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Abstract—We introduce a framework and provably-efficient
schemes for ‘fresh’ caching at the (front-end) local cache of
content that is subject to ‘dynamic’ updates at the (back-end)
database. We start by formulating the hard-cache-constrained
problem for this setting, which quickly becomes intractable due
to the limited cache. To bypass this challenge, we first propose a
flexible time-based-eviction model to derive the average system
cost function that measures the system’s cost due to the service
of aging content in addition to the regular cache miss cost.
Next, we solve the cache-unconstrained case, which reveals
how the refresh dynamics and popularity of content affect
optimal caching. Then, we extend our approach to a soft-cache-
constrained version, where we can guarantee that the cache use
is limited with arbitrarily high probability. The corresponding
solution reveals the interesting insight that ‘whether to cache
an item or not in the local cache?’ depends primarily on its
popularity level and channel reliability, whereas ‘how long
the cached item should be held in the cache before eviction?’
depends primarily on its refresh rate. Moreover, we investigate
the cost-cache saving trade-offs and prove that substantial
cache gains can be obtained while also asymptotically achieving
the minimum cost as the database size grows.

Index Terms—Content Distribution Networks, Caching, Age
of Information, Dynamic Content

I. INTRODUCTION

The recent advances in the development of capable smart
wireless devices and mobile internet services have resulted
in rapidly escalating levels of data traffic over cellular
networks. This surging data demand is depleting the limited
spectrum resources for wireless transmission, especially over
the wireless connection between the base stations and the
end-users. Consequently, wireless resources are becoming
scarce due to the tremendous development of throughput-
hungry applications including video streaming and online
gaming [1], [2]. Thus, more sophisticated resource manage-
ment strategies are needed to meet the growing demand [2].

One possible approach to tackle this problem is to cache
popular contents at the users’ site to reduce the total response
time to data requests. Content Distribution Networks (CDNs)
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utilize a large mesh of caches to deliver content from
locations closer to the end users [3], [4]. Existing caching
strategies rely on the assumption of static (or quasi-static)
nature of the stored content [5], [6], [7] and [8]. In many
real-world scenarios, such as news updates in social net-
works and system state updates in cyber-physical networks,
the data content is subject to updates at various rates,
which render the older versions of the content less useful
[9], [10]. Hence, there is a growing need to develop new
caching strategies that account for the refresh characteristics
and ageing costs of content for efficient dynamic-content
distribution.

Broadly speaking, there are two classes of caching poli-
cies for studying the system performance: timer-based, i.e.,
Time-To-Live (TTL) [11], [12] and non-timer-based caching
policies. In the latter case, the strongly coupled nature
of the eviction policies render exact analysis difficult. In
contrast, a TTL cache policy associates each content with
a timer upon placement in the cache. The content is then
evicted once the timer expires, independent of other cached
contents. Due in part to analytical tractability [11], [13],
TTL caches have been widely employed since the early
days of the internet with the Domain Name System (DNS)
being an important application [14]. Recently, TTL caching
strategies have received renewed attention, mainly because
they enable a general analytical approach which is used
to model replacement-based caching policies such as Least
Recently Used (LRU) [15].

Using the TTL cache refresh framework for dynamic
content, [16] proposes two metrics to measure the cached
content freshness: age of synchronization (AoS) and age
of information (Aol). Most existing research regarding the
freshness of the local cache focuses on the Aol metric which
was first examined in the 1990s in studies on real-time
databases [17], [18].

The problem of refreshing cache contents from an Aol
perspective was first formulated in [19], where a remote
server generates multiple files and transmits them to a local
cache. The authors assume that each file has its own request
popularity, a factor that affects how often the server should
update the file contained in cache. The objective is to
minimize the average Aol [20]. In [21], the authors formulate
the Aol problem for a system with random transmission
and service processes. They show that the age decreases
with increasing service rate. Nevertheless, this comes at the
cost of increased waste in the resources spent on obsolete
packets [22]. Najm et al. [23] analyze the average age and
average peak of Aol under the gamma distributed service



time. Sun et al. [24] study how to optimally manage the
freshness of information using Aol metric and under a
general age penalty function to show that a zero-wait policy
does not always minimize the age. Kam et al. [25] propose
a dynamic model in which the rate of requests depends on
the popularity and the freshness of information to minimize
the number of missed packet requests.

While Aol is a meaningful metric for measuring the fresh-
ness of content in some systems, there are many real-world
scenarios where a content does not lose its value simply
because time has passed since it was cached. These types of
dynamic contents include news and social network updates
where the users prefer to have the most fresh version but so
long as there is no new update, that content is considered
to be the most fresh version [26], [27]. Furthermore, our
proposed model can be applied to a wide range of scenarios
where items can be considered as categories. For example,
consider the category of the most popular video on youtube.
New videos are constantly being generated and they may
replace the current most popular video. Thus, the content
of the most popular video can be thought of as dynamic
content. In these scenarios, so long as there is no new update,
the current version is considered fresh independent of the
time passed since its generation.

In this work, we use a new freshness metric called Age-of-
Version (AoV) which counts the integer difference between
the versions at the database and the local cache. We also
introduce a new cost function for dynamic content caching
which captures both the cost due to the miss event and the
cost due to content freshness [28] which grows with the
AoV metric. Moreover, our model extends the traditional
caching paradigm to allow for varying generation dynamics
of content, and calls for new designs that incorporate these
dynamics into its decisions.

In particular, we propose a freshness-driven caching
model for dynamic content which accounts for the update
rate of data content and provides an analysis of the average
operational cost for both the constrained and unconstrained
cache sizes. We aim to reveal the effect of popularity and
refresh rate on the optimal caching policies. This work was
partially presented in 2021 IEEE International Conference
on Computer Communications (INFOCOM). In the current
version, we extend the model to include channel failure
and investigate the effect of channel reliability on caching
decisions. Our contributions, along with the organization of
the paper, are as follows.

o In Section II, we present a novel caching model for
serving dynamic content to end users from a back-end
source and formulate the general problem of determining
the cache holding times.

« In Section III, we attack the generally intractable problem
for the special and insightful case when there is no cache
constraint, i.e., all items can be stored in the cache. We
characterize the optimal caching decision and explicitly
identify the optimal holding time of each item in terms
of its popularity and its refresh rate, which reveals the
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Fig. 1: Setting of Fresh Caching for Dynamic Content.

balance between the fetching cost of a fresh update and
the ageing cost of serving an old version.

« In Section IV, we return to the general cost minimization
problem with high-probability guarantee of the cache size
constraint to propose an asymptotically optimal caching
solution. The solution reveals the interesting fact that,
for fresh caching of dynamic content, one should select
the items to cache based on their popularities, while
determining the holding times of the cached items based
on their refresh rates.

« In Section V, we contrast the operational cost and aver-
age cache occupancy of the constrained cache with their
counterparts in the unconstrained problem to demonstrate
the potential of the proposed caching strategy and reveal
the trade-off between the rate of convergence and cache
size saving. The results show that the asymptotically
optimal solution presented in Section IV can yield sig-
nificant cache savings by discarding static items that are
not sufficiently popular, and using the limited cache
space efficiently for sufficiently popular dynamic and
static items. In Section VI, the trade-off is investigated
through numerical simulations. Finally, we conclude the
work in Section VII.

II. SYSTEM MODEL

We consider the generic hierarchical setting depicted in
Fig. 1 whereby the (limited) local cache serves a user
population that generate content requests according to a
popularity distribution; while the back-end database receives
updates to update the content with different rates. Next, we
will provide the details of this generic model, followed by
the goal of our work.

Demand Dynamics: We assume that a set N' of N unit-
size data items (with dynamically changing content) is being
served to a user population by the hierarchical caching sys-
tem in Fig. 1. In particular, requests arrive to the local cache
according to a Poisson process1 with rate 5 > 0, which
captures the request intensity of the user population. An
incoming request targets data item n € N with probability
Pn. Accordingly, the probability distribution p = (p,)2_;
captures the popularity profile of the data items.

Generation Dynamics: At the database, each data item may
receive updates to replace its previous content. We assume
that data item n receives updates according to a Poisson

! Accordingly, we assume that the system evolves in continuous time.



process with rate A, > 0. Note that A\, = 0 captures
the traditional case of static content that never receives an
update. We denote the vector A = (\,,))_; as the collection
of update rates for the database.

Age Dynamics: Since the data items are subject to updates
at the database, the same items in the local cache may be
older versions of the content. To measure the freshness of
local content, we define the age A, (t) € {0,1,...} at
time ¢ of a cached content for item n as the number of
updates that the locally available item n has received in the
database since it has been most recently cached. We name
this freshness metric as the Age-of-Version (AoV), since it
counts the integer difference between the versions at the
database and the local cache.

Fig. 2 illustrates an example evolution of A, (¢) for data
item n under an arbitrary holding and eviction policy. At the
instant ¢,, ;, the local cache refreshes its content of data item
n for the i time. This item remains in the local cache for
a duration of 7,,; € R4 units of time. In this sample path,
the item is evicted from the local cache at time instance
tim- = tn,; + Tn,. During the interval ¢t € [t",i,t;’i), the
AoV A, (t) of item n grows according to a Poisson process
with rate A\, as governed by the aforementioned generation
dynamics. At the eviction instant t, ;, the A,(t) drops to
zero by default since the next request for the item that arrives
after a random duration (denoted as R,, ;11 in the figure) will
be serving a fresh update from the database.

Within the subsequent evictions ¢;, ; and ], ;. ; of the item
n, we refer to the interval (t;7i7tn,i+1] as the miss phase,
since the incoming request is not in the local cache and
must be fetched from the database at a higher cost; and
the interval (¢, ,t;, ;] as the hit phase, since the incoming
request is served from the local cache, but possibly with a
positive AoV value A, ().

Fetching and Ageing Costs: Now that we have the dy-
namics defined, we can introduce the key operational and
performance costs associated with our caching system. On
the operational side, we denote the cost of fetching an item
from the database to the local cache by ¢y > 0. On the
performance side, we assume that serving an item n from
the local cache with age A, (t) incurs a freshness/age cost
of ¢y x Ay,(t) for some ¢, > 0, which grows linearly?
with the AoV metric. This ageing cost measures the growing
discontent of the user for receiving an older version of the
content she/he demands.

Channel Failure: Due to the unreliability of the wireless
transmission, fetching attempts from database are not always
successful. Therefore upon each fetching failure, re-fetching
will be attempted after a deterministic time duration of
q time units. We assume a transmission attempt over the
wireless medium is successful with probability » > 0 and
is independent of other transmission attempts. Upon each
cache miss, a fetching attempt is carried out to supply the

2While this linearity assumption is meaningful as a first-order approxi-
mation to ageing cost and facilitates simpler expressions in the analysis, it
can also be generalized to convex forms to extend this basic framework.

requested item from the database. If such fetching attempt
fails, the database will wait for a deterministic time ¢ before
performing another fetching attempt. For every time unit
q that a request will be waiting to be served, a waiting
cost ¢, is incurred. Note that, while a request of item n
is waiting to be served, more requests for the same item
n may arrive. Such requests will add to the waiting cost,
since more requests are waiting to be served. One single
successful fetch of the most fresh version of item n will be
enough to serve all the waiting requests of item n.
Problem Statement: Our broad objective in this work is
to develop efficient caching and eviction strategies for the
above setting that optimally balance the trade-off between
the cost of frequently updating local content and the cost
of providing aged content to the users. In particular, we are
interested in provably cost-minimizing caching-and-eviction
strategies that account for both the demand and the genera-
tion dynamics in order to optimally utilize a possibly limited
cache space B € [0, 0] at the local cache. We can express
this goal generically as

min C™
well

N (D
st. Y X7(t)< B, Vt>0,
n=1

where C™ represents the mean of the combined fetching
and ageing cost of the system, and X7 (¢) € {0,1} is the
indicator that item n is in the local cache under the operation
of a feasible policy m. In its full generality, the feasible
policy space II can contain any policy that decides on its
fetching and eviction decisions at time ¢ with the knowledge
of the cache content until time ¢ and the generation/demand
dynamics® (X, 3, p), but not the ages {A,, ()}, (since that
information depends on the updates occurring at the back-
end database).

Outline of our Approach and Results: The generic prob-
lem in (1) falls under the scope of Partially Observable
Markov Decision Processes (POMDP), and quickly becomes
intractable [29]. Even formulating the problem explicitly,
let alone solving it, becomes practically impossible. There-
fore, a more productive approach is needed to attack this
problem in order to develop algorithms and principles with
performance guarantees. In this work, we propose such
an approach whereby we: (i) first study the unconstrained
version of the problem where B = oo in Section III, which
reveals how the caching and eviction decisions must depend
on the generation and demand dynamics; and then (ii) extend
our approach to a constrained version in Section IV, where
we can guarantee that the B < oo cache limit can be
satisfied with arbitrarily high probability as the database
size N increases. This approach is not only productive in
designing of policies with asymptotically optimal and cache-
space efficient, but also reveals new and explicit metrics
(cf. Theorems 1 and 2) for easily measuring the importance

3In practice, these parameters can be learned over time. Here, we assume
their knowledge so that we can focus on their impact on the performance.
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Fig. 2: Age-of-version A,,(t) evolution for data item n under 3 failed fetching attempts.

of content in terms of its popularity and refresh rates.
Throughout the paper, we use cache to refer to the cache
size available in the local server.

III. OPTIMAL CACHING FOR DYNAMIC CONTENT
WITHOUT CACHE CONSTRAINTS

In this section, we attack the generally intractable problem
in (1) for the special and insightful case when there is no
cache constraint, i.e., B = o0o. The characterization of the
optimal caching decision in this section under this uncon-
strained setting will not only yield interesting insights about
the impact of the generation dynamics, but will also form
the basis of our approach to handling the cache-constrained
case with high probability guarantees in Section IV.

We start by noting that the relaxation of the constraint
decouples the problem into finding the optimal fetching and
eviction decisions for each data item n independently. This
is obvious once we note that the contribution of each item to
the average cost is independent of the others. This motivates
us in this setting to focus on a space of policies 7 with
random holding times, defined next.

Definition 1 (Policy Space T): T denotes the space of
policies with random holding times, where a policy T €
T is defined by N (non-negative-valued) random variables
(7,)M_,, representing the holding times of the items after
their last fetching. In particular, the policy 7 = (7,)%_;
operates as follows for each item n € N: (i) if item n
is not in the local cache when it is requested at time ¢, a
fresh version of it is fetched from the database (miss cost
incurred) and served to the user; (ii) at the time of successful
fetching of item n into the local cache, a random holding
time is generated (independently from previous realization
of holding times) with respect to the distribution of 7,,, and
item 7 is held in the queue for the duration of the generated
T, value, at which time it is evicted from the local cache;
(iii) if item n is in the local cache when it is requested at
time ¢, it is served (with age-of-version cost of ¢, A, (t)) to
the user.

The space 7 takes advantage of the decoupling of the
caching decisions between items as well as possesses the

flexibility to adapt to different generation and demand dy-
namics of data items. The next lemma explicitly charac-
terizes the average cost and average cache size of such a
policy 7 € T in terms of the first and second moments of
the holding time distributions of the policy 7.

Finally, since the following quantities appear consistently
in the paper, for the sake of simplicity of notation, we define
new parameters here.

Bpn

A =
n(r) T+ B 2 —1) ¢
_ 1 1 1 1
Cg”ss(r) = ;Cf + <’/‘ — 1) Cm, (]. + ﬁpnq (7" — 2))(3,)
M(pn,r) = An(r)é;;niss(ry 4

@

We refer the curious readers to the proof of Lemma 1
on how these parameters were formed. The intuition behind
these parameters is that A, (r) is a measure of the effective
arrival request rate for item n to the database which is an
increasing function of the channel reliability r. Average cost
of cache miss per each miss event of item n is reflected in
Cmiss(r) that decreases as channel becomes more reliable.
Their product, M (p,, ), is a measure of the average miss
cost rate of item n which for a given p,, is a decreasing
function of the channel reliability » and for a given r
is an increasing function of the item popularity p,. For
a fully reliable channel with r = 1, A, (r)|,=1 = Bpn,
Cro8(r)|p=1 = ¢5 and M (py, 7)|r=1 = BDncy.

Lemma 1: Let C(7) and B(T), respectively, denote the
average cost and the average cache occupancy when the
policy T € T is implemented for the caching system without
cache constraints at the local cache. Then,

N LeadnAp(r T2 Jmass (-
ctr) = 83 m Aﬁif(&)%[ﬁj " )
N An(r) E[r]
P = LT A B ©

where (A, 8, p) are the system model parameters (cf. Sec-
tion II) and (7,), are the random variables describing the
policy 7T (c.f. Definition 1).



Proof. Please refer to Appendix A. ®

The explicit characterization of the cost under Lemma 1
allows us to pose the problem of finding the cost minimizing
policy in this setting as:

C*(X\,B,p) = ;neigC(T), (7

where the minimization is performed over all distributions
for the holding times (7,), with non-negative ranges, and
the tuple (A, 8, p) indicates that the solution is a function of
these system parameters. For brevity, we will occasionally
omit these parameters and refer to the optimal cost as C*,
and later on we will also use C*(N) when we study the
scaling of the performance as the database size [N grows.
The following theorem fully solves (7).
Theorem 1: Policy T* € T that solves (7) is given by:

1+ 280 1), €D,
( " 8)

7':; = Bpn
0, nes,
where D = {neN |\ >0}, and § =
{neN|X\, =0} = N\D are, respectively, the set

of dynamic and static data items. Then, the corresponding
optimal average cost is given by:

C*(X,B,p) =

a1 <1 b () > 41
Z Caln -1
neD

1+ A”(” <\/1 + 2] 1)
9

Also, the average cache occupancy under 7* is given by:

. Ap(r) mt
Bir) =8+ Y i
neD n n

Proof. First we show that the average system cost given
in (5) is minimized when the variable 7,, is a constant, Vn.
For a random variable 7,, with expectation E[r,], in order
to minimize the cost, the second moment E[7?2] should be
minimum. Since the variance var|r,| = E[72] — (E[r,,])? >
0, so the minimum possible is E[72] = (E[r,,])® which is a
constant random variable. In calculating (5) we assumed that
steady state distribution exists for the given random variable
Tn. Now we verify it for the constant random variable 7,.
Recall that X,,(t) € {0,1} is the indicator that item n is in
the local cache at time ¢.

Lemma 2: For a constant random variable 7, the
Bernoulli process (X, (¢),t > 0) has a limiting hit prob-
ability given by:

(10)

n(T)Tn
1+ A,(r) 7’

Proof. Bernoulli process (X, (t),t > 0) is a semi-Markov
process and is also irreducible. According to Fig. 2, 7, is
the time that the semi-Markov process spends in state 1
before making the transition to state zero. Define Z,, = 7, +
R, + @, to be the time between successive transitions into

ho(T) = lim P{X,(t) =1} =

t—o00

(1)

state 1. Due to the memoryless property of the exponential
random variable R,,, the random variable Z,, has a non-
lattice structure. According to the Proposition 4.8.1 in [30],
we have:

ha(r) = lim P{X,(t) = 1}

t—o0
exists and is independent of the initial state. Furthermore,
the limiting hit probability h.,,(7) is given by:
T Ap(r) 7
T 14 An(r) T

with A, (r) = 1+ﬁpfp1*1)q

the proof of Lemma 2. m
The cost minimization problem for the unconstrained
cache can thus be expressed as:

aA An 2 C«miss
_ mlnﬁz i (r)5 + (7")

14+ Ap(r)m,
The objective function has the form of quadratic over linear
ratio, which is convex. Using KKT conditions gives the
optimal solution for 7* in (8). Substituting 7* in (5) gives
the optimal cost of (9).

To prove the optimal average cache occupancy (10),
substituting the optimal solution (8) in the definition of
average cache occupancy given in Lemma 1 and noting that
T4 =00,Yn € 8, we obtain 3, s o5 = || which
completes the proof. m

Theorem 1, under the unconstrained cache setting, pro-
vides some useful insights about the nature of the optimal
caching strategy for dynamic content: (i) we see that the
cost minimizing policy 7 selects a fixed holding time for
each item n rather than any other random choice; (ii) more
interestingly, (8) explicitly characterizes the optimal holding
time of each dynamic item n in terms of its popularity p,
and its refresh rate \,, and channel reliability r in order to
strike the optimal balance between the fetching cost of a
fresh update and the ageing cost of serving an old version;
(iii) It also shows that holding times decrease as the wireless
channel becomes more reliable or item becomes less popular
(since M (pn,r) is a decreasing function of r for a given
pn and an increasing function of p, for a given r); (iv)
less interestingly, we also see that any static item is cached
forever under this unconstrained setting since it is never
necessary to update it once it is fetched; and (v) it explicitly
characterizes the average cache occupancy of 7* in terms of
system parameters.

In the next section, we will build upon this foundation to
return to a soft-constrained version of the problem (1).

defined in (2). This completes

C* (X, B,p)

IV. ASYMPTOTICALLY-OPTIMAL CACHING FOR
DYNAMIC CONTENT WITH CACHE CONSTRAINTS

Returning to the general cost minimization problem given
in (1), the instantaneous cache size constraint with B < oo
entails a dependence between the optimizing items’ holding
time. With such a dependence, the optimization (1) suffers



from the curse of dimensionality and has no tractable solu-

tion. In this section, we bypass this challenge by replacing

the deterministic-constraint 25:1 XT(t) < B, at all times

t, to a probabilistic-constraint where cache size limit has

to be met with (arbitrarily) high probability over time. In

particular let us introduce the following probabilistic version
min  C(1)

of (7):
TET
N
P (ZXH(T) < B) >1-34,
n=1

for any arbitrarily small § > 0, where X,,(7) is the steady-
state fraction of time that item n is held in the cache
under policy 7. Such probabilistic approaches to solving
deterministic problems are used increasingly frequently and
fruitfully in learning and optimization domains. Solving
this high-probability variation of the hard problem, in turn,
provides a means to operate the original system efficiently
with arbitrarily high probability.

Despite its softer statistical form, solving (12) is still
complicated by the need to design with guarantees in the
tail distribution of its cache use. To tackle this challenge,
pose the following average-cache-constrained problem with
a flexible choice of cache size bound B € [0, cc) :

min  C(7)

st. B(t) < B,

12)

13)

where B(T) is the average cache occupancy under the policy
T that is explicitly characterized in (6). We note that this
problem is non-convex since the constraint set {7 : B(7) <
B} is non-convex. Nevertheless, the approach in the rest of
the section is to first solve the non-convex problem (13) for
any given B, and then choose a particular B as a function
of the given B < oo and § > 0 in order to guarantee the
probabilistic constraint in (12). Accordingly, we first provide
the solution of (13) in the next theorem.

Theorem 2: Policy 7" = (7)), € T that solves (13) is
given by deterministic 7,y > 0, Vn, and &* > 0 satisfying:

+
( nﬂ")*&*

[ ] e
=14 00, VnesS, a* < M(pn,r) ,

€ [0,00], VnesS, & =M(p,r)

, YneS, a* > M(pnp,T)

14)

where [z]T = max(0, z), and

& (B(‘T-*)—B) =0, B(F)<B, (15

where D and S are, respectively, the set of dynamic and
static data items defined in Theorem 1.

Proof. In the proof of Theorem 1, we showed that in
order to minimize the cost, the random variable 7,, should
be a constant. Also, Lemma 2 shows that for such a constant
random variable 7,,, the Bernoulli process (X, (t)); has a
steady-state distribution whose average is given by (21).

Therefore the assumptions to calculate the average cost and
average cache occupancy given in (5) and (6) hold and the
optimization problem (13) can be rewritten as:

min Z
Tn >0 B

N
An(r), -
.t. — - < B.
st nZ::l 1+ A (r)Tn — B

This is not a convex optimization problem. However, we
take the following approach to solve it. Define the feasible
set Fp as:

ca)\ A (r)T2 4+ Cmiss(r)
14 An( )Tn

N

Z

/\
&

Tn—|—1

}—B:{(Tla"'v )lTn>Og

which is a non-convex set. Then the cost optimization
problem (13) can be expressed as:

min C(7).

16
TEFB (16)

For any optimization problem min,cx C(7) as it is given
in [31], if all the following hold:
1) Slater condition,
2) non degeneracy assumption for VT € F,
3) 3 E]—' Vr e F,3t, | 0 with 7/ + t, (T — 7') € F,
4) Le(t)={r" e RN : C (') < C(r }1saconvexset
then if 7 is a non trivial KKT point, it is a global minimizer.
Lemma 3: Optimization problem (16) satisfies all the
above four necessary conditions.
Proof. (Lemma 3) Please refer to Appendix B. m
Therefore, the non-trivial KKT solution to the problem
(16) would be a global minimizer. Such a solution can be
expressed as:

1 M(p’m)+ 5 —aF
Dn ’24—n(7')

where @* > 0 and f;, > 0 are the optimal Lagrange
multipliers which satisfy all the following KKT conditions:

N ~
o~ An ()7 5
fin Tr = 0, L — < B,
1+ An(r)7y
~ % (i An(T)Tn B) _ O
 An(r)7 + 1

Accordingly, for dynamic data items, n € D, with A\,, > 0,
we have:

1 M n> —a*
7' = max Om[\/1+2(pca’;la—l} )

while for static data items, n € S, with A = 0, we have:

00 d* < M(pp,r),
Tr = € [0, o] = M(pn,1),
0 * > M(pp,T),

Qz Qz



with &* > 0 chosen such that &* (25:1 % - B)

=0 and ETJLI Bffgil < B. This completes the proof. m

The form of thenoptimal solution in (14) reveals the
interesting insights that, for dynamic content n € D:
whether to cache an item depends on the channel reliability
and whether the item is sufficiently popular (in particular,
whether p, < [;1: for r = 1); and how long a cached
item will remain in the cache before eviction depends on
its refresh rate \,, as characterized in (14). It can also be
seen that, for the same system parameters (A, 8, p), as the
average cache limit B decreases, then the optimal &* that
solves (14) and (15) will increase. Then, for both static
and dynamic content, the popularity threshold &*/(Bcy)
of perfect wireless channel for caching or not caching the
content increases to make sure only sufficiently popular
items are cached.

Now that we solved the average-cache-constrained prob-
lem (13), we are ready to connect it to the probabilistic
problem (12) with the following proposition.

Proposition 1: For any finite B > 0 and arbitrarily small
§ > 0, there exits B(6) = Be™? with

v = min {1/ € N|exp (—B ((U’ -1+ 671)/)) < 5} ,

such that the solution 7*(8) of (13) for B = B(d) satisfies

N
P(S @ <n)=1s
n=1

Proof. (Proposition 1) Notice that X,,(T),¥n € N are
independent Bernoulli random variables. We define a new
random variable Yx (7) = 22;1 X, (), which is the sum
of N independent Bernoulli random variables and is known
to have a Poisson Binomial distribution. Also using the linear
property of expectation and given that E[X,,(7)] = h,(7),
we have:

N N
BlYi(r)] = 3B (7)) = 3 1 e

n=1 n=1

For the random variable Y with Poisson Binomial distri-
bution, using the Chernoff bound we have:

P(Yy > B) < exp(—Blog B+B+Blog(E[Yx])—E[Yn]).
Then to guarantee P (Yy < B) > 1 — ¢, we have:

—Blog B+ B + Blog(E[Yy]) — E[Yx] < log(é).

In this equation, setting 6 to the form § =
exp(— (v —1)e? + 1) E[Yn]),Yv > 1, will give us
the range of possible E[Yy] as E[Yy] < Be™ to

ensure that P (Yy < B) > 1 — ¢ holds. Hence the choice
B(l))=Be™". m

Proposition 1 provides an explicit means of using the
tractable problem (13) to find efficient feasible solutions to
the problem (12). To glean an insight on the structure of
B(4), suppose that m = 1 and § = e~ B/¢ which is very
small for sufficiently large B. Then, we have B(J) = Be~!.

In the next section, we will study the cost and cache
occupancy performance merits of the proposed approximate
optimization of (12) for large databases, which is commonly
the case in content distribution networks. In particular, we
will introduce the variable 0 < m(N) < N as the number
of most popular items that will remain in the cache after
being fetched for the optimized holding times from (14).
The remaining N — m(N) items will never be cached, i.e.,
will only be fetched and served upon a user request and
not cached. Then we will examine the cost-cache trade-off
for this proposed strategy under the fully reliable channel to
show its desirable characteristics.

V. COST AND CACHE SPACE PERFORMANCE ANALYSIS

To establish the performance merits or the proposed
approximate solution (7*,&*) given in (14) and (15), we
contrast the operational cost and average cache occupancy
of the approximate problem (13) with its counterpart of the
unconstrained problem (7) in the asymptotic regime as the
number of data items, N, grows.

We expose the dependence of the relevant quantities on
N to highlight its impact on the analysis as follows. We
denote the optimal cost and average cache occupancy of
(7), respectively, by C*(N) and B*(NN), whereas the cost
and average cache occupancy of the proposed approximate
problem (13) are denoted by C*(N) and B%(N), where
the superscript & indicates the dependence of these values
to the & parameter that is optimized in (14) and (15) for
a given cache bound. Here, & > 0 is a flexible parameter
that allows us to explore the trade-off between the cost and
the cache occupancy. Note that C*(N) = C*(X, 5,p) in
(9) and B*(N) = B(7*) in (10). In addition, we consider
a full reliable channel, i.e., r = 1, to give insights on
the nature of the trade-off. Under a fully reliable channel,
An(r)|r=1 = Bpn, C7"*(r)|r=1 = ¢y and M(pn,7)|r=1 =
Bpncy. Therefore , according to Lemma 1, the average cost
and cache occupancy for a fully reliable channel are given
by 5¢adnBpn (7)) + ¢

& _ 2 n
CN =0 2 T

)

o Bpn%&
BYN)= Y ——r
neN 1+ ﬁp”ﬁ’oll

where (7%, &) satisfies (14) and (15) for a given & > 0 with
the appropriate choice of B as the corresponding cache
limit in (12).

As the number of data items N grows, both the set of
static items, S, and/or the set of dynamic items, D, grow in
size accordingly, yet at different rates with N. Nevertheless,
by the definition of D in Theorem 1, we can guarantee a
minimum content update rate \,,;;, > 0 for all the items
n € D for any number of data items N. That is, A\, =
inf,ep A, >0, Vn € N.

Further, for any given & > 0, we define the set of popular
items in the approximate problem (13), P%, as

sz{ne/\/|pn>a},

17
T (17)



to contain all the items that should be held in the cache after
being fetched from the back-end database since (14) implies:

>0,
:O’

It is worth noting that, if & = 0, then P% = A and all data
items are considered popular which collapses to the case of
the unconstrained cached size optimization (7). The last step
before stating the asymptotic gains of the proposed policy is
to divide the set of static items into two disjoint subsets. A
subset S% of static items that are popular, i.e., S = SnpPe,
and a subset S = S — 8% of static unpopular items.

The following theorem jointly establishes the asymptotic
optimality of the proposed approximate policy together with
characterizing the cost-cache size trade off.

Theorem 3: For a given & > 0, consider the policy %
that solves (12) for a corresponding average cache bound B&
and average cost C%. Let m(N) = |P%| denote the number
of sufficiently popular items that will be cached under #°
policy such that P is defined in (17).

(1) (Asymptotic Optimality) If

m(N) = min(w(VN),w(|8"))),

71673&,~
n N — P

S o

(18)

then:

lim CY(N)—C*(N)=0.

N—o0
(ii) (Cost-cache Size Trade off) For a given database size
N, 30 < a,b <1 such that m(N) = N? and |[S”| = N°.

If b > min(1, a), the rate of convergence is at least:

CN’&(N) _CHN) <O (N’ min(bfa,Qbfl)) :
the average cache saving is lower bounded by:
B*(N) - B*(N) > |§%| = N,
and the average cache occupancy B"‘(N ) is bounded by:

BA(N) < |7+ S
Ca)\min

Proof. Please refer to Appendix C. m

Theorem 3 reveals the potential of our proposed caching
strategy which chooses items for caching based on their pop-
ularity and then incorporates the update rate of contents to
decide how long each item should remain in the cache before
eviction. Our proposed caching strategy completely discards
the unpopular items, static or dynamic. More specifically, not
caching the unpopular static items yields a very large gain
on the cache saving side at a marginal loss on the average
system cost side.

Theorem 3 shows that while the proposed strategy is
asymptotically optimal for large data base sizes, it can also
result in massive cache savings. This reveals that a cache size
that grows with the rate of popular static items can achieve
the same performance of having unconstrained cache size
with the data base size being very large. As such, increasing
the cache size beyond the threshold which is given as an

upper bound in Theorem 3 will not reduce the average
system cost for large data base sizes.

In the special scenario where the static items are unpop-
ular for the given popularity measure &, i.e., SN PY = ¢,
Theorem 3 reveals that a bounded cache size of Cf\f:m
can be asymptotically optimal and achieve the same average
cost of a system with unconstrained cache size, even if the
database size grows to infinity. Specifically, our proposed
strategy is asymptotically optimal while massively reducing
the cache occupancy to a constant cache size which does
not grow with V.

Notice that the average cache occupancy for the uncon-
strained cache is not necessarily bounded by the order of
popular static items. Not only does our proposed caching
scheme achieve the same average cost of the system with
unconstrained cache asymptotically but it also maintains
a cache size which does not grow linearly with N. In
other words, intelligently choosing the items to cache is a
critical factor to optimize the average system cost in dynamic
caching. If the popularity of static items is low, then caching
only dynamic items considerably reduces the system’s cost
and attains remarkable cache space savings.

According to Theorem 3, m(N) determines the trade off
between how much cache storage is saved and how fast the
cost converges to the optimal. Larger m(N) will result in a
faster convergence but a smaller cache saving gain. We will
investigate this trade-off thoroughly in the following section.

VI. NUMERICAL RESULTS

The analytical results obtained in this paper are validated
through numerical simulations in this section. In the fol-
lowing, we investigate the effects of item popularity and
refresh rates alongside the channel uncertainty on the cost
and cache gains of the proposed constrained caching strategy
with that of the unconstrained cache. We set the number of
data items to N = 1000, unless otherwise stated. We let
the data item’s popularity be p,, = ¢/n* with z = 1 which
is Zipf distributed with parameter z = 1. The refresh rates
are captured according to A, = \,Vn € N with A = 1.
Moreover, the normalized costs of fetching, waiting and
aging are considered to be ¢y = 1, ¢, = 0.5 and ¢, = 0.1,
respectively and S = 5 is the arrival request rate. We also
assume that cache space for the constrained caching strategy
and channel reliability are B = 50 and r = 0.9, unless
otherwise stated.

To emphasize the cache-cost trade-off, we adopt the
percentage cost increase and cache saving of our proposed
caching strategy for the constrained cache to the optimal
solution derived for the unconstrained cache as our perfor-
mance metric. Such metrics are defined as:
C%(N) — C*(N)

o
BYN) - B*(N) _
B*(N) -

Note that our proposed caching strategy for the con-

strained cache aims to achieve a close to optimal cost with

Cost Increase(%) = 100 x

Cache Change(%) = 100 x



< 0

X

S -20

S —e—Cost Increase

§ .40 —&—Cache Change

5}

o .60
.gor"x*_k_*—*’k_a—"
100 - — : : : : : : : >

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r: wireless channel reliability
Fig. 3: Cost increase and cache saving trade-off
207 _\ j
0 N N " " N A

R 20

[}

&

e -40r 1

8 —e—Cost Increase

o -60- —a—Cache Change 4

o
-80 - 1

-100" !
0 0.5 1 1.5 2 2.5 3

z: Zipf parameter

Fig. 4: Cost increase and cache saving trade-off

a limited cache space. As such, the defined cost increase
metric is always positive and the defined cache change met-
ric is always negative. A negative cache change shows the
percentage of cache space saved by the proposed algorithm.

Fig. 3 shows the percentage cost increase and cache
saving as a function of the wireless channel uncertainty.
According to the figure, as the wireless channel becomes
more reliable, the cost of the proposed constrained caching
strategy converges to the optimal cost while the cache space
saving decreases. Also, the figure shows that for highly un-
reliable wireless channels, the proposed constrained caching
strategy can greatly save in the cache spaces (more than 80%
cache saving) without sacrificing that much on the cost side
(around 20% cost increase). In other words, the proposed
constrained caching strategy is very effective in saving cache
spaces while also maintaining a close to optimal cost of the
unconstrained case.

Fig. 4 shows the percentage cost increase and cache
saving as functions of the Zipf parameter for the popular-
ity distribution. According to the figure, as items become
more predictable, i.e., z increases, the cost of the proposed
constrained caching strategy converges to the optimal cost
while potentially saving in the cache spaces. When items
are highly predictable (2 > 2 here), the optimal caching
strategy without cache constraint will use less than B = 50
cache space that is set for the constrained caching strategy.
Therefore both strategies are the same. On the other hand, as
items become less predictable, the proposed caching strategy
results in great cache saving without considerable loss on the
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cost side. In particular, if an item’s popularity is according
to a Zipf distribution with parameter close to z = 1.5, there
is great cache saving without a noticeable cost increase.

Fig. 5 shows the percentage cost increase and cache saving
as a function of the item’s refresh rate. According to the
figure, as items become highly dynamic, for example A > 7
for our choice of parameters, both the unconstrained caching
strategy and the optimal caching strategy are the same. In
other words, the optimal caching strategy is using less than
B = 50 cache space available for the constrained caching
strategy. On the other hand, for less dynamic items, the
proposed caching strategy results in great cache saving while
achieving a substantially close-to-optimal cost. This shows
that as long as items are not highly dynamic, the proposed
caching strategy is very effective at saving cache spaces
without sacrificing in the cost.

Fig. 6 shows the percentage cost increase and cache saving
as functions of the refresh rate’s distribution. In particular,
we have assumed refresh rates are weighted according to
An = Ao/n?,Vn € N with \g = 1. We consider the Zipf
distribution with parameter z = 1 for item’s popularity.
According to the figure, when ¢ is largely negative (i.e.,
g < —0.5 in our case), the proposed constrained caching
policy with a limited cache capacity B = 50 achieves almost
the same cost of the unconstrained case with almost the same
cache occupancy. This is due to the fact that when ¢ < 0,
items that are popular will have lower refresh rates. This
simplifies the caching decision to cache the most popular
item. Moreover, since items with lower popularities have
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higher refresh rates, by not caching such unpopular items,
cost is only slightly increased with huge gains on the cache
occupancy. On the other hand, if ¢ > 0, popular items
will also have higher refresh rates. Therefore, in caching
popular items we should also consider the trade-off between
their popularity and refresh rates. According to the figure,
as ¢ increase, the optimal unconstraned caching policy will
occupy more cache space, since it cannot afford to not
cache the popular items or items with lower refresh rates.
Therefore, as g increase, the constrained caching policy with
limited cache capacity will lose more on the cost side and
the unconstrained caching will occupy more caches.

To make the trade-off even more clear, we consider the
full reliable wireless channel. As stated in the Theorem 3,
we assume m(N) = N° 0 < b < 1 to be the number
of most popular items that will be considered for caching
and also assume \ga| = N%® is the number of static items
which are not in the popular set. According to Theorem 3,
the sufficient condition for asymptotic optimality is b > %
For such a choice of m(N) we, investigate the trade-off.

Fig. 7 shows the percentage cost increase as a function
of the cache saving for different values of N under channel
reliability »r = 1 and A = ﬁ. According to the figure, and
as expected from Theorem 3, for any choice of m(N) = N°®
with b > % as NV increases from 1000 to 10000, the proposed
cost for the constrained cache converges to the optimal
cost for an unconstrained cache size. The x-axis shows the
amount of cache saving for the proposed strategy compared
to the optimal average cache size for the unconstrained case.
The figure illustrates that the cache saving increases with
N, while the cost of the proposed policy converges to the
optimal cost. This behavior demonstrates the potential of
our proposed asymptotic strategy in massive cache savings.
In addition, as m(N) increases, the rate of convergence
increases at the expense of having smaller savings in the
cache size, as predicted by our theoretical result. In other
words, smaller m(N) result in bigger cache saving but with a
slower convergence rate in cost. This is exactly the trade-off
that Theorem 3 reveals for the proposed asymptotic strategy.

VII. CONCLUSION

In this work, we have proposed and investigated an
increasingly important caching scenario for serving dynam-
ically changing content. We introduced the age-of-version
metric to capture the served content’s freshness and track the
number of stale versions per content. We have addressed the
problem of developing optimal caching strategies for mini-
mizing the system’s cost which is shaped by a combination
of the service cost of fetching fresh content directly from a
back-end database and the aging cost of cached, potentially
older, content from a front-end cache. In the scenario of
constrained cache size, our analysis has revealed the inter-
esting fact that the optimal caching strategy allocates cache
space to items based solely on their popularity, while the
content update rate is what determines the content holding
time in the cache. Moreover, we have explored the trade-off
between the cost minimization and cache savings gain of
our design. In particular, not only the cost of our proposed
strategy converge asymptotically to the optimal strategy as
the number of data items grows, but can also reduce the
cache occupancy substantially, as fully characterized by our
analysis and illustrated with numerical results.

APPENDIX
A. Proof of Lemma 1:

The average system cost utilizing the local cache to serve
the requests comprises two main terms. Average fetching
cost associated with requests that are not in the cache after
a miss event. And, average freshness cost associated with
requests that are served from the cache after a hir event,
in which case an ageing/freshness cost is incurred due to
the fact that the cached content may not be the most fresh
version. Then the average cost C'(7) under the policy T € T
can be expressed as:

N
C(r)=p an ((1 - hn(T))C’ZLniSS(O‘) + hn(T)Zn(T)Ca) )

(19)

where A, (7) is the time average age of the data item

n served from the local cache when the policy 7 € T is

implemented and C%**(r) is the average cost of successful

fetch per each cache miss of item n. Based on Renewal
Reward Theorem, we have:

17 E[S.: 1, E[r7]
— A, ()dt = 2= A,
/0 ( ) ]E[Tn,i} 2 E[Tn,i]

where S, ; is the area shown in Fig. 2 and the last equality
comes from the fact that:

Tn,i

No(t)dt | 7.s]

An(r) = fim 7

E[Snﬂ | Tn,i] = ]E[
0
2

:/ CE[N,(t) | Tn)i]dtZ/ U tdt = A,
0 0 2

and N, (t) is a Poisson process with parameter \,, which is
independent of 7, ;. Then noting that E[S,, ;] = E[E[S,,; |
Tni)] = %"E[T,%l] gives us the result. We omit the indices 7
for convenience.




Next, let us denote the steady-state hit probability under
the caching policy 7 as h,(7,) = P(X,(T) = 1), where
X, is the limiting distribution of X, (¢) that is the indicator
of whether item 7 is in the local cache at time ¢ or not (cf.
(1)). Using the illustration of Fig. 2, it is easy to confirm
that the hit probability for content n can be expressed as:

E[Tn]
Efr.] +E[R,] + E[Qy]

where R, is the time until the next request of item
n after its last eviction and @, is the waiting time after
each cache miss of item n before it is successfully fetched
from the database. Since requests for item n arrive at
the cache according to a Poisson process with rate Sp,,
thus the interarrival times between the requests of item n
are exponentially distributed. Due to the memorylessness
property of the expenential distribution, R, which is the
time until next request given that a certain amount of time
has already passed from the last request, will still have
exponential distribution with the same rate as the interarrival
times. Therefore, we have E[R,| = ﬁ. Moreover, letting
F' to be the number of failures before a successful fetch,
since each fetch attempt is successful with probability r, F
will have Geometric Distribution with its first and second

moments given by:
1—7r

E[F] = —, E[F’]= .

hn(T) = (20)

1-m2-7)
—

Since after each failure we wait for ¢ unit time and attempt
another fetch, the average waiting time of @,, is given by:
1—r

E[Q.] = q E[F] = ¢ 0

Then, substituting in (20), and defining A,(r) =
Bbn as the effective arrival request of item n, the
1+8pn(L—1)q
hit probability can be given as:
Ay (r) E[r,]
hn(T) = —————7—. 21
) = T3 4.() Eir] @b

Next, we calculate C™™*** (1) which is the average cost of
successful fetch per each cache miss of item n.

Ces(r) = Ep[C1"(r)|p) = E[(F + 1)cf + Fen,
+ ﬂan(F - 1)Cm + ﬁan(F - 2)cm + ..+ 5an0m]
=cs+ (cy+cm) E[F] + %ﬁpnqcm (E [F?] - E[F])

e () (o ma(2-1)

Note that since requests for item n are generated according
to a Poisson Process with rate (3p,,, therefore the number
of requests for item n at any interval of length ¢ have
a Poisson Distribution with rate Sp,q. This results in an
average number of 5p, ¢ requests for item n at any waiting
interval of length g. Substituting (22) and (21) in (19) gives
the average cost as in (5).

Using the hit probability given in (21) and noting that
E[X,.(7)] = h,(7), the average cache occupancy which is

E[YN X ()] = X0 E[X,. (7)) gives (6).
B. Proof of Lemma 3:

To check that Slater condition holds for any 0 < B < N,
assume T, = 2A1( )ﬁ > 0,Vn € N which gives
g(T) < B, since we assume N > B. So choose T =
%N?B(All(r),..., ANl(T)) € Fp which is a feasible point
and all the inequalities are inactive.

To check the non-degeneracy assumption, we need to
show that every where that a constraint is active, it’s gradient
is nonzero. Since constraints 7, > 0,Yn € A have

always nonzero gradient, so we only need to check this for

9(7T) = 27]2[21 % — B. We have:
_ Ai(r) An(r)
Vo(r) = ((1 + A1(r) 7)27 77 (1 + An(r) 7n)2 2) #0,

which is always nonzero for any feasible 7 € Fp. To check
the third condition, consider 7 = (0,...,0) € Fp and
choose t, = = such that ct € Fp for a given 7. Then
for this choice of 7/ and t,, we can show that condition 3
holds for all T € Fp. To check the last condition, notice
that Lo(T) = {7/ € R : C' (') < C(7)} is sub level set
of the convex function C'(7) and therefore is also itself a

convex set.
C. Proof of Theorem 3:

Without loss of generality, assume that p; > po > --- >
pn > 0. Since m(N) = |P?| and according to the definition
of the set of popular items P® given in (17), we will
have & < Bcgpy, vy for any given & where py,(yy is the
probability of the m(N)* most popular item. Using the
expressions for 7, and 7& given in (8) and (14) respectively,
for dynamic data items we can show that:

o _za o _Cf PmV) 1
" n_ca)\n DPn 1+ﬂpn 1?7

Since 7 > 7& Vn € N, applying Taylor series to average
cost of the data item n will give us the following inequality:

) =7,

The Lagrangian function L(7%, &, f1) of (12) takes the form:

Vn € D.

Cn(75) = Cp < =V C,y (75 VneD. (23)

N Bpn N

> CulmD) Z e D At
n—=1 Bp T T 1 n=m(N)
where & > 0 and fi, > 0,Vn € {1,2,..., N} are Lagrange
multipliers. Note that since 7& > 0,Vn < m(N), we have
that i, = 0,Vn < m(N). Using the fact that 7, is a non-
trivial KKT point for a given & < Bcypy,(v) and setting the
derivative of Lagrangian function to zero, we have:

2
jnd A~ nrm & o'
) B bnPmryCs Vn € P°

—VC,. (7)) £ ————=—=,
) < T3 Bpare)



~VCo(78) <B*prpm(n)Cs

+ B%cspn(p Pm(N) — Pn),Vn € N — Pe
Apply (23) to each popular dynamic data item n € DNP%:

Beiph )
Carn

= -G /62Cf p 1
Cn(7)—Cr < —
7= T BT

Ca /\n
and apply it to each unpopular dynamic item n € D — P%:

/323? pfn(]\/) +pn(pm(N) - pn)

where the second inequality comes from the fact that
P (Pm(ny = Pn) < 505N

For popular static items n € S, we have 7 = 7% = 0o
according to (8) and (14) respectively. Therefore, we have

C‘n(%d) = C} =0,Vn € SNP2. For unpopular static items
nes”, T, = 0o according to (8) and accordlng to (18) we
have 7& = 0. This gives CF = 0 and C,,(73) = Bpncs

based on the average cost function given in (5). Therefore,

Co(78) = C: = Bppcy, Vn e s°.

Thus, the total average system cost is upper-bounded as:

N
DG = Cll= Y [Culid) = G
n=1 neDNPE
+ Y [Ca@) = Crl+ Y [Culi) — C
neD—P& nese
+ > Cu(F) =Gy
nes?®
B¢t 5 1
< - 4103"(1\/) Z E +50f Z Pn
neD neS—P&
Since [D| = N — [S], then .1, 3= < J\;;“jl Also, for
unpopular static items we have p, < ppy N),Yn e S

Therefore we have that }° _=apn < pim(w) |S”|. Finally,
since we assumed that items are ordered based on their
popularity and p,,(y) is the probability of m(N) most
popular item, s0 p,,(n) < W This gives us:

b PG N-|S] Bl
Cn s 4ca/\mm m?(N)

N
2 () - + Bes
In order to make sure that the upper bound vanishes as NV in-

creases, we need* to have m(N) = min(w(v'N),w(|S])).
This proves (i). To prove (ii), note that m(N) =

m(N)’

4f(n) = w(g(n)) means that for any real constant ¢ > 0, Ing > 1 :
f(n) > cg(n) >0,Yn > ng.

min(w(\/ﬁ),wﬂgd\)) is equivalent to b > min(3,
the convergence rate of the upper bound becomes:

a). Then

N
S Ga(78) — O = CA(N) — C*(N)
n=1
-0 (N_ min(b—a,Zb—l))

which demonstrates the smallest rate of convergence on
the average cost. On the other hand, since m(N) is the
number of most popular items that we choose to cache while
discarding all the other unpopular ones, we can show that:

%&
 BpaTy 189 + Z BDn 0
1+ Bpntd nepa s L+ BpaTy

m(N)

=2

n=1

where Bd(N ) is the average cache occupancy under the
proposed strategy. On the other hand, for the unconstrained
cache system, we have:
N
Bpaty Bpny
= PnTh + BpnTy

= 8% +18%+ Y

neD

Since P¥ — S C D and 7 > 7& > 0,Vn € N, we have
that: . .
Z 1 ﬁPnTﬁi& < Z 1 BnT, .
nepa s LH BT T S 1+ BpaTy

which gives us the lower bound on the average cache saving
as B*(N) — B*(N) > [S"|.

Recall the average cache occupancy defined in (6) and
note that according to (18) for unpopular items we have
78 =0,VYn ¢ PY. Also, according to Theorem 2, for static
popular items we have 7& = 0o, Vn € S®. This gives:

B&(N) _ m(ZN) 5pn7~—7? _ |S&| + Z Bpn%r?
= 14 BpaTl - BpnTs’
where |PY — S| = m(N) — |S%| > 0. Using the solution

given in (14), we have:

Z ﬂpni—g

=G
nePsE-§ L+ Bpnti

nePa—8 \/1 + QCljc)\fn (pn - pm(N))

=m(N) - |87

. (24)

Now, using the fact that:

N
17_C}Z\/1+amz 1+ac’

we can show that the second term in the right side of (24)
is lower-bounded by:

min

{x>0, 3%

y m(N) - |57

o Be 1 Pn—Pm
\/1 + QCT,f  NTENAT 2nePa-§ Xn o

> m(N) - |87 - D,

Ca)\min



where the second inequality comes from the fact that
1 1 Pn—Pm(N) 1

\/.m 2 1-— Eﬁ[; and. Znefp&_s I S Nomim Sub-

stituting the results gives the upper bound on the average

cache occupancy completing part (ii) of the proof.
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