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ABSTRACT Quantum routing plays a key role in the development of the next-generation network system.
In particular, an entangled routing path can be constructed with the help of quantum entanglement and
swapping among particles (e.g., photons) associated with nodes in the network. From another side of
computing, machine learning has achieved numerous breakthrough successes in various application domains
including networking. Despite its advantages and capabilities, machine learning is not as much utilized
in quantum networking as in other areas. To bridge this gap, in this paper we propose a novel quantum
routing model for quantum networks that employs machine learning architectures to construct the routing
path for the maximum number of demands (source-destination pairs) within a time window. Specifically,
we present a deep reinforcement routing scheme that is called Deep Quantum Routing Agent (DQRA).
In short, DQRA utilizes an empirically designed deep neural network that observes the current network
states to accommodate the network’s demands which are then connected by a qubit-preserved shortest path
algorithm. The training process of DQRA is guided by a reward function that aims toward maximizing the
number of accommodated requests in each routing window. Our experiment study shows that, on average,
DQRA is able to maintain a rate of successfully routed requests at above 80% in a qubit-limited grid
network, and approximately 60% in extreme conditions i.e. each node can be repeater exactly once in
a window. Furthermore, we show that the model complexity and the computational time of DQRA are
polynomial in terms of the sizes of the quantum networks.

INDEX TERMS quantum network routing; deep reinforcement learning; quantum networks; next-
generation network; deep learning; machine learning.

I. INTRODUCTION

There are high demands of network resources and security
in today’s network and the next-generation network systems
since more and more devices are connected to the Internet
and new services are created. Quantum network appears as
a promising technology to enhance exchanged information
security via the Internet [1], [2], [3], [4]. With recent ad-
vances in quantum computing technology [5], [6], [7], [8],
a quantum network is built upon the conventional network
(e.g., network slicing) that is composed by various nodes
(computers) equipped with quantum processors to process
and deliver information in the form of quantum bits, called
qubits [1], [2], [9], [10].

Quantum networks are not designed to replaced the con-

ventional network communication. In fact, they supplement
the operation of the next-generation network system where
quantum entanglement and swapping play the key role of
quantum network technology. In particular, quantum entan-
glement is designed with the no-cloning theorem, in which
it is impossible to produce independent and identical copies
of any unknown quantum states. This addresses the funda-
mental problem of network security: key distribution [11],
[12]. Specifically, quantum entanglement is set up based on
a strong correlation between two particles (i.e., photons).
Hence, quantum entanglement can enable the secured data
transmission, called teleportation, as shown in Fig. 1. A
routing path in the quantum network is therefore built based
on quantum entanglement as well with the support of quan-
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FIGURE 1: Transmission of qubit using teleportation in (a-b)
and quantum entanglement swapping in (c-d).

tum repeater using swapping protocol to enable entangle-
ment to be distributed over long distances [13]. We will
present details of quantum repeater and swapping in §II-A.
Since quantum routing is completely relied on the qubit
entanglement, the question of how to construct routing paths
for a (or multiple) given pair(s) of source and destination
becomes how to assign qubit entanglements to appropriate
routing paths. In order to design scalable quantum networks,
existing works aim at proposing new optimization models to
efficiently assign qubits and repeaters to different quantum
entanglements. The authors in [14] study the method to
apply Dijkstra algorithm to find the shortest path for repeater
assignments. On the other hand, the authors in [15] discuss
how to use a limited number of repeater to enable quantum
communication [16] and propose multi-path routing in a
diamond topology.

While machine learning has been a highly active research
area recently, works on machine-learning-based routing in
quantum network are still relatively limited at this moment.
Authors in [17] propose a model that utilizes reinforcement
learning to schedule entanglements. Specifically, the work in
[17], focuses on optimizing entanglement times on quantum
channels across a path to ensure an entanglement state be-
tween the two end nodes can be established before any chan-
nels decay. In this paper, we focus on using machine learning
on a different aspect of routing, which is to allocate quantum
channels to accommodate multiple communication requests
in a quantum network. To our knowledge, there are currently
no such works in the literature. With such motivation, in
this paper, we present a deep reinforcement routing scheme
that is called Deep Quantum Routing Agent (DQRA). We
start with modeling the problem of entanglement routing as a
reinforcement learning problem with the following settings:

• Network environment includes information on the
current network graph (i.e. which nodes can establish
entanglement with which others), qubit capacity at each
node, and a set of pending routing requests (demands).

• Episodes are the accommodation of all requests in a
given window. An episode ends by solving all requests
in a set, or by entering an environment state in which no
pending requests can be solved. Each step in an episode
refers to the accommodation of one request.

• Actions that the agent makes at each step include select-
ing then routing a pending request.

• Rewards that the agent receives after an action are
designed to guide the agent to generate schedule that

maximize the number of accommodated requests in a
given time window.

DQRA then solves the problem using a combination of a
deep neural network and a shortest path algorithm. The
neural network first observes the current environment state
to select a pending request to accommodate. The selected
request is then routed using a shortest path algorithm that
uses a metric representing the qubit capacities among nodes
across a path. We use two algorithms to train the deep
network of DQRA, as a deep reward network, and as a deep
Q network (DQN) [18]. In the first case, the neural network
predicts the true reward obtained if a request is selected,
and in the second case, the neural network predicts the Q-
values of selecting the requests. Both training algorithms are
guided by the previously mentioned reward function. Our
experiment study shows that, on average, both DQRA models
are able to maintain a rate of successfully routed requests at
85–90% in a qubit-limited quantum network, and 60–75%
in extreme conditions of network (i.e. all nodes can only
be end nodes or repeater exactly once). We also empirically
show that the routing time of DQRA increase as a polynomial
function of network sizes (i.e. number of nodes). Specifically,
the paper has the following contributions and intellectual
merits:

1) We tackle the problem of entanglement routing in quan-
tum networks from a machine learning perspective.
Specifically, we propose a reinforcement learning model
for the problem with specific designs of environments,
actions, and rewards, that guide the agents towards a
schedule that fulfills the most traffic requests.

2) We present DQRA, a deep reinforcement routing
scheme that consists of an empirically designed deep
neural network that schedules requests and a qubit-
preserved shortest path algorithm that routes selected
ones. The deep network of DQRA can be trained either
as a deep reward network or a deep Q network. DQRA
is shown to obtain good request-resolving rates even in
qubit-scarce networks, and is scalable in terms of model
complexity and routing times.

Organization: The rest of the paper is organized as follows.
Section §II discusses the definitions and notations that related
to our work, and mathematically formalizes our research
problem. Section §III reviews the related concepts in deep re-
inforcement learning. We discuss DQRA in details in Section
§IV, and present the experiment study in Section §V. Finally,
we conclude our paper in Section §VI.

II. NETWORK MODEL AND RESEARCH PROBLEM

In the following sections, an overview of the quantum net-
work and basic mathematical notations are initially intro-
duced. We also illustrate simple examples and formally de-
fine the research problem to present the key ideas behind the
proposed model and methodology.
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A. QUANTUM NETWORK: AN OVERVIEW
We first briefly introduce basic definitions in the context
of a quantum network. The main components of quantum
networks and their roles are briefly discussed as follows.

Quantum nodes are computers equipped with quantum
processor(s) and are capable of manipulations on qubits.
Specifically, the nodes can establish quantum entanglements
between their qubits and qubits in other nodes, or perform
entanglement swapping among their own qubits in the case
they work as repeaters.

Quantum entanglement and teleportation are the pro-
cess of establishing a quantum link between two qubits on
two nodes so that their states are interdependent on each
other. In short, this process involves performing a Bell State
Measurement [19] on qubits at two end-nodes then sending
the co-relation through a classical transmission channel using
two classical bits (e.g., via network slicing). Quantum entan-
glement is the means to start a process of sending data via
a quantum network, called teleportation as shown in Fig. 1.
Henceforth, we use the term “neighbors" to refer to nodes
that are capable of forming direct entanglement with each
other, i.e., they are connected through a classical channel, and
their physical distance is set below 143km at this time1.

Entanglement swapping is used to extend quantum en-
tanglement to a long-distant pair of nodes. In this case, each
end node can have a qubit entangled with a qubit in an inter-
mediate node on the path connecting these two end nodes
(i.e., repeater). The repeater then performs entanglement
swapping on its own qubits which results in the entangled
state between qubits of the two end nodes. We further refer
to the intermediate node as a repeater. Since a repeater
eventually needs to perform entanglement swapping, it must
be equipped with at least two qubits.

Quantum channels refer to established entanglement
pairs between two neighbor nodes. A chain of quantum
channels that are connected, i.e., except for the source node
and destination node, all repeaters are connected to exactly
two channels in the chain, is referred to as a quantum route.

B. NETWORK MODEL: MATHEMATICAL NOTATIONS
AND ILLUSTRATION
Mathematically, we model a quantum network as a graph
G = (V,E) in which V = {vi}Ni=1 represents the set of
nodes in the network of size N , and E = {ei,j ; vi, vj ∈ V }
represents the set of pairwise neighborhood relationships
among the nodes. More specifically, the neighborhood rela-
tionship between vi and vj exists when there is a possibility
to form a quantum channel between them, in other words,
qubits in vi and vj can establish quantum entanglements.
To elaborate, there exists ei,j ∈ E only when vi and vj
are connected through a classical network channel, and the
physical distance between them is within the threshold to
establish qubit entanglements (i.e. 143 km).

1A long-distance entanglement decays exponentially with the physical
distance between the two entangled nodes [20]. Quantum teleportation over
a distance of 143 km has been deployed but still in the early stage.

We define C = {ci; ci ∈ N}Ni=1 as the set of qubit
capacities in which ci is the maximum number of qubits
that node vi can generate to form entanglements with its
neighbors. If there exists ei,j ∈ E, vi and vj can establish at
most min(ci, cj) entangled qubit pairs between them. In this
paper, we assume that any nodes in the network can act as the
source, destination, or repeater of a flow of traffic, therefore,
we set the lower bound min({ci; ∀ ci ∈ C}) = 2 so that
any vi can connect to at least two neighbors and perform
entanglement swapping.

We then define a quantum route in the network be-
tween the source vs and the destination vd as a path p =
{ep1,p2

, ep2,p3
, ..., epk−1,pk

}with ep1,p2
, ep2,p3

, ..., epk−1,pk
∈

E; vp1
= vs; vpk

= vd and pi ̸= pj for any pair of
(i, j) in the path; any nodes beside vs and vd are repeaters in
the path. p is further constrained on the number of qubits
available in the repeaters. Mathematically, let qi be the
number of qubits in a repeater vi that has already been
utilized in other quantum channels, the remaining number
of available qubits must be at least two, i.e., ci − qi ≥ 2.
A demand (vs, vd) in the set of network demands D is
successfully resolved by determining a quantum routing path
between them that satisfies both mentioned constrains.

C. PROBLEM FORMULATION
In this work, we advocate a novel routing scheme − dubbed
Quantum Routing Scheme (QRS ) − that implements a deep
reinforcement learning model to circumvent the computabil-
ity limitations of heuristic conventional qubit assignment-
based schemes, while concurrently meeting the quality-of-
service requirements (e.g., connectivity) of networks. Given
a quantum network G = (V,E) with a set of qubit capacities
and a set of network demands D, our goal is to maximize
the entanglement routing rate achieved by a routing scheme
QRS as follows:

QRS = max
(vs,vd)∈D

∑
P(vs,vd)1{E(p,q)=1 ∀ (p,q)∈P(vs,vd)}

(1)
Where P(vs,vd) denotes the entanglement path connecting

the source-destination pair (vs, vd). Here, 1{.} is the indicator
function; it is equal to one if the condition in the subscript is
true, otherwise zero. E(p,q) denotes the entanglement status
between the two quantum nodes p and q. We further con-
straint the size ofD to be a fixed integer k. More specifically,
QRS performs routing on a window of k source-destination
pair at a time. It should be noted that this constraint does not
reduce the generality of the research problem, since a request
set can be split or padded to meet the size requirement.

As the number of paths for a set D grows exponentially
with |V | and |D|, determining the optimal solution for all
requests simultaneously could become highly challenging.
Furthermore, the network capacity may not be able to ac-
commodate all requests in D. Consequently, we break the
problem into two tasks which are 1) to schedule demands
to accommodate and 2) to determine the path for each one.
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FIGURE 2: An example on quantum network and routing
solutions for two requests (v1, v7) and (v3, v6)

These two components make up the output of our QRS
scheme. We shows an illustrative example on how the two
components affect the optimality of a solution in Fig. 2. Fig.
2(a) shows the original network topology with eight nodes
and their maximum qubit capacities. At the same time, the
network needs to accommodate two demands, (v1, v7) and
(v3, v6). Fig. 2(b) demonstrates the case in which (v1, v7)
is routed first using a least-hop strategy to select paths. In
this case, (v1, v7) is assigned with the path {e1,2, e2,4, e2,7}.
This solution is not optimal as v4 and v7 do not have enough
qubits left to accommodate the demand (v3, v6). On the other
hand, Fig. 2(c) show the optimal case in which (v3, v6) is re-
solved first. Using the same least-hop strategy, both demands
are sustained with two paths {e1,2, e2,3, e3,5, e5,8, e8,7} and
{e3,4, e4,6}.

III. DEEP REINFORCEMENT LEARNING
Reinforcement learning [21] is a branch of deep learning in
which an agent is trained to interact with an environment by
observing its current states then taking actions. The training
process is performed on a trial-and-error basis in which each
action the agent takes in an environment state results in a
return value, and the agent tries different actions based on
the current states to eventually learn a mapping between
states and actions that yields the highest returns. A Markov
Decision Process (MDP) [21] is among the models used to
represent a reinforcement learning problem. Mathematically,
a MDP consists of the following components:

• A state space Ss that consists of all environment states
• An action space As that consists of all possible actions
• A reward function R(s(t), a(t)) with s(t) ∈ Ss, a(t) ∈
As, that maps a state-action combination (s(t), a(t)) at
step t to a scalar return value R(t)

• A state transition function T that yields the probability

of the agent taking an action a(t) at a state s(t) to
move to the next state s(t+1): T (s(t), a(t), s(t+1)) =
p(s(t+1)|s(t), a(t))

The reward function at a step t is computed as the sum of
discounted future rewards:

R(s(t), a(t)) =
T∑
i=t

λi−tR(s(i), a(i)), (2)

where λ is a discount factor. A common algorithm to train a
reinforcement learning agent is Q-Learning [22] in which a
set of Q-values is utilized for the agent to select actions to
take. The Q-values represents the return if the agent takes an
action in a particular state, and an action is selected if it has
the highest Q-value compared to others. Mathematically,

Q(s(t), a(t)) = R(s(t), a(t))+

λ
∑
s

T (s(t), a(t), s(t+1)) max
a(t+1)

Q(s(t+1), a(t+1)) (3)

In terms of training, at the beginning, the agent randomizes a
table of Q-values for all state/action combinations. After each
action, the agent updates the corresponding Q-value using the
following rule:

Q(s(t), a(t))← (1− α)Q(s(t), a(t))+

α(R(s(t), a(t)) + λ max
a(t+1)

Q(s(t+1), a(t+1))−Q(s(t), a(t)))

(4)

Recently, deep learning emerges with multiple break-
throughs in numerous areas [23]. The advantages of deep
learning are threefold: 1) the deep neural network is able to
learn to solve a problem with minimal guidance from the
user; 2) the architecture of deep neural network allows for
powerful representation capabilities in that the network can
represent very complicated function; and 3) different designs
of deep neural networks for different types of data can be
aggregated in one model which further increases represen-
tation powers. Reinforcement learning also gets numerous
benefits from the advancement of deep learning. Various
deep reinforcement schemes have been proposed with dif-
ferent applications with great successes [24]. Particularly
in resource management in which the goal is to optimize
the usages of available resources over a set of tasks, deep
reinforcement learning (DRL) has been showed to solve chal-
lenges of heuristic methods including 1) the impossibility
to model a complex system accurately, 2) noisy inputs and
diverse operating conditions may affect the decision making
of algorithms in practice, and 3) certain performance metrics
are difficult to optimized [25]. In resource management, DRL
is widely applied in domain such as communication and
networking [26], Internet of Things [27], 5G networks [28],
for tasks such as scheduling, routing, rate control, security,
quality of services, etc. In quantum networking, the only
other work that utilizes DRL [17] focuses on optimizing
entanglement times on quantum channels across a path to
ensure an entanglement state between the two end nodes can
be established before any channels decay. In this paper, we
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instead aim to optimize the allocation of qubits in a network
to maximize the number of accommodated communication
requests.

In general, deep reinforcement learning uses a deep neural
network to represent the mapping between input states to ac-
tions and rewards. Let the function of a deep neural network
be D(·) then

(a(t), R(t)) = D(s(t)) (5)

In this paper, we utilize two deep reinforcement learning
approaches. The first uses a deep neural network to represent
the reward function R(·). In this case, we train the reward
network using an explicit reward function that is designed
towards the optimization goal in Eq. (1). In the second case,
we utilize a Deep Q Network (DQN) [18]. In DQN, the neural
network is trained to predict the Q value of the action. Two
version of the deep neural networks are maintained during
training, a predict network and a target network. The predict
network takes the input state at t, generates Q(t) values for
the selected actions. The input state is then updated to t + 1
and fed to the target network to generates the Q(t+1) values
at t + 1. The network is trained so that Q(t) converges to
Q(t+1). The predict network and target network share the
same weights at the beginning. However, the predict network
is updated constantly during training, whereas the target
network is updated with the weights from the predict network
once every few hundred epochs.

IV. DEEP QUANTUM ROUTING AGENT
In this section, we describe our deep reinforcement rout-
ing scheme to which henceforth referred as Deep Quantum
Routing Agent (DQRA). DQRA utilizes a novel deep neural
network to schedule requests and a shortest path algorithm
for routing them. Depending on the training algorithm, the
deep neural networks is either a deep reward network (DRN)
or a deep Q network (DQN). Since the network architectures
are identical in both cases, for simplicity, we call the neural
network a schedule neural network (SNN) throughout this
section. Given a quantum network G(V,E) with a qubit
capacity set C and a set of routing requests D, we define the
accommodation of all requests inD an episode, denoted as E .
E consists of a chain of consecutive action a(t) that DQRA
makes at each step t to resolve one request in D.

Mathematically, at step t in E , the input of DQRA includes
the current network topology G(t)(V,E(t)), the current qubit
capacity C(t), and the current request set D(t). DQRA then
makes an action a(t) which represents the selection of source-
destination pair to accommodate at step t. After that, a
shortest path algorithm is utilized to determine the path for
the selected request. DQRA decides the actions in an episode
using a reward function that is designed to guide the model to
solutions that fulfills more requests in an episode. An episode
ends when all requests in D are resolved, or when no current
requests can be accommodated. We demonstrate the input
and output of DQRA in Fig. 3.

In the following subsections, we discuss in details our

𝑣1 𝑣3
𝑣5 𝑣6
𝑣2 𝑣4

𝑐1
…
𝑐8

DQRA

[𝑣2 𝑣4] 𝑣2 𝑣4

𝐷 𝑡 𝐺 𝑡 𝐶 𝑡

𝑎 𝑡

FIGURE 3: An example of input and output of DQRA at each
step t

deep reinforcement routing agent for quantum networks in
terms of input states, output actions, reward function, model
architecture, and training.

A. INPUT STATE
At step t in an episode E , an input state to DQRA consists
of 1) the connectivity in the network G(t)(V,E(t)), 2) the
qubit capacity of each node C(t), and 3) the request set D(t).
All three inputs are fed to the SNN component of DQRA
to decide which request to resolve, then G(t)(V,E(t)) and
C(t) are utilized by the shortest path component to route the
selected request. First, we discuss the data representation for
each input type.

In terms of network topology, G(t) is generated as a subset
of G in which edges that connect to nodes with current qubit
capacity of 0 are removed:

G(t) = (V,E(t));

E(t) = {ei,j ; ei,j ∈ E;C
(t)
i > 0;C

(t)
j > 0}

(6)

Then, we use a binary row vector of which elements
correspond to edges that originally exist in G. Let the input
vector that represents G(t) be A(t), and A(t)

k be the element
that corresponds to edge ei,j ∈ G, then

A(t)
k =

{
1 ei,j ∈ G(t)

0 otherwise
(7)

At each step t in an episode, the current request set D(t)

is another input to DQRA. We aim for the deep network to
analyze all pending requests before making decision with this
design of inputs. In terms of representation, each node in a
request is modeled as binary vector v = [{vi; i = 1...|V |}] in
which

vi =

{
1 if current node is i
0 otherwise

(8)

If a request is already resolved prior to step t, its source
and destination are replaced with 0-vectors. Overall, each
source-destination pair makes up one row in D(t) which in
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turns become a binary matrix of size k × 2|V |.

D(t) =


vs1 vd1

vs2 vd2

. . . . . .
vs|D| vd|D|

 (9)

Finally, the qubit capacity at step t is modeled as a row
vector C(t) = [{c(t)i ; ci ∈ C}]. All three components make
up the state X(t)that DRN observes from the environment at
step t:

X(t) = {A(t) D(t) C(t)} (10)

Overall, the algorithm takes X(t) as input and outputs an
action that is described in the next subsection.

B. OUTPUT ACTION
In short, DQRA outputs actions that represent the routing
schedule for requests in D and their paths. More specifically,
at each step t in an episode, DQRA selects a single request
in the set of pending requests D(t) then assigns a path
connecting the source and destination nodes. In general, a
deep neural network can be designed to output paths in a
graph, for example, as a binary vector of which elements
represent whether an edge is presented in the path or not.
However, the number of edges in a graph may be exceedingly
high, which, when coupled with the already high dimensional
input, may lead to a highly complex neural network that is
not ideal for real time settings. Accordingly, we utilize a
hybrid approach, that is to use the deep network SNN to
output the schedule of routing requests, and a shortest path
algorithm with customized metric to determine the path for
each request. Both components, however, contribute to the
computation of rewards for the actions, and therefore both
impact how the deep network is trained.

For scheduling, SNN outputs a reward vector (or a
Q vector the case of DQN) r(t) of size |D|: r(t) =

{r(t)0 , r
(t)
1 , . . . , r

(t)
|D|} in which r

(t)
i represents the reward at

the end of step t if DQNA routes request i. The request to be
selected is the one with the highest reward

a(t) = argmaxi(r
(t)
i ) (11)

With a(t) selected, to determine the path between the source
and destination, we utilize a shortest path approach in which
the metric expresses the qubit capacity of the nodes. More
specifically, a shortest path algorithm is applied in which the
weight w(t)

i,j of an edge ei,j at step t in the episode is as

w
(t)
i,j =

1

min (c
(t)
i , c

(t)
j )

(12)

where c
(t)
i is the current capacity of node vi. It can be

seen that w(t)
i,j is high when either nodes connected to ei,j

has low capacity and low otherwise. Therefore, a shortest
path of which total metric is low is more likely to traverse
nodes with high qubit capacities and less likely to exhaust
qubits in any nodes. Overall, this path selection approach

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9
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𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

(b) G(t+1)

FIGURE 4: An example on updating state G(t) to G(t+1)

after selecting and routing request (v1, v9)

focuses on preserving qubit capacities of nodes in each step,
which in turn extends the number of requests that can be
accommodated in an episode. To prevent a node with less
than two qubits being selected as a repeater, we apply the
shortest path algorithm on a node-induced sub-graph G(t) of
G(t) in which a node vi is retained only if it has c(t)i ≥ 2 or
vi is either the source or destination in the current request.

Since the size of the output reward vector is constant at |D|,
it is possible that a node vi is repeatedly selected throughout
an episode. To address this issue, we maintain a list Lr of
requests that are already resolved. If the the highest reward
belongs to a request that is already in Lr, the network moves
on to the next highest reward request. In short, the pending
request with the highest reward value is selected in each step.

At the end of each action, the input states are updated for
the next step t+1. First, the row that associates to the request
resolved by a(t) inD(t) is replaced with 0’s to obtainD(t+1).
Then, C(t) is updated with new qubit capacities. Particularly,
given a routing path P(t) = {es(t),p1

, ep1,p2 , . . . , epk,d(t)}
assigned to the selected request (vs(t) , vd(t)), each node vi
capacity is updated as

c
(t+1)
i ←


c
(t)
i − 1 if i ∈ {s(t), d(t)}
c
(t)
i − 2 if i ∈ {p1, p2, ..., pk}
c
(t)
i otherwise

(13)

Finally, G(t+1) is acquired by removing all edges that asso-
ciate with any node vi that has c(t+1)

i = 0 and updating the
weights of the edges using C(t+1) and Eq. (12). We illustrate
the updating from input state G(t) to G(t+1) in Fig. 4. At
G(t), the request to accommodate is (v1, v9); the routing path
is {e1,2, e2,5, e5,8, e8,9}. After assigning the path, G(t+1)

has the same nodes with new capacities, and v5 and v8 are
disconnected from the rest of the network since they do not
have any available qubits left.

C. REWARD FUNCTION
As our research problem is to maximize the number of
accommodated routing requests in a window, we specifically
design a reward function that addresses this target. In details,
we directly associate the rewards that the model receives with
the current and future numbers of resolved requests in an

6 VOLUME 4, 2016



Le et al.: DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks

episode. Mathematically, let the reward at step t be R(t), then

R(t) = n(t)
r α+ (|D| − n(t)

r )βf + λR(t+1)(1− f) (14)

where n
(t)
r is the number of requests that are resolved after

step t, f is a binary indicator that is 1 when t is the ending
step of and episode and 0 otherwise, α > 0 is the reward
term, β < 0 is the penalty term, and λ ∈ [0, 1] is a discount
factor. Both α, β, and λ are hyper-parameters to be selected
during the training phase. Since the computation of R(t)

requires future reward values, we let DQRA finish an episode
to obtain the final reward value, then gradually trace back to
calculate the rewards of prior steps. We select α, β, and λ
so that the reward for one action is significantly negative if
it leads to a failed episode (i.e., ending without being able to
solve all requests) in the next few steps. On the other hand,
actions that lead to a successful episode should be rewarded
with positive value. Overall, the reward function design en-
courages the agent to find schedules that accommodate more
requests, and penalizes schedules that end too early - the less
requests solved, the heavier the penalties.

D. DEEP REWARD NETWORK ARCHITECTURE
In this subsection, we describe the architecture of the deep
reward network, DRN, in DQRA. As described in subsection
§IV-A, the input to the deep reward network at step t in an
episode consists of three components 1) D(t) that represents
the set of pending requests, 2) A(t) that encodes the network
graph state, and 3) C(t) that expresses the qubit capaci-
ties of the nodes. We make two observations on the input
states. First, all components may have high dimensionality
when the graph size increases. Second, D(t) is very sparse,
and A(t) may also become relatively sparse after the first
few steps. Overall, feeding all components to a same layer
is not ideal. Consequently, we first feed each component
into a different embedding network. In short, an embedding
network consists of multiple fully-connected layers which
transform an input vector into embedding vectors, usually
of lower dimensionality. Let the mappings represented by
the embedding networks for D(t), A(t), and C(t) be MD(·),
MA(·), and MC(·), respectively, then

MD(D(t)) = UD =


us1,d1

us2,d2

. . .
us|D|,d|D|


MA(A(t)) = uA(t)

MC(C(t)) = uC(t)

(15)

It can be seen that the output of MD(·) is a matrix of |D|
vectors whereas that of MA(·) and MC(·) are two single row
vectors. The reason for this design is that we want the reward
network to further learn the interrelationships among all the
pending requests using a Self-Attention layer [29], [30]. In
short, an attention layer takes input as three matrix Q, K,

𝑣𝑠1 𝑣𝑑1
… …
𝑣𝑠 𝒟 𝑣𝑑 𝒟

𝒟 𝑡

𝑎1
𝑡

… 𝑎 𝒜
𝑡

𝒜 𝑡

𝑐1
𝑡

… 𝑐 𝒞
𝑡

𝒞 𝑡

Embedding Embedding Embedding

Self-Attention Repeat Vector Repeat Vector

Concatenation Fully-
Connected 𝑟1

𝑡
… 𝑟𝒟

𝑡

FIGURE 5: DQRA deep neural network architecture

and V , and output a "context" matrix S as follows

S = δ(
QKT√
|K|

)V (16)

where δ is the SoftMax function, and KT is the transposed
matrix of K. In S , each row represents the "context score" of
the corresponding row in Q with respect to all rows in K and
V . In a self-attention layer, Q, K, and V are identical, and
in our context, they are equal to UD. Overall, our purpose
of using a self-attention layer is to obtain a score matrix that
represents the "context" of each pending request with respect
to the rest. Let the context matrix SD and the mapping by the
self-attention layer be S(·), then

SD = S(UD) =


σs1,d1

σs2,d2

. . .
σs|D|,d|D|

 (17)

We then repeat uA(t) and uC(t) |D| times, then concatenate
them with the rows in UD and SD to form the complete
embedding for each request:

U =


us1,d1

σs1,d1
uA(t) uC(t)

us2,d2 σs2,d2 uA(t) uC(t)

. . .
us|D|,d|D| σs|D|,d|D| uA(t) uC(t)

 (18)

Finally, U is input into a block of fully-connected layers that
output a vector of |D| values r(t)1 , r

(t)
2 , . . . , r

(t)
|D| that represent

the reward if DQRA select each request. The architecture of
DQRA’s deep neural network is shown in Fig. 5.

E. TRAINING ALGORITHM
We utilize two algorithms to train DQRA deep neural net-
work, specifically, as a supervised deep reward network
(DRN), and as a deep Q network (DQN). In the supervised
case, DRN is trained as a supervised model to predict the true
reward of taking an action. We generate the training data as
follows. At the beginning of an episode, we randomize the
request set D. For each step in an episode, the three input
components are fed to the model to generate actions. The
inputs are then updated for the next step based on the action
DQRA makes using the process that is described in Section
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§IV-B. This action-update process repeats until the episode
ends by either fulfilling all requests or by DQRA not being
able to accommodate any more pending requests. At the end
of an episode, the reward values for each step are computed
backward using equation (14). Overall, for an episode Ei, the
training data (in the format [features] ; [label]) obtained is as

Ei =


A(0) D(0) C(0)
A(1) D(1) C(1)
. . . . . . . . .
A(T ) D(T ) C(T )

 ;


R(0)

R(1)

. . .
R(T )

 (19)

with T being the number of steps in Ei. Following the
Experience Replay [31] method, data from each episode are
stored and resampled for future training iterations. In terms of
training objective, we utilize Mean Squared Error function.
However, it can be seen that, at each step t, the output of the
reward network is a vector of size |D| while the target R(t) is
a scalar. This is because the model only knows the reward of
actions that it has taken. To address this problem, we utilize
a mask vector m(t) of size |D| in which m

(t)
i = 1 if request i

is selected in a(t), and 0 otherwise. The loss for one episode
Ei is computed as

Li =
∑

t∈episode

(r(t) ∗m(t) −R(t)m(t))2 (20)

where ∗ represents an element-wise multiplication, i.e., if x
and y are two vectors of size n, x∗y = [x1y1 . . . xnyn].
By using the mask vector, we prevent rewards from unse-
lected requests to participate in the loss function. Finally, the
overall loss is averaged across episodes in a training batch of
size nb

L =
1

nb

∑
i∈batch

Li (21)

L can be used to train the reward network with any neural
network training algorithms such as Stochastic Gradient De-
scent (SGD) [32] or ADAM [33].

In the DQN training scheme, the output of DRN is consid-
ered the Q values of each action, and the loss of one episode
Ei is as

Li =
∑

t∈episode

(Q
(t)
P ∗m

(t) −Q
′(t)
P ∗m(t))2 (22)

where Q
(t)
P is the output of the predict network at step t, and

Q
′(t)
P is the target Q value at step t which is computed as

follows

Q
′(t)
P = (1− lr) ∗Q(t)

P + lr ∗ (Q(t+1)
T + λR(t)) (23)

where lr is a learning rate, Q(t+1)
T is the Q values output by

the target network for t+1, λ and R(t) are the discount factor
and reward function at t as described in Eq. (14). For DQN,
we still utilize the mask vector m(t) to remove rewards of
unselected actions from the loss function. The overall loss for
one training batch is also calculated by Eq. (21). The predict
network can be trained using regular algorithms like SGD
or ADAM; the target network is updated with the predict

network’s weights once every few hundred of epochs. During
decision making phases, only the predict network is utilized.

V. EXPERIMENT STUDY
All experiments are implemented in Python 3.6. We also
want to acknowledge the use of the Python packages Numpy
[34], Matplotlib [35], NetworkX [36], and Tensorflow [37].
All experiments are performed on a workstation with Intel(R)
Core(TM) i9-9940X CPU, 128GB of RAM, and four Nvidia
Quadro P6000 graphic cards.

In this experiment study, we focus on grid networks of
size nG × nG nodes, and use a routing window size of nG

requests, with nG ∈ {5, 6, 7, 8, 9, 10}. We test four cases
with different nodes’ qubit capacities: 1) ci = 2 ∀ i; 2)
ci ∈ [2, 4] ∀ i; 3) ci ∈ [3, 4] ∀ i; and 4) ci = 4 ∀ i. The
requests in each window are completely randomized in terms
of space, i.e., sources and destinations. Furthermore, in the
current stage of this research, we are not considering the time
component of entanglement. In other words, our assumption
is that all entanglements are maintained throughout their
routing windows. The test cases represent networks with
increasingly more limited qubit capacity. In all cases, a node
can act as repeater twice within one window only if it has
the maximum number of qubits of 4 at the beginning of an
episode. The simulation with ci = 2 ∀ i represents the
extreme case in which each node can act as a repeater for
exactly one path. Furthermore, in this case, if a node is the
source or destination of a request, it cannot be a repeater
anymore. In all cases, each node can be selected as the
source or destination of requests within a window no more
than once. Finally, in all experiments, it is possible that the
network does not have enough resources to accommodate all
requests in a window, therefore routing solutions at 100%
request-accommodation rates are not to be always expected.

In terms of modeling, we utilize the same architectures
(i.e., equal numbers of layers and neurons) of deep networks
in both cases for both the DQRA using supervised reward
network (denoted as DQRA-DRN) and DQRA using the
deep Q network (DQRA-DQN) to ensure fair comparisons.
To simplify the hyper-parameter space, we set the number of
layers in the three embedding components to be the same;
each layer has an equal number of neurons to its input
dimensionality and focus on fine-tuning the number of layers
for each component (2, 3, and 4). After fine-tuning, the
selected deep network architectures are as in Tab. 1. The
architecture of each component is denoted as (l1, l2, . . . ) in
which l1 is the number of neurons in the first layer, l2 the
second layer, and so on. In short, the three embedding blocks
have two layers, and the decision making block (that outputs
returns for actions) has three layers of 6|D| neurons. The
hyper-parameters α, β, and λ in Eq. (14) are set at 0.2, −1,
and 0.9, respectively. The learning rate lr for training DQRA-
DQN as in Eq. (14) is 0.1. Finally, the mini-batch size in all
experiments, nb in Eq. (21), is 512.

We implement two baseline routing strategies to compare
with DQRA. The first (Random) performs random selection
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TABLE 1: Schedule neural network architecture by nG

nG MD MA MC F. Connected No. Para.
5 (50,50) (80,80) (25,25) (150,150,150) 95,711
6 (72,72) (120,120) (36,36) (216,216,216) 201,193
7 (98,98) (168,168) (49,49) (294,294,294) 376,559
8 (128,128) (224,224) (64,64) (384,384,384) 647,489
9 (162,162) (288,288) (81,81) (486,486,486) 1,043,695
10 (200,200) (360,360) (100,100) (600,600,600) 1,598,921

on requests, then assigning path to the selected request us-
ing the shortest path algorithm. The second (Shortest Path)
strategy selects requests based on a shortest-first strategy.
Specifically, in each step of an episode, the shortest paths for
each pending requests are first determined (independently to
each other), then the one with minimum value is chosen to
accommodate.

We use the average number of successfully solved requests
across 1000 windows as the evaluation metric. The five-
run averaged experiment results are shown in Fig. 6. In
all experiments, the deep networks are trained for 10, 000
epochs. As can be seen from Fig. 6, the two versions of
DQRA yield similar performances in all tests, both of which
are significantly higher than the two naive baselines in all
test cases. In Fig. 6(b) and 6(c) where each node has ci
randomized, DQRA models maintain a successful routing
rates of over 80% in all network sizes, with DQRA-DQN
being slightly better than DQRA-DRN. In the two extreme
cases where each node has exactly four and two qubits
(Fig. 6(a) and (d)), the performances of DQRA models are
almost identical. In networks with ci = 4 ∀ i, the two
achieve almost 100% resolving rates, whereas in networks
with ci = 2 ∀ i, they achieve the rates from about 70% at
nG = 5 to approximately 59% at nG = 10.

Next, we analyze the performances of the two DQRA mod-
els in high scale settings. In this experiment, the networks
are of size nG × nG nodes with nG ∈ {10, 15, 20, 25}
and increasing window sizes |D| ∈ {nG, nG + 5, nG +
10, nG + 15, nG + 20}. The nodes in all experiments have a
fixed capacity of four qubits. We no longer consider Random
model and Shortest Path model as they have been shown
to be inferior previously. The result of this experiment is
shown in Fig. 7. The evaluation metric that is used is the rate
of fulfilled requests across 5,000 windows. All models are
trained for 10,000 epochs. It can be seen that in all network
sizes, the two DQRA models performs almost identically
with DQN always performing slightly better. Furthermore,
as the network size increases, the solved request rates of
the model drop more slowly. All models’ solving rates start
around 95% at |D| = nG, however, at |D| = nG+20, the two
models solve less around 65% requests in 10× 10 networks,
70% in 15 × 15 networks, 80% in 20 × 20 networks, and
around 85% in 25×25 networks. This result is to be expected,
since larger network sizes yield more alternative routes and
therefore the network can accommodates more requests.
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(b) ci ∈ {3, 4}

5 6 7 8 9 10
nG

2

3

4

5

6

7

8

9

10

Av
er
ag
e 
R
eq
ue
st
 S
ol
ve
d

DQRA-DRN
DQRA-DQN
Random
Shortest-Path

(c) ci ∈ {2, 4}
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FIGURE 6: Models’ performance on routing nG requests in
grid networks of size nG × nG nodes of qubit capacity ci
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FIGURE 7: DQRA models’ performances in high scale (i.e.
large numbers of nodes and requests) settings

We further investigate the learning capabilities of the deep
models. Figure 8 illustrates the rewards value of DRN and
DQN throughout 10,000 training epochs in a network of
10× 10 nodes with a window of 10 requests. Reward values
are computed after every 100 epochs by averaging reward
from 1,000 requests. Since the requests are randomized,
we observe the fluctuations as can bee seen in the figures.
Nevertheless, we see that training rewards in both models
effectively increase during around the first 8,000 epochs.
After that, DQN seems to stop learning while DRN continues
to learn albeit considerably more slowly.
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FIGURE 8: Training reward of DRN and DQN in a 10 × 10
network with window of 10 in 10,000 epochs

Finally, we examine the training time and routing time of
DQRA models. Since the deep architectures used in both
versions of DQRA are identical, and DQRA-DQN only uses
the predict network when making decision, the two DQRA
models should have equal routing time performances. Their
training times, however, vary due to having different training
algorithms. In this experiment, we simulate three cases:

1) Constant window size of 10, network sizes nG × nG

with nG ∈ {10, 15, 20, 25, 30, 35}. This effectively
means the numbers of nodes in the network being
{100, 225, 400, 625, 900, 1225}, respectively.

2) Constant network size of 10 × 10 nodes, window sizes
increase with |D| ∈ {10, 15, 20, 25, 30, 35}.

3) Network sizes of nG × nG, and window size of nG

with nG ∈ {10, 15, 20, 25, 30, 35}. In other words,
both network sizes and window sizes increase in this
experiment.

To ensure an equal number of routing between the two
models, we set the qubit capacity of all nodes to a very
high number so all requests of the windows are always
accommodated. In all cases, training times are measured for
1,000 training epochs, and routing times are measured for
1,000 windows. As can be seen in Fig. 9(a)(c)(d), training
times of DQRA-DQN are slightly lower than DQRA-DRN in
all three experiments. We further observe that, training time
increases as a polynomial function of network size (Fig. 9(a))
and a linear function of window size (Fig. 9(c)). In Fig. 9(e)
where both network size and window size increase, training
times of both models increase more sharply, however, still
with polynomial patterns. On the other hand, within the
observed experimental space, routing times of the models
increase with a linear pattern when network size and window
size increase individually, and turn into polynomial pattern
when both increase simultaneously.

We deem the result of the experiment on time perfor-
mance to be expected. In general, the complexity of neural
networks, which majorly involve matrix multiplications and
summations, is a polynomial function of their number of
parameters. In this case, this number is a quadratic function
of the network size due to the use of the adjacency matrix in
the input; and our designs make the number of parameters
in a network independent on the demand window sizes.
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FIGURE 9: Models’ training times and routing times when
network sizes increases (a)(b), window size increases (c)(d),
and both network and window sizes increase (e)(f)

Furthermore, the shortest path algorithm is utilized exactly
once for any requests in a window. A final note to be em-
phasized is that, while having lower training times, DQRA-
DQN must maintain two deep neural networks (a prediction
network and a target network) during training, and therefore
is more computationally intensive in this case. Therefore, it
could be challenging to train DQRA-DQN for a large scale
network in a system with limited computational resources.
We show the number of parameters in the scheduling neural
network in quantum networks of size nG × nG with nG ∈
{5, 10, 15, 20, 25, 30, 35} in Fig. 10. It can be seen that the
schedule neural network have to maintain approximately 250
million parameters when the quantum network size grows to
1225 nodes.

VI. CONCLUSION
Routing in quantum networks, one of the key problems of
the next-generation network system, and machine learning,
one of today leading research areas, have not seen much
integration currently. With such motivation, this paper aims
to bridge that gap with a new machine-learning-powered
quantum routing model for quantum networks. In particu-
lar, given a quantum network and a set of communication
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FIGURE 10: Total number of parameters in schedule neural
network in quantum networks of size nG × nG

demands, we have proposed a deep reinforcement routing
scheme (DQRA) to construct routing paths for all demands
in the network.

We have modeled the problem of entanglement routing in
quantum networks as a reinforcement learning problem that
consists of input states, actions, and rewards. At each step in
a routing window, we construct input states of the model by
considering the quantum network’s states, the qubit capac-
ities of nodes, and the set of pending demands; the actions
were defined as the demand selection to accommodate and
the path connecting the two ends of the demand; and the
rewards were designed to guide the model towards schedules
that fulfill the maximum number of demands in a time
window. DQRA consists of two components, an empirically
designed deep neural network that was used to observe the
current input states to decide the routing schedule and routing
paths of the selected demands were then determined by a
qubit-preserved shortest path algorithm. We further utilized
two algorithms to train the deep network of DQRA, as a
deep reward network, and as a deep Q network (DQN). Our
experiment study shows that DQRA is able to maintain a rate
of successfully routed requests at above 80% on average in
a qubit-limited network and approximate 60% in extreme
conditions (i.e. each node in the network can be repeater
exactly once in a window). We also empirically shown that
DQRA is scalable with topology sizes and window sizes.

This work will lay foundation for the research on using
applied machine learning to leverage quantum routing in
quantum networks. For future works, we will examine the
following aspects: 1) incorporating the success rates of qubit
entanglement and qubit swapping into the input states of the
models, 2) exploring other designs of the reward functions
so that our model can route requests on other basis such as
fidelity or entanglement rates, and 3) investigating different
deep architecture designs to maximize the agents’ perfor-
mances while further reducing their complexities.
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