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Abstract—Quantum communications are gaining momentum
in finding applications in a wide range of domains, especially
those require high-security data transmissions. On the other
hand, machine learning has achieved numerous breakthrough
successes in various application domains including networking.
However, currently, machine learning is not as much utilized in
quantum networking as in other areas. With such motivation,
we propose a machine-learning-powered entanglement routing
scheme for quantum networks that aims to accommodate max-
imum numbers of demands (source-destination pairs) within a
time window. More specifically, we present a deep reinforcement
routing scheme that is called Deep Quantum Routing Agent
(DQRA). In short, DQRA utilizes an empirically designed deep
neural network that observes the current network states to
schedule the network’s demands which are then routed by
a qubit-preserved shortest path algorithm. DQRA is trained
towards the goal of maximizing the number of resolved requests
in each routing window by using an explicitly designed reward
function. Our experiment study shows that, on average, DQRA
is able to maintain a rate of successfully routed requests above
80% in a qubit-limited grid network, and about 60% in extreme
conditions i.e. each node can act as a repeater exactly once within
a window. Furthermore, we show that the complexity and the
computational time of DQRA are polynomial in terms of the
sizes of the quantum networks.

Index Terms—quantum network routing, deep reinforcement
learning, quantum networks, deep learning.

I. INTRODUCTION

There are high demands of network resources and security
in today’s network and the next-generation network systems
since more devices connected to the Internet and new services
created. Quantum network appears as a promising technology
to enhance exchanged information security via the Internet [1],
[2], [3]. A quantum network is built on the top of the con-
ventional networks (e.g., network slicing) that is composed by
various nodes (computers) equipped with quantum processors
to process and deliver information in the form of quantum bits,
called qubits [4], [5], [6].

Quantum networks are not designed to replaced the con-
ventional network communication. In fact, they supplement
the operation of the next-generation network system where
quantum entanglement and swapping play the key role of
quantum network technology. In particular, quantum entan-
glement is designed with the no-cloning theorem, in which it
is impossible to produce independent and identical copies of
any unknown quantum state. This addresses the fundamental
problem of network security: key distribution [7], [8]. Specif-
ically, quantum entanglement is set up based on a strong cor-
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Fig. 1: Transmission of qubit using teleportation in (a-b) and
quantum entanglement swapping in (c-d).

relation between two particles (i.e., photons). Hence, quantum
entanglement can enable the secured data transmission, called
teleportation, as shown in Fig. 1. A routing path in the quan-
tum network is therefore built based on quantum entanglement
as well with the support of quantum repeater using swapping
protocol to enable entanglement to be distributed over long
distances [9]. We will present details of quantum repeater
and swapping in §II-A. Since quantum entanglement is the
nonlocal property of two qubits that are inextricably linked
to each other, the question of how to construct routing paths
for a (or multiple) given pair(s) of source and destination
becomes how to assign qubit entanglements to appropriate
routing paths. In order to design scalable quantum networks,
existing works aim at proposing new optimization models to
efficiently assign qubits and repeaters to different quantum
entanglements. Authors in [10] discuss how to use a limited
number of repeater to enable quantum communication [11]
and propose multi-path routing in a diamond topology.

While machine learning has been a highly active research
area recently, works on machine-learning-based routing in
quantum networks are still relatively limited at this moment.
We are able to find one of such research [12] which utilizes re-
inforcement learning to schedule entanglements. Specifically,
the work in [12], focuses on optimizing entanglement times
on quantum channels across a path to ensure an entanglement
state between the two end nodes can be established before
any channels decay. In this paper, we focus on using machine
learning on a different aspect of routing, which is to allocate
quantum channels to accommodate multiple communication
requests in a quantum network. To our knowledge, there are
currently no such works in the literature. With such motivation,
in this paper, we present a deep reinforcement routing scheme
that is called Deep Quantum Routing Agent (DQRA). We
start with modeling the problem of entanglement routing as
a reinforcement learning problem with the following settings:



o Network environment includes information on the cur-
rent network graph (i.e. which nodes can establish entan-
glement with which others), qubit capacity at each node,
and a set of pending routing requests (demands).

o Episodes are the accommodation of all requests in a
given window. An episode ends by solving all requests
in a set, or by entering an environment state in which no
pending requests can be solved. Each step in an episode
refers to the accommodation of one request.

« Actions that the agent makes at each step include select-
ing then routing a pending request.

« Rewards that the agent receives after an action are
designed to guide the agent to generate schedule that
maximize the number of accommodated requests in a
given time window.

DQRA then solves the problem of using a combination of
a deep neural network and a shortest path algorithm. The
neural network first observes the current environment state
to select a pending request to accommodate. The selected
request is then routed using a shortest path algorithm that
uses a metric representing the qubit capacities among nodes
across a path. We use two algorithms to train the deep network
of DQRA, as a deep reward network, and as a deep Q
network (DQN). In the first case, the neural network predicts
the true reward obtained if a request is selected, and in the
second case, the neural network predicts the Q-values of
selecting the requests. Both training algorithms are guided
by the previously mentioned reward function. Our experiment
study shows that, on average, both DQRA models are able to
maintain a rate of successfully routed requests above 80% in
a qubit-limited quantum network, and approximately 60% in
extreme conditions of network (i.e. all nodes can only be end
nodes or repeater exactly once). We also empirically show that
the routing time of DQRA increase as a polynomial function
of network sizes (i.e. number of nodes). Specifically, the paper
has the following contributions and intellectual merits:

1) We tackle the problem of entanglement routing in quan-
tum networks from a machine learning perspective.
Specifically, we propose a reinforcement learning model
with specific designs of environments, actions, and re-
wards, that guide the agents towards a schedule that
fulfills the most traffic requests within a time window.

2) We present DQRA, a deep reinforcement routing scheme
that consists of an empirically designed deep neural
network that schedules requests and a qubit-preserved
shortest path algorithm that routes selected ones. The
deep network of DQRA can be trained either as a deep
reward network or a deep Q network. DQRA is shown to
obtain good request-resolving rates even in qubit-scarce
networks, and is scalable in terms of routing times.

Organization: The rest of the paper is organized as follows.
Section §II discusses the concepts related to our work, and
mathematically formalizes our research problem. We discuss
DQRA in Section §III then present the experiment study in
Section §IV. Finally, we conclude our paper in Section §V.

II. NETWORK MODEL AND RESEARCH PROBLEM

In the following sections, an overview of the quantum net-
work and basic mathematical notations are initially introduced.
Formal research problem is also defined to demonstrate the key
ideas behind the proposed model and methodology.

A. Quantum Network: An Overview

We first briefly introduce basic definitions in the context of a
quantum network. The main components of quantum networks
and their key roles are also briefly discussed as follows.

Quantum nodes are computers equipped with quantum
processor(s) and are capable of manipulations on qubits.
Specifically, the nodes can establish quantum entanglements
between their qubits and qubits in other nodes, or perform
entanglement swapping in the case they work as repeaters.

Quantum entanglement and teleportation are the process
of establishing a quantum link between two qubits on two
nodes so that their states are interdependent on each other. In
short, this process involves performing a Bell State Measure-
ment on qubits at two end-nodes then sending the co-relation
through a classical transmission channel using two classical
bits (e.g., via network slicing). Quantum entanglement is the
mean to start a process of sending data via a quantum network,
called feleportation as shown in Fig. 1. Henceforth, we use
the term “neighbors” to refer to nodes that are capable of
forming direct entanglement with each other, i.e., they are
connected through a classical channel with a distance is set
below 143km’.

Entanglement swapping is used to extend quantum en-
tanglement to a long-distant pair of nodes. In this case, each
end node can have a qubit entangled with a qubit in a same
intermediate node (i.e., repeater). The repeater then performs
entanglement swapping on its own qubits which results in
the entangled state between qubits of the two end nodes. We
further refer to the intermediate node as a repeater. Since a
repeater eventually needs to perform entanglement swapping,
it must be able to gather at least two available qubits.

Quantum channels refer to established entanglement pairs
between two neighbors. A chain of quantum channels to which
are continuously connected is referred as a quantum route.
B. Network Model: Mathematical Notations and Illustration

Mathematically, we model a quantum network as a graph
G = (V,E) in which V = {v;}}¥, represents the set of
nodes in the network of size N, and E = {e; j;v;,v; € V}
represents the set of pairwise neighborhood relationships
among the nodes. More specifically, the neighborhood rela-
tionship between v; and v; exists when there is a possibility
to form a quantum channel between them, in other words,
qubits in v; and v; can establish quantum entanglements.
To elaborate, there exists e;; € E only when v; and v,
are connected through a classical network channel, and the
physical distance between them is within the threshold to
establish qubit entanglements (i.e. 143 km).

'A long-distance entanglement decays exponentially with the physical
distance between the two entangled nodes [1], [2], [3]. Quantum teleportation
over a distance of 143 km has been deployed but still in the early stage.



We define C' = {c¢;;¢; € N}, as the set of qubit capacities
in which ¢; is the maximum number of qubits that node
v; can generate to form entanglements with its neighbors.
If there exists e;; € E, v; and v; can establish at most
min(c;,c;) entangled qubit pairs between them. We set the
lower bound min({¢;; V ¢; € C'}) = 2 so that any node v; can
connect to at least two neighbors and perform entanglement
swapping. We then define a quantum route in the network
between the source vs and the destination vy as a path p =
{€p1,p2s Epopas - Epr_ripit WIth €py pos €po pas ooy €p_y iy €
E; wvp, = vs; v, = vq and p; # p; for any pair of
(i,7) in the path; any nodes beside v, and v, are repeaters
in the path. p is further constrained on the number of qubits
available in the repeaters. Mathematically, let ¢; be the number
of qubits in a repeater v; that has already been utilized in other
quantum channels, the remaining number of available qubits
must be at least two, ie., ¢; — ¢ > 2. A demand (vs,vq)
in the set of network demands D is successfully resolved
by determining a quantum routing path between them that
satisfies both mentioned constrains.

C. Problem Formulation

In this work, we advocate a novel routing scheme — dubbed
Quantum Routing Scheme (Qrs) — that implements a deep
reinforcement learning model to circumvent the computability
limitations of heuristic conventional qubit assignment-based
schemes, while concurrently meeting the quality-of-service
requirements (e.g., connectivity) of networks. Given a quantum
network G = (V, E') with a set of qubit capacities and a set of
network demands D, our goal is to maximize the entanglement
routing rate achieved by a routing scheme Qrs as follows:

max

Ors = (vs,04)ED ZP(“S’”d)l{%m:l Y (0P g} (D

Where Py, .,) denotes the entanglement path connecting
the source-destination pair (vs,vg). Here, 1y is the indicator
function; it is equal to one if the condition in the subscript
is true, otherwise zero. £, ) denotes the entanglement status
between the two quantum nodes p and g. We further constraint
the size of D to be a fixed integer k. More specifically, Ors
performs routing on a window of k& source-destination pair at
a time. It should be noted that this constraint does not reduce
the generality of the research problem, since a request set can
be split or padded to meet the size requirement.

As the number of paths for a set D grows exponentially
with |V| and |D|, determining the optimal solution for all
requests simultaneously could become highly challenging.
Furthermore, the network capacity may not be able to ac-
commodate all requests in D. Consequently, we break the
problem into two tasks which are 1) to schedule demands to
accommodate and 2) to determine the path for each one. These
two components make up the output of our OQrs scheme.
We shows an illustrative example in Fig. 2. Fig. 2(a) shows
the original network topology. At the same time, the network
needs to accommodate two demands, (vq,v7) and (vs,vg).
Fig. 2(b) demonstrates the case in which (v1,v7) is routed
first using a least-hop strategy to select paths. This solution
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Fig. 2: An example on quantum network and routing solutions
for two demands (v1,v7) and (vs, vg)

is not optimal as v4 and vy do not have enough qubits left to
accommodate the demand (vs, vg). Fig. 2(c) shows the optimal
solution in which (v, vg) is resolved first.

III. DEEP QUANTUM ROUTING AGENT

In this section, we describe our deep reinforcement routing
scheme, henceforth referred to as Deep Quantum Routing
Agent (DQRA). DQRA utilizes a novel deep neural network
to schedule requests and a shortest-path algorithm for routing
them. Depending on the training algorithm, the deep neural
networks is referred to as a deep reward network (DRN) or
a deep Q network (DQN). Since the network architectures
are identical in both cases, for simplicity, we refer to the
neural network as a Scheduling Network (SN) throughout
this section. Given a quantum network G(V, E) with a qubit
capacity set C' and a set of routing requests D, we refer to the
accommodation of all requests in D an episode, denoted as E.
£ consists of a chain of consecutive action a(*) that DQRA
makes at each step ¢ to resolve one request in D. An episode
ends when all requests in D are resolved, or when no current
requests can be accommodated (e.g., when all repeaters run out
of qubits). The flow of DQRA is illustrated in Fig. 3. In the
following sections, we discuss DQRA in terms of input states,
output actions, reward function, architecture, and training.
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Fig. 3: An example of input and output of DQRA at step t.



A. Input State

At step ¢ in an episode &, an input state to DQRA consists
of 1) the connectivity in the network G (V, E®), 2) the
qubit capacity of each node C®, and 3) the request set
D). G® is generated as a subset of G in which edges that
connect to nodes with current qubit capacity of 0 are removed.
Then we extract the adjacency matrix A®) of G*)(V, E®)
which is transformed to a row vector where only dimen-
sions corresponding to edges that originally exist in G are
kept. Let the input vector that represents G(*) be A®), then
AW = [{Agtj), eij € V}]. D is the second input to DQRA.
In terms of representation, each node in a request is modeled
as binary vector v = [{v;;¢ = 1...|V[}] in which v; is 1 if
the node is 4, and O otherwise. If a request is already resolved
prior to step ¢, its source and destination are replaced with
0-vectors. Overall, each source-destination pair makes up one
row in D(*) which in turns become a binary matrix of size
k x 2|V|. Finally, the qubit capacity at step ¢ is modeled as a
vector C(V) = [{cgt); ¢; € C}]. All three components make up
the input state X (Vthat DRN observes from the environment
at step t, X = {A® DO ¢c®
B. Output Action

At each step ¢ in an episode, DQRA selects one among
the pending requests D) then assigns a path connecting the
source and destination nodes. We utilize a hybrid approach,
that is to use the deep network SN for scheduling the traffic
requests, and a short-test path algorithm with customized
metric to determine the path for each request.

In terms of scheduling, SN outputs a reward vector (or
a Q vector the the case of DQN) () of size |D|: r(!) =

r(()t), TY’), o ’Tl(g\} in which rl@ represents the return at the
end of step ¢ if DQNA routes request i. Then, the pending
request with the highest return value is selected in each step,
a® = argmax _p,( (r,gt)), where Dg) is the set of unresolved
requests at ¢.

With ) selected, to determine the path between the source
and destination, we utilize a shortest path approach in which
the metric expresses the qubit capacity of the nodes. More
specifically, a shortest path algorithm is applied. The weight
of edge e; ; at step ¢ is as wl(t]) = 1/min(c(_t) NON where cit) is
the current capacity of node v;. Using this 7rrjletric, a shortest
path of which total metric is low is more likely to traverse
nodes with high qubit capacities and less likely to exhaust
qubits in any nodes. To prevent a node with less than two
qubits being selected as a repeater, we apply the shortest path
algorithm on a node-induced sub-graph G®) of G(*) in which
a node v; is retained only if it has cgt) > 2 or v; is either the
source or destination in the current request.

At the end of each action, the input states are updated
for the next step ¢ + 1. First, the row that associates to
the request resolved by a(® in D) is replaced with 0’s to
obtain D**+1) Then, C¥) is updated with new qubit capacities.
Finally, G(**1) is acquired by removing all edges that associate
with any node v; that has cgtﬂ) = 0 and updating the weights
of the edges using C(*t1).

C. Reward Function
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Fig. 4: DQRA deep neural network architecture

The reward function is specifically designed to increase
the number of accommodated routing requests in a window.
Mathematically, let the reward at step ¢ be R® then

RO =n®a+ (D] —n®O)Bf + ARV Q- f) (2

where ngt) is the number of requests that are resolved from

the beginning of the episode through step ¢, f is a binary
indicator that is 1 when ¢ is the ending step of and episode and
0 otherwise, o > 0 is the reward term, S < 0 is the penalty
term, and A € [0,1] is a discount factor. Both «, (3, and A
are hyper-parameters to be selected during the training phase.
Overall, the reward function design encourages the agent to
find schedules that accommodate more requests, and penalizes
schedules that end too early - the less requests solved, the
heavier the penalties.

D. Scheduling Network Architecture

In this subsection, we describe the architecture of DRN.
First, each input component among D), A® and C*) are
fed into a different embedding network. In short, an embedding
network consists of multiple fully-connected layers which
transform an input vector into embedding vectors, usually of
lower dimensionality. Let the mappings represented by the
embedding networks for DO A®  and C be Embp(-),
Emb(-), and Embe(-), respectively, then

Eme(D(t)) =Up = [usladl - Usip|,dip)
Emba(AY) =uqe )
Embc(C(t)) = Uc)

For DRN to further learn the interrelationships among all the
pending requests, Up is input into a Self-Attention layer. In
short, a self-attention layer outputs a ”context” matrix in which
each row represents the “context score” of a request given the
rests in D). Let the mapping by the self-attention layer be
Sp(+), then Sp = [04, 4, Tspydip ) Where oy, 4, is
the context score of request 7. We then repeat u 4¢») and uc(x

|D| times, then concatenate them with the rows in Up and Sp
to form the complete embedding for each request:

]T

Usy,dy Os1,dy Upt)  Ue)
U = .. 4)

Usipjdip) Tsippdipp - %a®  Ue®



Finally, U is input into a block of fully-connected layers that
output a vector of |D| values rgt) , rgt), . ,7"‘%)‘ that represent
the reward if DQRA select each request. The architecture of

DQRA’s deep neural network is shown in Fig. 4.

E. Training Algorithm

We utilize two algorithms to train DQRA deep neural
network, specifically, as a supervised deep reward network
(DRN), and as a deep Q network (DQN). In the supervised
case, DRN is trained as a supervised model to predict the true
reward of taking an action. In an episode, we first randomize
the request set D. Then, for each step in an episode, the input
states are fed to the model to generate actions then updated
for the next step as described in Section §III-B. At the end
of an episode, the reward values for each step are computed
backward using equation (2).

In terms of training objective, we utilize Mean Squared
Error function. Because the model only knows the reward
of actions that it has taken, we utilize a mask vector m® of
size |D| in which m!” = 1 if request i is selected in a(®,
and 0 otherwise. m(*) prevents non-selected requests from
contributing to the loss value. The loss for one episode &;
is computed as

L; = Z (T(t) xm — R(t)m(t))2 (5)

tcepisode

where * represents an element-wise multiplication. Finally, the
overall loss is averaged across episodes in a training batch of
size ny

1
.c:nsz,ci 6)

iEbatch

In the DQN training scheme, two versions of QN are
maintained, a predict network and a target network. the output
of the predict network is considered the () values of each
action, and the loss of one episode &; is as

L, = Z (Qg) sm® _ Q;gt) «m()? 7

tEepisode

where Qg) is the output of the predict network at step ¢, and

'F(,t) is the target ) value at step ¢ which is computed as:

W= (1 =1,) QW +1, % QY™ +ARD) (8

where [, is a learning rate, QE,EH) is the @ values output
by the target network for ¢ + 1, A\ and R(*) are the discount
factor and reward function at ¢ as described in Eq. (2). The
overall loss for one training batch is also calculated by Eq. (6).
The predict network can be trained using regular algorithms
like Stochastic Gradient Descent; the target network is updated
with the predict network’s weights once every few hundred
of epochs. During decision making phases, only the predict
network is utilized.

IV. EXPERIMENT AND EVALUATION

We focus on grid networks of size ng X ng nodes, and use a
routing window size of n¢g requests, with ng € {5,6,...10}.
We test four cases with different nodes’ qubit capacities: 1)
i =4V i,2)¢ €1[3,4 Vi, 3) ¢ €[2,4 Vi, and 4)
¢; = 2V 1. The test cases represent networks with increasingly
more limited qubit capacity. The last simulation represents the
extreme case in which each node can act as a repeater for
exactly one path, and, if a node is the source or destination of a
request, then it cannot be a repeater anymore. In all test cases,
each node is selected as the source or destination of requests
within a window no more than once. For a fair comparison, we
utilize the same architectures (in terms of number of layers and
neurons) of deep networks for both DQRA using supervised
reward network (denoted as DQRA-DRN) and DQRA using
the deep Q network (DQRA-DQN). After fine-tuning, the
selected deep network architectures are as 1) all embedding
networks have two fully-connected layers, each of which has
np, neurons with np, = |X§t)\,z' € {A® DO MY and
2) the fully-connected block that outputs return values has
three layers, each has (| A®)| + |D®| + |C®)|) neurons. The
hyper-parameters «, (3, and A, for the reward function in Eq.
(2) are set at 0.2, —1, and 0.9, respectively. The learning rate
I, for training DQRA-DQN as in Eq. (2) is 0.1. Finally, the
mini-batch size in all experiments, n;, in Eq. (6), is 512.

We implement two baseline routing strategies to compare
with DQRA. The first (Random) performs random selection
on requests, then assigning path to the selected request us-
ing the shortest path algorithm. The second (Shortest Path)
strategy selects requests based on a shortest-first strategy.
Specifically, the shortest paths for each pending requests are
first determined, then the one with minimum value is chosen to
accommodate. We use the average number of solved requests
across 1000 windows as the evaluation metric. The five-run
averaged experiment results are shown in Fig. 5. In all cases,
the deep networks are trained for 10, 000 epochs. As shown in
Fig. 5, the two versions of DQRA yield similar performances
in all tests, both of which are significantly higher than the
two naive baselines in all test cases. In Fig. 5(b) and (c)
where each node has c¢; randomized, DQRA models maintain
a successful routing rates of over 80% in all network sizes,
with DQRA-DQN being slightly better than DQRA-DRN. In
the two extreme cases where each node has exactly four and
two qubits (Fig. 5(a) and (d)), the performances of DQRA
models are almost identical. In networks with ¢; = 4 V i, the
two achieve almost 100% resolving rates, whereas in networks
with ¢; = 2 V i, they achieve the rates from about 70% at
ng = 5 to approximately 59% at ng = 10.

Next, we further examine the network size and time per-
formance of DQRA models. In production phase, the two
DQRA models should have equal time performance as they
use identical prediction architectures. In this experiment, the
grid networks has size ng xng with ng € {5,10,...,35} and
the window sizes are fixed to 10. Furthermore, we set the qubit
capacity of all nodes to a very high number so all requests
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of the windows are always accommodated. Fig. 6 shows the
DQRA’s total number of parameters in the deep networks (a)
and routing time (b) by the number of nodes in a network.
As shown in Fig. 6(a), by the design of the deep network,
the number of parameters increases as a polynomial function
(specifically, quadratic) of the number of nodes. This is an
advantage of DRN over DQN which must maintain two neural
networks of the same size during training. As shown in Fig.
6(b), the routing times for 1,000 windows (10 requests each)
increases with a linear pattern with respect to the numbers
of nodes. This is to be expected, as being deterministic, the
mapping of inputs to outputs in any neural networks has
polynomial time complexities; and the shortest path algorithm
is utilized exactly once for any demands.

V. CONCLUSION

Routing in quantum networks, one of the key problems of
the next-generation network system, and machine learning, one
of today leading research areas, have not seen much integration
currently. With such motivation, this paper aims to bridge that
gap with a new machine-learning-powered quantum routing
model for quantum networks. In particular, we have proposed
a deep reinforcement routing scheme (DQRA) to construct
routing paths for all demands in quantum networks. We have

modeled the problem of entanglement routing in quantum
networks as a reinforcement learning problem that consists
of input states, actions, and rewards. At each step in a routing
window, we construct input states of the model by considering
the quantum network’s states, the qubit capacities of nodes,
and the set of pending demands; the actions were defined as
the demand selection to accommodate and the path connecting
the two ends of the demand; and the rewards were designed to
guide the model towards schedules that fulfill the maximum
number of demands in a time window. In terms of archi-
tectures, DQRA consists of two components, an empirically
designed deep neural network that was used to observe the
current input states to decide the routing schedule, and routing
paths of the selected demands were then determined by a
qubit-preserved shortest path algorithm. We further utilized
two algorithms to train the deep network of DQRA, as a deep
reward network, and as a deep Q network (DQN). Experiment
results show that, on average, DQRA is able to maintain a
fulfilling rate at above 80% in a qubit-limited grid network,
and about 60% in extreme conditions i.e. each node can act
as repeater exactly once within a time window.
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