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Abstract
Neighborhood effects have an important role in evacuation decision-making by a family. Owing to peer influence, neigh-
bors evacuating can motivate a family to evacuate. Paradoxically, if a lot of neighbors evacuate, then the likelihood of an 
individual or family deciding to evacuate decreases, for fear of crime and looting. Such behavior cannot be captured using 
standard models of contagion spread on networks, e.g., threshold, independent cascade, and linear threshold models. Here, 
we propose a new threshold-based graph dynamical system model, 2mode-threshold, which captures this dichotomy. We 
study theoretically the dynamical properties of 2mode-threshold in different networks, and find significant differences from 
a standard threshold model. We build and characterize small world networks of Virginia Beach, VA, where nodes are geolo-
cated families (households) in the city and edges are interactions between pairs of families. We demonstrate the utility of our 
behavioral model through agent-based simulations on these small world networks. We use it to understand evacuation rates 
in this region, and to evaluate the effects of modeling parameters on evacuation decision dynamics. Specifically, we quantify 
the effects of (1) network generation parameters, (2) stochasticity in the social network generation process, (3) model types 
(2mode-threshold vs. standard threshold models), (4) 2mode-threshold model parameters, (5) and initial conditions, on 
computed evacuation rates and their variability. An illustrative example result shows that the absence of looting effect can 
overpredict evacuation rates by as much as 50%.

1  Introduction

1.1 � Background

Extreme weather events displaced seven million people 
from their homes just in the first 6 months of 2019 (Sen-
gupta 2019). With the rise in global warming, the frequency 
of these events is increasing and they are also becoming 
more damaging (Coumou and Rahmstorf 2012). Just in 
2017–2018, there were 24 major events. In 2017, there was 
a total of 16 weather events that together costed over $306 
billion, according to NOAA. In 2018, there were eight hur-
ricanes, out of which two were category three or higher and 
caused more than $50 billion in damages. As of this writing, 
the 2020 hurricane season, well underway, is anticipated to 
have near-record-breaking counts, with ten total hurricanes 
including four major ones (Saunders and Lea, August 2020).

 *	 Chris J. Kuhlman 
	 cjk8gx@virginia.edu

	 Achla Marathe 
	 achla@virginia.edu

	 Anil Vullikanti 
	 vsakumar@virginia.edu

	 Nafisa Halim 
	 nhalim@bu.edu

	 Pallab Mozumder 
	 mozumder@fiu.edu

1	 Biocomplexity Institute and Initiative, University 
of Virginia, Charlottesville, VA, USA

2	 Biocomplexity Institute and Initiative, Department of Public 
Health Sciences, University of Virginia, Charlottesville, VA, 
USA

3	 Biocomplexity Institute and Initiative, Department 
of Computer Science, University of Virginia, Charlottesville, 
VA, USA

4	 Department of Global Health, Boston University School 
of Public Health, Boston, MA, USA

5	 Department of Earth and Environment and Department 
of Economics, Florida International University, Miami, FL, 
USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-021-00839-8&domain=pdf


	 Social Network Analysis and Mining           (2022) 12:13 

1 3

   13   Page 2 of 18

1.2 � Motivation for studying fear of looting 
in natural disaster contexts

Timely evacuation is the only action that can reduce risk in 
many of these events. Although more people are exposed 
to these weather events, technological improvements in 
weather prediction, early warning systems, emergency 
management, and information sharing through social 
media, have helped keep the number of fatalities fairly low. 
During Hurricane Fani (Kumar 2019), a record 3.4 mil-
lion people were evacuated in India and Bangladesh and 
fewer than 100 fatalities were recorded (Sengupta 2019). 
However, in many disaster events, e.g., Hurricane Sandy, 
the fraction of people who evacuated has been much lower 
than what local governments would like.

The decision to evacuate or not is a very complex one 
and depends on a large number of social, demographic, 
familial, and psychological factors, including forecasts, 
warnings, and risk perceptions (Madireddy et al. 2015; 
Yang et al. 2019; Hasan and Ukkusuri 2011; Widener et al. 
2013; Halim and Mozumder 2020). Two specific factors 
have been shown to have an important effect on evacuation 
decisions. First, peer effects, i.e., whether neighbors and 
others in the community have evacuated. Up to a point, 
this has a positive impact on the evacuation probability of 
a household, i.e., as more neighbors evacuate, a household 
becomes more likely to evacuate. Second, concerns about 
property loss, via looting for example, can counteract the 
positive peer effect. That is, when most neighbors are away 
and the neighborhood is empty, the remaining households 
may decide not to evacuate, fearing property loss via loot-
ing. Therefore, fear of looting has a negative impact on 
the probability of evacuation. An important public policy 
goal in disaster planning and response is to increase the 
evacuation rates in an affected region; so understanding 
the interaction between these two effects becomes crucial.

1.3 � Concerns over looting: motivation from other 
contexts

Fear of looting is an issue of importance in other related 
and unrelated contexts, both in the US and abroad. Con-
cern over crime and looting was first documented in public 
opinion polls in the US when it ranked second in a listing 
of perceived national problems, in 1968 (Erskine 1974). 
Looting in the context of civil disturbances is discussed 
by Dynes and Quarantelli (1968). In fleeing the on-com-
ing of enemies across national borders, parents may leave 
one of their children to guard family property, for fear of 
looting (Nguyen 2018). Individual looting of civilians by 
government soldiers is studied in Azam (2002). Financial 

looting has also been identified as a driver for unethical, if 
not illegal, profiteering by realizing financial gain with the 
intention of going broke later at society’s expense (Akerlof 
et al. 1993). For these and other reasons, the study of the 
effects of looting on human decision-making is of interest. 
Here, we study it in the context of natural disasters.

1.4 � Summary of results

There is a lot of work on modeling peer effects, e.g., the 
spread of diseases, information, fads and other contagions 
(Beckman et al. 2011; Chen et al. 2017; Aral and Nicolaides 
2017). A number of models have been proposed, such as 
independent cascade (Kempe et al. 2003), and different types 
of threshold models, e.g., Granovetter (1978), Watts (2002), 
and Centola and Macy (2007). These are defined on a net-
work, with each node in state 0 (representing non-evacua-
tion) or 1 (representing evacuation), and a rule for a node 
to change state from 0 to 1. For instance, in a �-threshold 
model, a node switches from state 0 to state 1 if at least a �
-fraction of its neighbors are in already in state 1. All prior 
models only capture the first effect above, i.e., as the num-
ber of affected neighbor increases, a node is more likely to 
switch to state 1. Here, we propose a new threshold model, 
referred to as 2mode-threshold, which inhibits a transition 
from state 0 to 1 if a sufficiently large fraction of a family’s 
neighborhood is in state 1. That is, contrary to other mod-
els, 2mode-threshold captures the phenomenon that if too 
many neighbors are in state 1, then a node will not transition 
from 0 to 1. We demonstrate its use in a large scale study. 
Our results are summarized below.

1. Development of the 2mode-threshold model (results in 
Sect. 2). We introduce and formalize evacuation decision-
making as a graph dynamical system (GDS) (Mortveit and 
Reidys 2007; Adiga et al. 2018) using 2mode-threshold 
functions at nodes. This model follows observations from 
surveys which show families are more likely to evacuate 
as more of their neighbors evacuate, but only up to a point. 
When too many neighbors have evacuated, a family becomes 
concerned about looting (crime) and hence is more likely 
to not evacuate (i.e., remain behind). This model is akin 
to threshold-characterized influence models (Granovet-
ter 1978; Watts 2002; Schelling 2006; Centola and Macy 
2007) that have been demonstrated through observations to 
capture decision-making, e.g., Centola (2010); Gonzalez-
Bailon et al. (2011); Romero et al. (2011); Centola (2011). 
However, the influence only operates up to some fraction of 
neighbors which we denote as �c ; for fractions of neighbors 
> 𝜂c , the influence to evacuate is zero.

2. Theoretical results of the 2mode-threshold model 
(results in Sect. 3). We study the dynamics of 2mode-thresh-
old in different networks, and show significant differences 
from the standard threshold model that has no drop off. 
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Specifically, we find that starting at a small set of nodes in 
state 1, the diffusion process does not go beyond a constant 
fraction of the network. System configurations in which 
more nodes are 1’s (e.g., all 1’s vector of node states) are 
also fixed points, but our results imply that one cannot reach 
such fixed points with lots of 1’s from most initial configura-
tions that have a small number of 1’s.

3. Social network representations of Virginia Beach, VA 
(results in Sect. 4). We build a family of social networks to 
represent Virginia Beach, Virginia, that is on the Eastern 
Seaboard of Virginia and was impacted by Hurricane Sandy 
in 2012. This region has a population of over 450,000, and 
households are geographically situated based on land-use 
data, with real geo-locations that invoke the concepts of 
neighbors and long range connections. Nodes in the social 
networks are families, and these do not change across social 
network instances. Rather, the edges between families, rep-
resenting two forms of social influence, change. We add 
edges between households based on the Kleinberg small 
world (KSW) model (Kleinberg 1999). There are short-
range and long-range directed edges, where the former is 
characterized by a short range distance dsr in which each pair 
of families whose homes are with this distance are joined 
by an edge. The number q of long-range edges is specified, 
and these edges can form between two nodes at any distance 
> dsr . We build networks using three values of dsr and five 
values of q.

We characterize the networks structurally, and find the 
following. (1) Networks with no long-range edges never 
contain giant components; the largest components are about 
0.35 fraction of the nodes in the entire network. (2) It is 
only with long-range edges that these smaller components 
are linked up to form giant components that encompass the 
entire network. The giant components appear for the least 
nonzero q value of 2. (3) The strongly and weakly connected 
components are essentially the same size and composition, 
even when q > 0 . (The long-range edges are directional.) 
(4) The maximum in-degree of networks does not change 
as the short-range distance dsr increases from 40 m to 60 m, 
indicating that the maximum density of homes in geographic 
regions do not change much when the short-range distance 
is changed in this range. Maximum degree increases sig-
nificantly when dsr increases to 100 m. Some causes of 
evacuation response behaviors are related to these structural 
properties.

4. Agent-based modeling and simulation (results in 
Sect. 5). We develop an agent-based model and simulation 
(ABMS) of the 2mode-threshold model on realistic small 
world networks of Virginia Beach, VA. Our ABM enables us 
to capture heterogeneities in the modeling of the evacuation 
decision-making process. This includes not only heteroge-
neities in families, but also differences in (local) neighbor-
hoods of families as represented in social networks. We use 

it to understand the evacuation rates in this region, and eval-
uate the effects of different initial conditions (e.g., number of 
seeds) [seeds are families who are the first ones to evacuate] 
on evacuation decision dynamics. A selection of results fol-
low. (1) The variability of evacuation results (in terms of the 
fraction of the population that evacuates) is small across 100 
seed sets. (2) The variability in evacuation rates across five 
network instances for a fixed pair (dsr, q) is small. (3) The 
effects of looting—quantified by 2mode-threshold model—
can reduce evacuation rates by 50% compared to the classic 
Granovetter-type threshold influence model (Granovetter 
1978; Watts 2002; Schelling 2006; Centola and Macy 2007). 
(4) The effects of network structure can be large. For exam-
ple, as dsr increases from 0.04 km to 0.10 km, evacuation 
rates can increase by 2 to 10 times. Even greater changes 
in the fraction of evacuating families can be observed as 
q increases from 0 to 16. (5) The parameters pe,max and �c 
of the 2mode-threshold model can produce changes in the 
fraction of evacuating families up to 0.38. (See Fig.  1: pe,max 
is the nonzero probability of a family evacuating.) (6) These 
two parameters, pe,max and �c , also combine with network 
structure to produce interesting effects, when node degrees 
are large. First, as pe,max increases, the rate of increase in the 
final fraction of evacuating families can decrease. Second, 
as pe,max increases, the magnitude of the final fraction of 
evacuating families can decrease.

1.5 � Novelty and implications

Models of type 2mode-threshold have not been studied 
before. Our ABM approach can help (1) understand how 
planners and managers can more effectively convince 

(a) (b)

Fig. 1   Dynamics models—probability of evacuation curve—for prob-
ability pe of evacuation for a family versus the fraction �1 of its neigh-
bors in state 1 (i.e., evacuating). a The 2mode-threshold model: the 
evacuation probability is pe = 0 for �1 = �min = 0 and for 𝜂1 > 𝜂c . 
The maximum probability is pe = pe,max in the interval (�min, �c] . b 
The rp-threshold model: this curve is similar to the previous curve, 
except that pe = pe,max for 𝜂1 > 𝜂min . This is a special case of 2mode-
threshold, but is a variation of the regular probabilistic threshold 
model (Watts 2002; Centola and Macy 2007). As an illustration, if an 
agent has 50% of its neighbors in state 1, then the model in a shows 
that pe = 0 , while b shows that pe = pe,max > 0 . An example with 
values for these parameters is given in the text
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families that are in harms way to evacuate; (2) understand 
the effects of families’ social networks on evacuation deci-
sions (Widener et al. 2013; Ferris et al. 2016; Yang et al. 
2019); and (3) establish downstream conditions after the 
evacuation decision has been made, to support additional 
types of analyses. For example, the results from these stud-
ies can be used to forecast traffic congestion (spatially and 
temporally) during the exodus (Madireddy et al. 2015), and 
to determine places where shelters and triage centers should 
be established. We put our work in the context of previous 
works in Related Work, Sect. 6.

1.6 � Extensions from preliminary version

A preliminary version of this paper appears in (Halim et al. 
2020). The contents of that paper are extended in the follow-
ing ways. (1) The number of types of networks (character-
ized by (dsr, q) pairs) is 3× that in the preliminary version. 
(2) Structural properties of these Virginia Beach, VA net-
works are presented and contrasted. (3) Many more simu-
lation parameters have been considered and analyzed. (4) 
A more thorough analysis of the parameter values is done. 
Accordingly, the number of simulations has increased by 
over 300%, and the number of results shown in plots has 
increased threefold.

1.7 � Paper organization

The graph dynamical systems (GDS) framework and the 
2mode-threshold model are presented in Sect. 2. Theoretical 
results are provided in Sect. 3. Social network construction 
and networks are described and characterized in Sect. 4. Sec-
tion 5 describes the simulation process and presents simula-
tion results. Section 6 provides related work, and conclu-
sions are in Sect. 7.

2 � Evacuation decision‑making model

2.1 � Motivation from social science

Our model is motivated by the analysis of a survey in the 
counties affected by Hurricane Sandy in the northeastern 
USA by Halim and Mozumder (2020) which is briefly sum-
marized here. The goal of this survey was to assess factors 
driving evacuation decisions (Meng and Mozumder 2020). 
The survey had a response rate of 61.93%, with over 1200 
responses. A Binomial Logit model was applied to the sur-
vey data and tested for the factors associated with house-
holds’ evacuation behaviors (Halim and Mozumder 2020). 
The results indicate that a respondent’s employment status, 
consideration of neighbors’ evacuation behavior, concerns 
about neighborhood criminal activities or looting, access to 

the internet in the household, age, and having flood insur-
ance, each plays a significant role in a respondent’s decision 
to evacuate during Hurricane Sandy. Noteworthy was the 
influence of neighbors’ evacuation behaviors, and concerns 
about looting and criminal behavior. Neighbors’ evacuations 
had a statistically significant and positive effect on evacu-
ation probability but concerns about criminal and looting 
behavior had a significant negative effect—implying that if 
too many neighbors left, then the remaining households are 
less likely to evacuate.

2.2 � A graph dynamical systems framework

A graph dynamical system (GDS) (Mortveit and Reidys 
2007; Adiga et al. 2018) is a mathematical abstraction that 
is used to build quantitative models of human behavior. 
These models can be used in agent-based modeling (ABM) 
approaches. We use it here to develop a model of evacuation 
behavior, motivated by the survey analysis described above. 
A GDS S describes the evolution of the states of a set of 
agents. Let �� ∈ {0, 1}n denote the vector of agent states 
at time t, with xt

v
= 1 indicating that agent v has evacuated. 

xt
v
= 0 means that agent v has not evacuated at time t. A GDS 

S consists of two components: (1) an interaction network 
G = (V ,E) , where V represents the set of agents (in our case, 
the households which are deciding whether or not to evacu-
ate), and E represents a set of edges, with e = {u, v} ∈ E 
if agents u and v can influence each other; and (2) a set 
F = {fv ∶ v ∈ V} of local functions fv ∶ {0, 1}deg(v) → {0, 1} 
for each node v ∈ V  , which determines the state of node v in 
terms of the states of N(v), the set of neighbors of v. Given 
a vector �� describing the states of all agents at time t, the 
vector ��+� at the next time is obtained by updating xt+1

v
 using 

its local function fv(⋅) . We say that a state vector �� is a fixed 
point of S if the node states do not change, i.e., ��+� = ��.

2.2.1 � The 2mode‑threshold local functions: modeling 
evacuation behavior

The 2mode-threshold function fv(⋅) will be probabilistic, 
and will depend on the probability of evacuation, in order 
to capture the qualitative aspects of the results of Halim and 
Mozumder (2020). This is shown in Fig. 1a and specifies the 
probability of evacuation pe for agent vi as a function of the 
fraction �1 of neighbors of vi in state 1. We have pe = pe,max 
for �1 ∈ (�min, �c] , and pe = 0 for �1 ∈ [0, �min] and 𝜂1 > 𝜂c . 
In this paper, we primarily focus on �min = 0 . Specifically, 
this captures the following effects: (1) peer (neighbor) influ-
ence can cause families to evacuate and (2) if too many of 
a family’s neighbors evacuate, there are not enough neigh-
bors remaining behind to dissuade potential looters, so a 
family reduces its probability of evacuation. The first effect 
makes pe = pe,max for 𝜂1 > 0 , and the second effect results 
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in pe dropping to zero at �1 = �c . Note that the special case 
where pe = pe,max for 𝜂1 > 𝜂min = 0 is a probabilistic variant 
of the �min-threshold function (e.g., Centola and Macy 2007); 
we will sometimes refer to this as the “regular probabilistic 
threshold” model, and denote it by rp-threshold. This model 
is shown in Fig. 1b. These are models that can be assigned 
to any agent; in GDS, an agent is a node that resides in a 
networked population.

2.2.2 � Network models

We present the details of the network construction process 
in Sect. 4.1. We summarize the notation of a social network 
here. The contact network G = (V ,E) is the other component 
of a GDS S . A node vi ∈ V  , represents a family, or a house-
hold. Edges represent interaction channels, for communica-
tion and observations. Edges are directed: a directed edge 
(vj, vi) ∈ E , with vi, vj ∈ V  , means that family vj influences 
family vi.

2.3 � Example of GDS

Figure 1a shows an example of the 2mode-threshold model 
with the parameters pe,max = 0.2 , and �c = 0.4 . Figure 1b 
shows a rp-threshold model. The purpose of this example 
is to illustrate the dynamics of these models on a network 
of five agents. In Fig. 2, �� is the initial configuration with 
node 1 evacuated (in state 1, shaded), and nodes 2, 3, 4, 
and 5 not evacuated (in state 0, not shaded). Nodes 2 and 
3 have 𝜂1 = 1∕3 < 𝜂c = 0.4 , and so for both of them, the 
evacuation probability is pe = 0.2 . Nodes 4 and 5 have 
�1 = 0 , so pe = 0 for them. Therefore, the probability that 
the state vector is �� at the next time step (see Fig. 2) is 
pe,max(1 − pe,max) = 0.2 ⋅ 0.8 = 0.16 , since only node 2 
switches to 1. With respect to the configuration �� , nodes 
3, 4, and 5 have �1 =

2

3
 , 1 and 0, respectively. Therefore, 

pe = 0 for all these nodes, and �� is a fixed point of the 
S with the 2mode-threshold functions. However, for the 
regular probabilistic threshold model, rp-threshold, with 
𝜂min < 0.3 , �� is not a fixed point, since nodes 3 and 4 both 
have pe = pe,max probability of transitioning (since they have 
𝜂1 > 𝜂min ). Therefore, in the regular probabilistic threshold 
model, rp-threshold,  �� → �� transition occurs with prob-
ability p2

e,max
= 0.04.

2.4 � Problems of interest

We will refer to a GDS system S2m = (G,F) in which the 
local functions are 2mode-threshold functions as a 2mode-
threshold-GDS. Our objective in this paper is to study the 
following problems on a S2m system: 

(1)	 How do the dynamical properties of 2mode-threshold 
GDS systems differ from those of S with rp-threshold 
model functions? Do they have fixed points, and what 
are their characteristics?

(2)	 How do the number of 1’s in the fixed point depend 
on the initial conditions, and the model parameters, 
namely pe,max and �c ? How can this be maximized?

We provide solutions to these problems next.

3 � Analyzing dynamical properties 
in different network models

It can be shown that any S2m converges to a fixed point in 
at most n∕pe,max steps. S2m systems have significantly lesser 
levels of diffusion (i.e., number of nodes ending up in state 
1), compared to the rp-threshold model, as we discuss 
below.

Lemma 1  Consider a S2m with G = Kn being a complete 
graph on n nodes. Starting at a configuration �� with a single 
node in state 1, S2m converges to a fixed point with at most 
(pe,max + �c)n nodes in state 1, in expectation. In contrast, in 
a regular probabilistic threshold system on Kn with �min = 0 , 
the system converges to the all 1’s vector �� as a fixed point.

Proof  Consider the 2mode-threshold model and a state 
vector �� with k nodes in state 1. Consider any node v with 
��v = 0 . If k ≤ �cn , then, Pr[ node v switches to 1 ] = pe,max . 
Therefore, the expected number of nodes which switch to 
1 is pe,max(n − k) ≤ npe,max . If k > 𝜂cn , for every node in 
state 0, the probability of switching to 1 is pe = 0 . There-
fore, the expected number of 1’s in a fixed point is at most 
npe,max + n�c . On the other hand, in a regular probabilistic 
threshold model rp-threshold, the system does not converge 

Fig. 2   An example showing the transitions in a S on a graph with 
five nodes, and 2mode-threshold local functions, with param-
eters pe,max = 0.2 and �c = 0.4 . The figure shows a transition of the 
dynamics model from configuration �� to �� , with shaded nodes 
indicating evacuation. The �� → �

� transition occurs with probabil-
ity pe,max(1 − pe,max) = 0.16 . For the above parameters, �� is a fixed 
point, and the node states do not change. However, if we had �c = 1 
(i.e., this is a regular probabilistic threshold), �� is not a fixed point, 
and there can be a transition to configuration �� with probability 
p2
e,max

= 0.04 (indicated as a dashed arrow)
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until each node in state 0 switches to 1 (since pe = pe,max for 
all 𝜂1 > 0 ). 	�  ◻

We observe below that starting at an initial configuration 
with a single node in state 1, S2m converges to a fixed point 
with at most a constant fraction of nodes in state 1. Note, 
however, that configurations �� with more than that many 
nodes in state 1, e.g., the all 1’s vector, are also fixed points. 
The result below implies that those fixed points will not be 
reached from an initial configuration with a few 1’s.

Lemma 2  Consider a S2m on a G(n,  p) graph with 
p�c ≥

6

�2

log n

n
 , for any � ∈ (0, 1) . Starting at a configuration 

�� with a single node in state 1, S2m converges to a fixed 
point with at most (1 + 2�)(�c + pe,max)n nodes in state 1, in 
expectation. In contrast, in a regular probabilistic threshold 
system on Kn with �min = 0 , the system converges to the all 
1’s vector as a fixed point.

Proof  (Sketch) Let deg(v) denote the degree of v. 
For a subset S, let degS(v) denote the degree of v with 
respect to S, i.e., the number of neighbors of v in S. For 
any node v, we have E[deg(v)] = np . By the Chernoff 
bound (Dubhashi and Panconesi 2009), it follows that 
Pr[deg(v) > (1 + 𝜖)np] ≤ e−𝜖

2np∕3 ≤ 1∕n2  .  Cons ider  a 
set S of size 1+�

1−�
�cn . For v ∉ S , E[degS(v)] = |S|p , and 

s o  Pr[degS(v) < (1 − 𝜖)|S|p] ≤ e−𝜖
2|S|p∕2 ≤ 1∕n2  .  F o r 

|S| ≥
1+�

1−�
�cn , we have (1 − �)|S|p ≥ (1 + �)�cnp . Putting 

these together, with probability at least 1 − 2∕n , we have 
deg(v) ≤ (1 + �)np and degS(v) ≥ (1 + �)�cnp ≥ �cdeg(v) , 
for all nodes v. Therefore, if S2m reaches a configuration 
with nodes in set S of size 1+𝜖

1−𝜖
𝜂cn < (1 + 2𝜖)𝜂cn , with prob-

ability 1 − 2∕n , S is a fixed point. With probability ≤ 2∕n , 
S is not a fixed point, and the process converges to a fixed 
point with at most n 1’s, so that the expected number of 
1’s in the fixed point is at most |S| + 2 ≤ (1 + 2�)�cn . On 
the other hand, consider the last configuration S′ which 
has size |S�| < (1 + 2𝜖)𝜂cn . Then, in expectation, at most 
pe,maxn additional nodes switch to state 1, after which point, 
the configuration has more than (1 + �)�cn 1’s. Therefore, 
the expected number of 1’s in the fixed point is at most 
(1 + 2�)(�c + pe,max)n . 	�  ◻

4 � Social networks

4.1 � Network construction and semantics

We describe the models for the contact network G = (V ,E) , 
which is another component of a GDS S . A node vi ∈ V rep-
resents a family, or a household. Edges represent interaction 
channels, for communication and observations. Edges are 
directed: a directed edge (vj, vi) ∈ E , with vi, vj ∈ V  , means 

that family vj influences family vi . We use the synthetic popu-
lation model developed in Barrett et al. (2009) for represent-
ing the set V of households.

The synthetic population of Virginia Beach VA, is a set of 
individuals each endowed with demographic variables drawn 
from the US census. Each synthetic individual is placed in 
a household with other individuals and each household is 
located geographically in such a way that if it is aggregated 
to a block group level, a census of this synthetic population 
will yield results that are statistically indistinguishable from 
the original census data.

In particular, the locations of all households (family resi-
dences) are determined, which result in longitude, latitude 
(i.e., lon, lat) coordinates for each household. These are used 
to compute distances between family residences.

Figure  3 summarizes the process of producing a 
social network on the families of a city. Edges are speci-
fied using the Kleinberg small world (KSW) network 
approach (Kleinberg 1999), and there are two types of 
edges: short range and long range. Short-range edges 
(vj, vi) represent either (1) a family vi speaks with (is influ-
enced by) another family vj in the neighborhood about 
evacuation decisions, or (2) a family vi observes vj ’s home 
and infers whether or not a family vj has evacuated. A 
long-range edge represents a member of one family vi 
interacting with another family far away who is a relative 
or friend or colleague at work vj . Each edge has a label 
of distance between homes, using (lon, lat) coordinates 
of each home. Thus, the KSW model has the following 
parameters: the node set V and their attributes, the short-
range distance dsr over which short-range edges are placed 

Fig. 3   (Left) Depiction of a toy population network with families 
represented as nodes and edges representing possible interactions. 
(Right) Focus on the yellow ego node and the edges for families that 
influence it. The nodes are the same as those on the left plot. Ego 
node (in yellow) and edges formed using the KSW process. Short-
range edges (blue) are formed with the ego family by identifying all 
families (brown) within short-range distance dsr of the ego family. A 
number q of long-range edges (magenta) are selected at random from 
all families (green) located at distance greater than dsr from the ego 
family. (In this figure, q = 2 .) All edges are directed to the ego family, 
i.e., all brown and green nodes with edges to the ego node influence 
the ego node. All (lon,lat) coordinate locations are for family house-
holds (Color figure online)
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between nodes, and the number q of long range edges inci-
dent on each node vi . For each node vi , (1) short-range 
edges (vj, vi) are constructed, where d(vj, vi) ≤ dsr ; and 
(2) q long-range edges (vk, vi) are placed at random, with 
probability proportional to 1∕d(vk, vi)� , for a parameter � . 
Note that for each short-range edge (vj, vi) , there is a cor-
responding edge (vi, vj) . See Kleinberg (1999) for details. 
Semantics of edges, for our application, are provided in 
Fig. 4.

4.2 � Networks

Table 1 provides the social networks (and selected proper-
ties) that are used in simulations of evacuation decision 
making. The network model of Sect. 4.1 was used to gen-
erate KSW networks for Virginia Beach, VA. Inputs for 
the model were n = 113967 families forming the node set 
V, with (lat, long) coordinates; dsr = 40 , 60, and 100 m; 
� = 2.5 (see Kleinberg 1999); and q = 0 to 16. Five graph 

instances were generated for each (dsr, q) combination. 
Network properties are discussed in the next subsection.

4.3 � Structural properties

Structural analyses were performed with SNAP (Lesko-
vec and Sosič 2016) and NetworkX (Hagberg et al. 2008) 
through the codes in the net.science cyberinfrastructure 
(Ahmed et al. 2020).

4.3.1 � Number of graph edges as a function of dsr and q

Figure 5 shows the number of edges in graphs, as a func-
tion of graph structure. This structure is given by the short-
range distance dsr and the deterministic edges that result, and 
the number q of stochastic long-range edges. (Stochasticity 
comes in the from of what nodes vk form q long-ranges edges 
(vk, vi) with node vi .) From the graph generation description 
above the number of edges will be linear in q, as shown. The 
data at q = 0 shows the effect of dsr ; a nonlinear effect of dsr 
on the number of edges.

4.3.2 � In‑degree and out‑degree distributions

Figure 6 shows the in-degree distributions for the different 
classes of networks. The plots, left to right, are for dsr values 

Fig. 4   Semantics of edges into yellow ego node, from Fig. 3. (Left) 
Short-range edges can mean that the ego family observes neighbor-
ing families’ evacuation statuses, or talks to neighbors. (Right) Long-
range edges represent friends, relatives, or coworkers who live far 
away from the ego family

Table 1   Kleinberg small world 
(KSW) networks used in our 
experiments and their properties

The number n of nodes is 113,967 for all graphs. The short-range distance dsr , over which short-range 
edges are constructed with probability of 1.0, ranges from 40 meters to 100 meters. The exponent � = 2.5 
is for computing the probabilities of selecting nodes with which to form long-range edges with each node 
vi ∈ V  . Column “Num LR Edges”, i.e., (q) means number of long-range edges incoming to each node 
vi ; the edges are chosen randomly. There are five graph instances for every (dsr, q) combination. Average 
degree is dave and maximum degree is dmax , for in-degree and out-degree. There are three values for each 
degree heading, one corresponding to each of the three values of dsr in the second column. For example, 
for KSW2 (where q = 2 ), and dsr = 40 , 60, and 100 m, the average degrees in the graphs are, respectively, 
11.70, 20.34, and 43.86

Network class Distance for 
short-range 
edges, (m)

Num 
LR 
edges

Avg. in-deg. (= avg. out-deg.) Max. in-deg. Max. out-deg.

KSW0 40, 60, 100 0 10.11, 18.56, 41.98 380, 380, 432 380, 380, 432
KSW2 40, 60, 100 2 11.70, 20.34, 43.86 382, 382, 434 381, 383, 438
KSW4 40, 60, 100 4 13.70, 22.34, 45.86 384, 384, 436 381, 383, 445
KSW8 40, 60, 100 8 17.70, 26.34, 49.86 388, 388, 440 382, 383, 449
KSW16 40, 60, 100 16 25.70, 34.34, 57.86 396, 396, 448 383, 384, 469

Fig. 5   Count of edges in each 
type class of network, where 
each class is given by the pair 
(dsr, q) . Number of edges is in 
millions
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of 0.04 km, 0.06 km, and 0.10 km. In each plot are degree 
distributions for q values of 0 through 16, in powers of 2. 
Figure 7 shows the respective out-degree distributions for 
the different classes of networks.

Essentially, in-degree distributions, per (dsr, q) , take 
the same form, but shift to the right in Fig. 6 because as q 
increases, the in-degree of each node vi increases: q is the 
number of long-range edges added per vi (the directed edge 
is oriented in to vi ), to the graph of short-range edges. The 
out-degree distributions in Fig. 7 also shift to the right as q 
increases in each plot, but there are now small numbers of 
nodes with small degrees because tail nodes are selected ran-
domly for each head node, for long-range edges. (A directed 
edge (vj, vi) is the edge from vj to vi , where vj is the tail node 
and vi is the head node.)

It is interesting that the maximum in-degrees for 
dsr = 40 m are the same as those for dsr = 60 m in Table 1. 
This is due to the “isolation” of a dense region that does 
not reach other nodes as dsr increases in this range. (The 
average degree does increase for dsr = 60 m, and one can 
see this increase in the entire degree distribution, except for 
the maximum degree. For example, the number of nodes 
with the maximum degree increases.) However, when dsr 
increases further to 100 m, the maximum in-degree increases 
substantially.

The average in-degree and out-degree values are in the 
fourth column of Table 1 for, respectively, dsr = 0.04 , 0.06, 
and 0.1 km. The set of three values in successive rows are 
for increasing q values (Num LR Edges). Note that these 
average degrees increase by the increase in q in going from 
one row to the next, except for the case in going from q = 0 
to q = 2 . When q = 0 , some nodes are isolated and therefore 
are not considered in the structural properties. When q > 0 , 
all nodes form edges because of the way long-range edges 
are constructed.

4.3.3 � Strongly and weakly connected components 
in graphs

Graphs are broken into two groups, depending on their sizes 
of weakly connected components (WCCs). The first group is 
those networks where q = 0 for all dsr values: these graphs 
do not form a single component, or even a giant compo-
nent. The largest component is 0.35 fraction of nodes for 
dsr = 0.10 km (defining a giant component to be at least one-
half of nodes). The second group of networks is q ≥ 2 for all 
dsr , where all nodes (or for dsr = 0.04 km, almost all nodes) 
are in one component. See Table 2.

As the Table 2 caption indicates, the strongly connected 
components (SCCs) are of comparable sizes to the WCC 

(a) dsr = 0.04 km, all q (b) dsr = 0.06 km, all q (c) dsr = 0.1 km, all q

Fig. 6   In-degree distributions for the classes of networks. Distri-
butions for all (dsr, q) combinations are provided. a  dsr = 0.04  km 
networks, instance 0. b  dsr = 0.06  km networks, instance 0. 
c dsr = 0.10 km networks, instance 0. The degree distributions for the 

other instances are very close to these; for the case q = 0 , the degree 
distributions are identical because these graphs have determinstically-
placed edges. The same 113,967 nodes, representing families, com-
prise the node set of each graph

(a) dsr = 0.04 km, all q (b) dsr = 0.06 km, all q (c) dsr = 0.1 km, all q

Fig. 7   Out-degree distributions for the classes of networks. Distri-
butions for all (dsr, q) combinations are provided. a  dsr = 0.04  km 
networks, instance 0. b  dsr = 0.06  km networks, instance 0. 
c dsr = 0.10 km networks, instance 0. The degree distributions for the 

other instances are very close to these; for the case q = 0 , the degree 
distributions are identical because these graphs have deterministi-
cally-placed edges. The 113,967 families, comprise the node set of 
each graph
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sizes. The component sizes for q = 0 are identical to the 
WCC sizes because the short-range edges are bidirectional. 
For q ≥ 2 , the SCC sizes are within a percent or two of the 
WCC sizes.

Hence, the long-range edges are accomplishing what 
they are designed to do in the Kleinberg network generation 
process: they provide non-local edges, that in these cases, 
connect otherwise disparate components. This is important 
because these longer-range edges enable the evacuation con-
tagion, in the simulations in Sect. 5, to spread throughout 
the graphs.

5 � Agent‑based simulations and results

5.1 � Simulation process

Inputs to a simulation are a social network (Sect. 4), a set 
of local functions that quantifies the evacuation decision 
making process of each node vi ∈ V  (see Sect. 2), and a 
set of seed nodes whose state is 1 (i.e., these nodes are set 
to “evacuate” at the start of a simulation at time t = 0 ). All 
other nodes at time t = 0 are in state 0 (the non-evacuating 
state). We vary a number of input parameters across simu-
lations. Each simulation instance or run consists of a par-
ticular set of seed nodes at t = 0 , and time is incremented in 
discrete timesteps, from t = 0 to tmax . Here, tmax = 10 days, 
to model the ten days leading up to hurricane arrival. Hur-
ricane arrival is day 10. At each timestep, nodes that are in 
state 0 may change to state 1, per the models in Sect. 2. At 
each 1 ≤ t ≤ tmax , the state of the system at time t − 1 is used 
to compute the next state of each vi ∈ V  (corresponding to 
time t) synchronously; that is, all nodes (families) vi update 
their states in parallel at each t. A simulation consists of 100 

runs, where each run has a different seed set. The network 
and dynamics model are fixed in a simulation across runs.

Since each social network has the same node IDs (that 
represent families), we use the same seed collection for a 
specified number ns of seed nodes. Since there are 100 runs 
per simulation, there are 100 seed sets within one seed col-
lection. Thus, as an example, a simulation with a graph such 
that dsr = 0.06 km and q = 4 uses the same 100 seeds sets as 
a simulation on a graph with dsr = 0.1 km and q = 16 , for a 
specified value of ns . This eliminates variability in seed sets 
when assessing effects of graph structure.

The results below are plotted in groups of simulations. 
That is, each plot typically contains results for many simu-
lations. The results from the 100 runs of a simulation are 
typically averaged, and error bars on results (indicating one 
standard deviation) are also commonly provided.

5.2 � Simulation parameters studied

The input parameters varied across simulations are provided 
in Table 3. The results in subsequent subsections investigate 
the effects of these variables on the (population-level) frac-
tion of families that evacuate, designated by “Frac. Evac.” 
We study and present results for all of the parameter values.

5.3 � Simulation results

We note that in the results that follow, the y-axis value ranges 
can change across figures. This is because the 2mode-thresh-
old model and the rp-threshold model can give widely dif-
ferent results, and depending upon the parameter values, 
the results can vary greatly with-in a model too. Therefore, 
y-axis ranges are one of 0 to 0.1, 0 to 0.4, or 0 to 1.0.

The results are broken down by types of results in Table 4. 
Subsections of this manuscript containing the results are 
given. First, fraction of families that evacuate owing to a 
simple uniform mixing model are given, to contrast with the 
ABS results in all other subsections. The basic ABS results 
are then given, showing time histories of how the fraction 
of evacuating families increases with time. Next, since our 
social networks are particular instances of families of net-
works, for a fixed dsr and q, the effects of the graph structure 
of particular graph instances, for fixed dsr and q, on evacu-
ation predictions are given. The next subsection contrasts 
the looting model of this work, the 2mode-threshold model, 
with the more classic contagion model, referred to herein 
as the rp-threshold model, that does not consider looting 
effects. All subsequent subsections of the results focus on the 
2mode-threshold model, and we study, in turn, the effects 
of network structure (as specified by dsr and q), of model 
parameters (through pe,max and �c ), and of initial conditions.

Table 2   Sizes of weakly connected components (WCCs) and strongly 
connected components (SCCs) for the Kleinberg small world (KSW) 
networks

The table values are for the WCCs. The largest SCCS are of approxi-
mately the same size; the differences, if any, are on the order of 1% to 
2% at most

dsr (km) q Size (fraction of nodes) of 
Largest connected compo-
nent

0.04 0 381 (0.0035)
0.04 q = 2 113,955 ( > 0.99)
0.04 q ≥ 4 113,967 (1.0)
0.06 0 6146 (0.055)
0.06 q ≥ 2 113,967 (1.0)
0.10 0 39,287 (0.35)
0.10 q ≥ 2 113,967 (1.0)
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5.3.1 � Results of a uniformly mixing population

Daily evacuation probability values for a family—pe,max in 
Table 3—for both the 2mode-threshold model (Fig. 1a) and 
the rp-threshold model (Fig. 1b), are converted to evacua-
tion probability at any time over a ten-day period in Table 5. 
The fraction of a population that evacuates in the face of 
a hurricane can reach 50% or more (Hasan and Ukkusuri 
2011; Widener et al. 2013; Yang et al. 2019). The values in 
this table do not account for evacuation-dampening effects 
like the fear of looting addressed in this work. Doing so, as 
we will see in the results below, produces population-level 
evacuation fractions below 50%, and often less than 1/2 of 
the evacuation rates of the rp-threshold model. Hence, we 
examine individual probability values pe,max of greater value, 
and because of the 2mode-threshold model, evacuation rates 
are not excessive.

Table 3   Description of the parameters and their values used in the simulations

Parameter Description

Networks dsr , q Networks in Table 1. We vary the number q of long-range incoming edges per node, per the table, from 0 to 16. 
The short-range distance dsr takes values 0.04 km, 0.06 km, and 0.10 km

Network instances There are five network instances for each network, labeled 0 to 4
Num. random seeds, ns Number of seed nodes specified per run (chosen uniformly at random). Values are 50, 100, 200, 300, 400, and 500
Threshold model The 2mode-threshold model of Fig. 1a and the rp-threshold (i.e., classic) threshold model of Fig. 1b, in Sect. 2
Threshold range, �c The range in relative degree over which nodes can change to state 1. Discrete values are 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 

and 1.0. Note that �c = 1 corresponds to the classic stochastic threshold rp-threshold model (Fig. 1b), whereas 
values of 𝜂c < 1 correspond to the 2mode-threshold model (Fig. 1a)

Maximum probability, 
pe,max.

The maximum daily probability of evacuation pe,max of Fig. 1. Discrete values are 0.01 to 0.07 in 0.01 increments; 
0.10, 0.15, 0.20, and 0.25.

Simulation duration tmax. The duration of all simulations is the 10 days leading up to hurricane impact. Day 10 is hurricane impact.
Num. of simulation runs 100 runs per each combination of variables, where, given a particular number ns of seed nodes, there are 100 

different sets of seed nodes, all of size ns . This collection of 100 seed sets is the same for all runs where this ns 
is specified. For example, it is the same for the two cases: (dsr, q) = (0.04 km , 4) and (dsr, q) = (0.1 km , 16) , 
when the specified number of seed nodes is ns.

Table 4   Results are grouped into the following subsections

Section 
of results

Type of results Description

5.3.1 Uniform mixing results Simple results for contagion spreading of evacuation for a uniform mixing population, to contrast with the 
ABS results

5.3.2 Basic results Curves showing basic trends in the dynamics of families evacuating
5.3.3 Network variability The results showing that computed spread fractions do not vary significantly across graph instances for a 

fixed dsr and q
5.3.4 Model differences Highlight fundamental differences between the 2mode-threshold model and the rp-threshold model of 

Fig. 1. Also studies the transition between these two models with �c
5.3.5 Network structure The results showing that computed spread fractions vary significantly for varying dsr and q
5.3.6 Model parameters Shows the effects of model parameter values for pe,max in the 2mode-threshold model
5.3.7 Model parameters plus 

network structure
Shows counter-intuitive effects in evacuation rates. Increases in pe,max can lower evacuation rates in the 
2mode-threshold model

5.3.8 Initial conditions Shows the effects of number of seed nodes ns in the 2mode-threshold model

Table 5   Family-level probability of evacuation at any time 
over the ten days prior to hurricane landfall, as a function of 
family-based daily probability of evacuation, according to 
p10days = 1 − (1 − pdaily)

tmax

Daily probability pdaily = pe,max Probability of evacua-
tion any time over 10 
days

0.01 0.0956
0.02 0.183
0.03 0.263
0.04 0.335
0.05 0.401
0.06 0.461
0.07 0.516
0.08 0.566
0.09 0.611
0.10 0.651
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5.3.2 � Basic agent‑based simulation results

Figure 8 provides average fraction of evacuating families 
(Frac. Evac.) as a function of time in days. Time moves 
left to right in each plot, starting ten days before hurricane 
landfall and ending with hurricane landfall on the tenth day 
(day 10). The two plots in the upper row are fractions of 
families deciding to evacuate on the specified day, i.e., these 
are instantaneous fractions of new evacuating families. The 
two plots in the lower row are the corresponding plots for 
the cumulative fraction of families evacuating. We use the 
2mode-threshold model with pe,max = 0.15 and �c = 0.2 (see 
Fig. 1a). The two plots in the left column differ from those 
in the right column in the number q of long-range edges in 
the graphs: on the left, there are q = 4 long-range incoming 
edges per node and on the right, there are q = 16 long-range 
incoming edges per node. Each plot contains six curves, for 
different numbers of seed nodes (nodes [families] deciding 
to evacuate at time t = 0 ), ranging from 50 to 500. As num-
ber ns of random seeds increases, the curves shift left for the 
fractions of new families evacuating, in the top row of plots, 
meaning that more families are evacuating earlier. Accord-
ingly, in the bottom row of plots, at each day, the cumulative 

fractions fde of families evacuating increases as ns increases. 
Also, the fractions of evacuating families increases as the 
number q of long-range edges increases.

Error bars indicate one standard deviation in results 
across 100 runs (i.e., simulation instances). The standard 
deviation is very small (the bars are difficult to see in the 
plots). Based on the very small variances in these and other 
plots, we say no more about the variance in outputs across 
the 100 runs comprising a simulation. Also, because we are 
interested in the cumulative fraction of families evacuat-
ing, we will focus on these plots, rather than the fraction of 
instantaneously (or newly) evacuating families.

5.3.3 � Variability of results across graph instances

Figure 9 provides a series of plots that show the final frac-
tion of families evacuating (Final Frac. Evac.) for five graph 
instances (different graph instances) in each plot. The goal 
is to determine the variability in computed evacuation frac-
tions across graph instances for the same nominal graph 
construction values. Specifically, as described in Sect. 4, a 
graph instance is specified by the short-range distance dsr 
and the number q of long-range incoming edges per node. 

(a) q = 4 (b) q = 16

(c) q = 4 (d) q = 16

Fig. 8   Simulation results of the fraction of families deciding to evac-
uate (Frac. Evac.) as a function of time leading up to the hurricane 
arrival. We are always modeling the 10 days leading up to the arrival 
of a hurricane. Day 10 is the arrival of the hurricane; time zero is 
the start of the simulation—ten days prior to hurricane landfall. The 
network here is instance 0 of the a and c KSW4 network class ( q = 4 ) 
and dsr = 40  m, and b and d  KSW16 network class ( q = 16 ) and 
dsr = 40  m. The model is 2mode-thresholdwith pe,max = 0.15 . The 
two plots in the top row are the fractions of newly evacuating fami-
lies at each day. The two plots in the bottom row are the cumulative 
fractions of evacuating families up to, and including, that day. The 
two plots in the top row have different y-axis ranges than the plots in 
the bottom row. Error bars denoting one standard deviation from the 
means are plotted each integer unit time, but are very small

(a) q = 16, pe,max = 0.05 (b) legend for (a)

(c) dsr = 0.06 km,
pe,max = 0.02, ns = 500

(d) dsr = 0.04 km, q = 4,
pe,max = 0.15

Fig. 9   Simulation results of the fraction of families deciding to evac-
uate (Frac. Evac.) as a function of graph instance. These plots pre-
sent variability in results across particular graph instances (0 through 
4 on x-axis), for the same graph generation parameters. a all dsr val-
ues, q = 16 , pe,max = 0.05 , and ns = 50 and 500. c  legend for the 
plots in b. d dsr = 0.06 km, all q values, p

e,max
= 0.02 , and ns = 500 . 

e dsr = 0.04 km, q = 4 , p
e,max

= 0.15 , and all ns values. Emphasis is 
on conditions that do not reach the looting-induced spread fraction 
ceiling, as in Fig. 8d, since this will drive down variability. Error bars 
denoting one standard deviation from the means are plotted each inte-
ger unit time, but are very small. In all plots, data points show little 
variation among the 100 iterations. In all plots, data points across net-
works show little variation among the five graph instances
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The placement of short-range edges, governed by dsr , is a 
deterministic process, so these edges are the same in each 
graph instance, for a specified dsr . The q long-range edges, 
however, are placed at random, and hence give rise to dif-
ferences across graph instances.

Conditions for this evaluation are chosen so that the 
evacuating fraction of families is not high. For if high, then 
the contagion spreading reaches the looting-induced ceil-
ing, as in Fig. 8d, and hence the variance in results will be 
small. This is opposite to our goal, i.e., to identify large 
variances. We also prefer conditions with larger numbers 
of long-range edges (greater q), for more variation across 
networks. Further, we prefer smaller pe,max , because if pe,max 
is high (in the extreme, as pe,max → 1 ), then the evacuation 
contagion spread becomes deterministic. Hence, in some 
sense, the conditions examined here are among the worse-
case conditions.

In Fig. 9, no variability in results across graph instances 
would be characterized by: (1) curves of different colors 
being horizontal—meaning no change in the fraction of 
families evacuating across graph instances, and (2) similar 
sizes in error bars for each data point [graph instance] of 
each curve—indicating the same variability in results within 
graph instances. The plots show that this is the case, and 
hence that results—in terms of fraction of families evaucat-
ing—do not vary significantly across graph instances.

Figure  10 shows temporal variability in simulation 
results, over the 10-day simulation period, rather than at 
the end of the 10 days, as done in the previous plots. Each 
curve in these plots represents a different graph instance. In 
Fig. 10a, data are shown for the second graph instance for 
the conditions dsr = 0.06 km and q = 16 . The variability in 
evacuation fraction, at each day, across the 100 runs is small; 
error bars, representing one standard deviation, are not vis-
ible. In Fig. 10b, these same results are again plotted along 

with results from instances 0, 1, 3, and 4. All five curves 
are essentially coincident, indicating that variability across 
graph instances is quite small.

Based on these results illustrating minimal variance in 
results, further results below are given for a single graph 
instance.

5.3.4 � Effect of dynamics model: looting 2mode‑threshold 
model versus classic contagion rp‑threshold model

Comparisons of dynamics models Results from the 2mode-
threshold model and the rp-threshold model are compared 
in Fig. 11. Figure 11a through c—the top row of plots—use 
the 2mode-threshold model. Figure 11a through c show 
the effect of probability of evacuation pe,max for different ns . 
pe,max increases from 0.05 (Fig. 11a) to 0.10 (Fig. 11b) to 
0.15 (Fig. 11c), with �c = 0.2 . The fraction of the population 
evacuating increases as ns increases at the smallest pe,max , 
almost plateaus for all ns when pe,max = 0.1 , and increases 
its speed to plateau for the largest pe,max . The values of pe,max 
were selected based survey results (Halim et al. 2020).

Figure 11d through  f—the second row of plots—use 
the rp-threshold model, with the same values for pe,max 
and �c . The corresponding plots stacked two-high, left to 
right, can be compared. As pe,max increases, the discrepancy 
between the two models increases: concern over looting 
dampens evacuation in the 2mode-threshold model. For 
pe,max = 0.15 , the rp-threshold model results in Fig. 11f 
reach fde > 0.6 , while the corresponding results for 2mode-
threshold model in Fig. 11c are only roughly one-half the 
values of fde in Fig. 11f. The 2mode-threshold model can 
produce a large difference (dampening) in the fraction of 
families evacuating. Therefore, ignoring the influence of 
looting and crime can cause a large overprediction of fam-
ily evacuations.

Effect of �c in transitioning between models Figure 12 
shows the effect of the range of neighbor fraction �c over 
which the evacuation probability pe,max is non-zero. See 
Fig. 1a. Note that �c = 1.0 corresponds to the rp-thresh-
old model in Fig.  1b. In all resullts, pe,max = 0.05 and 
ns = 300 and in both plots, q = 4 and 16. Figure 12a pro-
vides results for dsr = 0.04 km and Fig. 12b contains results 
for dsr = 0.1 km. The increase in dsr generates more edges 
(greater graph density) and more contagion spreading. The 
conditions of these plots were specifically chosen so that 
spreading was not great enough to reach the ceiling of evacu-
ation fraction imposed by looting concerns; this limit might 
skew the results. Nonetheless, interestingly, the plots show 
that the evacuation fraction saturates by the time �c = 0.4.

When the evacuation probability pe,max increases, dif-
ferent results are obtained. This can be seen by compar-
ing Figs. 11c and f, where now pe,max = 0.15 . In these 
plots, for �c = 0.2 and 1.0, respectively, the final fraction 

(a) dsr = 0.06 km, q = 16,
pe,max = 0.05, and ns = 500

(b) dsr = 0.06 km, q = 16,
pe,max = 0.05, and ns = 500

Fig. 10   Simulation results of the fraction of evacuating families 
(Frac. Evac.) as a function of time for different graph instances. 
For all curves, dsr = 0.06  km, q = 16 , pe,max = 0.05 , and ns = 500 . 
a graph instance 2. b graph instances 0 through 4 (5 total instances). 
In b, the data for all five graphs overlay (see instance 2 in the left plot 
for comparison). The variability in the form of one standard deviation 
is plotted as error bars for each curve, at each day. The variability in 
the 100 runs of one simulation (one curve) is small, and the variabil-
ity across graph instances is small
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of evacuating families increases by 2× as �c increases. 
This is a much greater increase in evacuation fraction than 
shown in Fig. 12, for �c = 0.2 and 1.0, because pe,max has 
increased from 0.05 to 0.15.

5.3.5 � Effect of network structure

We study the effects of long-range and short-range edges in 
the Virginia Beach network of 113,967 nodes.

Effect of graph structure: long-range edges The effect of 
q, i.e., the number of long-range edges, on the fraction of 
families evacuating is shown across the five plots in Fig. 13 
for the 2mode-threshold model, where q = 0 to 16. For 
q = 0 , the fraction of the population evacuating (Frac. DE) 
= fde ≈ 0 . This is a consequence of the networks and find-
ings in Sect. 4. When q = 0 , there are smaller connected 
components in networks (that are obviously not connected, 
by definition) because there are no long-range edges. As 
a result, contagion cannot move from one component to 
another. As q increases to 2 and then to 16 long-range edges 
per node, fde increases markedly. In particular, Fig. 13e 
shows how the spread of evacuation decisions has an upper 
bound in the 2mode-threshold model: too many families 
have evacuated, so the remaining families do not evacu-
ate over concerns of looting and crime. This behavior is 
also seen for q = 8 , and to a lesser extent, for q = 4 when 
ns = 500 . This effect of greater contagion spreading as q 
increases is the “weak link” phonemena (Granovetter 1973), 
where long-range edges can cause remote nodes to change 
their state to 1 (i.e., evacuating), thus moving a “contagion” 

(a) 2mode-threshold,
pe,max = 0.05

(b) 2mode-threshold,
pe,max = 0.10

(c) 2mode-threshold,
pe,max = 0.15

(d) rp-threshold,
pe,max = 0.05

(e) rp-threshold,
pe,max = 0.10

(f) rp-threshold,
pe,max = 0.15

Fig. 11   Simulation results of cumulative fractions of the population 
deciding to evacuate (Frac. Evac.) versus simulation time. Plots are 
arranged by row and by column. In the top row, all three results in a 
through c use the 2mode-threshold model of Fig. 1a with �c = 0.2 , 
and ns (numbers of random seeds) varies from 50 to 500. In the bot-
tom row, the three results in d through f use the rp-threshold model 
of Fig.  1b where now �c = 1.0 , with the same ns values. All results 
are for one instance of the KSW16 graph class, i.e., q = 16 long-
range edges per node (similar results for other graph instances). All 

plots use dsr = 0.04 km. By column, the left-most column (a and d) 
are results for pe,max = 0.05 . The middle column b and e are results 
for pe,max = 0.10 . The right-most column c and f are results for 
pe,max = 0.15 . As pe,max increases, the differences between the out-
break fractions for the 2mode-threshold and rp-threshold models 
increase. That is, the damping effect from fear of looting becomes 
more pronounced. Error bars denoting one standard deviation are 
shown for each data point, in each curve, indicating the average 
results from 100 runs, but the variances are small

(a) dsr = 0.04 km (b) dsr = 0.10 km

Fig. 12   Simulation results of the fraction of evacuating families as a 
function of the range �c where the evacuation probability pe,max > 0 
in the 2mode-threshold model in Fig.  1a. evacuation probabil-
ity pe,max . All results use the 2mode-threshold model of Figure  1a, 
�c = 0.05 and ns = 300 . In a, dsr = 0.04 km and q = 4 and 16. In b, 
dsr = 0.1 km and q = 4 and 16. Number ns of seeds is 300 in all simu-
lations. Conditions are specifically chosen so as not to hit the upper 
limit in spreading due to looting, as in plots such as Fig. 11c
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into a different region of a graph. Note that the speed with 
which the maximum of fde = 0.32 is attained increases with 
ns.

From Table 1, the average in-degree for a node in KSW0 
for dsr = 40 m is 10.1. The average in-degree increases by 
about 70% to 17.7 for KSW8, and this increase is due solely 
to the long-range edges. Hence, this figure shows that by 
the time the average in-degree of the graphs for dsr = 40 m 
increases by 70% owing to long-range edges, the effect of 
looting, in plateauing the fraction of families evacuating, is 
observed.

Figure 14 provides the fraction fde of evacuating families 
as a function of number of long-range edges for all three dsr 
values—0.04 km, 0.06 km, and 0.1 km—for two numbers 

ns of seed nodes: 50 and 500. The two plots are, for left, 
pe,max = 0.04 and, for right, pe,max = 0.10 in the 2mode-
threshold model of Fig. 1a. Across both plots, fde increases 
as q increases, but also as dsr , ns , and pe,max increase. A cou-
ple of observations about the looting model are relevant, but 
will return to these issues when the appropriate simulation 
input is the focus.

Effect of graph structure: short-range edges Figure 15 
shows the effect of short-range distance dsr on the evacua-
tion fraction. For the smallest dsr , there is an effect of q on 
the fraction of evacuating families. However, by the time 
dsr reaches its greatest value, the number of short-range 
edges grows such that for all q ≥ 2 , the evacuation fraction 
is approaching its maximum value. In this way, increases 
in either dsr or q has the same net effect: increases in either 
increases the number of edges in a graph (i.e., increases the 
graph density) and hence increases the diffusion of evacua-
tion up to the looting-imposed ceiling.

5.3.6 � Effects of model parameter pe,max.

Figure 14, described above, shows the effect of increas-
ing pe,max on increasing fde values. First, note that for 
pe,max = 0.10 , according to Table 5, roughly 0.65 fraction 
of the families should be evacuating. But because of the 
concern over looting, fde is far less (about 1/2 of the value) 

(a) q = 0 (b) q = 2

(c) q = 4 (d) q = 8

(e) q = 16

Fig. 13   Simulation results of fraction of evacuating families (Frac. 
Evac.) versus simulation time. The plots also show the effects of q, 
i.e. the number of long-range edges, and numbers of seed nodes. Each 
plot has curves for a different q, from 0 through 16. All results use 
the 2mode-threshold model of Figure  1a, pe,max = 0.15 , �c = 0.2 , 
and ns (numbers of random seeds) varies from 50 to 500 (see legend). 
Error bars denote variance across the 100 runs that are used to gen-
erate each curve in each plot. (The variance is very small.) Results 
for one graph instance of each of the following graphs: a KSW0, b 
KSW2, c KSW4, d KSW8, and e KSW16, where each graph class 
is of the form KSWq. In all plots, dsr = 0.04 km. As q increases, the 
fraction of families evacuating increases, up to the point that the loot-
ing mechanism constrains further evacuation

(a) pe,max = 0.04 (b) pe,max = 0.10

(c) legend for both plots

Fig. 14   Simulation results of the fraction of evacuating families 
(Frac. Evac.) as a function of the number q of long-range (LR) edges. 
All results use the 2mode-threshold model of Fig.  1a, �c = 0.2 , 
and ns (numbers of random seeds) is 50 and 500 (see legend). Error 
bars denote standard deviation. (The variance is very small.) Results 
are for one graph instance, instance 0, for each dsr value (0.04  km, 
0.06 km, 0.10 km). The maximum probability in the 2mode-thresh-
old is a  pe,max = 0.04 and b  pe,max = 0.10 . The results show that 
increasing pe,max by 2.5× results in increases in fde , particularly at 
larger q. The increases are limited by the maximum evacuation frac-
tion of about 0.3. c Legend for both plots
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in Fig. 14b. This same type of comparison is also provided 
in Fig. 11.

Second, Fig. 14a is a sufficiently small pe,max = 0.04 
that the overall spread fraction fde is not greater than about 
0.2, which is �c in Fig. 1a. Consequently, looting does not 
have a big effect on these results. However, for the larger 
pe,max = 0.10 in Fig. 14b, some of the curves plateau at 
greater q, particularly for dsr = 0.1 km and ns = 500 , but 
also to a lesser extent when either dsr = 0.1 km or ns = 500 . 
These curves are reaching a ceiling, indicating that the loot-
ing factor is having an effect. Hence, the looting phenom-
enon may or may not be operative when using the 2mode-
threshold model: in Figure 14, this is controlled by pe,max.

5.3.7 � Effects of model parameters pe,max and �c Combined 
with Network Structure.

Figure 16 shows the explicit dependence of the final frac-
tion of families evacuating (Final Frac. Evac. in plots) as a 
function of the evacuation probability pe,max of the 2mode-
threshold model of Fig. 1a. The number ns of seeds is 400 
in all simulations. Figure 16a fixes dsr = 0.04 km and varies 
the number q of long-range edges, while Fig. 16b fixes q = 8 
and varies dsr . In the left plot, for fixed dsr , the spread frac-
tion increases as pe,max and q increase. However, for larger 
q of 2, 4, 8, and 16, and for larger pe,max , the largest q = 16 
produces a shallower rate of increase in fde than do the other 
q values. Similarly in right plot, as dsr increases for fixed 
q = 8 , as pe,max increases, there is a transition in ranking of 
the short-range distance dsr that causes larger outbreaks. The 
transition occurs near pe,max = 0.1.

In both aforementioned plots, the same mechanism 
is operative. When the probability pe,max increases to 

larger values (roughly for pe,max > 0.1 for these plots) and 
when average in- and out-degrees are large (roughly for 
dmin = dmax ≥ 20 ), the spreading is fast. We can conceptual-
ize a “frontal boundary” that separates nodes in state 0 from 
those in state 1. As a contagion grows, the frontal boundary 
of state 1 pushes into parts of the network where nodes are 
in state 0. For greater pe,max and greater degree, the front can 
be widespread so that nodes in state 0 can have fractions of 
neighbors in state 1 that are greater than �c = 0.2 , in which 
case these nodes will not transition to state 1, per Fig. 1a. 
This means that the overall spread fraction is less than what 
might otherwise be anticipated.

Thus, dynamics model parameters and network struc-
ture combine to produce two interesting phenomena. First, 
as pe,max increases, the rate of increase in the final frac-
tion of evacuating families can decrease. Second, as pe,max 
increases, the magnitude of the final fraction of evacuating 
families can decrease.

5.3.8 � Effects of numbers of seed nodes

Figure 17 provides the final fraction of families evacuating 
as a function of numbers ns of seed families (that are evacu-
ating at time t = 0 ). The effect of numbers of seeds—like all 
parameters—is dependent on the regime of final evacuation 
fraction that the conditions produce. When conditions are 
such that the evacuation fraction is less than the looting-
induced evacuation fraction ceiling, then the effect of seed 
nodes can be significant; see the curve for q = 4 . However, 

Fig. 15   Simulation results of the fraction of evacuating families 
(Frac. Evac.) as a function of the short-range (SR) distance dsr over 
which SR edges are formed between pairs of families. All results use 
the 2mode-threshold model of Figure  1a, �c = 0.2 , pe,max = 0.05 , 
ns = 200 , and all q values (see legend). Error bars denote standard 
deviation from 100 runs. (The variance is very small.) Results are for 
one graph instance, instance 0, for each dsr value (0.04 km, 0.06 km, 
0.10  km). The results show that for dsr = 0.04  km, there is a pro-
nounced effect of q. However, as dsr increases, the number of short-
range edges increases, giving more opportunities for contagion to 
spread, and by the time dsr = 0.10 km, the effect of different q ≥ 2 is 
small, as the spread of evacuation approaches its limit value

(a) dsr = 0.04 km (b) q = 8

Fig. 16   Simulation results of the final fraction of families deciding 
to evacuate (Frac. Evac.) as a function of the evacuation probabil-
ity pe,max . All results use the 2mode-threshold model of Figure  1a, 
�c = 0.2 and ns = 400 . In a, the different curves are for different 
numbers q of long-range edges, with dsr = 0.04 km. In b, the differ-
ent curves are for dsr values of 0.04 km, 0.06 km, and 0.10 km, for 
q = 8 . For reference, the brown curve for dsr = 0.04 km and q = 8 is 
the same in both plots. Error bars, denoting one standard deviation, 
are plotted, but variance is very small. The transitions observed in the 
plots (i.e., intersections of curves) are caused by greater pe,max and 
greater degree networks (large dsr , large q). In these cases, the fast 
and widespread diffusion of contagion can result in nodes in state 0 
having more than �c = 0.2 fractions of their neighbors in state 1, and 
for the 2mode-threshold model, this means that the nodes will not 
transition to state 1. This means that the overall spread size may be 
less



	 Social Network Analysis and Mining           (2022) 12:13 

1 3

   13   Page 16 of 18

when the looting ceiling is reached, which for these condi-
tions occurs when q = 16 , the effect of seed nodes is small.

6 � Related work

6.1 � Factors affecting evacuation decision

Many studies have identified factors that affect evacuation 
decision-making. These include social networks, peer influ-
ence, access to resources, risk perceptions (Riad et al. 1999; 
Lindell and Perry 2005; Dash and Gladwin 2007) and house-
hold demographics such as nationality, proximity to hur-
ricane path, pets, disabled family members, mobile home, 
access to a vehicle, etc. (Baker 1991, 1995; Fu and Wilmot 
2004a; Dash and Gladwin 2007; Widener et al. 2013; Burn-
side 2006; Cole and Fellows 2008; Faucon 2010; Wong et al. 
2018). Evacuation notices can increase people’s propensity 
to evacuate (Baker 1991, 1995; Dash and Gladwin 2007; 
O’Neil 2014). Mozumder and Vásquez (2015) provide a case 
study in which they analyze the role of evacuation expenses 
in affecting hurricane evacuation decisions in Harris and 
Galveston counties in Texas. Studies also show the impor-
tance of storm characteristics into evacuation decision-mak-
ing (Baker 1991, 1995; Dash and Gladwin 2007; Mozumder 
and Vásquez 2018).

Work by Goldberg et al. shows that a family’s past deci-
sion to evacuate (or not) is a significant predictor of a simi-
lar future intended evacuation behavior if the family had a 
high confidence in its past decision (Goldberg et al. 2020). 
Role of strong social ties in evacuation behavior is studied 
in Metaxa-Kakavouli et al. (2018). Authors show several 
aspects of social capital are correlated with evacuation 
decision, even after accounting for confounding factors. 
Especially, higher levels of bridging and linking social ties 

correlate strongly with evacuation. Miller (2007) examines 
the role of formal and informal social connections in shar-
ing information and shows that the number of contacts as 
well as the range of contacts across different contexts (e.g., 
faith-based, school, work, etc.) aided evacuation during hur-
ricanes Katrina and Rita in East Texas. Influence of density, 
diversity, and dependability of social support and social con-
nections is studied on decisions to evacuate in Collins et al. 
(2018).

6.2 � Agent‑based modeling and simulation 
of evacuation decision‑making

Some studies use social networks and relative threshold 
models to model evacuation behavior. A relative threshold 
�i for agent vi is the minimum fraction of distance-1 neigh-
bors in a social network G(V, E) that must be in state 1 in 
order for vi to change from state 0 and to state 1 (Watts 2002; 
Centola and Macy 2007). Several studies (Hasan and Ukku-
suri 2011; Widener et al. 2013; Yang et al. 2019) assign 
thresholds to agents in agent-based models (ABMs) of hurri-
cane evacuation modeling. Stylized networks of 2000 nodes 
are used in Hasan and Ukkusuri (2011) to study analytical 
and ABM solutions to evacuation. In Widener et al. (2013), 
12,892 families are included in a model of a 1995 hurricane 
for which 75% of households evacuated. They include three 
demographic factors in their evacuation model, in addition 
to the peer influence that is captured by a threshold model. 
Small world and random regular stylized networks are used 
for social networks.

Dixon et al. (2017) provide a survey-based empirical 
analysis for identifying the most salient factors of the het-
erogeneous respondents, which inform the rules governing 
hurricane evacuation behavior of the subpopulations in an 
agent-based model. Kuhlman et al. (2020) develop an agent-
based model for evacuation decision-making from Hurricane 
Sandy survey data.

Simulations of hurricane evacuation decision-making in 
the Florida Keys are presented in Yang et al. (2019). The 
simulations cover 24 h, where the actual evacuation rate was 
about 53%. The social network is a small-world network, 
with geospatial home locations, which is similar to our net-
work construction method. Edges between homes are placed 
by using a small world approach (Watts and Strogatz 1998); 
long range edges are placed by travel times. The dynamics of 
evacuation is modeled as a two-step process. First, families 
receive a message to evacuate either directly, or via diffu-
sion through the social network and then families evacuate 
based on a relative threshold, i.e., the fraction of a family’s 
neighbors that have decided to evacuate.

In all of these studies, except Kuhlman et al. (2020), as 
the number of neighbors of a family vi evacuates, the more 
likely it is that vi will evacuate. Our threshold model differs: 

Fig. 17   Simulation results of the final fraction of evacuating fami-
lies as a function of the number ns of seed families (i.e., the number 
of families evacuating at time t = 0 ). Conditions are dsr = 0.04  km, 
q = 4 , 8, and 16, �c = 0.2 , and pe,max = 0.10 in the 2mode-threshold 
model in Figure 1a. The results show that for conditions in which the 
evacuation fraction looting-induced ceiling is not reached (here, for 
q = 4 ), a 10 fold increase in ns from 50 to 500, can produce a fourfold 
increase in final evacuation fraction (from 0.035 to 0.15 probability). 
As final evacuation fraction increases such that the looting-based ceil-
ing is reached (here, for q = 16 ), the effect of seed nodes is minimal
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in our model, if too many neighbors evacuate, then vi will 
not evacuate because of concerns over crime and looting.

ABM requires a representation of a population. Two stud-
ies use synthetic population (i.e., digital twin Barrett et al. 
(2009)) data to represent a population; they use the US cen-
sus data, a commercial data set of business locations, Census 
Transportation Planning Products, and other data to produce 
families and then use stylized methods to form edges of the 
social networks (Widener et al. 2013; Yang et al. 2019). 
These approaches are similar to our work. Works using styl-
ized networks include Hasan and Ukkusuri (2011); Yang 
et al. (2019).

Yin et al. (2014) study not only evacuation decision-mak-
ing, but also destination selection for evacuation and travel 
planning, for Miami-Dade County. They make use of data 
from several surveys to develop models. Zhu et al. (2018) 
also combine survey data with synthetic data to develop an 
ABM for evacuation decision-making, and for travel of fami-
lies that are evacuating. They model Hurricane Sandy and 
four million families in the northeastern US.

6.3 � Other modeling approaches

Some studies predict human evacuation behavior using 
techniques other than ABM. Social media data have been 
used to model hurricane evacuation decision-making and 
travel patterns. Roy and Hasan (2021) construct an input-
output hidden Markov model to predict hurricane evacua-
tions using Twitter data. Roy et al. (2021) use social media 
data to predict traffic demand based on evacuations in the 
face of oncoming hurricanes. Fu and Wilmot (2004b) build 
a sequential binary logit model to compute the probability 
that households evacuate at each time step as a hurricane 
approaches land.

7 � Summary and conclusions

We study evacuation decision-making as a graph dynami-
cal system using 2mode-threshold functions for nodes. This 
work is motivated by the results of a survey collected during 
Hurricane Sandy which shows that concerns about crime 
motivates families to stay in their homes, if too many neigh-
bors evacuate. We study the dynamics of 2mode-threshold 
in different network settings, and show significant differ-
ences from the standard threshold model. The result shows 
that in some cases, not incorporating the looting effect in 
the model can overpredict evacuation rates by as much as 
50%. This has important policy implications. For example, 
a more realistic prediction of the size of non-evacuees can 
be used by city planners for contingency planning. Planners 
can more accurately estimate resources that will be required 
for non-evacuees who are left behind in adverse conditions, 

as well as design interventions that will address the concerns 
of crime so that a higher level of compliance to evacuation 
may be achieved.
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