2022 IEEE High Performance Extreme Computing Conference (HPEC) | 978-1-6654-9786-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/HPEC55821.2022.9926306

Optimizing Designs Using Several Types of
Memories on Modern FPGAs

Mehmet Gungor Kai Huang
Dept. of ECE Dept. of ECE
Northeastern University Northeastern University
Boston, MA Boston, MA

0000-0001-5154-1809 0000-0001-9173-9393

Abstract—Modern FPGAs targeting data centers are designed
to accelerate problems with large data. They offer many different
types of memory including on-chip and on-board memories.
A recent addition is High Bandwidth Memory (HBM), whose
advantages have been demonstrated by others. However, there
is little research that looks at how interactions among different
memory types impact application performance. We investigate
how a combination of HBM and on-chip memory (BRAM or
URAM) impact clock rate and overall application latency. In
these designs, the on-chip memory is used as an on-chip cache
for the larger amounts of data stored in HBM. Our experiments
show that as the size of data stored in BRAM or URAM increases,
the achievable clock speed is reduced. This in turn may result
in degraded performance. We examine Garbled Circuits, an
implementation of Secure Function Evaluation (SFE) with high
memory demands and out-of-order data access, and examine
how different choices of BRAM, URAM and HBM usage alters
its performance.

Index Terms—High Bandwidth Memory, FPGA

I. INTRODUCTION

An increasing challenge in modern processor design is de-
livering data to the processing elements. This is challenging in
manycore processors with increasingly sophisticated caching
mechanisms and Graphics Processing Units (GPUs) with hun-
dreds of cores, as well as in FPGA designs. To address this,
processors and accelerators including CPUs, GPUs and FPGAs
are offering High Bandwidth Memory (HBM) which, as its
name implies, provides increased bandwidth to memory by
connecting the memory controller directly through a substrate.
Thus HBM is in package, but not on die. It offers high density
coupled with significantly higher bandwidth than DDR, which
is off-chip.

Modern FPGA architectures offer a variety of different
memory resources. For example, the AMD/Xilinx Alveo
U280 [1], used in this research, has four types of memory
available to the FPGA designer, namely (1) on-chip Block
RAM (BRAM), (2) on-chip Ultra RAM (URAM), (3) HBM
and (4) off-chip DDR memory. Each of these types of memory
has different characteristics, including size, latency, and access
bandwidth. Intel FPGAs have a similar memory architecture.
The Stratix 10, contains 20-kilobit (Kb) M20K blocks and
47.25-Megabit eSRAM blocks as well as HBM. To maximize

This research is funded by NSF SaTC Grant No. 1717213.

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

Stratis Ioannidis Miriam Leeser

Dept. of ECE Dept. of ECE
Northeastern University Northeastern University
Boston, MA Boston, MA

0000-0001-8355-4751 0000-0002-5624-056X

bandwidth, a designer may try to use several or all the
different types of memories to make use of each memory’s
distinct interface and bandwidth. Our research shows that the
different types of memories interact in unexpected ways and
that peak performance for memory-bound applications can
only be achieved by understanding these complex interactions.
A number of papers evaluate HBM memory, its performance
and behavior [2]-[4]. Tools for efficient use of HBM, such as
HBM Connect [5] are currently being developed. This previous
research focuses on HBM performance alone and does not
consider HBM in conjunction with other memory types.

Others have studied different types of FPGA memory on
the Ultrascale+ architecture [6]. However, their study did not
include HBM or UltraRAM, but only looked at Block RAM
vs. DDR. We consider HBM and UltraRAM as well as BRAM.
In contrast to previous work, our research investigates tradeoffs
when using multiple different memories in the same design,
and includes URAM, BRAM, and HBM in the memory types
considered. We specifically target applications with large data
needs, and focus on applications that do not access data in a
streaming manner. These applications are typical of data center
applications.

Many factors impact performance, including memory la-
tency, and the size of memory used, as well as the pattern with
which memory is accessed. For example, with HBM, the user
can set the number of parallel ports. The overall performance
of the design usually correlates with the maximum clock speed
that the design can achieve, which is determined by other
choices and can not be set directly. In our experiments, we
observe that using a large percentage of the available BRAM
or URAM on an FPGA can cause complex routing which
reduces the maximum clock speed, and this can adversely
impact overall application performance. We have also found
that in some cases, a lower clock speed may provide the best
overall performance if it corresponds to a lower latency for
data accesses. These complex interactions make it difficult
for a designer to choose the optimal memory layout for
their application. This research focuses on studying these
interactions with the goal of providing users of FPGAs for
applications that require a large amount of data with advice
on how best to make use of the different options.

The contributions of this research are:

Authorized licensed use limited to: Northeastern University. Downloaded on December 12,2022 at 15:35:16 UTC from IEEE Xplore. Restrictions apply.

1) A study of how different sizes of BRAM and URAM
used in conjunction with HBM change the clock speed
of applications,

2) A study of overall latency for an application with a non-
streaming data access pattern and how results change as
the memory used and size of the data scales, and

3) An analytical approach that predicts the drop in clock
speed for an application based on its memory layout.

The rest of this paper is organized as follows. In Sec. II,

background on the memories in the Xilinx Alveo U280 as well
as related work. In Sec. III, we present the target applications,
including Garbled Circuits. In Sec. IV, the experiments to
analyze different types of memory usage are described along
with results. An analysis of the lessons learned are presented
in Sec. V, followed by conclusions and plans for future work.

II. BACKGROUND

TABLE I
MEMORY FOR ALVEO U280
Memory Capacity | Bandwidth | Ports Rd Latency
Block RAM | 9.072MB | 5.4GB/s 2 per BRAM | 1-2
UltraRAM 34.56MB | 1.35GB/s 2 per block 1-5
HBM 8GB 460GB/s 32 (max) 40-50
DDR 32GB 38 GB/s 2 50-60

A. Memory Types

We target the Xilinx Alveo U280 [1] in this research,
which is particularly designed for data center usage. The
Alveo, based on the Xilinx Ultrascale+ architecture, has four
distinct types of memory: Block RAM (BRAM), UltraRAM
(URAM), HBM and DDR [7]. Information regarding these
different memory types, is shown in Table II, and includes total
capacity, peak bandwidth, maximum ports, and read latency in
clock cycles.

Block RAM (BRAM) is integrated within the FPGA fabric
and thus supports very low latency accesses. Each Block RAM
in the Xilinx UltraScale architecture-based devices stores up
to 36 Kbits of data and can be configured as either two
independent 18 Kb RAMs, or one 36 Kb RAM. The U280
has 2016 Block RAMs which can be configured as true dual
port or simple dual port, where simple dual port mode is less
flexible than true dual port mode.

The Alveo U280 also has 960 UltraRAMs on chip. Ul-
traRAM blocks are 288 Kb, organized as 72 bits x 4K
entries. URAMs are single clock, synchronous memory blocks
arranged in columns in the device. Each UltraRAM has two
ports, and each port can perform either a read or a write
operation per cycle. UltraRAM provides fast access as it is
on chip, however with longer latency compared to BRAM.

HBM is an in package, but off chip memory that supports
high bandwidth. The Alveo U280 has 8GB of HBM with peak
memory bandwidth of 460GB/sec. In theory HBM supports up
to 32 ports; however, the current Vitis tools allow developers to
generate 16 AXI-4 ports for communicating with HBM. Peak
bandwidth is achieved when all the ports are reading data at

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

the same time from different banks in burst mode. If we let 8
or 16 ports issue 25 read operations to the same memory bank
simultaneously and the ports do not operate in burst mode, the
latency for each port is observed to be 55-60 clock cycles. The
address stride we set for the experiments are 0, 64, 1K and
4K. For address strides of 0, 64 and 1K, the read latency falls
in this range. However, for a stride of 4K, the performance
degrades. If we use 8 ports, the average latency reaches 68
to 70 cycles. For 16 ports, the number can be over 80. Since
fetches to the same bank are serialized, the overall bandwidth
is low, and the resulting performance is no better than using
DDR. Hence, the layout of memory needs to be considered
to maximize the amount of memory that can be fetched in a
short amount of time from HBM.

DDR is off chip memory. The Alveo has 32 GB of DDR
memory with peak bandwidth of 38GB/sec. DDR is the largest
memory, but provides an order of magnitude less bandwidth
than HBM. Note that for both DDR and HBM, peak memory
bandwidth depends on accessing memory locations in burst
mode and on having different ports access different memory
banks. We do not consider the use of DDR in this paper.

B. Garbled Circuits

Our research accelerates Secure Function Evaluation (SFE),
specifically Garbled Circuits (GC), using FPGAs. In this
model, there are two or more users with data which they wish
to keep private, and a function to be evaluated over that data.
All parties know the function being evaluated and learn the
outcome of the evaluation, but users do not reveal their data.
The threat model we follow is “honest but curious” where an
adversary follows the protocol as specified, but tries to learn
as much as possible.

Garbled circuits were initially introduced by Yao [8] for
two users and has been extended to multiple users. The
implementation of GC relies on cryptographic primitives. In
the variant we study here (adapted from [9], [10]), Yao’s
protocol runs between (a) a set of private input owners, (b) an
Evaluator, who wishes to evaluate a function over the private
inputs, and (c) a third party called the Garbler, who facilitates
and enables the secure computation. Several improvements
over the original Yao’s protocol have been proposed, that lead
to both computational and communication cost reductions.
These include point-and-permute [11], row reduction [12], and
Free-XOR [13] optimizations, all of which we implement in
our design.

Garbled Circuits work for any problem that can be expressed
as a Boolean circuit. In our and many other implementations,
this function is represented as a circuit made up of AND and
XOR gates.! The Evaluator wishes to evaluate a function f,
represented as a Boolean circuit of AND and XOR gates, over
private user inputs x1, Zg, ..., Z,. We break the problem into
three phases, as shown in Fig. 1. In Phase I, the Garbler
“garbles” each gate of the circuit, outputting (a) a “garbled

IRecall that AND and XOR gates form a complete basis for Boolean
circuits.

Authorized licensed use limited to: Northeastern University. Downloaded on December 12,2022 at 15:35:16 UTC from IEEE Xplore. Restrictions apply.

GARBLER EVALUATOR USERS

Bo
w
2 Garbled Circuit p
T n
o E - (1]

o TRANSMIT

<

)

Keys

ché PROXY OBLIVIOUS TRANSFER Private Inputs
T T1,L2y...,Tn
o
o EVALUATE
7]
£
T fz1,@a,. .., xy)

Fig. 1. Yao’s Protocol Phases of Operation

circuit,” namely, the garbled representation of every gate in the
circuit representing f, and (b) a set of keys, each correspond-
ing to a possible value in the string representing the inputs
T1,...,Z,. These values are shared with the Evaluator. In
Phase II, through proxy oblivious transfer [14], the Evaluator
learns the keys corresponding to the true user inputs. In the
final phase, the Evaluator uses the keys as input to the garbled
circuit to evaluate the circuit, un-garbling the gates. At the
conclusion of Phase III, the Evaluator learns f(xy,...,2y,).
More details of the design are described elsewhere [15], [16].
Here we focus on memory access and memory usage for large
designs, as this is a bottleneck in implementing GC on FPGAs.
The challenge lies in the fact that memory is accessed out of
order rather than in a streaming fashion, and cannot be easily
broken up into substructures.

C. Related Work in Memory on FPGAs

Previous research regarding memory on FPGAs focuses on
one or two types of memory and not the three types considered
here. There are several papers on the performance of HBM
memory alone and how to optimize its use [2], [3]. Shuhai [3]
focuses specifically on HBM memory benchmarking and
provides a picture of HBM performance characteristics. They
compare HBM to DDR4 and DDR3. They looked into refresh
intervals, during which a memory transaction exhibits a sig-
nificantly longer latency. Their work shows memory behavior
with different memory mapping policy and localities. The
total achievable memory throughput of HBM is much higher
than DDR if all pseudo channels simultaneously access their
associated banks, accelerating memory-intensive applications
on FPGA. A Memory Access Optimizer (MAO) IP core is
presented in [2]. It is used as an intermediate layer between
accelerator and HBM interface. It redistributes and reorders
memory transactions, and minimizes the lateral connections
of Xilinx HBM interconnect so that the throughput of HBM
is significantly improved.

The closest to this research is a study of the Ultrascale+
architecture [6]. However, their study does not include HBM
or UltraRAM, but only looks at Block RAM vs. DDR. They

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

quantitatively analyze memory especially DDR behaviors on
xilinx Zynq board with different burst length, combinations
of AXI ports, access patterns and multiplexing options. They
proposed hardware design rules and optimizations for larger
DDR throughput and performance. In previous work, we in-
vestigated the k-kmeans algorithm on AWS FPGA nodes [17].
This work did not consider HBM as it is not available on the
FPGAs on the AWS platform.

HBM on FPGA:s is used to accelerate many applications, for
example [18]. This paper presents range selection, hash join,
and stochastic gradient descent. They integrate the designs into
a columnar database (MonetDB) and show that FPGA+HBM
based solutions are able to surpass the highest performance of
CPUs. Similarly, [19] proposed a hash table targeting HBM-
enabled FPGAs. Their design is tailored for HBM architecture,
allowing flexible mapping between processing engines and
HBM channels. GraphLily [20] is a graph linear algebra over-
lay to accelerate graph processing on HBM-equipped FPGAs.
Their implementation uses 24% BRAM and 51% URAM
and the overlay frequency is 165 Mhz. ScalaBFS [21] is
an accelerator for Breadth-First Search. It decouples memory
accessing from processing to scale its performance with HBM
memory.

While several of these studies are similar to our approach,
none consider the impacts of HBM in conjunction with BRAM
and URAM usage, especially when a large portion of BRAM
or URAM resources are required. An exception is [22] where
researchers present a sparse DNN inference engine on the
HBM-enabled Alveo U280 platform, built around FPGA-
optimized DSA blocks. They construct a multi-ported mem-
ory using AXI stream as a switch between URAM banks.
Although one block contains small amounts of BRAM and
URAM utilization, they carefully floorplan the implementation
to achieve high frequency if multiple kernels are instantiated
on an FPGA device. While this research uses multiple different
types of memory it is carefully designed and focuses on a
single application.

III. APPLICATIONS

In this research we investigated two applications with
different memory access patterns: (1) vector addition (from
the Vitis Xilinx examples) using very large inputs, and (2)
Garbled Circuits (GC) described below. Vector ADD (VADD)
has streaming memory access while GC exhibits random
memory access. Both VADD and GC use a monolithic memory
structure. We also investigated memory access patterns for
convolution, but since data access can easily be broken into
blocks, it does not exhibit the same types of issues with
using large memory that are observed with monolithic data
structures, so we do not consider it further.

A. Vector ADD

Vector ADD (VADD) is a straightforward application. We
use the version distributed with the Xilinx Vitis tools [23].
This example adds vectors of 32 bit integers; the size of the

Authorized licensed use limited to: Northeastern University. Downloaded on December 12,2022 at 15:35:16 UTC from IEEE Xplore. Restrictions apply.

vector is a parameter. We vary the size of the memory in this
example from 1 to 30 Megabytes in increments of 1 Megabyte.

B. Garbled Circuits

This research investigates the use of different types of
memory in conjunction with Garbled Circuits(GC) accelerated
with FPGAs [15], [16], [24], [25]. A complete system involves
both garbler and evaluator. Here we focus on the garbler, which
is the more computationally intensive part of the problem.
From a memory perspective, the circuit has inputs and a
representation of the circuit split into layers, and produces
outputs. Most importantly, during circuit operation keys are
generated in each layer that are used in subsequent layers and
need to be stored. For the large problems we are targeting, this
can involve over 400 megabytes of data to be stored that will
need to be accessed out of order in later layers. The largest
problem investigated in this research stores over 26 million
keys, each of which requires 128 bits.

A GC implementation consist of a number of Garbled AND
gates and Garbled XOR gates, and the surrounding logic
required to fetch and store inputs and outputs and correctly
sequence all operations. We refer to the gates as cores in our
design. They are much more complex than typical logic gates,
and have 128 bit wide input keys. A garbled XOR gate consists
of 128 XOR gates in parallel, while a Garbled AND gate is
composed of three AES cores as well as additional logic.

The GC design processes multiple keys in parallel, and
provides multiple copies of identical cores to do the process-
ing. Since the design is memory rather than compute bound,
increasing the number of cores does not improve application
performance. The amount of parallelism that can be supported
depends on the amount of data that can be fetched concurrently
and sent to the cores. This example motivated this study into
the uses of different types of memories.

IV. EXPERIMENTS AND RESULTS

Our basic experiment is to use HBM to hold data and to
use on-chip memory, either BRAM or URAM as a direct
mapped cache for operating on that data. Note that different
applications have different memory access structures. For
VADD data can be streamed in, while for GC, data access is
random. In both these applications, memory is viewed as one
large monolithic structure broken up into pieces to map to the
on-chip resources. We observe that the achievable clock speed
drops as the percentage of on-chip memory used increases.
Our goal is to predict the performance of applications based
on parameters such as memory access type and percentage of
on-board memory usage.

We used the VADD example [23] as a baseline to determine
the expected drop in clock speed based on memory usage. We
conducted a range of experiments using BRAM and URAM,
and measured the clock rate for VADD as the buffer size is
varied from 51200 in increments of 51200 elements, or 1
Megabyte. The blue line in Fig. 2 shows the results when
storing data in BRAM, and varying the buffer size from 1 to
8 Megabytes. The blue line in Fig. 3 shows how the clock

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

speed changes when storing data in URAM, and varying
the buffer size from 1 to 30 Megabytes in increments of 1
Megabyte. Note that there is more URAM available so more
data can be stored. Also note that BRAM clock speeds are
smoother and thus easier to predict. To predict this behavior,
we applied different models and calculated the coefficient of
determination. Exponential regression fit gives the highest R-
squared value so we chose exponential regression to model
the data. We used exponential regression to create equations
(one for BRAM one for URAM) that maps percentage of
available memory used to clock speed. The predictions are
shown in orange in Figures 2 and 3 for BRAM and URAM
respectively. We use the resulting equations to predict results
for other applications, namely Garbled Circuits.

A. Experimental Setup

® measured results 335e-0.934x

250
200

150

Clock speed (max 300MHz)

100
03 04 05 06 07 08 09

utilization of BRAM

Fig. 2. BRAM Clock Speed vs. utilization

® measured results 258e"-0.952x

250

200

150

Clock speed (max 300MHz)

100
0.2 04 0.6 0.8

utilization of URAM

Fig. 3. URAM Clock Speed vs. Utilization.

TABLE II
GARBLED CIRCUITS DESIGN CLOCK SPEEDS (MHz) wiTH URAM Vs
BRAM MEMORIES

Design BRAM URAM
Clock speed | estimate | difference percent | Clock speed | estimate | difference percent
HBM+50K 271 268 1.21 220.7 256 15.8
HBM+100K 238 235 1.30 189.2 246 30.0
HBM+200K 169 181 7.01 176.3 235 33.1
HBM+400K 1593 213 339
HBM+800K 136.2 175 28.2

As seen in Table II for garbled circuits designs, the clock
speed drops as the percentage of on-chip memory increases.

Authorized licensed use limited to: Northeastern University. Downloaded on December 12,2022 at 15:35:16 UTC from IEEE Xplore. Restrictions apply.

Using the equation from VADD, we predicted the expected
clock speed. BRAM clock speed predictions were better than
90% accurate for BRAM, and better than 65% accurate for
URAM. In general, experiments with BRAM results in more
predictable outcomes than URAM. This is due to the fact that
BRAM is more distributed across the chip and thus results in
less congestion. The congestion observed when using URAM
translates to less predictable performance.

B. Performance

Using a lot of on chip memory along with HBM causes the
clock speed to drop and we expect application performance
to be correlated with clock speed. However, this may not be
the case as this drop in clock speed may not result in worse
overall performance. BRAM overall has a 10x faster access
rate compared to HBM. This is due to the combined impacts
of faster access time (1 vs 40 cycles) and lower access width
(128 vs 512 bits).

The way that data is mapped to BRAM can impact overall
performance. For a convolution example, we did not see a
drop in clock speed when using large amounts of BRAM. As
BRAM is distributed across the chip, there is not significant
congestion in the design and the clock speed only drops
significantly when a large percentage of memory is used. In
addition, data for convolution can be easily broken into blocks
and assigned to local memories.

Behavior using URAM is more challenging to predict, likely
because the routing and congestion that results when using
URAM is more complex. Due to pipelined access, URAM
memory accesses require 2 or 3 clock cycles and the bitwidth
for accessing memory is 72 bits. Thus, the speedup from
accessing data from URAM vs. HBM is approximately 5 times
faster than the same data being stored on HBM.

Table III shows how the overall performance in milliseconds
changes for different Garbled Circuits experiments when the
size of the problem and the size of the BRAM is varied.
Here the application being garbled is K-means, which was
chosen because it can easily be scaled in size. The size of the
problem is described as dp_cx7j where dp is the number of
data points, c is the number of classes and j is the number
of iterations. The largest problem we report on, 1000_4x2,
has 1000 data points, with four classes and runs for two
iterations. It generates more than 26 million intermediate keys.
For the smaller sizes of 100_2x2 and 100_4x2 the data fits
completely into BRAM. The drop in performance for larger
BRAMs is a result of the clock speed drop and no other effect.
When a combination of BRAM and HBM are required, the
performance is more complicated. As expected, larger amounts
of BRAM result in better overall performance even with a
clock speed drop due to the shorter latency to access data
present in the BRAM.

The clock speed drop for larger amounts of BRAM in con-
junction with HBM is due to routing congestion. When 50K of
BRAM is used, the FPGA design and BRAM are placed close
to the HBM. In contrast, as shown in the placement diagram
in Fig. 4, when 400K of BRAM is used, the BRAM (shown

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

Fig. 4. Placement of GC Design with 400K BRAM

as yellow rectangles) is distributed across the chip. The blue
in the figure shows the FPGA design, and the yellow at the
bottom represents the HBM. The design with 50K of BRAM
uses less than 10% of the available BRAM, while the design
with 400k uses 70%. The FPGA design remains the same and
consumes fewer than 10% of other resources. The distribution
of BRAM across the chip results in routing congestion and a
slower clock rate.

Table IV compares performance among Garbled Circuits
Designs of K-means that use HBM alone, HBM plus BRAM
and HBM plus BRAM plus URAM. All results are given in
milliseconds of total latency. When BRAM and URAM are
included, 100 KBytes of URAM and 100 KBytes of BRAM
were used. Our experiments show that HBM plus BRAM
deliver the best results. The conclusion from this experiment
is that URAM is an excellent resource, but not effective to use
in conjunction with both HBM and BRAM.

V. DISCUSSION

High Bandwith Memory (HBM) is large memory that deliv-
ers data at high rates to processing elements. Several previous
studies have investigated the use of HBM and how to take
advantage of it on FPGAs. We present a study that looks at
using HBM in conjunction with on-chip memory. Our results
show that the clock rate drops when using a large percentage
of available on chip memory. While expected clock rate for
designs with large amounts of BRAM can easily be predicted,
predicting URAM behavior is more challenging. This is likely

Authorized licensed use limited to: Northeastern University. Downloaded on December 12,2022 at 15:35:16 UTC from IEEE Xplore. Restrictions apply.

TABLE III

APPLICATION LATENCY FOR DIFFERENT BRAM SIZES WITH THE SAME DESIGN

K-Mans HBM + 50k BRAM (ms) | HBM + 100k BRAM (ms) | HBM + 200k BRAM (ms)

100_2x2 103 125 109

100_4x2 198 244 218

100_8x2 389 575 462

1000_2x2 1382 1603 1468

1000_4x2 3199 3338 3138

TABLE IV REFERENCES
LATENCY OF DESIGNS WITH DIFFERENT TYPES OF MEMORY
[1] Xilinx, “Alveo U280 Data Center Accelerator Card.” [Online]. Available:

K-Means | HBM,BRAM,URAM(ms) | HBM(ms) | HBM,BRAM(ms) https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
100_2x2 178 181 125 [2] P. Holzinger, D. Reiser, T. Hahn, and M. Reichenbach, “Fast HBM
100_4x2 356 361 244 Access with FPGAs: Analysis, Architectures, and Applications,” in 2021
100_8x2 706 724 575 IEEE International Parallel and Distributed Processing Symposium
1000_2x2 2053 1806 1603 Workshops (IPDPSW), Jun. 2021, pp. 152-159.
1000_4x2 4184 3543 3338 [3] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Benchmarking

due to the fact that URAM, while larger than BRAM, is
concentrated in a few locations and thus results in more
congested routing. In addition, the type of memory access
matters. Designs whose memory can easily be partitioned into
smaller blocks, such as convolution, do not see the same clock
speed drop as exhibited by designs where data is accessed from
one large memory space.

In addition, a clock speed drop does not necessarily result
in reduced performance. This is due to the fact that data stored
in on-chip memories can be accessed with lower latency than
HBM. As a result, performance of designs with lower clock
speed may result in better overall application performance.

When comparing usage of all three types of memory to-
gether (HBM, BRAM, and URAM) our experiments show
that the best results are achieved when combining HBM
and BRAM. We continue to develop models to capture this
behavior in order to provide guidance to the designer. We
use Garbled Circuits as an application. GC has characteristics
we expect to see in other data center applications, where
users want to accelerate their designs without spending a
large amount of time optimizing the layout. We will continue
to investigate how the models we develop apply to other
applications.

VI. CONCLUSIONS

The goal of this research is to predict the expected behavior
of big data applications from parameters of those applications.
The research presented here represents a first step in that
direction. Namely, we can predict the drop in clock speed
based on the size of BRAM or URAM used. We are working
on a tool that will predict performance based on size of on-
chip memory, number of data accesses, and type of memory
access and make recommendations to the user regarding the
amount and types of memories that they should use. High
Level Synthesis makes it difficult to control the different types
of memory usage directly. We plan to feed our predictions into
a tool to help users specify different memory types for their
application.

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

High Bandwidth Memory On FPGAS,” in 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). Fayetteville, AR, USA: IEEE, May 2020, pp. 111—
119. [Online]. Available: https://ieeexplore.ieee.org/document/9114755/
K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and
G. Alonso, “High Bandwidth Memory on FPGAs: A Data Analytics
Perspective,” arXiv:2004.01635 [cs], Apr. 2020, arXiv: 2004.01635.
[Online]. Available: http://arxiv.org/abs/2004.01635

Y.-k. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “HBM
Connect: High-Performance HLS Interconnect for FPGA HBM,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. Virtual Event USA: ACM, Feb. 2021, pp. 116-126.
[Online]. Available: https://dl.acm.org/doi/10.1145/3431920.3439301

K. Manev, A. Vaishnav, and D. Koch, “Unexpected Diversity:
Quantitative Memory Analysis for Zynq UltraScale+ Systems,” in 20719
International Conference on Field-Programmable Technology (ICFPT).
Tianjin, China: IEEE, Dec. 2019, pp. 179-187. [Online]. Available:
https://ieeexplore.ieee.org/document/8977835/

Xilinx, “UltraScale Architecture Memory Resources
User Guide,” March 2021. [Online]. Available:
https://www.xilinx.com/support/documentation/user_guides/ug573-
ultrascalememoryresources.pdf

A. Yao, “How to generate and exchange secrets,” in I[EEE Symposium
on Foundations of Computer Science (FOCS), 1986.

M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in /st ACM Conference on Electronic Commerce,
1999.

V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in ACM CCS, 2013.
D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of the twenty-second annual ACM symposium
on Theory of computing. ACM, 1990, pp. 503-513.

B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in ASIACRYPT, 2009.

V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in /CALP, 2008.

M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2001, pp.
448-457.

K. Huang, M. Gungor, X. Fang, S. Ioannidis, and M. Leeser, “Garbled
circuits in the cloud using fpga enabled nodes,” in 2019 IEEE High
Performance Extreme Computing Conference (HPEC). 1EEE, 2019,
pp. 1-6.

X. Fang, S. Ioannidis, and M. Leeser, “SIFO: Secure Computational
Infrastructure Using FPGA Overlays,” International Journal of
Reconfigurable Computing, vol. 2019, pp. 1-18, Dec. 2019. [Online].
Available: https://www.hindawi.com/journals/ijrc/2019/1439763/

K. Huang, M. Gungor, S. Ioannidis, and M. Leeser, “Optimizing use of
different types of memory for fpgas in high performance computing,” in
2020 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2020, pp. 1-7.

Authorized licensed use limited to: Northeastern University. Downloaded on December 12,2022 at 15:35:16 UTC from IEEE Xplore. Restrictions apply.

[18] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and G. Alonso,
“High bandwidth memory on fpgas: A data analytics perspective,” in
2020 30th International Conference on Field-Programmable Logic and
Applications (FPL), 2020, pp. 1-8.

[19] Y. Yang, S. R. Kuppannagari, and V. K. Prasanna, “A high throughput
parallel hash table accelerator on hbm-enabled fpgas,” in 2020 Interna-
tional Conference on Field-Programmable Technology (ICFPT), 2020,
pp. 148-153.

[20] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “Graphlily: Accelerating graph
linear algebra on hbm-equipped fpgas,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2021, pp. 1-9.

[21] C. Liu, Z. Shao, K. Li, M. Wu, J. Chen, R. Li, X. Liao,
and H. Jin, “Scalabfs: A scalable bfs accelerator on fpga-hbm
platform,” in The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 147. [Online].
Available: https://doi.org/10.1145/3431920.3439463

[22] A. K. Jain, S. Kumar, A. Tripathi, and D. Gaitonde, “Sparse deep neural
network acceleration on hbm-enabled fpga platform,” in 2021 IEEE High
Performance Extreme Computing Conference (HPEC), 2021, pp. 1-7.

[23] Xilinx, “Xilinx vitis tutorials: VADD,” 2022.
[Online]. Available: https://github.com/Xilinx/Vitis-
Tutorials/blob/2022.1/Getting_Started/Vitis/example/src/vadd.cpp

[24] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of
garbled circuits,” in Proceedings of the 2012 ACM conference on
Computer and communications security - CCS ’12. Raleigh, North
Carolina, USA: ACM Press, 2012, p. 784. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2382196.2382279

[25] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider,
and F. Koushanfar, “TinyGarble: Highly Compressed and Scalable
Sequential Garbled Circuits,” in 2015 IEEE Symposium on Security
and Privacy. San Jose, CA: IEEE, May 2015, pp. 411-428. [Online].
Available: https://ieeexplore.ieee.org/document/7163039/

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on December 12,2022 at 15:35:16 UTC from IEEE Xplore. Restrictions apply.

