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Abstract

Neighborhood effects have an important role in evacuation decision-making by a family. Owing to peer influence, neigh-
bors evacuating can motivate a family to evacuate. Paradoxically, if a lot of neighbors evacuate, then the likelihood of an
individual or family deciding to evacuate decreases, for fear of crime and looting. Such behavior cannot be captured using
standard models of contagion spread on networks, e.g., threshold, independent cascade, and linear threshold models. Here,
we propose a new threshold-based graph dynamical system model, 2MODE-THRESHOLD, which captures this dichotomy. We
study theoretically the dynamical properties of 2MoDE-THRESHOLD in different networks, and find significant differences from
a standard threshold model. We build and characterize small world networks of Virginia Beach, VA, where nodes are geolo-
cated families (households) in the city and edges are interactions between pairs of families. We demonstrate the utility of our
behavioral model through agent-based simulations on these small world networks. We use it to understand evacuation rates
in this region, and to evaluate the effects of modeling parameters on evacuation decision dynamics. Specifically, we quantify
the effects of (1) network generation parameters, (2) stochasticity in the social network generation process, (3) model types
(2MODE-THRESHOLD Vs. standard threshold models), (4) 2MoDE-THRESHOLD model parameters, (5) and initial conditions, on
computed evacuation rates and their variability. An illustrative example result shows that the absence of looting effect can
overpredict evacuation rates by as much as 50%.

B4 Chris J. Kuhlman 1 Introduction

cjk8gx @virginia.edu

Achla Marathe 1.1 Background

achla@virginia.edu

Anil Vullikanti Extreme weather events displaced seven million people

vsakumar @virginia.edu from their homes just in the first 6 months of 2019 (Sen-

gupta 2019). With the rise in global warming, the frequency
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2017-2018, there were 24 major events. In 2017, there was
a total of 16 weather events that together costed over $306
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billion, according to NOAA. In 2018, there were eight hur-
ricanes, out of which two were category three or higher and
caused more than $50 billion in damages. As of this writing,
the 2020 hurricane season, well underway, is anticipated to
have near-record-breaking counts, with ten total hurricanes
including four major ones (Saunders and Lea, August 2020).
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1.2 Motivation for studying fear of looting
in natural disaster contexts

Timely evacuation is the only action that can reduce risk in
many of these events. Although more people are exposed
to these weather events, technological improvements in
weather prediction, early warning systems, emergency
management, and information sharing through social
media, have helped keep the number of fatalities fairly low.
During Hurricane Fani (Kumar 2019), a record 3.4 mil-
lion people were evacuated in India and Bangladesh and
fewer than 100 fatalities were recorded (Sengupta 2019).
However, in many disaster events, e.g., Hurricane Sandy,
the fraction of people who evacuated has been much lower
than what local governments would like.

The decision to evacuate or not is a very complex one
and depends on a large number of social, demographic,
familial, and psychological factors, including forecasts,
warnings, and risk perceptions (Madireddy et al. 2015;
Yang et al. 2019; Hasan and Ukkusuri 2011; Widener et al.
2013; Halim and Mozumder 2020). Two specific factors
have been shown to have an important effect on evacuation
decisions. First, peer effects, i.e., whether neighbors and
others in the community have evacuated. Up to a point,
this has a positive impact on the evacuation probability of
a household, i.e., as more neighbors evacuate, a household
becomes more likely to evacuate. Second, concerns about
property loss, via looting for example, can counteract the
positive peer effect. That is, when most neighbors are away
and the neighborhood is empty, the remaining households
may decide not to evacuate, fearing property loss via loot-
ing. Therefore, fear of looting has a negative impact on
the probability of evacuation. An important public policy
goal in disaster planning and response is to increase the
evacuation rates in an affected region; so understanding
the interaction between these two effects becomes crucial.

1.3 Concerns over looting: motivation from other
contexts

Fear of looting is an issue of importance in other related
and unrelated contexts, both in the US and abroad. Con-
cern over crime and looting was first documented in public
opinion polls in the US when it ranked second in a listing
of perceived national problems, in 1968 (Erskine 1974).
Looting in the context of civil disturbances is discussed
by Dynes and Quarantelli (1968). In fleeing the on-com-
ing of enemies across national borders, parents may leave
one of their children to guard family property, for fear of
looting (Nguyen 2018). Individual looting of civilians by
government soldiers is studied in Azam (2002). Financial
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looting has also been identified as a driver for unethical, if
not illegal, profiteering by realizing financial gain with the
intention of going broke later at society’s expense (Akerlof
et al. 1993). For these and other reasons, the study of the
effects of looting on human decision-making is of interest.
Here, we study it in the context of natural disasters.

1.4 Summary of results

There is a lot of work on modeling peer effects, e.g., the
spread of diseases, information, fads and other contagions
(Beckman et al. 2011; Chen et al. 2017; Aral and Nicolaides
2017). A number of models have been proposed, such as
independent cascade (Kempe et al. 2003), and different types
of threshold models, e.g., Granovetter (1978), Watts (2002),
and Centola and Macy (2007). These are defined on a net-
work, with each node in state O (representing non-evacua-
tion) or 1 (representing evacuation), and a rule for a node
to change state from O to 1. For instance, in a z-threshold
model, a node switches from state O to state 1 if at leasta
-fraction of its neighbors are in already in state 1. All prior
models only capture the first effect above, i.e., as the num-
ber of affected neighbor increases, a node is more likely to
switch to state 1. Here, we propose a new threshold model,
referred to as 2MODE-THRESHOLD, which inhibits a transition
from state O to 1 if a sufficiently large fraction of a family’s
neighborhood is in state 1. That is, contrary to other mod-
els, 2MODE-THRESHOLD captures the phenomenon that if too
many neighbors are in state 1, then a node will not transition
from O to 1. We demonstrate its use in a large scale study.
Our results are summarized below.

1. Development of the 2MODE-THRESHOLD model (results in
Sect. 2). We introduce and formalize evacuation decision-
making as a graph dynamical system (GDS) (Mortveit and
Reidys 2007; Adiga et al. 2018) using 2MODE-THRESHOLD
functions at nodes. This model follows observations from
surveys which show families are more likely to evacuate
as more of their neighbors evacuate, but only up to a point.
When too many neighbors have evacuated, a family becomes
concerned about looting (crime) and hence is more likely
to not evacuate (i.e., remain behind). This model is akin
to threshold-characterized influence models (Granovet-
ter 1978; Watts 2002; Schelling 2006; Centola and Macy
2007) that have been demonstrated through observations to
capture decision-making, e.g., Centola (2010); Gonzalez-
Bailon et al. (2011); Romero et al. (2011); Centola (2011).
However, the influence only operates up to some fraction of
neighbors which we denote as #,; for fractions of neighbors
> 1., the influence to evacuate is zero.

2. Theoretical results of the 2MODE-THRESHOLD model
(results in Sect. 3). We study the dynamics of 2MODE-THRESH-
oLD in different networks, and show significant differences
from the standard threshold model that has no drop off.
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Specifically, we find that starting at a small set of nodes in
state 1, the diffusion process does not go beyond a constant
fraction of the network. System configurations in which
more nodes are 1’s (e.g., all 1’s vector of node states) are
also fixed points, but our results imply that one cannot reach
such fixed points with lots of 1’s from most initial configura-
tions that have a small number of 1’s.

3. Social network representations of Virginia Beach, VA
(results in Sect. 4). We build a family of social networks to
represent Virginia Beach, Virginia, that is on the Eastern
Seaboard of Virginia and was impacted by Hurricane Sandy
in 2012. This region has a population of over 450,000, and
households are geographically situated based on land-use
data, with real geo-locations that invoke the concepts of
neighbors and long range connections. Nodes in the social
networks are families, and these do not change across social
network instances. Rather, the edges between families, rep-
resenting two forms of social influence, change. We add
edges between households based on the Kleinberg small
world (KSW) model (Kleinberg 1999). There are short-
range and long-range directed edges, where the former is
characterized by a short range distance d in which each pair
of families whose homes are with this distance are joined
by an edge. The number g of long-range edges is specified,
and these edges can form between two nodes at any distance
> d,,. We build networks using three values of d; and five
values of q.

We characterize the networks structurally, and find the
following. (1) Networks with no long-range edges never
contain giant components; the largest components are about
0.35 fraction of the nodes in the entire network. (2) It is
only with long-range edges that these smaller components
are linked up to form giant components that encompass the
entire network. The giant components appear for the least
nonzero g value of 2. (3) The strongly and weakly connected
components are essentially the same size and composition,
even when g > 0. (The long-range edges are directional.)
(4) The maximum in-degree of networks does not change
as the short-range distance d, increases from 40 m to 60 m,
indicating that the maximum density of homes in geographic
regions do not change much when the short-range distance
is changed in this range. Maximum degree increases sig-
nificantly when d, increases to 100 m. Some causes of
evacuation response behaviors are related to these structural
properties.

4. Agent-based modeling and simulation (results in
Sect. 5). We develop an agent-based model and simulation
(ABMS) of the 2moDE-THRESHOLD model on realistic small
world networks of Virginia Beach, VA. Our ABM enables us
to capture heterogeneities in the modeling of the evacuation
decision-making process. This includes not only heteroge-
neities in families, but also differences in (local) neighbor-
hoods of families as represented in social networks. We use

it to understand the evacuation rates in this region, and eval-
uate the effects of different initial conditions (e.g., number of
seeds) [seeds are families who are the first ones to evacuate]
on evacuation decision dynamics. A selection of results fol-
low. (1) The variability of evacuation results (in terms of the
fraction of the population that evacuates) is small across 100
seed sets. (2) The variability in evacuation rates across five
network instances for a fixed pair (d, q) is small. (3) The
effects of looting—quantified by 2MODE-THRESHOLD model—
can reduce evacuation rates by 50% compared to the classic
Granovetter-type threshold influence model (Granovetter
1978; Watts 2002; Schelling 2006; Centola and Macy 2007).
(4) The effects of network structure can be large. For exam-
ple, as d; increases from 0.04 km to 0.10 km, evacuation
rates can increase by 2 to 10 times. Even greater changes
in the fraction of evacuating families can be observed as
q increases from 0 to 16. (5) The parameters p, ., and #,
of the 2MoDE-THRESHOLD model can produce changes in the
fraction of evacuating families up to 0.38. (See Fig. 1: p, .«
is the nonzero probability of a family evacuating.) (6) These
two parameters, p, ..« and 7, also combine with network
structure to produce interesting effects, when node degrees
are large. First, as p, .., increases, the rate of increase in the
final fraction of evacuating families can decrease. Second,
as P, max iNCreases, the magnitude of the final fraction of
evacuating families can decrease.

1.5 Novelty and implications
Models of type 2MODE-THRESHOLD have not been studied

before. Our ABM approach can help (1) understand how
planners and managers can more effectively convince
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(a) 2MODE-THRESHOLD model (b) rP-THRESHOLD model

Fig. 1 Dynamics models—probability of evacuation curve—for prob-
ability p, of evacuation for a family versus the fraction #, of its neigh-
bors in state 1 (i.e., evacuating). a The 2MODE-THRESHOLD model: the
evacuation probability is p, =0 for #, = #,,;, =0 and for n, > 7.
The maximum probability is p, = p, . in the interval (7,,,7.]. b
The rp-THRESHOLD model: this curve is similar to the previous curve,
except that p, = p, .x for n; > 1. This is a special case of 2MODE-
THRESHOLD, but is a variation of the regular probabilistic threshold
model (Watts 2002; Centola and Macy 2007). As an illustration, if an
agent has 50% of its neighbors in state 1, then the model in a shows
that p, = 0, while b shows that p, = p, . > 0. An example with
values for these parameters is given in the text
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families that are in harms way to evacuate; (2) understand
the effects of families’ social networks on evacuation deci-
sions (Widener et al. 2013; Ferris et al. 2016; Yang et al.
2019); and (3) establish downstream conditions after the
evacuation decision has been made, to support additional
types of analyses. For example, the results from these stud-
ies can be used to forecast traffic congestion (spatially and
temporally) during the exodus (Madireddy et al. 2015), and
to determine places where shelters and triage centers should
be established. We put our work in the context of previous
works in Related Work, Sect. 6.

1.6 Extensions from preliminary version

A preliminary version of this paper appears in (Halim et al.
2020). The contents of that paper are extended in the follow-
ing ways. (1) The number of types of networks (character-
ized by (d,, g) pairs) is 3X that in the preliminary version.
(2) Structural properties of these Virginia Beach, VA net-
works are presented and contrasted. (3) Many more simu-
lation parameters have been considered and analyzed. (4)
A more thorough analysis of the parameter values is done.
Accordingly, the number of simulations has increased by
over 300%, and the number of results shown in plots has
increased threefold.

1.7 Paper organization

The graph dynamical systems (GDS) framework and the
2MODE-THRESHOLD model are presented in Sect. 2. Theoretical
results are provided in Sect. 3. Social network construction
and networks are described and characterized in Sect. 4. Sec-
tion 5 describes the simulation process and presents simula-
tion results. Section 6 provides related work, and conclu-
sions are in Sect. 7.

2 Evacuation decision-making model
2.1 Motivation from social science

Our model is motivated by the analysis of a survey in the
counties affected by Hurricane Sandy in the northeastern
USA by Halim and Mozumder (2020) which is briefly sum-
marized here. The goal of this survey was to assess factors
driving evacuation decisions (Meng and Mozumder 2020).
The survey had a response rate of 61.93%, with over 1200
responses. A Binomial Logit model was applied to the sur-
vey data and tested for the factors associated with house-
holds’ evacuation behaviors (Halim and Mozumder 2020).
The results indicate that a respondent’s employment status,
consideration of neighbors’ evacuation behavior, concerns
about neighborhood criminal activities or looting, access to

@ Springer

the internet in the household, age, and having flood insur-
ance, each plays a significant role in a respondent’s decision
to evacuate during Hurricane Sandy. Noteworthy was the
influence of neighbors’ evacuation behaviors, and concerns
about looting and criminal behavior. Neighbors’ evacuations
had a statistically significant and positive effect on evacu-
ation probability but concerns about criminal and looting
behavior had a significant negative effect—implying that if
too many neighbors left, then the remaining households are
less likely to evacuate.

2.2 A graph dynamical systems framework

A graph dynamical system (GDS) (Mortveit and Reidys
2007; Adiga et al. 2018) is a mathematical abstraction that
is used to build quantitative models of human behavior.
These models can be used in agent-based modeling (ABM)
approaches. We use it here to develop a model of evacuation
behavior, motivated by the survey analysis described above.
A GDS S describes the evolution of the states of a set of
agents. Let x* € {0, 1}" denote the vector of agent states
at time ¢, with x! = 1indicating that agent v has evacuated.
x! = 0 means that agent v has not evacuated at time . A GDS
S consists of two components: (1) an interaction network
G = (V, E), where V represents the set of agents (in our case,
the households which are deciding whether or not to evacu-
ate), and E represents a set of edges, with e = {u,v} € E
if agents u and v can influence each other; and (2) a set
F={f, : v € V}oflocal functions f, : {0,1}%" — (0,1}
for each node v € V, which determines the state of node v in
terms of the states of N(v), the set of neighbors of v. Given
a vector x* describing the states of all agents at time ¢, the
vector x'*1 at the next time is obtained by updating x’;rl using
its local function f,(-). We say that a state vector x' is a fixed
point of S if the node states do not change, i.e., x'*! = x.
2.2.1 The 2mope-THrResHoLD local functions: modeling
evacuation behavior

The 2moDE-THRESHOLD function f,(-) will be probabilistic,
and will depend on the probability of evacuation, in order
to capture the qualitative aspects of the results of Halim and
Mozumder (2020). This is shown in Fig. 1a and specifies the
probability of evacuation p, for agent v; as a function of the
fraction #; of neighbors of v; in state 1. We have p, = p, .«
for n, € (yin» 1), and p, = 0 for n, € [0, ] and 17, > 7.
In this paper, we primarily focus on #,,;, = 0. Specifically,
this captures the following effects: (1) peer (neighbor) influ-
ence can cause families to evacuate and (2) if too many of
a family’s neighbors evacuate, there are not enough neigh-
bors remaining behind to dissuade potential looters, so a
family reduces its probability of evacuation. The first effect

makes p, = P nax fOr 7 > 0, and the second effect results
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in p, dropping to zero at 57; = 7. Note that the special case
where p, = p, . forn; > 1., = 01is a probabilistic variant
of the #,,,;,-threshold function (e.g., Centola and Macy 2007);
we will sometimes refer to this as the “regular probabilistic
threshold” model, and denote it by Rp-THRESHOLD. This model
is shown in Fig. 1b. These are models that can be assigned
to any agent; in GDS, an agent is a node that resides in a
networked population.

2.2.2 Network models

We present the details of the network construction process
in Sect. 4.1. We summarize the notation of a social network
here. The contact network G = (V, E) is the other component
of a GDS S. A node v; € V, represents a family, or a house-
hold. Edges represent interaction channels, for communica-
tion and observations. Edges are directed: a directed edge
(vj, v;) € E, with v;, v, € V, means that family v influences
family v;.

2.3 Example of GDS

Figure 1a shows an example of the 2MODE-THRESHOLD model
with the parameters p, ., = 0.2, and 5. = 0.4. Figure 1b
shows a Rp-THRESHOLD model. The purpose of this example
is to illustrate the dynamics of these models on a network
of five agents. In Fig. 2, x" is the initial configuration with
node 1 evacuated (in state 1, shaded), and nodes 2, 3, 4,
and 5 not evacuated (in state 0, not shaded). Nodes 2 and
3 have n, = 1/3 <5, = 0.4, and so for both of them, the
evacuation probability is p, = 0.2. Nodes 4 and 5 have
n; =0, so p. = 0 for them. Therefore, the probability that
the state vector is x! at the next time step (see Fig. 2) is
Pemax(] = Pemax) = 0.2-0.8 =0.16, since only node 2
switches to 1. With respect to the configuration x!, nodes
3,4, and 5 have ;, = %, 1 and 0, respectively. Therefore,

Fig.2 An example showing the transitions in a S on a graph with
five nodes, and 2MoDE-THRESHOLD local functions, with param-
eters pe max = 0.2 and 7, = 0.4. The figure shows a transition of the
dynamics model from configuration x® to x!, with shaded nodes
indicating evacuation. The x — x! transition occurs with probabil-
ity Pemax(l = Pemax) = 0.16. For the above parameters, x! is a fixed
point, and the node states do not change. However, if we had n, =1
(i.e., this is a regular probabilistic threshold), x! is not a fixed point,
and there can be a transition to configuration x?> with probability

pg max = 0.04 (indicated as a dashed arrow)

p. = 0 for all these nodes, and x! is a fixed point of the
S with the 2MopE-THRESHOLD functions. However, for the
regular probabilistic threshold model, RP-THRESHOLD, with
Nmin < 0.3, x!is not a fixed point, since nodes 3 and 4 both
have p, = p, n.x probability of transitioning (since they have
N > Myi)- Therefore, in the regular probabilistic threshold
model, Rp-THRESHOLD, x! — x2 transition occurs with prob-
ability p? = 0.04.

e,max

2.4 Problems of interest

We will refer to a GDS system S,,, = (G, F) in which the
local functions are 2MODE-THRESHOLD functions as a 2MODE-
THRESHOLD-GDS. Our objective in this paper is to study the
following problems on a S,,, system:

(1) How do the dynamical properties of 2MODE-THRESHOLD
GDS systems differ from those of S with RP-THRESHOLD
model functions? Do they have fixed points, and what
are their characteristics?

(2) How do the number of 1’s in the fixed point depend
on the initial conditions, and the model parameters,
namely p, ..« and 7.,? How can this be maximized?

We provide solutions to these problems next.

3 Analyzing dynamical properties
in different network models

It can be shown that any S,,, converges to a fixed point in
at most 11/p, .y Steps. Sy, systems have significantly lesser
levels of diffusion (i.e., number of nodes ending up in state
1), compared to the RP-THRESHOLD model, as we discuss
below.

Lemma 1 Consider a S,,, with G = K, being a complete
graph on n nodes. Starting at a configuration x° with a single
node in state 1, S,,, converges to a fixed point with at most
(Pe.max T+ 1 )n nodes in state 1, in expectation. In contrast, in
a regular probabilistic threshold system on K, with n,;, = 0,
the system converges to the all 1’s vector x* as a fixed point.

Proof Consider the 2MoDE-THRESHOLD model and a state
vector x* with k nodes in state 1. Consider any node v with
x!, = 0.Ifk < .n, then, Pr[ node v switches to 1 ] = p, .-
Therefore, the expected number of nodes which switch to
118 pemax(® — k) < npe ax- If k> nen, for every node in
state 0, the probability of switching to 1 is p, = 0. There-
fore, the expected number of 1’s in a fixed point is at most
NPe max + 1. On the other hand, in a regular probabilistic
threshold model rRP-THRESHOLD, the system does not converge

@ Springer
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until each node in state 0 switches to 1 (since p, = p, .« for
alln, > 0). O

We observe below that starting at an initial configuration
with a single node in state 1, S,,, converges to a fixed point
with at most a constant fraction of nodes in state 1. Note,
however, that configurations x* with more than that many
nodes in state 1, e.g., the all 1’s vector, are also fixed points.
The result below implies that those fixed points will not be
reached from an initial configuration with a few 1’s.

Lemma 2 Consider a S,, on a G(n, p) graph with
pr]C > 662 2% for any e € (0, 1). Starting at a configuration
x® with a single node in state 1, S,,, converges to a fixed
point with at most (1 + 2€)(1, + pe max )1t n0des in state 1, in
expectation. In contrast, in a regular probabilistic threshold
system on K, with n,;, = 0, the system converges to the all

1’s vector as a fixed point.

Proof (Sketch) Let deg(v) denote the degree of v.
For a subset S, let degq(v) denote the degree of v with
respect to S, i.e., the number of neighbors of v in S. For
any node v, we have E[deg(v)] = np. By the Chernoff
bound (Dubhashi and Panconesi 2009), it follows that
Pr[deg(v) > (1 +€)np] <e w3 <1/n*. Consider a
set S of size 1_’7c” For v & S, E[degs(v) |S|p, and
so  Prldegs(v) < (1 —¢)|S|pl < e <BIP/2 < 1/n2 . For
|S| > imn we have (1 —¢€)|S|p > (1 + e)n.np. Putting
these together, with probability at least 1 — 2/n, we have
deg(v) < (1 + €)np and degs(v) = (1 + e)n.np = n.deg(v),
for all nodes v. Therefore, if S,,, reaches a configuration
with nodes in set S of size %ncn < (1 + 2e)n.n, with prob-
ability 1 —2/n, S is a fixed [g)oint. With probability < 2/n,
S is not a fixed point, and the process converges to a fixed
point with at most n 1’s, so that the expected number of
I’s in the fixed point is at most |S| +2 < (1 + 2¢)y,n. On
the other hand, consider the last configuration S’ which
has size |S’| < (1 + 2e)n.n. Then, in expectation, at most
Pemax/? @dditional nodes switch to state 1, after which point,
the configuration has more than (1 + €)5.n 1’s. Therefore,
the expected number of 1’s in the fixed point is at most

(1 +2€)(1, + Pemax )71 O
4 Social networks

4.1 Network construction and semantics

We describe the models for the contact network G = (V, E),
which is another component of a GDS S. A node v; € V rep-
resents a family, or a household. Edges represent interaction

channels, for communication and observations. Edges are
directed: a directed edge (vj, v;) € E, withv;, v, € V, means
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that family v; influences family v;. We use the synthetic popu-
lation model developed in Barrett et al. (2009) for represent-
ing the set V of households.

The synthetic population of Virginia Beach VA, is a set of
individuals each endowed with demographic variables drawn
from the US census. Each synthetic individual is placed in
a household with other individuals and each household is
located geographically in such a way that if it is aggregated
to a block group level, a census of this synthetic population
will yield results that are statistically indistinguishable from
the original census data.

In particular, the locations of all households (family resi-
dences) are determined, which result in longitude, latitude
(i.e., lon, lat) coordinates for each household. These are used
to compute distances between family residences.

Figure 3 summarizes the process of producing a
social network on the families of a city. Edges are speci-
fied using the Kleinberg small world (KSW) network
approach (Kleinberg 1999), and there are two types of
edges: short range and long range. Short-range edges
(v}, v;) represent either (1) a family v; speaks with (is influ-
enced by) another family v; in the neighborhood about
evacuation decisions, or (2) a family v; observes v; ’s home
and infers whether or not a family v; has evacuated. A
long-range edge represents a member of one family v,
interacting with another family far away who is a relative
or friend or colleague at work v;. Each edge has a label
of distance between homes, using (lon, lat) coordinates
of each home. Thus, the KSW model has the following
parameters: the node set V and their attributes, the short-
range distance d, over which short-range edges are placed

. Q
Population Network [}
. Ego Network ®
Nodes are families \

Short-
range

Ego family edges C ¥ Ego famil

in yellow.

Direction of
influence; brown
and green nodes
influence yellow ego
node.

Fig.3 (Left) Depiction of a toy population network with families
represented as nodes and edges representing possible interactions.
(Right) Focus on the yellow ego node and the edges for families that
influence it. The nodes are the same as those on the left plot. Ego
node (in yellow) and edges formed using the KSW process. Short-
range edges (blue) are formed with the ego family by identifying all
families (brown) within short-range distance d; of the ego family. A
number g of long-range edges (magenta) are selected at random from
all families (green) located at distance greater than d, from the ego
family. (In this figure, g = 2.) All edges are directed to the ego family,
i.e., all brown and green nodes with edges to the ego node influence
the ego node. All (lon,lat) coordinate locations are for family house-
holds (Color figure online)
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between nodes, and the number g of long range edges inci-
dent on each node v;. For each node v;, (1) short-range
edges (vj, v;) are constructed, where d(vj,vl-) <d; and
(2) g long-range edges (v;, v;) are placed at random, with
probability proportional to 1/d(v;,v;)*, for a parameter a.
Note that for each short-range edge (vj, v;), there is a cor-
responding edge (v;, v;). See Kleinberg (1999) for details.
Semantics of edges, for our application, are provided in
Fig. 4.

4.2 Networks

Table 1 provides the social networks (and selected proper-
ties) that are used in simulations of evacuation decision
making. The network model of Sect. 4.1 was used to gen-
erate KSW networks for Virginia Beach, VA. Inputs for
the model were n = 113967 families forming the node set
V, with (lat, long) coordinates; d. = 40, 60, and 100 m;
a = 2.5 (see Kleinberg 1999); and ¢ = 0 to 16. Five graph

Short-range edges Long-range edges
@—0O @——O

[ ) [ )
observe ORBO® OO
famm Moo ai

instances were generated for each (d, q) combination.
Network properties are discussed in the next subsection.

4.3 Structural properties

Structural analyses were performed with SNAP (Lesko-
vec and Sosi¢ 2016) and NetworkX (Hagberg et al. 2008)
through the codes in the net.science cyberinfrastructure
(Ahmed et al. 2020).

4.3.1 Number of graph edges as a function of d,, and q

Figure 5 shows the number of edges in graphs, as a func-
tion of graph structure. This structure is given by the short-
range distance d. and the deterministic edges that result, and
the number ¢ of stochastic long-range edges. (Stochasticity
comes in the from of what nodes v, form g long-ranges edges
(v, v;) with node v;.) From the graph generation description
above the number of edges will be linear in g, as shown. The
data at ¢ = 0 shows the effect of d,; a nonlinear effect of d_,
on the number of edges.

4.3.2 In-degree and out-degree distributions

Figure 6 shows the in-degree distributions for the different
classes of networks. The plots, left to right, are for d. values

[ )
talk .*. Fig.5 Count of edges in each =7
mm type class of network, where S 6
each class is given by the pair ]
(dg, ). Number of edges is in >4
Fig.4 Semantics of edges into yellow ego node, from Fig. 3. (Left) millions g3 _ /k‘
Short-range edges can mean that the ego family observes neighbor- IS 2 /: gz:; 8:82 km
ing families’ evacuation statuses, or talks to neighbors. (Right) Long- 2 (1) dsr=0.10 km
range edges represent friends, relatives, or coworkers who live far 0 4 8 12 16
away from the ego family Num LR Edges g
Table 1 Kleinberg sma}l] world Network class Distance for Num Avg. in-deg. (= avg. out-deg.) Max. in-deg. Max. out-deg.
(KSW) networks used in our h
i : X short-range LR
experiments and their properties edges, (m) edges
KSWO0 40, 60, 100 0 10.11, 18.56, 41.98 380, 380, 432 380, 380, 432
KSw2 40, 60, 100 2 11.70, 20.34, 43.86 382,382,434 381, 383, 438
KSw4 40, 60, 100 4 13.70, 22.34, 45.86 384,384,436 381, 383, 445
KSWS8 40, 60, 100 8 17.70, 26.34, 49.86 388, 388, 440 382, 383, 449
KSW16 40, 60, 100 16 25.70, 34.34, 57.86 396, 396, 448 383, 384, 469

The number n of nodes is 113,967 for all graphs. The short-range distance d

«» over which short-range

edges are constructed with probability of 1.0, ranges from 40 meters to 100 meters. The exponent « = 2.5
is for computing the probabilities of selecting nodes with which to form long-range edges with each node
v; € V. Column “Num LR Edges”, i.e., (¢) means number of long-range edges incoming to each node
v;; the edges are chosen randomly. There are five graph instances for every (d,;, ¢) combination. Average
degree is d,,, and maximum degree is d,,,,, for in-degree and out-degree. There are three values for each
degree heading, one corresponding to each of the three values of d, in the second column. For example,
for KSW2 (where g = 2), and d, = 40, 60, and 100 m, the average degrees in the graphs are, respectively,
11.70, 20.34, and 43.86
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Fig.6 In-degree distributions for the classes of networks. Distri-

butions for all (d,g) combinations are provided. a d = 0.04 km

networks, instance 0. b d, =0.06 km networks, instance O.
¢ dg, = 0.10 km networks, instance 0. The degree distributions for the

of 0.04 km, 0.06 km, and 0.10 km. In each plot are degree
distributions for g values of O through 16, in powers of 2.
Figure 7 shows the respective out-degree distributions for
the different classes of networks.

Essentially, in-degree distributions, per (d.q), take
the same form, but shift to the right in Fig. 6 because as g
increases, the in-degree of each node v; increases: ¢ is the
number of long-range edges added per v; (the directed edge
is oriented in to v;), to the graph of short-range edges. The
out-degree distributions in Fig. 7 also shift to the right as g
increases in each plot, but there are now small numbers of
nodes with small degrees because tail nodes are selected ran-
domly for each head node, for long-range edges. (A directed
edge (v;, v;) is the edge from v; to v;, where v; is the tail node
and v; is the head node.)

It is interesting that the maximum in-degrees for
d,, = 40 m are the same as those for d,, = 60 m in Table 1.
This is due to the “isolation” of a dense region that does
not reach other nodes as d,, increases in this range. (The
average degree does increase for d, = 60 m, and one can
see this increase in the entire degree distribution, except for
the maximum degree. For example, the number of nodes
with the maximum degree increases.) However, when d_,
increases further to 100 m, the maximum in-degree increases
substantially.

(b) dsr = 0.06 km, all ¢

(¢) dsr = 0.1 km, all ¢

other instances are very close to these; for the case g = 0, the degree
distributions are identical because these graphs have determinstically-
placed edges. The same 113,967 nodes, representing families, com-
prise the node set of each graph

The average in-degree and out-degree values are in the
fourth column of Table 1 for, respectively, d, = 0.04, 0.06,
and 0.1 km. The set of three values in successive rows are
for increasing g values (Num LR Edges). Note that these
average degrees increase by the increase in ¢ in going from
one row to the next, except for the case in going fromg =0
to g = 2. When g = 0, some nodes are isolated and therefore
are not considered in the structural properties. When g > 0,
all nodes form edges because of the way long-range edges
are constructed.

4.3.3 Strongly and weakly connected components
in graphs

Graphs are broken into two groups, depending on their sizes
of weakly connected components (WCCs). The first group is
those networks where g = 0 for all d,, values: these graphs
do not form a single component, or even a giant compo-
nent. The largest component is 0.35 fraction of nodes for
d,, = 0.10 km (defining a giant component to be at least one-
half of nodes). The second group of networks is g > 2 for all
d, where all nodes (or for d, = 0.04 km, almost all nodes)
are in one component. See Table 2.

As the Table 2 caption indicates, the strongly connected

components (SCCs) are of comparable sizes to the WCC

10° 10° 10°
] e« q=0 4] eq=0 ] eq=0
-8104 e q=2 -8104' e q=2 103104 e q=2
Z. .3 0 q=4 Z . e E o q=4 Z. .3 0q=4
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g 10! ¢ £10% ,° H £10!
> $ =] . =]
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In-Degree
(a) ds, = 0.04 km, all ¢

Fig.7 Out-degree distributions for the classes of networks. Distri-
butions for all (d,q) combinations are provided. a dg, = 0.04 km
networks, instance 0. b d, =0.06 km networks, instance O.
¢ d, = 0.10 km networks, instance 0. The degree distributions for the
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other instances are very close to these; for the case ¢ = 0, the degree
distributions are identical because these graphs have deterministi-
cally-placed edges. The 113,967 families, comprise the node set of
each graph
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Table 2 Sizes of weakly connected components (WCCs) and strongly
connected components (SCCs) for the Kleinberg small world (KSW)
networks

d, (km) q Size (fraction of nodes) of
Largest connected compo-
nent

0.04 0 381 (0.0035)

0.04 qg=2 113,955 (> 0.99)

0.04 q=4 113,967 (1.0)

0.06 0 6146 (0.055)

0.06 q=2 113,967 (1.0)

0.10 0 39,287 (0.35)

0.10 q=2 113,967 (1.0)

The table values are for the WCCs. The largest SCCS are of approxi-
mately the same size; the differences, if any, are on the order of 1% to
2% at most

sizes. The component sizes for g = 0 are identical to the
WCC sizes because the short-range edges are bidirectional.
For g > 2, the SCC sizes are within a percent or two of the
WCC sizes.

Hence, the long-range edges are accomplishing what
they are designed to do in the Kleinberg network generation
process: they provide non-local edges, that in these cases,
connect otherwise disparate components. This is important
because these longer-range edges enable the evacuation con-
tagion, in the simulations in Sect. 5, to spread throughout
the graphs.

5 Agent-based simulations and results
5.1 Simulation process

Inputs to a simulation are a social network (Sect. 4), a set
of local functions that quantifies the evacuation decision
making process of each node v; € V (see Sect. 2), and a
set of seed nodes whose state is 1 (i.e., these nodes are set
to “evacuate” at the start of a simulation at time ¢ = 0). All
other nodes at time ¢ = 0 are in state O (the non-evacuating
state). We vary a number of input parameters across simu-
lations. Each simulation instance or run consists of a par-
ticular set of seed nodes at ¢t = 0, and time is incremented in
discrete timesteps, from ¢t = 0 to ¢,,,,. Here, #,,,,, = 10 days,
to model the ten days leading up to hurricane arrival. Hur-
ricane arrival is day 10. At each timestep, nodes that are in
state 0 may change to state 1, per the models in Sect. 2. At
eachl <t <1, the state of the system at time 7 — 1 is used
to compute the next state of each v; € V (corresponding to
time ) synchronously; that is, all nodes (families) v; update

their states in parallel at each 7. A simulation consists of 100

runs, where each run has a different seed set. The network
and dynamics model are fixed in a simulation across runs.

Since each social network has the same node IDs (that
represent families), we use the same seed collection for a
specified number n, of seed nodes. Since there are 100 runs
per simulation, there are 100 seed sets within one seed col-
lection. Thus, as an example, a simulation with a graph such
that d, = 0.06 km and g = 4 uses the same 100 seeds sets as
a simulation on a graph with d;, = 0.1km and g = 16, for a
specified value of n . This eliminates variability in seed sets
when assessing effects of graph structure.

The results below are plotted in groups of simulations.
That is, each plot typically contains results for many simu-
lations. The results from the 100 runs of a simulation are
typically averaged, and error bars on results (indicating one
standard deviation) are also commonly provided.

5.2 Simulation parameters studied

The input parameters varied across simulations are provided
in Table 3. The results in subsequent subsections investigate
the effects of these variables on the (population-level) frac-
tion of families that evacuate, designated by “Frac. Evac.”
We study and present results for all of the parameter values.

5.3 Simulation results

We note that in the results that follow, the y-axis value ranges
can change across figures. This is because the 2MODE-THRESH-
oLD model and the RP-THRESHOLD model can give widely dif-
ferent results, and depending upon the parameter values,
the results can vary greatly with-in a model too. Therefore,
y-axis ranges are one of 0 to 0.1, 0 to 0.4, or O to 1.0.

The results are broken down by types of results in Table 4.
Subsections of this manuscript containing the results are
given. First, fraction of families that evacuate owing to a
simple uniform mixing model are given, to contrast with the
ABS results in all other subsections. The basic ABS results
are then given, showing time histories of how the fraction
of evacuating families increases with time. Next, since our
social networks are particular instances of families of net-
works, for a fixed d, and ¢, the effects of the graph structure
of particular graph instances, for fixed d,, and ¢, on evacu-
ation predictions are given. The next subsection contrasts
the looting model of this work, the 2MODE-THRESHOLD model,
with the more classic contagion model, referred to herein
as the rRp-THRESHOLD model, that does not consider looting
effects. All subsequent subsections of the results focus on the
2MODE-THRESHOLD model, and we study, in turn, the effects
of network structure (as specified by d,. and g), of model
parameters (through p, ... and 7.), and of initial conditions.
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Table 3 Description of the parameters and their values used in the simulations

Parameter

Description

Networks d;, g

Network instances
Num. random seeds, n,
Threshold model
Threshold range, 1,

Maximum probability,
P e,max"
Simulation duration ¢

max*

Networks in Table 1. We vary the number g of long-range incoming edges per node, per the table, from 0 to 16.
The short-range distance d, takes values 0.04 km, 0.06 km, and 0.10 km

There are five network instances for each network, labeled O to 4
Number of seed nodes specified per run (chosen uniformly at random). Values are 50, 100, 200, 300, 400, and 500
The 2mopE-THRESHOLD model of Fig. 1a and the rRp-THRESHOLD (i.e., classic) threshold model of Fig. 1b, in Sect. 2

The range in relative degree over which nodes can change to state 1. Discrete values are 0.1, 0.2, 0.4, 0.5, 0.6, 0.8,
and 1.0. Note that n, = 1 corresponds to the classic stochastic threshold re-THRESHOLD model (Fig. 1b), whereas
values of 7, < 1correspond to the 2MODE-THRESHOLD model (Fig. 1a)

The maximum daily probability of evacuation p, . of Fig. 1. Discrete values are 0.01 to 0.07 in 0.01 increments;
0.10, 0.15, 0.20, and 0.25.

The duration of all simulations is the 10 days leading up to hurricane impact. Day 10 is hurricane impact.

Num. of simulation runs

100 runs per each combination of variables, where, given a particular number n  of seed nodes, there are 100

different sets of seed nodes, all of size n,. This collection of 100 seed sets is the same for all runs where this 7
is specified. For example, it is the same for the two cases: (d;, ) = (0.04 km ,4) and (d;,g) = (0.1 km, 16),
when the specified number of seed nodes is n,.

Table 4 Results are grouped into the following subsections

Section  Type of results Description
of results
5.3.1 Uniform mixing results ~ Simple results for contagion spreading of evacuation for a uniform mixing population, to contrast with the

ABS results

532 Basic results Curves showing basic trends in the dynamics of families evacuating

533 Network variability The results showing that computed spread fractions do not vary significantly across graph instances for a
fixed d, and g

534 Model differences Highlight fundamental differences between the 2MoDE-THRESHOLD model and the rRP-THRESHOLD model of
Fig. 1. Also studies the transition between these two models with 7,

5.3.5 Network structure The results showing that computed spread fractions vary significantly for varying d,, and g

5.3.6 Model parameters Shows the effects of model parameter values for p,, .., in the 2MODE-THRESHOLD model

5.3.7 Model parameters plus ~ Shows counter-intuitive effects in evacuation rates. Increases in p, ,,, can lower evacuation rates in the

network structure 2MODE-THRESHOLD model

5.3.8 Initial conditions

Shows the effects of number of seed nodes ng in the 2MODE-THRESHOLD model

5.3.1 Results of a uniformly mixing population

Daily evacuation probability values for a family—p, .., in
Table 3—for both the 2MoDE-THRESHOLD model (Fig. 1a) and
the rRp-THRESHOLD model (Fig. 1b), are converted to evacua-
tion probability at any time over a ten-day period in Table 5.
The fraction of a population that evacuates in the face of
a hurricane can reach 50% or more (Hasan and Ukkusuri
2011; Widener et al. 2013; Yang et al. 2019). The values in
this table do not account for evacuation-dampening effects
like the fear of looting addressed in this work. Doing so, as
we will see in the results below, produces population-level
evacuation fractions below 50%, and often less than 1/2 of
the evacuation rates of the RP-THRESHOLD model. Hence, we
examine individual probability values p, .., of greater value,
and because of the 2MODE-THRESHOLD model, evacuation rates
are not excessive.
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Table 5 Family-level

probability of evacuation at any time

over the ten days prior to hurricane landfall, as a function of
family-based daily probability of evacuation, according to

P10days = 1-Q _pdaily)tm‘“

Daily probability pgy,

Probability of evacua-
tion any time over 10
days

0.01 0.0956
0.02 0.183
0.03 0.263
0.04 0.335
0.05 0.401
0.06 0.461
0.07 0.516
0.08 0.566
0.09 0.611
0.10 0.651
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5.3.2 Basic agent-based simulation results

Figure 8 provides average fraction of evacuating families
(Frac. Evac.) as a function of time in days. Time moves
left to right in each plot, starting ten days before hurricane
landfall and ending with hurricane landfall on the tenth day
(day 10). The two plots in the upper row are fractions of
families deciding to evacuate on the specified day, i.e., these
are instantaneous fractions of new evacuating families. The
two plots in the lower row are the corresponding plots for
the cumulative fraction of families evacuating. We use the
2MODE-THRESHOLD model with p, ... = 0.15and 5, = 0.2 (see
Fig. 1a). The two plots in the left column differ from those
in the right column in the number ¢ of long-range edges in
the graphs: on the left, there are ¢ = 4 long-range incoming
edges per node and on the right, there are ¢ = 16 long-range
incoming edges per node. Each plot contains six curves, for
different numbers of seed nodes (nodes [families] deciding
to evacuate at time ¢ = 0), ranging from 50 to 500. As num-
ber n, of random seeds increases, the curves shift left for the
fractions of new families evacuating, in the top row of plots,
meaning that more families are evacuating earlier. Accord-
ingly, in the bottom row of plots, at each day, the cumulative

L 0.10/ 5 .0.10
£ 0.08/~n:=100 2 o0.08
o= n, =200 g
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Fig.8 Simulation results of the fraction of families deciding to evac-
uate (Frac. Evac.) as a function of time leading up to the hurricane
arrival. We are always modeling the 10 days leading up to the arrival
of a hurricane. Day 10 is the arrival of the hurricane; time zero is
the start of the simulation—ten days prior to hurricane landfall. The
network here is instance O of the a and ¢ KSW4 network class (g = 4)
and d, =40 m, and b and d KSW16 network class (¢ = 16) and
d,, =40 m. The model is 2MODE-THRESHOLDWith p, ... = 0.15. The
two plots in the top row are the fractions of newly evacuating fami-
lies at each day. The two plots in the bottom row are the cumulative
fractions of evacuating families up to, and including, that day. The
two plots in the top row have different y-axis ranges than the plots in
the bottom row. Error bars denoting one standard deviation from the
means are plotted each integer unit time, but are very small

fractions f;, of families evacuating increases as n, increases.
Also, the fractions of evacuating families increases as the
number g of long-range edges increases.

Error bars indicate one standard deviation in results
across 100 runs (i.e., simulation instances). The standard
deviation is very small (the bars are difficult to see in the
plots). Based on the very small variances in these and other
plots, we say no more about the variance in outputs across
the 100 runs comprising a simulation. Also, because we are
interested in the cumulative fraction of families evacuat-
ing, we will focus on these plots, rather than the fraction of
instantaneously (or newly) evacuating families.

5.3.3 Variability of results across graph instances

Figure 9 provides a series of plots that show the final frac-
tion of families evacuating (Final Frac. Evac.) for five graph
instances (different graph instances) in each plot. The goal
is to determine the variability in computed evacuation frac-
tions across graph instances for the same nominal graph
construction values. Specifically, as described in Sect. 4, a
graph instance is specified by the short-range distance d,,
and the number g of long-range incoming edges per node.
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Fig.9 Simulation results of the fraction of families deciding to evac-
uate (Frac. Evac.) as a function of graph instance. These plots pre-
sent variability in results across particular graph instances (0 through
4 on x-axis), for the same graph generation parameters. a all d, val-
ues, ¢ =16, p, .. = 0.05, and n, =50 and 500. ¢ legend for the
plots in b. d d; = 0.06 km, all g values, p, ,,, = 0.02, and n; = 500.
ed, =0.04 km, g =4, p,.x = 0.15, and all n, values. Emphasis is
on conditions that do not reach the looting-induced spread fraction
ceiling, as in Fig. 8d, since this will drive down variability. Error bars
denoting one standard deviation from the means are plotted each inte-
ger unit time, but are very small. In all plots, data points show little
variation among the 100 iterations. In all plots, data points across net-
works show little variation among the five graph instances
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The placement of short-range edges, governed by d,, is a
deterministic process, so these edges are the same in each
graph instance, for a specified d,. The g long-range edges,
however, are placed at random, and hence give rise to dif-
ferences across graph instances.

Conditions for this evaluation are chosen so that the
evacuating fraction of families is not high. For if high, then
the contagion spreading reaches the looting-induced ceil-
ing, as in Fig. 8d, and hence the variance in results will be
small. This is opposite to our goal, i.e., to identify large
variances. We also prefer conditions with larger numbers
of long-range edges (greater g), for more variation across
networks. Further, we prefer smaller p, .., because if p, ...
is high (in the extreme, as p, ., — 1), then the evacuation
contagion spread becomes deterministic. Hence, in some
sense, the conditions examined here are among the worse-
case conditions.

In Fig. 9, no variability in results across graph instances
would be characterized by: (1) curves of different colors
being horizontal—meaning no change in the fraction of
families evacuating across graph instances, and (2) similar
sizes in error bars for each data point [graph instance] of
each curve—indicating the same variability in results within
graph instances. The plots show that this is the case, and
hence that results—in terms of fraction of families evaucat-
ing—do not vary significantly across graph instances.

Figure 10 shows temporal variability in simulation
results, over the 10-day simulation period, rather than at
the end of the 10 days, as done in the previous plots. Each
curve in these plots represents a different graph instance. In
Fig. 10a, data are shown for the second graph instance for
the conditions d,, = 0.06 km and g = 16. The variability in
evacuation fraction, at each day, across the 100 runs is small;
error bars, representing one standard deviation, are not vis-
ible. In Fig. 10b, these same results are again plotted along

U. 0.4 instance 2 U 0.4 -+ instance 0
-+ instance 1
f>5 0.3 g 0.3 instance 2
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. 0.2 R 0.2{.-instance 4
O] 9]
© 0.1 © 0.1
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0 246 81012
Time (Day)
(b) dsr = 0.06 km, ¢ = 16,
Pe,maz = 0.05, and ns = 500

Fig. 10 Simulation results of the fraction of evacuating families
(Frac. Evac.) as a function of time for different graph instances.
For all curves, dg. = 0.06 km, g = 16, p, ... = 0.05, and n; = 500.
a graph instance 2. b graph instances 0 through 4 (5 total instances).
In b, the data for all five graphs overlay (see instance 2 in the left plot
for comparison). The variability in the form of one standard deviation
is plotted as error bars for each curve, at each day. The variability in
the 100 runs of one simulation (one curve) is small, and the variabil-
ity across graph instances is small
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with results from instances 0O, 1, 3, and 4. All five curves
are essentially coincident, indicating that variability across
graph instances is quite small.

Based on these results illustrating minimal variance in
results, further results below are given for a single graph
instance.

5.3.4 Effect of dynamics model: looting 2mMoDE-THRESHOLD
model versus classic contagion rp-THResHoLD model

Comparisons of dynamics models Results from the 2MODE-
THRESHOLD model and the Rp-THRESHOLD model are compared
in Fig. 11. Figure 11a through c—the top row of plots—use
the 2MODE-THRESHOLD model. Figure 11a through ¢ show
the effect of probability of evacuation p, ,, for different n.
Pemax increases from 0.05 (Fig. 11a) to 0.10 (Fig. 11b) to
0.15 (Fig. 11c), with , = 0.2. The fraction of the population
evacuating increases as n, increases at the smallest p, .
almost plateaus for all n, when p, .., = 0.1, and increases
its speed to plateau for the largest p,, .- The values of p, ..
were selected based survey results (Halim et al. 2020).

Figure 11d through f—the second row of plots—use
the RP-THRESHOLD model, with the same values for p, .
and 7,. The corresponding plots stacked two-high, left to
right, can be compared. As p, .., increases, the discrepancy
between the two models increases: concern over looting
dampens evacuation in the 2MODE-THRESHOLD model. For
Pemax = 0.15, the RP-THRESHOLD model results in Fig. 11f
reach fy. > 0.6, while the corresponding results for 2MoDE-
THRESHOLD model in Fig. 11c are only roughly one-half the
values of f. in Fig. 11f. The 2MoDE-THRESHOLD model can
produce a large difference (dampening) in the fraction of
families evacuating. Therefore, ignoring the influence of
looting and crime can cause a large overprediction of fam-
ily evacuations.

Effect of n, in transitioning between models Figure 12
shows the effect of the range of neighbor fraction #, over
which the evacuation probability p, .. is non-zero. See
Fig. la. Note that n, = 1.0 corresponds to the RP-THRESH-
oLp model in Fig. 1b. In all resullts, p, ., =0.05 and
ng = 300 and in both plots, g = 4 and 16. Figure 12a pro-
vides results for d, = 0.04 km and Fig. 12b contains results
for d, = 0.1 km. The increase in d,, generates more edges
(greater graph density) and more contagion spreading. The
conditions of these plots were specifically chosen so that
spreading was not great enough to reach the ceiling of evacu-
ation fraction imposed by looting concerns; this limit might
skew the results. Nonetheless, interestingly, the plots show
that the evacuation fraction saturates by the time 7, = 0.4.

When the evacuation probability p, ., increases, dif-
ferent results are obtained. This can be seen by compar-
ing Figs. 11c and f, where now p, ., = 0.15. In these
plots, for #, = 0.2 and 1.0, respectively, the final fraction
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Fig. 11 Simulation results of cumulative fractions of the population
deciding to evacuate (Frac. Evac.) versus simulation time. Plots are
arranged by row and by column. In the top row, all three results in a
through ¢ use the 2mMoDE-THRESHOLD model of Fig. 1a with 5, = 0.2,
and n, (numbers of random seeds) varies from 50 to 500. In the bot-
tom row, the three results in d through f use the RP-THRESHOLD model
of Fig. 1b where now 5, = 1.0, with the same ng values. All results
are for one instance of the KSW16 graph class, i.e., ¢ = 16 long-
range edges per node (similar results for other graph instances). All
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Fig. 12 Simulation results of the fraction of evacuating families as a
function of the range 5. where the evacuation probability p, ... > 0
in the 2MoDE-THRESHOLD model in Fig. la. evacuation probabil-
ity Pemax- All results use the 2mopE-THRESHOLD model of Figure 1a,
#n. = 0.05 and n, = 300. In a, d, = 0.04 km and ¢ =4 and 16. In b,
d, = 0.1km and ¢ = 4 and 16. Number n, of seeds is 300 in all simu-
lations. Conditions are specifically chosen so as not to hit the upper
limit in spreading due to looting, as in plots such as Fig. 11c

of evacuating families increases by 2X as 7, increases.
This is a much greater increase in evacuation fraction than
shown in Fig. 12, for n, = 0.2 and 1.0, because p, ., has
increased from 0.05 to 0.15.

plots use d, = 0.04 km. By column, the left-most column (a and d)
are results for p, .. = 0.05. The middle column b and e are results
for p. . =0.10. The right-most column ¢ and f are results for
Pemax = 0.15. As p, ., increases, the differences between the out-
break fractions for the 2MODE-THRESHOLD and RP-THRESHOLD models
increase. That is, the damping effect from fear of looting becomes
more pronounced. Error bars denoting one standard deviation are
shown for each data point, in each curve, indicating the average
results from 100 runs, but the variances are small

5.3.5 Effect of network structure

We study the effects of long-range and short-range edges in
the Virginia Beach network of 113,967 nodes.

Effect of graph structure: long-range edges The effect of
g, i.e., the number of long-range edges, on the fraction of
families evacuating is shown across the five plots in Fig. 13
for the 2mMoODE-THRESHOLD model, where ¢ = 0 to 16. For
q = 0, the fraction of the population evacuating (Frac. DE)
= fy4 =~ 0. This is a consequence of the networks and find-
ings in Sect. 4. When g = 0, there are smaller connected
components in networks (that are obviously not connected,
by definition) because there are no long-range edges. As
a result, contagion cannot move from one component to
another. As g increases to 2 and then to 16 long-range edges
per node, f,. increases markedly. In particular, Fig. 13e
shows how the spread of evacuation decisions has an upper
bound in the 2MODE-THRESHOLD model: too many families
have evacuated, so the remaining families do not evacu-
ate over concerns of looting and crime. This behavior is
also seen for g = 8, and to a lesser extent, for ¢ = 4 when
ng = 500. This effect of greater contagion spreading as g
increases is the “weak link” phonemena (Granovetter 1973),
where long-range edges can cause remote nodes to change
their state to 1 (i.e., evacuating), thus moving a “contagion”
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Fig. 13 Simulation results of fraction of evacuating families (Frac.
Evac.) versus simulation time. The plots also show the effects of g,
i.e. the number of long-range edges, and numbers of seed nodes. Each
plot has curves for a different ¢, from O through 16. All results use
the 2mopE-THRESHOLD model of Figure la, p .. =0.15, n,=0.2,
and n, (numbers of random seeds) varies from 50 to 500 (see legend).
Error bars denote variance across the 100 runs that are used to gen-
erate each curve in each plot. (The variance is very small.) Results
for one graph instance of each of the following graphs: a KSWO0, b
KSW2, ¢ KSW4, d KSW8, and e KSW16, where each graph class
is of the form KSWg. In all plots, d, = 0.04 km. As ¢ increases, the
fraction of families evacuating increases, up to the point that the loot-
ing mechanism constrains further evacuation

into a different region of a graph. Note that the speed with
which the maximum of f;, = 0.32is attained increases with
ng.

From Table 1, the average in-degree for a node in KSW0
for d, = 40m is 10.1. The average in-degree increases by
about 70% to 17.7 for KSWS8, and this increase is due solely
to the long-range edges. Hence, this figure shows that by
the time the average in-degree of the graphs for d, = 40m
increases by 70% owing to long-range edges, the effect of
looting, in plateauing the fraction of families evacuating, is
observed.

Figure 14 provides the fraction f;, of evacuating families
as a function of number of long-range edges for all three d_
values—0.04 km, 0.06 km, and 0.1 km—for two numbers
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Fig. 14 Simulation results of the fraction of evacuating families
(Frac. Evac.) as a function of the number ¢ of long-range (LR) edges.
All results use the 2moDE-THRESHOLD model of Fig. la, ., =0.2,
and n, (numbers of random seeds) is 50 and 500 (see legend). Error
bars denote standard deviation. (The variance is very small.) Results
are for one graph instance, instance 0, for each d, value (0.04 km,
0.06 km, 0.10 km). The maximum probability in the 2MODE-THRESH-
OLD is @ P, . =0.04 and b p, .. = 0.10. The results show that
increasing pe . by 2.5X results in increases in fj., particularly at
larger g. The increases are limited by the maximum evacuation frac-
tion of about 0.3. ¢ Legend for both plots

ng of seed nodes: 50 and 500. The two plots are, for left,
Pemax = 0.04 and, for right, p, ;.. = 0.10 in the 2M0DE-
THRESHOLD model of Fig. 1a. Across both plots, f;, increases
as g increases, but also as dg,, ng, and p, .., increase. A cou-
ple of observations about the looting model are relevant, but
will return to these issues when the appropriate simulation
input is the focus.

Effect of graph structure: short-range edges Figure 15
shows the effect of short-range distance d, on the evacua-
tion fraction. For the smallest d,, there is an effect of g on
the fraction of evacuating families. However, by the time
d, reaches its greatest value, the number of short-range
edges grows such that for all g > 2, the evacuation fraction
is approaching its maximum value. In this way, increases
in either d; or g has the same net effect: increases in either
increases the number of edges in a graph (i.e., increases the
graph density) and hence increases the diffusion of evacua-
tion up to the looting-imposed ceiling.

5.3.6 Effects of model parameter p, ..

Figure 14, described above, shows the effect of increas-
ing pemax ON increasing fy. values. First, note that for
Pemax = 0.10, according to Table 5, roughly 0.65 fraction
of the families should be evacuating. But because of the
concern over looting, f;. is far less (about 1/2 of the value)
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Fig. 15 Simulation results of the fraction of evacuating families
(Frac. Evac.) as a function of the short-range (SR) distance d, over
which SR edges are formed between pairs of families. All results use
the 2moDE-THRESHOLD model of Figure la, 5, = 0.2, p, ., = 0.05,
ng =200, and all g values (see legend). Error bars denote standard
deviation from 100 runs. (The variance is very small.) Results are for
one graph instance, instance 0, for each d, value (0.04 km, 0.06 km,
0.10 km). The results show that for d, = 0.04 km, there is a pro-
nounced effect of g. However, as d, increases, the number of short-
range edges increases, giving more opportunities for contagion to
spread, and by the time d. = 0.10 km, the effect of different g > 2 is
small, as the spread of evacuation approaches its limit value

in Fig. 14b. This same type of comparison is also provided
in Fig. 11.

Second, Fig. 14a is a sufficiently small p, ., = 0.04
that the overall spread fraction f,, is not greater than about
0.2, which is 5, in Fig. 1a. Consequently, looting does not
have a big effect on these results. However, for the larger
Pemax = 0.10 in Fig. 14b, some of the curves plateau at
greater g, particularly for d, = 0.1 km and n, = 500, but
also to a lesser extent when either d, = 0.1km or n, = 500.
These curves are reaching a ceiling, indicating that the loot-
ing factor is having an effect. Hence, the looting phenom-
enon may or may not be operative when using the 2MODE-
THRESHOLD model: in Figure 14, this is controlled by p, .-

5.3.7 Effects of model parameters p, ..., and . Combined
with Network Structure.

Figure 16 shows the explicit dependence of the final frac-
tion of families evacuating (Final Frac. Evac. in plots) as a
function of the evacuation probability p, ., of the 2MoDE-
THRESHOLD model of Fig. 1a. The number n, of seeds is 400
in all simulations. Figure 16a fixes d,, = 0.04 km and varies
the number g of long-range edges, while Fig. 16b fixes g = 8
and varies d,. In the left plot, for fixed d,, the spread frac-
tion increases as p, .x and g increase. However, for larger
g of 2,4, 8, and 16, and for larger Demax> the largest g = 16
produces a shallower rate of increase in f;. than do the other
q values. Similarly in right plot, as d, increases for fixed
g = 8, as p, n.x increases, there is a transition in ranking of
the short-range distance d, that causes larger outbreaks. The
transition occurs near p, ... = 0.1.

In both aforementioned plots, the same mechanism
is operative. When the probability p, .., increases to

Prob. of Evacuation pe, max
(a) dsr = 0.04 km

Prob. of Evacuation pe, max
(b) ¢g=38

Fig. 16 Simulation results of the final fraction of families deciding
to evacuate (Frac. Evac.) as a function of the evacuation probabil-
ity Pemax- All results use the 2MoDE-THRESHOLD model of Figure 1la,
7. =02 and n, = 400. In a, the different curves are for different
numbers ¢ of long-range edges, with d, = 0.04 km. In b, the differ-
ent curves are for d values of 0.04 km, 0.06 km, and 0.10 km, for
q = 8. For reference, the brown curve for d, = 0.04 km and g = 8 is
the same in both plots. Error bars, denoting one standard deviation,
are plotted, but variance is very small. The transitions observed in the
plots (i.e., intersections of curves) are caused by greater p, ., and
greater degree networks (large d, large g). In these cases, the fast
and widespread diffusion of contagion can result in nodes in state 0
having more than 5, = 0.2 fractions of their neighbors in state 1, and
for the 2MODE-THRESHOLD model, this means that the nodes will not
transition to state 1. This means that the overall spread size may be
less

larger values (roughly for p, ., > 0.1 for these plots) and
when average in- and out-degrees are large (roughly for
Ain = diax = 20), the spreading is fast. We can conceptual-
ize a “frontal boundary” that separates nodes in state 0 from
those in state 1. As a contagion grows, the frontal boundary
of state 1 pushes into parts of the network where nodes are
in state 0. For greater p, .., and greater degree, the front can
be widespread so that nodes in state O can have fractions of
neighbors in state 1 that are greater than #, = 0.2, in which
case these nodes will not transition to state 1, per Fig. 1a.
This means that the overall spread fraction is less than what
might otherwise be anticipated.

Thus, dynamics model parameters and network struc-
ture combine to produce two interesting phenomena. First,
as P, max iNCreases, the rate of increase in the final frac-
tion of evacuating families can decrease. Second, as p, .
increases, the magnitude of the final fraction of evacuating
families can decrease.

5.3.8 Effects of numbers of seed nodes

Figure 17 provides the final fraction of families evacuating
as a function of numbers n, of seed families (that are evacu-
ating at time ¢ = 0). The effect of numbers of seeds—Ilike all
parameters—is dependent on the regime of final evacuation
fraction that the conditions produce. When conditions are
such that the evacuation fraction is less than the looting-
induced evacuation fraction ceiling, then the effect of seed
nodes can be significant; see the curve for g = 4. However,
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Fig. 17 Simulation results of the final fraction of evacuating fami-
lies as a function of the number n of seed families (i.e., the number
of families evacuating at time ¢ = 0). Conditions are d; = 0.04 km,
qg=4,8, and 16, n, = 0.2, and Pemax = 0.10 in the 2MODE-THRESHOLD
model in Figure la. The results show that for conditions in which the
evacuation fraction looting-induced ceiling is not reached (here, for
q =4), a 10 fold increase in ng from 50 to 500, can produce a fourfold
increase in final evacuation fraction (from 0.035 to 0.15 probability).
As final evacuation fraction increases such that the looting-based ceil-
ing is reached (here, for g = 16), the effect of seed nodes is minimal

when the looting ceiling is reached, which for these condi-
tions occurs when g = 16, the effect of seed nodes is small.

6 Related work
6.1 Factors affecting evacuation decision

Many studies have identified factors that affect evacuation
decision-making. These include social networks, peer influ-
ence, access to resources, risk perceptions (Riad et al. 1999;
Lindell and Perry 2005; Dash and Gladwin 2007) and house-
hold demographics such as nationality, proximity to hur-
ricane path, pets, disabled family members, mobile home,
access to a vehicle, etc. (Baker 1991, 1995; Fu and Wilmot
2004a; Dash and Gladwin 2007; Widener et al. 2013; Burn-
side 2006; Cole and Fellows 2008; Faucon 2010; Wong et al.
2018). Evacuation notices can increase people’s propensity
to evacuate (Baker 1991, 1995; Dash and Gladwin 2007,
O’Neil 2014). Mozumder and Vasquez (2015) provide a case
study in which they analyze the role of evacuation expenses
in affecting hurricane evacuation decisions in Harris and
Galveston counties in Texas. Studies also show the impor-
tance of storm characteristics into evacuation decision-mak-
ing (Baker 1991, 1995; Dash and Gladwin 2007; Mozumder
and Vasquez 2018).

Work by Goldberg et al. shows that a family’s past deci-
sion to evacuate (or not) is a significant predictor of a simi-
lar future intended evacuation behavior if the family had a
high confidence in its past decision (Goldberg et al. 2020).
Role of strong social ties in evacuation behavior is studied
in Metaxa-Kakavouli et al. (2018). Authors show several
aspects of social capital are correlated with evacuation
decision, even after accounting for confounding factors.
Especially, higher levels of bridging and linking social ties
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correlate strongly with evacuation. Miller (2007) examines
the role of formal and informal social connections in shar-
ing information and shows that the number of contacts as
well as the range of contacts across different contexts (e.g.,
faith-based, school, work, etc.) aided evacuation during hur-
ricanes Katrina and Rita in East Texas. Influence of density,
diversity, and dependability of social support and social con-
nections is studied on decisions to evacuate in Collins et al.
(2018).

6.2 Agent-based modeling and simulation
of evacuation decision-making

Some studies use social networks and relative threshold
models to model evacuation behavior. A relative threshold
0, for agent v, is the minimum fraction of distance-1 neigh-
bors in a social network G(V, E) that must be in state 1 in
order for v; to change from state O and to state 1 (Watts 2002;
Centola and Macy 2007). Several studies (Hasan and Ukku-
suri 2011; Widener et al. 2013; Yang et al. 2019) assign
thresholds to agents in agent-based models (ABMs) of hurri-
cane evacuation modeling. Stylized networks of 2000 nodes
are used in Hasan and Ukkusuri (2011) to study analytical
and ABM solutions to evacuation. In Widener et al. (2013),
12,892 families are included in a model of a 1995 hurricane
for which 75% of households evacuated. They include three
demographic factors in their evacuation model, in addition
to the peer influence that is captured by a threshold model.
Small world and random regular stylized networks are used
for social networks.

Dixon et al. (2017) provide a survey-based empirical
analysis for identifying the most salient factors of the het-
erogeneous respondents, which inform the rules governing
hurricane evacuation behavior of the subpopulations in an
agent-based model. Kuhlman et al. (2020) develop an agent-
based model for evacuation decision-making from Hurricane
Sandy survey data.

Simulations of hurricane evacuation decision-making in
the Florida Keys are presented in Yang et al. (2019). The
simulations cover 24 h, where the actual evacuation rate was
about 53%. The social network is a small-world network,
with geospatial home locations, which is similar to our net-
work construction method. Edges between homes are placed
by using a small world approach (Watts and Strogatz 1998);
long range edges are placed by travel times. The dynamics of
evacuation is modeled as a two-step process. First, families
receive a message to evacuate either directly, or via diffu-
sion through the social network and then families evacuate
based on a relative threshold, i.e., the fraction of a family’s
neighbors that have decided to evacuate.

In all of these studies, except Kuhlman et al. (2020), as
the number of neighbors of a family v; evacuates, the more
likely it is that v; will evacuate. Our threshold model differs:
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in our model, if too many neighbors evacuate, then v; will
not evacuate because of concerns over crime and looting.

ABM requires a representation of a population. Two stud-
ies use synthetic population (i.e., digital twin Barrett et al.
(2009)) data to represent a population; they use the US cen-
sus data, a commercial data set of business locations, Census
Transportation Planning Products, and other data to produce
families and then use stylized methods to form edges of the
social networks (Widener et al. 2013; Yang et al. 2019).
These approaches are similar to our work. Works using styl-
ized networks include Hasan and Ukkusuri (2011); Yang
et al. (2019).

Yin et al. (2014) study not only evacuation decision-mak-
ing, but also destination selection for evacuation and travel
planning, for Miami-Dade County. They make use of data
from several surveys to develop models. Zhu et al. (2018)
also combine survey data with synthetic data to develop an
ABM for evacuation decision-making, and for travel of fami-
lies that are evacuating. They model Hurricane Sandy and
four million families in the northeastern US.

6.3 Other modeling approaches

Some studies predict human evacuation behavior using
techniques other than ABM. Social media data have been
used to model hurricane evacuation decision-making and
travel patterns. Roy and Hasan (2021) construct an input-
output hidden Markov model to predict hurricane evacua-
tions using Twitter data. Roy et al. (2021) use social media
data to predict traffic demand based on evacuations in the
face of oncoming hurricanes. Fu and Wilmot (2004b) build
a sequential binary logit model to compute the probability
that households evacuate at each time step as a hurricane
approaches land.

7 Summary and conclusions

We study evacuation decision-making as a graph dynami-
cal system using 2MODE-THRESHOLD functions for nodes. This
work is motivated by the results of a survey collected during
Hurricane Sandy which shows that concerns about crime
motivates families to stay in their homes, if too many neigh-
bors evacuate. We study the dynamics of 2MODE-THRESHOLD
in different network settings, and show significant differ-
ences from the standard threshold model. The result shows
that in some cases, not incorporating the looting effect in
the model can overpredict evacuation rates by as much as
50%. This has important policy implications. For example,
a more realistic prediction of the size of non-evacuees can
be used by city planners for contingency planning. Planners
can more accurately estimate resources that will be required
for non-evacuees who are left behind in adverse conditions,

as well as design interventions that will address the concerns
of crime so that a higher level of compliance to evacuation
may be achieved.
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