the mobile network operator (MNO) works with the RAN
enforcement to allocate the substrate network resources to
VNFs and virtual links between VNFs.

There have been efforts to design algorithms for the RAN
resource allocation problem in drone-based systems that
tend to consider only the available resources of the substrate
network to design a mapping plan and disregard the VNF
connectivity and bandwidth requirements [5-12]. However,
mapping VNF strategy will not only hinge on substrate nodes
resource allocation but also rely on the substrate connection
and the bandwidth requirement of the virtual links between
VNFs. This is a key research challenge we will tackle in the
proposed research. In particular, for an RAN slicing (RS)-
configuration in a cellular network, we would like to explic-
itly account for the mapping plan of VNFs, with the goal of
providing stable performance for drone-based applications.

With such motivation, in this paper, we present a deep
reinforcement scheme, Deep Allocation Agent (DAA), that
is able to embed VNFs of a slice while being aware of the
interdependency among slices. We model the problem of
maximizing the number of accommodated network slices as

a reinforcement learning problem: 1) Environment States
include information on the current substrate network, i.e.,
available resources in all substrate nodes, and a set of pending
slices to be accommodated, i.e., VNFs in each slice and their
demands. 2) Episodes are the accommodation of all slices
in a given set. An episode ends by allocating resources to
all slices in the given set, or by entering an environment
state in which no pending slices can be further resolved.
Each step in an episode refers to the allocation of a slice. 3)
Actions that the agent makes at each step include selecting
then allocating resources to VNFs in the slice. 4) Rewards
that the agent receives after an action are designed to guide
the agent to generate schedule that maximize the number of
allocated slices in a given set.

The neural network of DAA first observes the current en-
vironment state to select a pending slice to accommodate. Its
VNFs are then mapped to substrate nodes using an algorithm
that maximizes the flexibility of the substrate network and
the allocability of the remaining VNFs. We train the deep
network of DAA as a deep reward network (DRN). In this
case, the neural network predicts the true reward obtained if
a slice is selected. The training of DRN is guided by the pre-
viously mentioned reward function. Our experiment study
shows that, on average, DAA models are able to maintain
a rate of successfully accommodated slices about 80% in a
resource-scarce case (i.e., the available resources are less
than the demands from the slices), and approximately 60% in
extreme conditions of network (available resources are much
less than demands). Specifically, the paper has the following
contributions and intellectual merits:

(1) We tackle the problem of maximizing the number of
slices in network slicing using deep reinforcement
learning to support the space-air-ground integrated
networks such as drone-assisted systems. Specifically,
we propose a reinforcement learning model with spe-
cific designs of environments, actions, and rewards,
that guide the agents towards a schedule that fulfills
the most slices in a given set.

(2) We present DAA, a deep reinforcement scheme that
consists of an empirically designed deep neural net-
work that schedules slices and an allocation algo-
rithm that maps VNFs to substrate nodes while being
aware of the network’s flexibility. The deep network
of DAA is trained as a deep reward network to max-
imize the number of accommodated slices. Further-
more, DAA enjoys the scalability of a deep architec-
ture (polynomial time) that is an advantage over tra-
ditional optimization methods which is highly impor-
tant especially in the context of UAV/drone-assisted
communications.

Linh Le, Tu N. Nguyen, Kun Suo, and Jing (Selena) He

Organization: The rest of the paper is organized as follows.
Section §2 discusses the concepts related to our work, and
mathematically formalizes our research problem. We discuss
DAA in Section §3 then present the experiment study in
Section §4. Finally, we conclude our paper in Section §5 and
discuss future application in Section §6.

2 MODEL AND RESEARCH PROBLEM

In the following sections, an overview of the quantum net-
work and basic mathematical notations are introduced. For-
mal research problem is also defined to demonstrate the key
ideas behind the proposed model and methodology.

2.1 Network Model

Given a substrate network G = {N, R} in which we have
a set of nodes N = {N}, N>, ..., Ni,} and a set of resources
R = {R1, Ry, ..., Ru}. A node N; has maximum resources
available of R;. In other words, any node N; can allocate
a maximum amount R; of resources to VNFs. A VNF in a
specific slice is not available and accessible by other network
slices for the isolation purpose.

Let G = {G!,G?,...,G'} be the set of | RAN slices of which
resources need to be allocated in G. Each slice G' = {V!, R'}
consists of a VNF set Vi = {vi,vé, ..
set RI = {r{, r;, ..

for VNF vj. is r; In other words, vj. needs to be assigned

.,v; } and a resource
1

.,r! } in which the demanded resources
4

to a substrate node N with R, > r; to be considered suc-
cessfully mapped. To mathematicize the allocation of a VNF
vj. to a substrate node N, we introduce a binary variable
m;cj : m;’j = 1 when 0! is mapped to Nk, and m;’j = 0 oth-
erwise. A VNF can only be allocated to one substrate node,
therefore we have the constraint 37!, m;cj = 1. The maxi-
mum resources available in each substrate node cannot be
exceeded when allocating VNFs, which leads to another con-
straint Zﬁ’zl"l’jzl m;‘c’j * rj". < Ri. We further assume the slice
G' to be successfully allocated only when all v} € V' are
successfully allocated. Consequently, we introduce a binary
variable Al. A’ = 1 when Z?ﬁ,k:l m;CJ =I;, and A! = 0 other-
wise. In other words, A’ = 1 when slice G! has all its VNFs
successfully mapped to the substrate network.

2.2 Problem Formulation

In this work, we advocate a novel allocation scheme — dubbed
Deep Reinforce Allocation Scheme (Q.s) — that implements
a deep reinforcement learning model to circumvent the com-
putability limitations of heuristic conventional resource al-
location schemes, while concurrently maximizing service-
ability of the network. In other words, our allocation scheme
aims to maximize the number of network slices that are
successfully allocated with resources to operate properly.

5G Network Slicing and Drone-Assisted Applications:
A Deep Reinforcement Learning Approach

Slice 2
D Available resource in substrate node r r r
. Resources demanded in VNFs r o m Stice !
- Allocated resource in substrate node E i
Network
: . VNF - Substrate node mapping E
H H
a) Annotation b) Original Network
g
r r r Slice 2 r r r Slice 2
r m Stice 1 r e G 5 Slice 1
! L)1(s st',’.f’“k | Neswrt)
|
sl | |

(c) Non-Optimal (d) Optimal

Figure 2: An example on a VNFs embedding problem
and its non-optimal and optimal solutions

Given G = {G',G?,...,G'} be the set of] RAN slices of
which resources need to be allocated in G. Our goal is to
maximize Qg s as follows:

= Al 1
Qﬂs ie{TZa}.).(.,l} Z ()

We further constraint the number of VNFs in all slices in G
to be equal [; = s V i. It should be noted that this constraint
does not reduce the generality of the research problem, since
a slice j VNFs with j < s can be padded with VNFs of 0
demands to meet the size requirement. In this problem, we
also do not constraint that all slices in G can be allocated
successfully in G. This means that a complete allocation
solution may not exist for a mapping from G to G.

We break the problem into two tasks which are 1) to sched-
ule slices to allocate and 2) to map VNFs in the selected slice
to substrate nodes. Fig. 2(b) shows the substrate network G
of five nodes, each with 4 resource blocks. There are two
slices that need accommodations. Fig. 2(c) demonstrates the
case in which slice 1 is accommodated first with the VNFs
are randomly mapped to substrate nodes that satisfy the
resource constraint. This solution is not optimal as slice 2
cannot be accommodated anymore. Fig. 2(d) shows the opti-
mal solution in which slice 2 is accommodated first. Slice 1
can then be accommodated successfully as well. This exam-
ple shows the importance of scheduling the RAN slices as
well as a mapping strategy that conserves resources based
on future unallocated slices and VNFs.

3 DEEP ALLOCATION AGENT

Given a substrate network G with the node set N and the
resource set R, and a set of RAN slices G, we refer to the
accommodation of all slices G’ in G as an episode. At each
step ¢, DAA makes an action a'? to allocate resources to one
slice G* based on the current environment state including

the current available resources R*) and the demands of
pending slices R®) . An episode ends when all slices are
resolved, or when no pending slices can be accommodated.
In the following sections, we first discuss our VNF mapping
algorithm. Then, we describe the DNN architecture of DAA
in terms of input states, output actions, reward function,
architecture, and training.

3.1 VNF Allocation Algorithm

The allocation of resources to a VNF, i.e., mapping a VNF to
a substrate node, may significantly alter the performance of
network slicing. Consequently, we derive mapping algorithm
that select a substrate node for a given VNF while considering
the flexibility of the substrate network and the allocability
of the remaining VNFs. We first describe the concepts of
flexibility and allocability in the context of our problem.

Substrate Network Flexibility. We define the flexibility
of a substrate network as the capability to accommodate
pending VNFs. Mathematically, given a substrate node Ny
with available resource R](:) at step ¢, and a RAN slice set G
with VNFs {Z);|l € {1,1};j € {1,s}}, the flexibility F(N) of
Ny is defined as Ls
F(N) = Y 15 (2)

i=1,j=1

where 11.‘ jisa binary indicator as follows

. {1 ri < Ry

b 0 otherwise

®3)

The flexibility 7 of the substrate network is then calcu-
lated as the sum of all substrate nodes’ flexibility:

n
FS = F(N) (4)

k=1
VNF Allocability. We define the allocability of a VNF as
the number of substrate nodes that can accommodate the
VNF. Mathematically, the allocability ﬂ(vj.) of a VNF Uj- is

defined as) 1
A} = Y 1 (5)
k=1

with 15.‘ ; defined previously. It can be seen that the lower

ﬂ(vj), the less substrate nodes can accommodate vj., and
when A(v]) = 0, 0}, and subsequently G', are completely
blocked from being successfully allocated with resources.
Therefore, to minimize the possibility of a VNF and its slice
being blocked, as well as further increase the possible solu-
tions for future mappings of remaining VNFs, we will derive
mapping solution based on the minimum allocability across
all VNFs at each step ¢

A5 (o)) = min A(v)) (©)

VNF Allocation Algorithm. Given a VNF that needs re-
sources, a substrate node is selected so that, after the allo-
cation, both the substrate network flexibility FS and the
AS (U;) of the current network are maximized. More specifi-
cally, at step ¢, given a VNF vj. of demanding resource rj. and
the substrate nodes N' = {N, N, ..., N} with resources
RO = {Rit), R;t), e Rff)}, the process is as follows.

(1) Temporarily allocate v§ to each NV that satisfies Ry >

U; and update R to obtain RESD with R/(ct(;) -

R](:) - r]‘ Calculate the flexibility "fS(k) and alloca-
bility ﬂs(k)

(2) Sort the substrate nodes N in descending order of
ﬂs(k) then 775(1() (ﬂs(k) is prioritized)

(3) Select the first substrate node N in the sorted N to
be the mapping solution for Uj.

3.2 Deep Reward Network Architecture

Input State. At step ¢ in an episode &, an input state to DAA
consists of 1) the current available resource in each substrate
node R and 2) the current demanding resources from all
slices R™. The data representations for R*) and R**) are
straightforward. R*) is modeled as a vector

RO = (R, R, RS} (7)
whereas R() is modeled as a | X s matrix
rll(’) e rsl(”
RO =|... (8)
ri(” ré(” ... ri(”

If a slice G is already accommodated, its corresponding row
Ri(t) in R® is replaced with a 0 vector. Slices of less than s
VNFs can be padded with 0’s to ensure the input matrix size.

Output Action. At each step ¢ in an episode, DAA selects
one among the pending slices G*) then mapping its VNFs to
the substrate network. We utilize a hybrid approach, that is
to use the deep network DRN for scheduling the slices, and
the algorithm presented previously to map the VNFs.

In terms of scheduling, DRN outputs a reward vector p*)
of size I: p(*) = {pét), pft), ey pl(t)} in which pi(t) represents
the reward at the end of step t if DAA selects slice i to ac-
commodate. Then, the pending slice with the highest re-

ward value is selected in each step, a*) = argmax; (o (pi(t)),

where G}(,t) is the set of pending slices at t. With a(*) selected,
the VNFs in the chosen slice are sorted in descending order
of demanding resources. Then, each VNF is mapped to the
substrate network using the allocation algorithm that is de-
scribed in Section §3.1. The reason we first sort the VNFs
in descending order of demanding resources is that, VNFs
of higher demands will have less allocability and thus less

Linh Le, Tu N. Nguyen, Kun Suo, and Jing (Selena) He

® © (®)
[p1 P2 - Py] a®

| Concatenation I—'l Fully-Connected |

[

M.

Embedding | | Embedding |
T(;(t) Ik(t)
1
' 7" =7 . =Y

[R
Ao

Figure 3: DAA deep neural network architecture

mapping options. Therefore, they should be accommodated
first to avoid being blocked.

At the end of each action, the input states are updated for
the next step t + 1. First, the row that associates to the slice
resolved by a'*) in R is replaced with 0’s to obtain R(+1).
Then, R is updated with the new available resource values
after accommodating all VNFs in the selected slice.

Reward Function. The reward function is specifically de-
signed to increase the number of accommodated slices by
the substrate network. Mathematically, let the reward at step
t be P then

PO =nat (I=m)Bf+ APV (1= f) (9)
where nﬁt) is the number of slices that are resolved from
the beginning of the episode through step t, f is a binary
indicator that is 1 when ¢ is the ending step of and episode
and 0 otherwise, @ > 0 is the reward term, § < 0 is the
penalty term, and A € [0, 1] is a discount factor. Both a, f,
and A are hyper-parameters to be selected during the training
phase. Overall, the reward function design encourages the
agent to find schedules that accommodate more slices, and
penalizes schedules that end too early - the less slices solved,
the heavier the penalties.

Reward Network Architecture. In this subsection, we de-
scribe the architecture of DRN. First, each input component
among R and R are fed into a different embedding net-
work. In short, an embedding network consists of multiple
fully-connected layers which transform an input vector into
embedding vectors, usually of lower dimensionality. Let the
mappings represented by the embedding networks for R *)
and R be Embg(-) and Embg(-), respectively, then

Embg(RW) = U,](;) _ uf(” uf(” ”Z:e(t)]
(t) (t) ()
u ML2 . ul,eR (10)
Embp(RD)=U" =|...
L0 0 L0
1 Y2 o Upe

where eg is the size of the output embedding for R® and
er is the size of the output embedding for R,

5G Network Slicing and Drone-Assisted Applications:
A Deep Reinforcement Learning Approach

For DRN to further learn the interrelationships among
all the pending slices, Ulgt) is input into a Multi-Head Self-
Attention (MHSA) block [13]. In short, a MHSA block outputs
a "context" matrix in which each row represents the "context
score” of a slice given the rest in R®). The MHSA block
allows DAA to further analyze all pending slice requests
while selecting the optimal one to accommodate. Let the

mapping by the MHSA block be SI(;), then

[N
L
914
is the context score of G' with respect to slice

01(,?
where aifj.)
G’. We repeat ug(, I times, then concatenate them with the
rows in Ulgt) and S 1<z[) to form the embedding for each slice:

R (1) (®) (1) (t)

er Upper Ui Opi= O

u®=| .. R T}
R Ry (1) (®) (1) (®)

1 ueR uLl ul’eR Ul,l Ul,l

R
ul U

Finally, U is input into a block of fully-connected layers that
output a vector of |D| values p*) = {pét) . .pl(t)} that rep-
resent the reward if DAA selects each slice. The architecture

of DAA’s deep neural network is shown in Fig. 3.

Training Algorithm. We train DAA deep neural network
as a supervised deep neural network. More specifically, DRN
is trained as a supervised model to predict the true reward
of taking an action. In an episode, we first randomize the
slice set G. Then, for each step in an episode, the input states
are fed to the model to generate actions then updated for
the next step as described in Section §3-B. At the end of
an episode, the reward values for each step are computed
backward using equation (9).

In terms of training objective, we utilize Mean Squared
Error function. Because the model only knows the reward of
actions that it has taken, we utilize a mask vector m?) of size
| in which ml.(t) = 1ifslice i is selected in a(*, and 0 otherwise.
m®) prevents non-selected slices from contributing to the
loss value. The loss for one episode &; is computed as

L= Z (PD s (D) — pO) 4 (D)2 (13)
t€episode
where P(Y) is the predicted reward vector that is output by
DRN, and * represents an element-wise multiplication.

To improve performance of the training process, we fur-
ther apply the Experience Relay strategy. More specifically,
after being used, data (input states and output rewards) of
an episode is stored in a memory dataset. After the memory
has more than n;, episodes, with nj, being the training batch
size, (np — 1) among the generated episodes are randomly
sampled and combine with the current episode to train DRN.
Finally, the loss of the batch is averaged across its episodes.

4 EXPERIMENT AND EVALUATION

We extensively test DAA in slicing a substrate network in
different conditions from easy to more difficult. More specifi-
cally, we start from substrate networks of 100 nodes of which
available resources are randomized in [10, 30] and average
at 20, and a slice set of 20 slices each of which consists of 10
VNFs with demands randomized in [1, 19] and averaged at 10.
As both the available resources and demands total at 2, 000,
this is the case where resources are plenty. Then, we test
DAA in use cases that resources are scarcer compared to the
demands from VNFs in the slices that need accommodations:

(1) Number of slices increases from 20 to 25

(2) Number of VNFs per slice increases from 10 to 15

(3) Amount of demanding resources from the VNFs in-
creases, from averaging at 10 to averaging at 15

(4) Available resources in the substrate nodes decrease,
from averaging at 20 to averaging at 15

After fine-tuning, the selected deep network architectures
are as 1) all embedding blocks have three fully-connected
layers; each layer in the substrate embedding block has a
size of n, and each layer in the slice embedding block has a
size of s. 2) the MHSA has five attention heads of each has
a size of s. And 3) the fully-connected block that outputs
return values has three layers, each has 3(n + s) neurons.
The hyper-parameters a, 8, and A, for the reward function
in Eq. (9) are set at 0.2, —1, and 0.9, respectively. Finally, the
mini-batch size in all experiments, n;, is 256. In all cases, DRN
is trained with ADAM optimization algorithm with learning
rate of 10 for 500 epochs.

We implement four baseline strategies to compare with
DAA. The first (All) performs VNF mapping purely based
on their demands: all VNFs across all slices are sorted in
descending order then allocated to substrate nodes using
the algorithm in Section §3A. The second, third, and forth
baselines sort the slices in descending order of their VNFs’
max demands (Max), min demands (Min), and total demands
(Total). Then, in the currently selected slice, the VNFs are
embedded in descending order of their individual demands.
We use the average number of accommodated slices across
100 testing episodes as the evaluation metric. The results of
all experiments are illustrated in Fig. 4. As shown in Fig. 4, in
all experiment settings, DAA yields an accommodation rate
that is significantly higher than that of all the naive baselines.
In Fig. 4(a) DAA maintains an accommodation rate of over
18 in all cases, whereas the other four’s performances drop
gradually. In Fig. 4(b) and (c), the decreasing patterns of all
models are fairly similar (except for the All baseline); how-
ever, DAA still outperforms the others. In Fig. 4(d), we can
see DAA has the lowest decreasing rate while still yielding
the highest performances.

=

}
/

=

Average Slices Mapped
S

Average Slices Mapped

—@— DA ~@— DA

12 —— Max 8| —— Max
—8— Min —8— Min
Total 6 Total

10 All Al

24 2 10 15

&

22 23 11 12 13 14
Number of Slices Number of VNFs per Slice

(a) Increasing slices (b) Increasing VNFs per slice

©

@

Average Slices Mapped
S 5 B 5
U/
>
Average Slices Mapped
s 5 & 3
5 & o @

_ | -= DA
of & Max 301 - Max
=&— Min —8— Min
4 Total 25 Total
All All

10 11 2 13 14 15 20 19 8 17 16 15
Average Demands per VNF Average Resources per Substrate Node

(c) Increasing VNF demands (d) Decreasing sub. resources

Figure 4: Models’ performance on slicing networks
with increasingly scarcer resources

5 CONCLUSION

Given a high demand in the applications, where UAV/drone
communications can assist the cellular networks, RAN slic-
ing plays a critical role in these applications. This paper
addresses a fundamental challenge in RAN slicing: how to
enhance the embedding performance of RAN slicing to sup-
port the space-air-ground integrated networks in terms of
mapping VNFs while concurrently meeting the variation of
resource demands and requirement of the RAN slices. In
terms of architecture, we proposed a deep reinforcement
scheme (DAA) that consists of two components, an empiri-
cally designed deep neural network that was used to observe
the current input states to decide the schedule, and VNFs
of the selected slice were then determined by an allocation
algorithm that was aware of the substrate network’s flexibil-
ity and the VNFs’ allocability. We further trained the deep
network of DAA as a deep reward network to predict reward
the agent took after selecting and accommodating a slice.
Experiment results show that, on average, DAA is able to
maintain a fulfilling rate at above 80% in a resource-limited
network, and about 60% in extreme conditions, i.e., insuffi-
cient resources at the substrate.

6 APPLICATIONS AND BEYOND

With the rapid growth of new services and Internet applica-
tions, especially massive Internet of Things such as smart
grid, traditional cellular networks are now facing a major
challenge of supporting applications with multitude of con-
nections such as between smart devices and the controller

Linh Le, Tu N. Nguyen, Kun Suo, and Jing (Selena) He

in the smart grid or between UAV/drones and land vehi-
cles in drone-assisted communications systems. The new
paradigm proposed in this research offers promising new
approaches for developing stable mapping plans for VNFs
that are central to any drone-mounted infrastructures and sys-
tems, with enhanced capabilities to satisfy the increasing
recoverability and stability demands of services and Internet
applications, while meeting their service level objectives un-
der both normal operations and abnormal operations with
failures in the network. In addition, this research provides
new Al and ML based architectures for dynamic operations
in drone communications using network slicing technolo-
gies. The proposed work has the potential to impact and
strengthen the development of different applications such
as smart grid and UAV/drone-assisted communications.

REFERENCES

[1] P.R. etal, “Network slicing to enable scalability and flexibility in 5g
mobile networks,” IEEE Communications Magazine, vol. 55, no. 5, pp.
72-79, 2017.

S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,

L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorithmic aspects

of network slicing,” IEEE Communications Magazine, vol. 55, no. 8, pp.

112-119, 2017.

V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,

and A. Banchs, “Mobile traffic forecasting for maximizing 5g network

slicing resource utilization,” in IEEE INFOCOM 2017 - IEEE Conference

on Computer Communications, 2017, pp. 1-9.

H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung,

“Network slicing based 5g and future mobile networks: Mobility, re-

source management, and challenges,” IEEE Communications Magazine,

vol. 55, no. 8, pp. 138-145, 2017.

H. Halabian, “Optimal distributed resource allocation in 5g virtualized

networks,” in 2019 IFIP/IEEE Symposium on Integrated Network and

Service Management (IM), 2019, pp. 28-35.

A. Ksentini and N. Nikaein, “Toward enforcing network slicing on ran:

Flexibility and resources abstraction,” IEEE Communications Magazine,

vol. 55, no. 6, pp. 102-108, 2017.

[7] M. R. Rahman and R. Boutaba, “Svne: Survivable virtual network

embedding algorithms for network virtualization,” IEEE Transactions
on Network and Service Management, vol. 10, no. 2, pp. 105-118, 2013.

[8] S.e.a.D’Oro, “The slice is served: Enforcing radio access network

slicing in virtualized 5g systems,” Proc. of IEEE Conference on Computer

Communications (INFOCOM), 2019.

S. D’Oro, F. Restuccia, and T. Melodia, “Toward operator-to-waveform

5g radio access network slicing,” IEEE Communications Magazine,

vol. 58, no. 4, pp. 18-23, 2020.

[10] M. Richart, J. Baliosian,]. Serrat, and J. Gorricho, “Resource slicing
in virtual wireless networks: A survey,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 462-476, 2016.

[11] R. Trivisonno, R. Guerzoni, . Vaishnavi, and A. Frimpong, “Network
resource management and qos in sdn-enabled 5g systems,” in 2015
IEEE Global Communications Conference (GLOBECOM), 2015, pp. 1-7.

[12] Y. Jia, H. Tian, S. Fan, P. Zhao, and K. Zhao, “Bankruptcy game based
resource allocation algorithm for 5g cloud-ran slicing,” in 2018 IEEE
Wireless Communications and Networking Conference, 2018, pp. 1-6.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and L. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[2

—

3

—

[4

—

(5

—_

[6

—

[9

—

	Abstract
	1 Introduction
	2 Model and Research Problem
	2.1 Network Model
	2.2 Problem Formulation

	3 Deep Allocation Agent
	3.1 VNF Allocation Algorithm
	3.2 Deep Reward Network Architecture

	4 Experiment and Evaluation
	5 Conclusion
	6 Applications and Beyond
	References

