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As was noticed very early on in the field of superconductiv-
ity1–3, time-reversal symmetry Θ is a key ingredient in the 
formation of a superconductor. This follows from the fact 

that within the Bardeen–Cooper–Schrieffer theory and for most 
known superconductors, Cooper pairs form between Kramers 
partners, whose degeneracy is the fundamental reason why so 
many systems become superconductors at sufficiently low tem-
peratures. By the same token, breaking Θ—by applying a magnetic 
field, as a consequence of magnetic impurities, or spontaneously 
at a magnetic instability—suppresses the superconducting state. 
Since the advent of unconventional superconductivity, the possi-
bility that more exotic superconducting order parameters, beyond 
the Bardeen–Cooper–Schrieffer paradigm, can survive and coex-
ist with magnetic order has attracted substantial attention to this 
day. For example, sufficiently strong magnetic fields can give rise 
to the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state4,5 where 
the centre-of-mass momentum of Cooper pairs is non-zero, lead-
ing to a spatially modulated order parameter. Although the exis-
tence of non-uniform, FFLO-like states has been well established by 
bringing a superconductor and a ferromagnet in close vicinity6 and 
the evidence of FFLO states in applied magnetic fields have been 
reported7,8, the microscopic coexistence between superconductivity 
and ferromagnetism remains rare9–15.

Recently, an experimental study16 demonstrated the non-trivial 
interplay of superconducting current and magnetic field, 
which attracted substantial attention17–19. It is shown that the 
magnetic-field-induced broken time-reversal symmetry together 
with the lack of an inversion centre in the system give rise to 
non-reciprocal supercurrents. This exotic phenomenon, often 
referred to as the superconducting diode effect, is manifested in 
an asymmetric current–voltage curve, where the superconducting 
critical current is different along opposite directions of d.c. current 

flow. Up to now, non-reciprocal transport behaviour that is intrinsic 
to the superconductor has only been demonstrated in the presence 
of an external magnetic field16,20–22. The realization of robust super-
conducting non-reciprocity at zero magnetic field would provide 
direct evidence for the microscopic coexistence between supercon-
ductivity and spontaneous time-reversal symmetry breaking.

In this work, we report the experimental observation of the 
zero-field superconducting diode effect in twisted trilayer graphene 
(tTLG). Figure 1a highlights two distinct twist-angle regimes, which 
are marked with different colours. Out of the five samples studied 
in this work (Supplementary Table 3 provides a list of samples), 
the zero-field superconducting diode effect is only observed in the 
small-twist-angle regime around θ = 1.3°, which is well below the 
expected magic angle. We note that an atomic interface between 
tTLG and a thin crystal of tungsten diselenide (WSe2) does not 
change the main phenomenology of our observation. We focus our 
discussion here on the behaviour and tunability of the zero-field 
diode effect in sample A, which has a twist angle of θ = 1.25°, and 
leave the influence of the tTLG/WSe2 interface to a separate discus-
sion elsewhere.

In sample A, a robust superconducting phase emerges in the 
density range of 2 < νtTLG < 4 (Fig. 1b). It occupies a portion of the 
phase space in the νtTLG–D map (Fig. 1c, dark blue). The temperature 
dependence of longitudinal resistance Rxx shows a sharp supercon-
ducting transition at around T = 1 K (Fig. 1d). Notably, critical tem-
perature Tc is not substantially suppressed compared with previous 
measurements near the magic angle, despite the fact that θ = 1.25° 
is well below the magic angle. Figure 1e plots the current–voltage 
(I–V) characteristics measured at zero magnetic field (B = 0) after 
field training in a positive magnetic field.

We see that the critical current of the superconducting phase, 
defined as the d.c. current bias at the onset of longitudinal  
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resistance, is highly direction dependent. The non-reciprocal com-
ponent of the critical current ΔIc = I+c − I−c , where I+c  and I−c  are 
the critical currents with a positive and negative d.c. bias, respec-
tively, is non-zero—the defining feature of the zero-field super-
conducting diode effect. Since the critical current is much larger 
under a negative d.c. current bias, the superconducting phase acts 
like a reverse diode in the d.c. current range of −I−c < Id.c. < −I+c   
(Fig. 1e, shaded area). Notably, the zero-field superconducting 
diode effect is non-volatile. As the d.c. current bias varies between 
+22 and –22 nA, the sample alternatively switches between the 
superconducting and normal-state behaviour over a time span of 
more than an hour (Fig. 1f).

The presence of either time-reversal (Θ) or two-fold rotation 
(C2z) symmetry implies that ΔIc = 0 (Supplementary Section 1). As 
such, our observation of non-reciprocal behaviour provides unam-
biguous evidence that both C2z and Θ are broken in the supercon-
ducting state. To provide additional evidence for the spontaneous 
breaking of Θ and its coexistence with superconductivity, we next 
demonstrate that the diode effect can be reversed through training  

with an external magnetic field. Figure 2a,b shows that the sign 
of ΔIc correlates with the B-field direction in the presence of 
an out-of-plane magnetic field. As the magnetic field is slowly 
reduced to zero, the superconducting phase maintains the same 
non-reciprocity (Fig. 2c), giving rise to a hysteretic behaviour where 
the sign of ΔIc is determined by the field-training history (Fig. 2d). 
After field training with positive (negative) B, the superconducting 
phase behaves like a reverse (forward) diode in the current range 
of −I−c < Id.c. < −I+c  (I−c < Id.c. < I+c ). The fact that the zero-field 
non-reciprocity can be reversed through field training reveals that 
the underlying time-reversal-symmetry-breaking order can effi-
ciently couple to an out-of-plane magnetic field, which provides 
important constraints on the order parameter23 (Supplementary 
Section 1): for instance, an in-plane spin polarization cannot be effi-
ciently trained with an out-of-plane field; therefore, the underlying 
time-reversal symmetry breaking more probably arises from valley 
polarization or out-of-plane spin-polarization. Irrespective of the 
microscopic origin of the diode effect, it is an emergent property of a 
moiré system, since none of the component materials are magnetic.
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Fig. 1 | Superconductivity and zero-field superconducting diode effect. a, Twist-angle dependence of the superconducting transition temperature. The 
horizontal error bars represent the twist angle uncertainty of each sample. The twist-angle range near the magic angle is marked with the blue-shaded 
area, whereas the small-twist-angle regime is shown in red. The triangle is taken from elsewhere31. b, Longitudinal resistance Rxx as a function of moiré 
filling measured at D = 0, B = 0 and different temperatures. c, Longitudinal resistance Rxx as a function of D and moiré filling νtTLG measured at B = 0 and 
T = 20 mK. d, Rxx as a function of temperature T measured at B = 0, D = 0 and νtTLG = −3.29. e, Differential resistance as a function of d.c. current bias of the 
superconducting phase at B = 0, νtTLG = 2.59 and D = 400 mV nm–1. The measurement is performed after field training with a positive magnetic field. Here 
I+c  and I−c  are the critical currents with a positive and negative d.c. current bias, respectively. f, Zero-field superconducting diode effect is demonstrated 
by switching between the normal and superconducting behaviour as the applied d.c. current alternates between +22 and –22 nA. The measurement is 
performed at D = 240 mV nm–1 and νtTLG = 3.07.
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Figure 2e reveals an extra experimental knob to control the 
non-reciprocity of superconducting transport behaviour without 
having to train the sample using an external magnetic field. After 
field training with a positive external magnetic field, we show 
that the sign of the zero-field superconducting diode effect can 
be reliably and repeatedly switched by changing the charge carrier 
polarity via field-effect doping. This observation suggests that the 
spontaneous time-reversal-symmetry-breaking field underlying 
the diode effect remains robust as the sample is tuned outside the 
superconducting density range. This provides strong indication 
that time-reversal symmetry breaking arises from the underlying 
Fermi surface of the normal phase23 (Extended Data Fig. 1). In addi-
tion, Fig. 2f shows that the superconducting diode effect persists in 
the entire density range of the superconducting phase. After field 
training with a positive external magnetic field, the entire density 
range of the electron-doped (hole-doped) superconducting phase 
behaves like a reverse (forward) diode, and the sample exhibits dis-
sipationless behaviour at Id.c. = −20 nA (Id.c. = +52 nA) but appears 
highly resistive at Id.c. = +20 nA (Id.c. = −52 nA). The uniform 
response across the entire density range is consistent with a diode 
effect intrinsic to the superconducting phase, which is distinct from 
the non-reciprocity arising from a magnetic tunnel junction24 or 
Josephson networks25. As such, we have realized a junction-free 
superconductor film, which operates as a supercurrent diode and 
achieves the one-way transport of electrical charge without power 

consumption. Notably, the density dependence of ΔIc (Fig. 2e) gives 
rise to extreme non-reciprocity near the high-density end of the 
superconducting regime. In this regime, the sample is resistive at 
Id.c. = 0, but exhibits dissipationless transport behaviour when Id.c. is 
non-zero (Fig. 2g). Such extreme non-reciprocity provides further 
confirmation for a robust diode effect that is intrinsic to the super-
conducting phase.

Although the superconducting diode effect can be stabilized by 
training with a non-zero magnetic field, it can also be suppressed 
using a large d.c. current on the order of 200 nA (Fig. 3a,b). The 
influence of the d.c. current probably originates from the dynam-
ics of domain formation under a large current bias (Extended Data 
Fig. 2 and Supplementary Information). Our ability to ‘train’ and 
‘untrain’ the non-reciprocity offers a unique opportunity to examine 
transport behaviours that are directly associated with the supercon-
ducting diode effect. For instance, the ‘trained’ configuration exhib-
its an apparent increase in both longitudinal and Hall resistance 
around the transition temperature Tc, which is defined as the tem-
perature where Rxx in the untrained configuration diminishes. As 
superconductivity is destroyed at higher temperature (T > Tc), the 
influence of training and untraining diminishes (Fig. 3e).

This shows that the underlying time-reversal-symmetry-breaking 
order is only a rather weak perturbation to the band structure and, 
for example, does not induce insulating behaviour or completely 
polarize a flavour degree of three of the system (such as the valley or 

c
f

B
 (

m
T

)

0

10

20
B = 0

–40 –20 0 20 40

3.0
–3.8

 

–20

–10

0

20

30

10

–4–6 –2 0 2 4 6
νtTLG

νtTLG

102

103

104

105
52 nA
–52 nA

100

102

104

20 nA
–20 nA

D = 0
B = 0

a

b

e

0

20

40

60

dV
/d

I (
kΩ

)
dV

/d
I (

kΩ
)

R
xx

 (
Ω

)
R

xx
 (

Ω
)

dV
/d

I (
kΩ

)

dV
/d

I (
kΩ

)

0

20

10

–10

–20

0
0

20

40

60

–B

–20 –10 0 10 20

Id.c. (nA)

Id.c. (nA)

Id.c. (nA) Id.c. (nA)

Ic
– Ic

+

Ic
– Ic

+

B

∆
I c

 (
nA

) 

g

0

100

50

–20 –10 0 10 20

0 mT

25 mT

0 mT

–25 mT 

d

–20 –10 0 10 20

0 60
Rxx (kΩ)
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spin quantum number) at a temperature substantially larger than Tc; 
this is consistent with the fact that superconductivity can coexist with 
it, as required for the zero-field diode effect. At the same time, the 
increase in Rxy leads to an enhanced ratio of Rxy/Rxx compared with 
the normal state at higher temperatures (Fig. 3f). The enhancement 
in the ratio of Rxy/Rxx indicates that time-reversal (Θ) or three-fold 
rotational (C3z) symmetry is broken (Supplementary Section 4). 
Since the enhanced Rxy/Rxx disappears as the non-reciprocity is sup-
pressed in the ‘untrained’ configuration, the reduced symmetry is 
probably directly associated with the superconducting diode effect.

Notably, the superconducting behaviour at a small current bias 
is observed over a larger (smaller) density range in the absence 
(presence) of the non-reciprocal behaviour (Fig. 3c,d). It is worth 
pointing out that the variation in the superconducting density 
range results from the extreme non-reciprocity in the high-density 
regime, where dissipationless transport is only robust with non-zero 
d.c. bias current (Figs. 2g and 3a–d). On the other hand, Extended 
Data Fig. 2b shows that (I+ + I−)/2 remains the same despite the 
onset of the zero-field diode effect, providing a strong indication 
that the robustness of the superconducting phase is not influenced 
by the process of field training.

Given the abundance of orbital ferromagnetism in graphene 
moiré systems, a natural explanation for the zero-field diode effect 
and its associated symmetry breaking is an interaction-induced 
imbalance in the valley occupation of the underlying Fermi surface. 
The spontaneous formation of an imbalance of electrons in the two 

valleys breaks both C2z and Θ, providing the necessary symmetry 
requirement for the emergence of a zero-field superconducting  
diode effect. As such, a valley-imbalanced Fermi surface, in theory, 
can give rise to non-reciprocal superconducting transport behaviour  
in the absence of proximity-induced spin–orbit coupling (SOC). 
However, the presence of (at least Ising) SOC is required for the 
valley order to couple to an external out-of-plane magnetic field 
(Supplementary Table 2)23. In sample A, the SOC could result from 
the proximity effect with the WSe2 crystal, which explains the 
observed field trainability discussed above (Supplementary Section 
5 and Extended Data Fig. 3 provide more details regarding the influ-
ence of the proximity effect).

An imbalance in the valley occupation of the underlying Fermi 
surface has crucial consequences for the superconducting state23. 
Let us denote the degree of valley imbalance by Vz, which can be 
qualitatively thought of as the difference in chemical potentials 
in the two valleys. At Vz = 0, a valley-balanced Fermi surface pre-
serves time-reversal symmetry (Fig. 3g, top blue square). In this 
scenario, the two valleys are related by reversing the sign of the 
crystalline momentum k→−k, making intervalley pairing at zero 
centre-of-mass momentum (q = 0) the most favourable. In the pres-
ence of non-zero valley polarization (Vz ≠ 0), this Kramers degener-
acy is lifted. In general, a valley-imbalanced Fermi surface reduces the 
superconducting transition temperature. But if a superconducting  
phase survives, it is expected to exhibit the zero-field diode effect. 
Notably, there are two critical values in the valley polarization Vz. 
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For a finite range of Vz around zero, the associated Cooper pairs 
exhibit a vanishing centre-of-mass momentum q = 0 as a conse-
quence of C3z. This results in a critical value of valley imbalance Vz1, 
below which the C3z symmetry is preserved (Fig. 3g, blue region) and 
Cooper pairs form with zero centre-of-mass momentum (q = 0). At 
V > Vz1, valley imbalance gives rise to Cooper pairing and non-zero 
centre-of-mass momentum appears (q ≠ 0). This finite-momentum 
pairing state also breaks C3z. Given the extreme non-reciprocity (Fig. 
2g), sample A probably falls inside this regime of valley imbalance, 
at least for certain νtTLG. It is worth pointing out that the resulting 
nematicity also provides a natural explanation for the enhancement 
in Rxy/Rxx in the trained configuration (Supplementary Section 4). 
Given the partial valley imbalance, the observed variation in ΔIc 
offers a direct characterization for the density dependence of Vz in 
the underlying Fermi surface. According to Fig. 2e,g, Vz is maxi-
mized at a large carrier density.

Further increasing the valley imbalance results in a fully 
valley-polarized Fermi surface at Vz = Vz2 (Fig. 3g, red square). A 
sufficiently large valley imbalance also requires Cooper pairs to 
form within the same valley. Such intravalley pairing gives rise 
to extremely large centre-of-mass momentum, of the scale of the 
Brillouin zone of individual graphene layers, rendering the super-
conducting phase highly unstable. This offers a natural explana-
tion for the absence of the zero-field diode effect near the magic 
angle (Extended Data Fig. 4). Owing to the dominating influence 
of flavour polarization near the magic angle, the Fermi surface near 
ν = ±2 is either perfectly valley balanced (Vz = 0) or fully valley 
polarized (Vz = Vz2) (Fig. 3g, red region). As a result, the observed 

superconducting phase near the magic angle is always associated 
with an underlying Fermi surface, which preserves time-reversal 
symmetry, and ΔIc = 0 by symmetry. Combined, the absence of the 
zero-field diode effect near the magic angle suggests that the sup-
pressed influence of flavour polarization and partial imbalance in 
valley occupation are key to stabilize the non-reciprocal supercur-
rents in the small-twist-angle regime26.

Notwithstanding the good agreement between the valley- 
polarization-based mechanism for the diode effect and the 
observed phenomenology, we note that from a purely symmetry 
perspective, it is also possible that the normal state of the super-
conductor is non-magnetic but Θ is spontaneously broken at the 
superconducting transition23,27. Indeed, there is exactly one candi-
date pairing state23 that our system can reach by a single continu-
ous phase transition that has the correct symmetries. Transforming 
under a non-trivial representation of the point group (E of C3z), 
this state is expected to be fragile against impurities in the system 
and hence represents a less natural option than valley polariza-
tion. As it breaks Θ, it can only be stabilized by fluctuations of a 
time-reversal odd collective mode, such as spin fluctuations, and 
not by phonons alone28; as such, future Coulomb screening experi-
ments29,30 should be able to clarify the mechanism underlying the 
diode effect. Given that non-reciprocal superconducting transport 
is observed at B = 0, it is unlikely to be associated with exotic vortex 
dynamics. The microscopic coexistence between superconductiv-
ity and time-reversal symmetry breaking offers the most natural  
explanation for the mechanism underlying this exotic transport 
behaviour. Nevertheless, a definitive identification of such coexistence  
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will require the direct characterization of time-reversal symmetry 
breaking, which is beyond the scope of this work.

In the following, we will investigate the relationship between 
superconductivity and density-wave (DW) instabilities. Moiré 
energy bands are populated by DW phases in the small-twist-angle 
regime26 in a range of νtTLG and D that overlaps with that of super-
conductivity (Fig. 1c). This is demonstrated in Fig. 4a by the den-
sity modulation of 1/4 moiré filling in Rxx as superconductivity is 
suppressed by external magnetic field B. Interestingly, the melting 
temperature of DW approximately coincides with Tc of the super-
conducting phase (Fig. 4b), suggesting that the underlying energy 
scale is comparable between superconductivity and DW order. 
As such, it is important to address the connection between these 
two phenomena. In particular, we have to distinguish between two 
different scenarios: (1) DW order and superconductivity coexist 
microscopically, that is, on decreasing B, Cooper pairs form in the 
minibands reconstructed by the DW order; (2) superconductivity 
and DW order are competing ground states and DW order disap-
pears at the onset of superconductivity (and vice versa). To this end, 
we will compare the density dependence of superconductivity at 
B = 0 and of the DW states at B = 0.4 T. At D = 325 mV nm–1, the Hall 
density measured at B = 0.4 T exhibits a complex density modula-
tion of 1/4 moiré filling, with several divergences in the range of 
3 < νtTLG < 4 (Fig. 4f), which are associated with DW-induced band 
reconstruction26. Regardless of its pairing symmetry, the strength 
of superconductivity, reflected by quantities such as Tc and Ic, is 
generically expected to be sensitive to changes in the density of 
states of the parent Fermi surface. However, the critical temperature 
Tc and critical current Ic of the superconducting phase at B = 0 vary 
smoothly with νtTLG (Fig. 4d,e). The fact that the superconducting 
phase is largely unaffected by DW-induced changes in the density 
of states indicates that DW states at 0.4 T are not the parent state of 
superconductivity. This favours scenario (2) over (1) and supercon-
ductivity and DW are more probably competing orders. In this case, 
the magnetic order responsible for the diode effect, such as the val-
ley polarization discussed above, is an additional instability, distinct 
from the DW order. We note that superconductivity and DW phases 
may coexist at the base temperature of T ≈ 20 mK in certain parts of 
the phase space, which gives rise to extreme anisotropic transport 
behaviour in the superconducting phase (Supplementary Fig. 3).

Last, we comment on the twist-angle dependence of the super-
conducting phase in tTLG (refs. 26,30–32). As shown in a recent exper-
imental work26, the interplay between Coulomb correlation and 
superconductivity in the small-twist-angle regime takes a form dis-
tinct from the magic angle. In the small-twist-angle regime (Fig. 1a, 
red-shaded area), a lack of hierarchy between the correlation-driven 
phases indicates that the influence of flavour polarization is sub-
stantially diminished26. This provides a key ingredient for real-
izing the zero-field diode effect: a partial imbalance in the valley 
occupation of the underlying Fermi surface. Consistently, we found 
zero-field non-reciprocity in the superconducting state in two 
small-twist-angle samples (Extended Data Fig. 5 shows the data 
from sample B). On the other hand, partial valley polarization is 
found to be unfavourable near the magic angle, owing to the domi-
nating influence of flavour polarization. Combined, this provides 
a natural explanation for twist-angle dependence of the zero-field 
diode effect discussed here. Taken together, this establishes the 
small-twist-angle regime in tTLG as a novel paradigm for correlated 
physics, which involves the complex interplay of superconductivity, 
broken time-reversal symmetry, finite-momentum pairing and DW 
instabilities.
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Extended Data Fig. 1 | Weak nonreciprocity in normal state transport in sample B. a, Rxx versus T measured at B = 0 and νtTLG = 2.5 in sample B. Tc is 
around 0.95 K, defined by the onset in Rxx with increasing temperature. b, dV/dI measured with Idc = + 200nA (red dots) and − 200 nA (blue dots) as a 
function of temperature in the temperature range T > Tc. c, Renormalized dV/dI showing the difference between Idc = ± 200 nA as a function of T. The 
difference in dV/dI between Idc = ± 200 nA is around 50Ω, which is consistent with the very weak nonreciprocity at Idc > Ic at low temperature (Extended 
Data Fig. 5b). This nonreciprocity decreases with increasing temperature and completely vanishes at T > 6 K. This observation is consistent with an 
underlying fermi surface with partial valley imbalance, which simultaneously breaks time-reversal and inversion symmetries. The valley imbalance, hence 
time-reversal symmetry breaking, onsets spontaneously at T ≈ 6 K. Even though time-reversal and inversion symmetries are broken in the normal state, 
nonreciprocity is greatly enhanced by the onset of the superconducting phase.
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Extended Data Fig. 2 | The robustness of superconductivity in trained and untrained configurations. a, dV/dI as a function of Idc and νtTLG measured at 
B = 0 and D = − 100 mV/nm for the electron doped superconducting phase. The measurement is performed with the superconducting diode effect after 
field training (left panel), and without the superconducting diode effect after ‘un-training’ with a large DC current (right panel). b, The reciprocal (top 
panel) and non-reciprocal (bottom panel) component of the critical current, (I+c + I−c )/2 and ΔIc, as a function of νtTLG extracted from a. It is worth noting 
that several experimental works have reported interplay between DC current flow and the sign of magnetic order: in orbital ferromagnetic states, a large 
DC current is shown to induce sign-reversal in the magnetic order 33,34. It is hypothesized that the mechanism underlying current-induced switching 
stems from the interaction between different magnetic domains and current flow around the edge of the domain. Our observation that a large DC current 
couples to the underlying time-reversal symmetry is consistent with previous experimental results. However, the sample interior of an orbital ferromagnet 
is insulating and current flows along the edge of the magnetic domain. Whereas the sample interior in the nonreciprocal superconducting phase is highly 
conductive. As such, we anticipate the interplay between DC current and the underlying time-reversal symmetry breaking to be different. Notably, how DC 
current interacts with the magnetic order remains an open question for graphene moiré systems in general 33,34.
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Extended Data Fig. 3 | Optimal doping and critical temperature dependence on displacement field. a,b, Longitudinal resistance Rxx as a function of filling 
fraction νtTLG and temperature. The optimal doping is indicated via dash lines in a, and the temperature dependence at optimal doping is plotted in b.  
c,d, Critical current Ic as a function of filling fraction νtTLG and displacement field D. The optimal doping for each displacement field is plotted in d overlaying 
with the Rxx map. Both the temperature and the dc current dependence suggest the increase in optimal doping as the displacement field increases.
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Extended Data Fig. 4 | The absence of zero-field superconducting diode effect near the magic angle. a, Differential resistance dV/dI as a function of Idc 
measured at B = 0, T = 20 mK and νtTLG = − 2.64 for Sample C. The I-V curve is symmetric with DC bias current. b, Current switching experiment taken at 
the same condition as in a. DC current bias is switched between positive and negative 30 nA (blue), 35 nA (orange) and 40 nA (green). No difference 
in resistance is observed for different current directions, in either superconducting or normal states. c, dV/dI as a function of Idc measured at B = − 10 mT 
(blue trace) and + 10 mT (red trace). d, Current switching experiment taken at the same condition as in c. DC current bias is switched between + − 10 
nA at B = − 10 mT (blue), and + − 14 nA at B = + 10 mT (red). The non-reciprocity in the presence of a symmetry breaking field shows a superconducting 
diode effect. The fact that superconducting diode effect is absent at B = 0 shows that time reversal symmetry is preserved in both the normal and 
superconducting phase in sample C. This is distinctly different compared to the observation in sample A.
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Extended Data Fig. 5 | Zero-field superconducting diode effect in sample B. a, Differential resistance dV/dI as a function of DC current bias Idc measured 
at B = 0, T = 20 mK and νtTLG = 2.5. The blue vertical stripe marks the peak position in the differential resistance, Ic, where the superconducting phase 
transitions into normal state behaviour. Blue and red traces denote measurement with positive and negative DC current bias, respectively. The fact that 
dV/dI measured with different signs of DC current deviate from each other points towards zero-field nonreciprocity in the superconducting transport 
behaviour. Notably, the nonreciprocity diminishes as DC current exceeds the critical current Ic. b, dV/dI measured with alternating DC current bias 
at ± 100nA, ± 42nA, ± 30 nA and ± 25 nA. Nonreciprocity is apparent in the DC current range of Idc < Ic. Above the critical current Ic, nonreciprocity 
is substantially suppressed. This observation suggests that the fermi surface underlying the superconducting phase is partially valley imbalanced. 
In this scenario, time-reversal and inversion symmetries are simultaneously broken in the normal state, and SOC is not required to enable zero-field 
superconducting diode effect. However, the presence of SOC could still enhance the nonreciprocity through the following mechanisms: (i) SOC 
enhances the valley polarization in the partially valley imbalanced fermi surface 34, which gives rise to a more pronounced nonreciprocity in the zero-field 
superconducting transport behaviour; (ii) according to a recent theoretical work23, the presence of the SOC is essential for the trainability of the zero-field 
superconducting diode effect. Without the SOC-induced trainability, the sample is expected to have multiple domains of opposite valley polarization, 
diminishing the observed nonreciprocity. These expectations are consistent with our measurement result, where the zero-field diode effect is much weaker 
in the sample without WSe2. Since two samples do not offer statistical significance to confirm the influence of SOC on the robustness of the zero-field 
diode effect, we will leave a more systematic discussion on the influence of WSe2 to a separate work. It is worth noting that the collection of samples 
studied in our work is sufficient to confirm the main phenomenology, which is the interplay between orbital ferromagnetism, superconductivity, and 
Coulomb correlation.
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