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Gravity-induced double encapsulation of liquids using granular rafts
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We experimentally investigate a millimetric armored droplet of a water-isopropyl al-
cohol solution sedimenting through oil and approaching a water layer at the bottom of
the container. Upon reaching the oil-water interface, the droplet is shown to rupture and
coalesce with the water either for low droplet densities (floating rupture) or for low oil
viscosities (sinking rupture). By contrast, for sufficiently large drop density or oil viscosity,
the oil covering the armored drop pinches off in the underlying water, as the armored drop
continues to sink. This leads to the double encapsulation of an aqueous solution in water,
which can be utilized to transport desired ingredients within a wet environment. We show
that a simplified quasistatic model of a rigid sphere successfully captures the limit of the
floating rupture behavior. We also rationalize the transition from the sinking rupture to oil
pinch-off, by comparing the timescales of the film drainage versus sinking. Our results
demonstrate that an effective Bond number and an effective Ohnesorge number are the two
key dimensionless parameters that characterize the pinch-off threshold in good agreement
with the experiments.
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I. INTRODUCTION

When particles bind to a fluid-fluid interface, the long-range capillary attraction [1] between
the particles leads to the formation of so-called granular rafts [2]. For sufficiently large or heavy
particles, granular rafts become unstable and form particle-armored droplets [3,4]. These armored
drops, also known as liquid marbles [5,6], can alternatively be formed by rolling aqueous droplets
on a bed of hydrophobic particles [5], or by utilizing magnetic [7] or electrical [8] forces. Liquid
marbles are applicable in biochemical microreactors [9], blood typing [10], and liquid transport
[11]. While a liquid marble interacting with a fluid-fluid interface has been studied under quasistatic
conditions [12–15], the dynamic interaction between a liquid marble and a fluid-fluid interface poses
a further complex physical picture that has not been explored.

In this study, we investigate armored drops of varying composition and density sedimenting
in an immiscible liquid and approaching the interface of a liquid miscible to the droplet. While
some armored drops rupture similar to a liquid drop at a miscible fluid interface, others maintain
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FIG. 1. (a) The 3D schematic of the stratified system where particles are slowly added from the top. (b) The
schematic of the granular raft forming on an IPA-oil interface prior to the formation of the armored drop. (c) The
armored drop sediments in oil and approaches the water-oil interface.

their integrity when the immiscible liquid surrounding them pinches off and allows the resulting
encapsulated drop to sink, reminiscent of a solid sphere. We show that this unique combination
of behaviors stems from the presence of the particle shell coupled with a dynamic fluid-fluid
interface. Because of the combined features of the current system, we incorporate theories from
well-established dynamics of solid spheres [16–33] and dynamics of liquid drops [34–45] at a
fluid-fluid interface to characterize the different behaviors of our system.

The pinch-off behavior of an armored droplet is of particular interest, as it enables the double
encapsulation of an aqueous solution in water. The double encapsulation of liquids [46–48] has
been studied extensively due to the importance of stabilizing double emulsions in food [49],
cosmetics [50], or drug delivery applications [51,52]. While a few studies have investigated the
effects of particles in double emulsions on the submillimetric scale [53,54], particle-laden double
encapsulation on the millimetric scale has not been investigated. Hence, characterizing the pinch-off
behavior in the current system offers an inexpensive approach for double encapsulating liquids in a
new gravity-driven regime.

The manuscript is organized as follows. In Sec. II A, we introduce our three-phase experiments
and the different behaviors exhibited by the armored drops in this system. In Sec. II B, we describe
our two-phase experiments and show the relationship between the properties of the individual
particles and the resultant armored droplets. In Secs. III A and III B, we present a quasistatic model
and scaling laws that characterize different behavioral regimes of the armored drops observed in the
three-phase system. Finally, we summarize our findings and discuss future studies in Sec. IV.

II. EXPERIMENTS

A. Three-phase experiments

We conduct a series of experiments in a tank with a cross section of 12.6 × 12.6 cm. The tank is
filled with a 5 cm layer of distilled water followed by a 5 cm layer of silicone oil with the density
ρo = 970 kg m−3 and viscosity µo, which is varied from 0.097 to 0.97 Pa s [see Fig. 1(a)]. We
add a mixture of isopropyl alcohol (IPA) and water (70% IPA by volume) on top of the oil layer;
the density of the IPA mixture corresponds to ρi = 850 kg m−3. The interfacial tension between
the IPA solution and silicone oil is measured to be γio = 27 mN m−1 using a pendant drop test.
We then carefully deposit negatively buoyant monodisperse particles of diameter, ds, and density,
ρs, onto the free surface at the center of the tank to minimize wall effects. We use soda-lime
glass beads (Cospheric), or ceramic-coated zirconium oxide beads (Glen Mills) with densities,
ρs = 2500 kg m−3 and ρs = 3800 kg m−3, respectively, while ds ranges from 4 to 1000 µm. For
a complete range of parameters, see Appendix A.
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FIG. 2. Time sequential images for (a) [ds = 125 µm, ρs = 2500 kg/m3, µo = 0.097 Pa s]: The armored
drop approaches the interface (t0 = 0 s) and comes to an apparent rest (t1 = 0.12 s), until the thin film ruptures
(t2 = 0.6 s). After rupture, some particles sink and some particles float and surf under a Marangoni flow
(t3 = 0.72 s), as illustrated in the inset schematic. (b) [ds = 500 µm, ρs = 3800 kg/m3, µo = 0.097 Pa s]:
The interface deforms strongly (t0 = 0 s); the armored drop continues to push the interface downward into
water (t2 = 0.02 s), until the oil film ruptures (t3 = 0.035 s). Then, all particles sink in water (t4 = 0.07 s),
as highlighted in the inset schematic. (c) [ds = 350 µm, ρs = 2500 kg/m3, µo = 0.485 Pa s]: The interface
deforms strongly (t0 = 0 s); the armored drop continues to push the interface downward into water (t1 = 0.3 s
and t2 = 0.6 s) until the encapsulating oil pinches off (t4 = 0.68 s). The inset schematic highlights the resultant
double encapsulation in the pinch-off behavior. All scale bars show 2 mm.

The particles sediment until they reach the IPA-oil interface. For the current range of ds and ρs,
each particle comes to rest at the oil-IPA interface as the capillary force on the particle dominates the
gravitational and buoyant forces. The centimetric-scale granular raft that forms due to the capillary
attraction between floating particles subsequently deforms the interface under gravitational effects.
Once the granular raft grows large enough, it becomes unstable, which results in the encapsulation
of particle-coated IPA in the form of an armored drop in silicone oil [3].

Once the armored drop forms at the IPA-oil interface, it sediments towards the oil-water interface,
as illustrated in Figs. 1(b) and 1(c). The thickness of the silicone oil layer is chosen so that all tested
armored drops reach their terminal velocity before reaching the oil-water interface. Drops covered
with smaller or lighter particles settle slowly while deforming the interface minimally. For these
armored drops, the deformed interface comes to rest macroscopically shortly after the deformation
begins, as indicated in time sequential snapshots of Fig. 2(a). However, the armored drop continues
to slowly sediment and thin the film between the armored drop and the interface until the long
range van der Waals forces dominate. At this point, water bridges through the particle-armor, and
the particle-armor ruptures. Upon rupture, the particles below the free surface immerse in water,
while the particles above the free surface stay trapped on the oil-water interface under capillary
forces. Under this behavior, some particles float on the interface, while others sink as illustrated
in the inset of Fig. 2(a). Notably, the floating particles undergo a radially outward Marangoni flow
due to the release of the IPA inside the armored drop [55]. We refer to this behavior as floating
rupture.

For armored drops with larger or heavier particles, two distinct behaviors are observed: rupture
and pinch-off. For both behaviors, the armored drop continuously deforms the interface and ap-
proaches the pinch-off, distinct from the floating rupture scenario. However, for lower viscosities
of silicone oil, the thin film between the armored drop and the interface drains faster than the
time it takes for the pinch-off of the encapsulating oil, leading to the film rupture [see Fig. 2(b)].
We refer to this behavior as sinking rupture. In this regime, all particles become immersed
in water and sink as indicated in the inset schematic of Fig. 2(b) [55]. On the contrary, for
silicone oil with higher viscosities, the oil filament encapsulating the armored drop pinches off
before the thin film drains completely, as shown in Fig. 2(c) [55]. We refer to this behavior as
pinch-off. Under this behavior, IPA is double encapsulated in water, as illustrated in the inset of
Fig. 2(c). The experimental movies of all three droplet behaviors are included as Supplemental
Material [55].
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FIG. 3. Schematics for two-phase experiments (a) before and (b) after formation of the armored drop.
(c) The armored drop equivalent density, ρeq − ρi, as a function of ρsds/#c for varying particle sizes, ds =
4–1000 µm, and particle densities, ρs = 2500 kg m−3 (half-filled) or ρs = 3800 kg m−3 (filled). The dashed
line corresponds to the total mass calculation with particle packing fraction, φ = 0.76. Inset: The armored drop
equivalent radius, a, for varying ρsds/#c.

B. Two-phase experiments

To characterize the equivalent radius, a, and density, ρeq, of the armored drop systematically, we
perform a series of two-layer experiments. As indicated in the schematics in Fig. 3(a), we examine
different particle densities and particle sizes in the same tank filled with different viscosities of
silicone oil, µo =0.291, 0.485, and 0.97 Pa s and a thin layer of the 70% IPA solution on top.
We find ρeq by measuring the terminal settling velocity, V , and approximating it as the Stokes
settling velocity, or V ≈ 2(ρeq−ρo)ga2/(9µo). Figure 3(c) shows ρeq − ρi for varying ρsds/#c,
where #c =

√
γoi(ρo−ρi )−1g−1 denotes the capillary length for the silicone oil and IPA. If we

assume that particles are half immersed in the drop and half in the continuous phase, then the
total mass calculation for a monolayer armored drop yields ρeq−ρi = 2φρsds/a, where φ denotes
the particle packing fraction. As a varies negligibly between 2.4 and 2.8 mm under the current
parameter range [see the inset of Fig. 3(c)], ρeq−ρi is shown to increase linearly with increasing
ρsds, as plotted in Fig. 3(c). The linear fit for ρeq corresponds to φ = 0.76, which is very close to the
packing volume fraction in the granular raft prior to destabilization [4]. Details of how we measure
φ is provided in Appendix B.

III. MODEL

A. Quasistatic model

Inspired by the behavior of a solid sphere at a fluid-fluid interface which either floats or sinks,
we apply a quasistatic force balance on an armored drop. In the manner of Refs. [25,30], the drop is
approximated as a rigid sphere (density ρeq) at rest on the oil-water interface with a contact angle θ .
We note that in the case of the armored drop, there is a thin film between the armored drop and the
interface, therefore, all force balance arguments apply to a negligibly larger control volume, while
θ corresponds to the apparent contact angle as depicted in Fig. 4(a). The particle wettability has
some importance on the IPA-oil interface to enable the formation of a granular raft that eventually
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FIG. 4. (a) Schematics of a sphere in equilibrium at a fluid-fluid interface. (b) An armored drop [ρs =
2500 kg m−3, ds = 125 µm, µo = 0.485 Pa s] before the onset of rupture.

destabilizes into an armored drop. However, armored drops made with glass beads (contact angle
! 15o [56]) and those made with zirconia beads (contact angle ∼101o [57]) do not exhibit noticeable
differences at the oil-water interface. We speculate that the wettability of particles will ultimately
be important in initiating the rupture event microscopically. However, such effects are out of scope
of the current study and may be considered in the future.

Under quasistatic assumptions, the sphere deforms the interface below it. As depicted in Fig. 4(a),
the interface gets separated from the sphere at an angle ψ from the centerline with a slope angle
φ with distance hs from the free surface. If we normalize the parameters with the capillary length,
#c,ow =

√
γow(ρw − ρo)−1g−1, then balancing the gravitational force with the buoyancy and surface

tension forces yields
4
3
'R∗3 = 2R∗ sin ψ sin φ + 2

3
R∗3 − R∗3 cos ψ + 1

3
R∗3cos3 ψ − R∗2h∗

s sin2 ψ, (1)

where ' = (ρeq − ρo)/(ρw − ρo), R∗ = a/#c,ow, and h∗
s = h∗

s /#c,ow. The interface profile is deter-
mined by the Young-Laplace equation,

h∗′′

1 + h∗′2 + h∗′

r∗ − h∗
√

1 + h∗′2 = 0, (2)

where the asterisk denotes dimensionless parameters normalized by #c,ow, and the prime denotes
the derivative with respect to r∗. We solve Eqs. (1) and (2), subject to the boundary conditions
h∗′(R∗ sin ψ ) = tan φ and h∗(∞) = 0, along with the geometrical constraint of θ − φ + ψ = π .
Then, for varying φ, we find the maximum value of ' that yields an equilibrium state.

The sphere floats when the solution for the interfacial shape exists under the quasistatic force
balance, but sinks when no equilibrium solution exists [25]. If the equilibrium solution exists for a
solid sphere, then we expect the equivalent armored drop to exhibit the floating rupture behavior,
as it is the only case where the interface comes to a macroscopic equilibrium before the oil film
ruptures. However, if the quasistatic analysis yields sinking, then the armored drop may exhibit
either sinking rupture or pinch-off. Figure 5 summarizes the three distinct behaviors in a phase
diagram for the dimensionless density, ', as a function of Bond number, Bo= (ρw−ρo)ga2/γwo.
We consider a range of θ in the model and find the corresponding sinking threshold. Notably, the
transition from floating rupture to either sinking rupture or pinch-off is well predicted by the lower
and upper bounds of θ = π/2 (dotted-dashed line) and θ = 3π/5 (dashed line), shown in Fig. 5,
respectively. While we cannot measure θ precisely, our experimental images strongly suggest that
θ > π/2 for all floating rupture cases, as the oil-water interface is shown to deviate from the lower
half of the droplet as illustrated in Fig. 4(b). Therefore, π/2 < θ < 3π/5 is in good qualitative
agreement with the experiments.
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FIG. 5. The phase diagram showing Bo vs ' for the particle density, ρs = 2500 kg/m3 (half-filled), or ρs =
3800 kg/m3 (filled), and varying particle sizes (corresponding varying symbol sizes). Error bars are smaller
than symbol sizes. The dotted-dashed line and the dashed line correspond to the upper bounds (i.e., 'max) of
the floating behavior from the quasistatic force balance [25,30] for θ = π/2 and θ = 3π/5, respectively.

For Bo ( 1, Eq. (1) yields
'Bo ≈ 3(1 − cos θ )/4. (3)

'Bo is an important dimensionless parameter as it considers the effects of both a and ρeq. Therefore,
we refer to 'Bo as the effective Bond number, Boeff = (ρeq−ρo)ga2/γwo. Note that we change Boeff
in our experiments mainly by varying ρeq through ρs and ds.

B. Scaling laws

As shown in Fig. 5, the quasistatic force balance does not differentiate sinking rupture from
pinch-off. This implies that in both cases, oil surrounding the armored drop approaches pinch-
off. Hence, we can determine whether or not the film ruptures before pinch-off by comparing the
timescale of sinking with that of the film drainage. The settling velocity in our experiments ranges
from 1 to 10 cm/s, with the corresponding Reynolds number Re ranging from 0.05 to 2.5. However,
all the cases of Re > 1 belong to µo = 0.097 Pa·s, where all the armored drops exhibit floating
rupture. For all the other cases, Re < 0.3, including the cases near the transition from sinking rupture
to pinch off. Therefore, for simplicity, we assume Re ( 1 to model that transition.

To find the sinking timescale, we consider the early stage of armored drop sinking in water while
encapsulated in an elongating oil filament as depicted in Fig. 6. We simplify the armored drop and
the thin oil film encapsulating the drop as a rigid sphere of radius, a, and density, ρeq, that is sinking
in water with velocity V . Then, the force balance on the control volume (a dashed circle in Fig. 6)
yields

ρeqa3 dV
dt

∼ Fg − Fb − Fγ − Fdrag, (4)

where the right-hand side denotes the gravitational force, the buoyant force, the capillary force, and
the drag force on the control volume, respectively.

The drag force is estimated as a Stokes drag on a sphere sinking in water, Fdrag ∼ µwVa. Then,
the force balance becomes

ρeqa3 dV
dt

∼ (ρeq − ρw)a3g − γwoa − µwVa, (5)
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FIG. 6. Schematics of a sinking armored drop approaching pinch-off.

where dV/dt ∼ a/τ 2
s , and τs denotes the sinking timescale. As the armored drop approaches and

deforms the oil-water interface, it decelerates by a small amount. Nevertheless, its velocity still
scales as the terminal settling velocity in oil at the early stage of sinking, so that Fdrag ∼ (ρeq−
ρo)a3gµw/µo. In addition, as µw/µo ( 1 for our current range of parameters, Fdrag ( Fg, which
allows us to neglect the drag force term in Eq. (5). Furthermore, we note that Bo ( Boeff for both
sinking rupture and pinch-off behaviors in our experiments. Therefore, Eq. (5) simplifies to

τ−2
s ∼ γwo

ρeqa3
(Boeff − 1). (6)

Next, we discuss the lubrication model for finding the film drainage timescale inspired by
Ref. [34]. To find the timescale of the film drainage, we consider the simplified case of a rigid
sphere approaching a rigid planar surface. For a sinking sphere with velocity, V , pressure increases
inside the film below the sinking sphere. This pressure build-up drives a flow that drains the film
and thins the gap as shown in Fig. 7. We consider the translation of a rigid sphere with density ρeq
and radius a approaching a shear-free planar boundary with a relative velocity, v, when the distance
between the sphere and the boundary along the centerline, h0, is much smaller than the radius (i.e.,
h0 ( a). For consistency, the fluid density and viscosity are denoted as ρo and µo, respectively.
Then, under lubrication approximations, the flow inside the gap in cylindrical coordinate yields

ur = 1
2µo

∂ p
∂r

(z2 − h2), (7)

where p(r, t ) is the pressure inside the gap.

FIG. 7. The schematic of a sphere settling toward a shear free planar boundary.
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Also, integrating the continuity equation, (1/r)∂r (rur ) + ∂zuz = 0, across the gap yields
∫ h(r,t )

0

1
r

∂ (rur )
∂r

dz + v(t ) = 0. (8)

By combining Eq. (7) with Eq. (8), and after some algebra, we obtain

∂

∂r

(
rh3 ∂ p

∂r

)
= 3µovr ⇒ h3 ∂ p

∂r
= 3

2
µovr. (9)

The Taylor expansion of the film thickness near the center where the pressure gradient is dominant
corresponds to h(r, t ) = h0(t ) + r2/2a. Therefore, integrating Eq. (9) with respect to r yields

p(r, t ) = p0 − 3µova

4
(
h0 + r2

2a

)2 . (10)

From Eq. (10), we can calculate the resistive force exerted on the sphere by the pressure build-up
inside the film,

F = −2π

∫ a

0
(p − p0)r dr ≈ −3

2
µova2

2h0
, (11)

where h0 ( a. As v < 0, the resistive force is positive in the z direction. Finally, the resistive force
balances the gravitational and buoyant forces in the low Re regime,

4
3
πa3+ρg = −3

2
µova2

h0(t )
⇒ v

h0
= −8

9
+ρ g a

µo
, (12)

where +ρ = ρeq − ρo. The left-hand side of Eq. (12) represents the inverse of the film drainage
timescale, τd. Therefore, we conclude τd ∼ µo/(+ρga).

By comparing the film drainage time and the sinking time, we obtain

τ 2
d

τ 2
s

∼ Oh2
(

ρo

ρeq

)
Bo−2

eff (Boeff − 1), (13)

where Oh = µo/
√

γwoρoa denotes the Ohnesorge number. The pinch-off condition, τd/τs > 1,
further reduces to

Oheff >
Boeff√

Boeff − 1
, (14)

where Oheff = µo/
√

γwoρeqa. Notably, for Boeff + 1 this simplifies to Oheff > Bo1/2
eff . Figure 8

shows the three behaviors of the armored drop for varying Oheff as a function of Boeff . The solid
line shows the scaling of Eq. (14) for the transition from sinking rupture to pinch-off, which is in
good qualitative agreement with the experiments.

As shown in Fig. 8, the pinch-off occurs only for Boeff ! 1, as all armored drops with Boeff < 1
undergo floating rupture. Notably, the two vertical lines in Fig. 8 correspond to Boeff scaling for
the limit of floating rupture when θ = π/2 (dotted dashed) and θ = 3π/5 (dashed), respectively. In
addition, when Boeff ! 1, the minimum value of Oheff required for pinch-off increases weakly with
Boeff . Note that Oheff at a given Boeff is primarily varied in our experiments by changing µo. In
other words, for a larger particle density or particle size (i.e., increasing Boeff ), a larger oil viscosity
is required to slow down the drainage rate before pinch-off.

IV. SUMMARY AND DISCUSSION

We present a system of three fluid layers where a granular raft at the first interface between oil
and IPA leads to the formation of an armored drop. The resultant droplet encapsulates IPA and
sinks in oil toward the second interface between water and oil. We demonstrate that the dynamic
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FIG. 8. The phase diagram showing Boeff vs Oheff for the particle density, ρs = 2500 kg/m3 (half-filled),
or ρs = 3800 kg/m3 (filled), and varying particle sizes (corresponding varying symbol sizes). Error bars are
smaller than the symbol sizes. The dotted-dashed line and the dashed line correspond to Boeff ≈ 3(1 − cos θ )/4
for θ = π/2, and θ = 3π/5, respectively. The solid line shows Oheff = 0.4 Boeff/

√
Boeff − 1.

interaction between the sinking armored drop and the oil-water interface can result in three different
behaviors: floating rupture, sinking rupture, or pinch-off. We first show that ' and Bo are the key
independent parameters to characterize the transition from the floating rupture regime to the other
two regimes. In addition, we incorporate scaling arguments to show that Oheff and Boeff are the key
parameters to characterize the transition from the sinking rupture regime to the pinch-off regime.
The transition from sinking rupture to pinch-off is shown to scale as Oheff ∼ Boeff/

√
Boeff − 1,

which yields Oheff ∼ Boeff
1/2 in the limit of Boeff + 1. Therefore, since Boeff = 'Bo, the complete

phase separation requires three independent parameters (i.e., Bo, ', and Oheff ).
The current system offers a gravity-driven method to generate double encapsulated liquids on

a millimetric scale, by using granular rafts coupled with a fluid-fluid interface. As indicated in
Fig. 8, either large Boeff or large Oheff is required to achieve double encapsulation (i.e., pinch-off).
Notably, the size of the armored droplet appears constant in the current setup, while its effective
density is shown to vary linearly with ρsds. Hence, the density of the double encapsulated drops can
be controlled with the choice of particle properties as well as encapsulated fluid properties. While
our scaling argument for the transition from sinking rupture to pinch-off is in good agreement with
the experiments, we acknowledge that the current experimental setting only allows for the partial
validation of the individual parameters included in Oheff and Boeff . Additional experiments with
different fluid systems are required to validate the universality of our model. For instance, exploring
the effect of surfactants at the water-oil interface is recommended as it increases both Boeff and
Oheff , which will presumably expand the range of pinch-off regime for varying compositions of the
armored drop. We also note that applying additional body forces such as a centrifugal force can
expand the range of armored drop sizes to a submillimeter scale [58] while maintaining Boeff > 1
and Oheff > 1 required for double-encapsulation.
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APPENDIX A: PARAMETER SPACE IN EXPERIMENTS

Table I includes the complete list of the particles (density and diameter) and silicone oil
(viscosity) used in the experiments. It also lists the corresponding behavior of the armored droplet
for the given combination of particles and oils used. Table II comprises the particle diameters and
the corresponding symbol sizes used in Figs. 3 and 4.

TABLE I. Different parameters tested in the experiments presented in Figs. 3 and 4.

particles
oil viscosity

ρs = 3800 kg/m3, ds = 200 − 300µm

ρs = 3800 kg/m3, ds = 400 − 600µm

ρs = 3800 kg/m3, ds = 800 − 1000µm

ρs = 2500 kg/m3, ds = 500 − 600µm

ρs = 2500 kg/m3, ds = 300 − 400µm

ρs = 2500 kg/m3, ds = 100 − 150µm

ρs = 2500 kg/m3, ds = 30 − 60µm

ρs = 2500 kg/m3, ds = 3 − 6µm

0.096 Pa.s 0.483 Pa.s 0.97 Pa.s0.143 Pa.s 0.192 Pa.s 0.34 Pa.s

pinch − off

pinch − off

pinch − off

pinch − off

pinch − off

pinch − off

pinch − off

pinch − off

pinch − off

pinch − off

pinch − off

floating
rupture

sinking
rupture

floating
rupture
floating
rupture
floating
rupture

floating
rupture
floating
rupture
floating
rupture

floating
rupture
floating
rupture
floating
rupture

sinking
rupture
sinking
rupture

sinking
rupture
sinking
rupture
sinking
rupture

sinking
rupture
sinking
rupture
sinking
rupture
sinking
rupture

sinking
rupture

TABLE II. Different parameters tested in the experiments presented in Figs. 3 and 4.

100 − 15030 − 60= 3 − 6

symbol size

200 − 300 300 − 400 400 − 600 500 − 600 800 − 1000ds [µm]

APPENDIX B: ARMORED DROP DENSITY MEASUREMENTS

To measure the settling velocity of the armored drops, we perform MATLAB image processing
to track the front (i.e., lowest) point on the armored drop. We then extract the velocity when it
reaches a plateau.

We measure the equivalent density, ρeq, of the armored drop via two methods. First, we calculate
ρeq by plugging in the measured terminal velocity into the expression for the Stokes terminal
velocity. Second, we perform image processing to extract the shape of the falling armored drop
shape as shown in Fig. 9. We then measure the area covered by the solid particles, As, by assuming
an axisymmetric shape for the falling armored drop:

As =
∫ Hs

0
2π

[
R(z) − ds

2

]
dz, (B1)

where Hs denotes the height of the drop that is covered by the particles as shown in Fig. 9.
By assuming a monolayer of particles armoring the drop, the total number of particles can be
approximated as ns = 4φAs/(πd2

s ), where φ is the surface packing fraction of particles. Therefore,
the mass of particles yields ms = (2/3)φAsρsds.

064003-10



GRAVITY-INDUCED DOUBLE ENCAPSULATION OF …

FIG. 9. A snapshot of an armored drop sinking in oil.

Next, we measure the total volume of the fluid encapsulated in the armored drop,

Vf =
∫ Hs

0
π

(
R(z) − ds

2

)2

dz +
∫ H

Hs

πR2(z)dz. (B2)

Here, H denotes the total height of the armored drop as shown in Fig. 9. Finally, the total mass of
the armored drop, m, yields

m = 2
3φAsρsds + ρiVf . (B3)

Hence, the equivalent density of the armored drop can be approximated as ρeq = (2/3)φAsρsds/Vf +
ρi. Note that the data presented in Fig. 3(c) is extracted from the first method (i.e., using steady
settling velocity). For φ = 0.76, we get a match with the data presented in Fig. 3(c) with less than
2% error by using the second method.
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