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Abstract

Given a data set of size n in d’-dimensional Euclidean space, the k-means problem asks for a set
of k points (called centers) so that the sum of the ¢3-distances between points of a given data set of
size n and the set of k centers is minimized. Recent work on this problem in the locally private setting
achieves constant multiplicative approximation with additive error O(n1/2+“ - k - max{V/d, vk}) and
proves a lower bound of Q(y/n) on the additive error for any solution with a constant number of rounds.
In this work we bridge the gap between the exponents of n in the upper and lower bounds on the
additive error with two new algorithms. Given any « > 0, our first algorithm achieves a multiplicative
approximation guarantee which is at most a (1 + «) factor greater than that of any non-private k-means
clustering algorithm with £O/a%) Vd'n poly log n additive error. Given any ¢ > v/2, our second algorithm
achieves O(k1+0(1/(2°271>)\/%p01y logn) additive error with constant multiplicative approximation.
Both algorithms go beyond the Q(n!/2%%) factor that occurs in the additive error for arbitrarily small
parameters a in previous work, and the second algorithm in particular shows for the first time that it
is possible to solve the locally private k-means problem in a constant number of rounds with constant
factor multiplicative approximation and polynomial dependence on k in the additive error arbitrarily
close to linear.

1 Introduction

Given n points in a d-dimensional Euclidean space, the k-means clustering problem asks for a set of k points
S such that the sum of £3-distances from each data point to the closest respective point in S is minimized.
Although k-means clustering in the non-private setting is well-studied, over the past few years there have
been several developments in the differentially private (DP) setting. Differential privacy [Dwork et al., [2006]
provides a framework to characterize the loss in privacy which occurs when sensitive data is processed and
the output of this computation is revealed publicly. Although there are different ways to define and capture
this loss in privacy, broadly speaking these characterizations tend to be either central or local in nature.
Informally, differential privacy asks for a guarantee that the likelihood of any possible output does not
change too much by adding to or dropping from our data set any possible private value from the data universe.
In any private algorithm such a guarantee is fulfilled by adding carefully calibrated noise to quantities that
are information-theoretically sensitive to the private data in the course of the computation, and under the
constraints of being private the goal is to achieve relatively low error. Perfect answers to the algorithmic
problem at hand typically violate privacy; as a consequence, the constraints of privacy usually enforce harsher
lower bounds on accuracy or utility than those imposed by the limits of time or sample efficient computation.
In local differentially privacy (LDP) the constraints are even more severe; the entity solving the algorithmic
problem only gets access to noisy, privatized data. This constraint forces even stronger lower bounds on the
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Table 1: Comparison with recent LDP algorithms for k-means

Work Multiplicative Approximation Additive Error
~ INissim and Stemmer| [2018] O(k) OB B k)
Kaplan and Stemmer| [2018] o(1) O(n2/3+a 3 k2)
Stemmer| [2020] 0(1) O(n/?te . k. max{V/d',Vk})
This work, algorithm (14 a)n O(n'/2.a"/2. k@(l/a2))
This work, algorithm [4 O(c?) O(n'/2.a'"/2. k1+0(1/(262*1)))

The additive error assumes a data set of size n inside a ball with unit radius. The O notation hides
dependence on the privacy parameters, the failure probability, and log terms. The user-defined parameter c
can take any real value greater than /2.

accuracy of locally private protocols; for the k-means clustering problem a lower bound of Q(y/n) is known
for the additive error of any interactive constant factor multiplicative approximation algorithm [Stemmer,
2020).

Recent work on LDP k-means The first LDP algorithm for the k-means problem with provable
guarantees was given by Nissim and Stemmer| [2018] wherein they achieved a multiplicative approximation
of O(k) and and an additive error term of O(n?/3+@ . d/3 . \/k). They achieved this result by solving the
related 1-cluster problem that asks the solver to privately allocate a small number of centers so that some
center in that set covers all data points within a ball of minimal radius; by an observation of [Feldman et al.
[2017|, there is a general algorithm that given access to a private solution for the 1-cluster problem solves
the private k-means problem. The exponent of n in the additive error term holds for arbitrarily small a at
the cost of looser multiplicative approximation guarantees; this artefact is the consequence of using locality
sensitive hashing (LSH), something which appears in most later work as well.

Kaplan and Stemmer|[2018] gave the first constant factor multiplicative approximation algorithm for this
problem within an additive error of O(nz/ dta . ql/3. k?). They refine the approach of the previous work
by specifically targeting the k-means problem but also use LSH functions to detect the accumulation of
data. The additive error was further brought down by [Stemmer| [2020|, who achieved an additive error of
O(n'/?*% . k- max{V/d, vk} and also proved a lower bound of Q(,/n), as mentioned before. Given that all
previous works exhibit some trade-off between the exponent of n and the multiplicative approximation, the
exponents of 1/2 4+ a and 1/2 in the upper and lower bounds of [Stemmer| [2020] is particularly provocative.
It naturally leads to the question

Does there exist an LDP k-means clustering algorithm with constant multiplicative
approximation and additive error with a /n dependence on the size of the data set?

In the non-private setting it has been seen that the performance of k-means clustering algorithms is
usually not very sensitive to the multiplicative approximation guarantee, unless the data set is chosen in a
pathological fashion. Experimental work [Balcan et al,[2017, |Chaturvedi et al., 2020] on k-means clustering
in the related central model of DP shows that the performance of private clustering algorithms seems to be
far more sensitive to the additive error, which as we have observed is bound to exist due to the constraints
of being private. This highlights the importance of the question of determining the true dependence of the
additive error term on the size of the data set.

Technical contributions: In this work we present two algorithms for the k-means problem in the LDP
setting, wherein we go beyond the n'/2t¢ barrier demonstrating that the trade-off can be independent of n
for some regimes of k and n. Our first algorithm is a one-round protocol that achieves a (14 «a)-multiplicative
approximation to the cost guarantee of any non-private clustering algorithm that it is given acess to as a
subroutine. It achieves additive error £©(1/ a2)\/%p01y log n; we see that the trade-off between the additive
and multiplicative approximations in this algorithm has been shifted from n to k. However, the O term in



the exponent of £ can hide large constants, which is an undesirable property in a setting where low additive
error seems to dictate performance.

Theorem 1.1. Algorithm (1] is an (e, d)-locally dzﬁerentmlly private algorithm that after one round of
interaction with a private distributed data set D' C R¥ of size n, outputs a set S’ of size k such that
for failure probability polynomially small in n,

1. 5 2
o (S) < (14 0(a))nOPT' + gkO(l/a )\/d'nlog1/8 poly log n.

We address this deficit with our second algorithm, where we return to an LSH-based approach and drive
down the exponent of k to 1 + O(1/(2¢? — 1)). Again as this exponent approaches 1 the multiplicative
approximation factor blows up but this shows for the first time that it is possible to have constant factor
multiplicative approximation k-means clustering algorithms in the LDP setting with additive error that has
a truly square-root dependence on the data set size and the ambient dimension and arbitrarily close to linear
dependence on the number of cluster centers.

Theorem 1.2. Algomthml is an (e, 6)-locally differentially private algomthm such that given ¢ > \/2, after
four Tounds of interaction with a private distributed data set D' C RY of size n outputs a set S' of size k
such that with probability 1 — 3,

kpolylogn
5

It was observed in [Stemmer| [2020] that one of the main road-blocks in computing solutions with low
additive error is figuring out how to generate a relatively small bi-criteria solution to the k-means problem
as a first step. A bi-criteria solution relaxes two constraints of the k-means problem; we permit picking more
than k centers, and we relax the minimum cost requirement to a multiplicative approximation guarantee.
Any such bi-criteria solution can be exploited to construct a proxy data set on which we can apply any non-
private k-means clustering algorithm. The fact that the clustering cost of the original data set with respect
to the candidate centers used to generate the proxy data set can be exploited to show that k-means solutions
for proxy data sets work well for the original data set as well. In order to avoid an exponent of 1/24a on n,
it is necessary to find a bi-criteria solution with O(poly k poly logn) many candidate centers such that the
additive error to their respective multiplicative approximations is at most O(poly k+/n poly logn) (omitting
the dependence on dimension). Both our algorithms achieve their improvements by generating such a small
size bi-criteria solutions for the k-means problem.

1 1+0(1/(2¢2 1))
fp/(S") =0(0OPT')+ 0O (e d’nln(n/é)) ( ) .

LDP k-means with arbitrarily tight multiplicative approximation: In our first algorithm, we appeal
to recent advances in dimension reduction for k-means clustering Makarychev et al|[2019] which show that
Johnson-Lindenstrauss style dimension reduction to O(log k/a?) preserves the cost of every k-clustering of a
data set within a multiplicative approximation of (1 + «). Suppose we decompose the domain in concentric
shells depending on their distance from some fixed k cluster centers. By setting geometric thresholds of
1,1/2,1/4 units and so on, the lth ring has the property that every data point in that shell has a clustering
cost of O(1/(2")?) units. To cluster the Ith ring, we allocate a number of centers by appealing to a grid-based
approach following |Chaturvedi et al. [2020]; since we were able to reduce dimensions to O(log k/a?) we are
able to show that allocating (O0/a) poly log n centers suffices to ensure that most points in the /th shell are
within an O(a/(2!)?) distance of some candidate center.

Extending this for every shell with appropriately scaled grids we get the promise that moving each data
point to its closest candidate center would lead to net movement of O(aw OPT ) where OPT is the optimal
clustering cost. The rest of the argument follows essentially by applications of the triangle inequality to prove
that the dimension reduced and proxy data sets have similar costs for any candidate k-means solutions.



LDP k-means with low additive error: We note that the constant absorbed by the O term in the
exponent of k of our first algorithm could be large, which is an undesirable property in a setting where low
additive error seems to dictate performance. We address this deficit with our second algorithm, where we
return to an LSH-based approach and drive down the exponent of k to 1 + O(1/(2¢? — 1)). This shows
for the first time that it is possible to have constant factor multiplicative approximation k-means clustering
algorithms in the LDP setting with additive error that has a square-root dependence on the data set size
and the ambient dimension (up to log factors) and arbitrarily close to linear dependence on the number of
cluster centers.

We achieve this improvement by appealing to a construction of Braverman et al|[2017] who impose a
randomly-shifted hierarchy of dyadic cells in a dimension reduced space. A tree structure is defined on
subsets of the domain [0, 1)%; starting with [0,1)¢ as the root node, we bisect the hypercube along each axis
to generate 2¢ congruent octants. Each octant is itself a hypercube that we designate a child of the original
cell, on proceeding recursively for logn levels the side length of each cell in the lowest level is < 1/n.

The crucial observation made by Braverman et al|]|2017] was that after a uniformly random shift of the
tiling there are O(1) cells with side-length ¢ units within a distance of ¢/d units of any point. By applying
this observation to an optimal k-means solution, we are able to identify a small number of cells where the
data accumulates per level. These cells serve as our domains for LSH functions. The number of data points
that accumulate in these cells scales inversely with the side-length of the cells; this ensures that we only
allocate centers when such an allocation is certain to be helpful. We are able to allocate a far smaller number
of centers to generate our bi-criteria solution than in our first algorithm. Moving the 1/2 + a-style exponent
from n to k is technically involved and we give a more detailed explanation in section

Challenges of the local setting: We recall that in the locally private setting, each agent must add noise
to any response they give under the assumption that it is public knowledge that all data lies in a domain of
diameter 1. This will require adding a noise vector with length proportional to 1/e to their private data if
they were to e-privately release their point directly. The implications of the large noise needed to obfuscate
information means that it is impossible to privately derive fine-grained information about where individual
points lie.

It follows from these considerations that we must try and get aggregate information about the geometry
of the data set indirectly. One way of accomplishing this is to discretize the agents’ response. Although
again the privatized individual responses are highly noisy, since the range of values taken by this discretized
response is finite the slight bias towards values which are heavy-hitters causes their counts to accumulate
and be distinguishable from the counts of false positives. We will appeal to prior work on locally private
succinct histogram recovery to recover such heavy hitting values with minimal loss in privacy.

From this perspective, we see that in the first algorithm we achieve our discretization by dividing our space
using proximity to grid points, and in the second algorithm we use a two different kinds of discretization; a
cell based discretization which is philosophically similar to that of the first, and an LSH-based discretization
which gives a geometrically meaningful response not in terms of the ambient space but instead in terms of
the rest of the data set.

Reducing round-complexity via HeavySumsOracle: In the course of our algorithms we often encounter
a situation where we first identify some subset of the data domain that is advantageous for us to allocate
a candidate center in and then we need to compute a vector average over points in that domain. Although
naively performing such a computation would require two rounds in the LDP setting, we construct a
subroutine that can be run in parallel with the succinct histograms used to identify such regions of the
data domain, and can be queried to estimate the vector sums of all points mapping to such domains.
Dividing these sums by the histogram counts yields the averages we need. Indeed, our construction is in
fact a bit more general, and allows one to recover sums of arbitrary private vector values for all points that
map to some heavy hitting value under a completely different value mapping. This construction allows us to
compute vector averages over points mapping to heavy LSH buckets as well as vector averages in the original
space over all points that map to a certain cluster in the dimension-reduced space; the two value mappings



need not have anything to do with each other.

Concurrent work: In [Chang et al| [2021] a one-round protocol for LDP k-means with similar cost
guarantees as algorithm |1/ is introduced, also surpassing the n!/2+® barrier mentioned above. They operate
in the eDP setting and get a multiplicative approximation of 7(1 + «) where 7 is the multiplicative
approximation guarantee of any given non-private k-means algorithm and an additive error term of k@) .
V/nd' -polylog(n)/e. They also demonstrate that their protocol can be extended to the shuffle model |Bittau
et al.l [2017, [Cheu et all |2019] [Erlingsson et al.| [2019] of differential privacy.

Outline of paper: In section [2] we start by formalizing the problem statement and the definition of LDP
that our algorithms must fulfill. We then summarize some notation that eases the description of our analysis
and recall private subroutines from previous work. We also introduce the HeavySumsOracle, a one-round
protocol that can be run in parallel with a private succinct histogram and privately constructs a data
structure that may be queries to recover sums of vector-function values taken by all agents that happen to
map to a heavy-hitting value in the succinct histogram. We recall the LSH function definition and prove
some fundamental properties of the construction we use in section [4]

In section [3| we introduce our LDP k-means algorithm for arbitrarily tight multiplicative approximation,
algorithm[I] We start by establishing the pseudo-code and outlining the main steps, and then give a technical
discussion explaining some of the algorithmic choices made as well as sketching why the cost analysis works
out. We then give a formal proof of the cost and privacy guarantees. The main result of this section is
theorem [L.11

In section 4] we introduce our LSH-based LDP k-means algorithm, algorithm [d] We start by giving a high
level overview of the core ideas and advantages behind our algorithmic choices. We provide the pseudo-code
in a modular fashion and analyse the cost guarantees of each subroutine in a separate subsection. The main
result of this section is theorem

2 Preliminaries

2.1 Problem Definition
We start by formally defining the k-means clustering problem.

Definition 2.1 (Non-private k-means). For any Euclidean space E, let z : E x E — R denote the square of
the 5 metric. Let D’ be a data set of n points in R? such that D’ C B(0,1), the d’-dimensional unit ball of
radius 1 centered at the origin. The k-means clustering cost fp/(S) of the data set D’ for a set S of k points
in B(0,1) is defined by the expression

for(8) =Y #(p,S)

peD’

where we let z(p, S) = minges 2(p, ¢). The k-means clustering problems asks one to find a set of k points in
B(0,1) such that fp/(-) is minimized.

Remark 2.2. Both algorithms introduced in this work start with a dimension reduction so it will be
convenient to let d’ denote the dimension of the given ambient space and d denote the dimension of the
space that the majority of the computation is done in. Similarly, D’ is used to denote the original data set
and D is used to denote the image of the data set in the dimension reduced space.

We require that our k-means algorithm also satisfy the constraints of local differential privacy. In this
framework, the dataset is distributed among n agents each of whom has a single point of D, and the constraint
of being locally differentially private requires that the transcript of any agent’s responses is not too sensitive
to their private data. This is formalized by appealing to the central model of differential privacy, which in
turn is defined as follows:



Definition 2.3 (Differential privacy (DP), Dwork et al. [2006]). Two datasets Dy, Dy € X™ are neighbouring
if they differ in at most one member element, i.e. |D1ADs| = 1. An algorithm A : X — ) is said to be
(¢, 0)-differentially private (DP) if for any S C Y and any two neighbouring datasets Dy, Dy € X,

P(A(Dy) € S) <exp(e)P(A(Dy) € S) + 4.
If 6 = 0, we can say that A is e-differentially private.

Given the definition of the central model of differential privacy, local differential privacy is then defined
as follows:

Definition 2.4 (Local differential privacy (LDP), Kasiviswanathan et al.|[2011]). Consider a protocol which
interacts with any one agent in some r rounds, and let the response of the agent with private data p be
A(p) = (A1(p),...,Ar(p)), where A;(p) is the response of the agent in the ith round. We say that this
protocol is (e, d)-locally differentially private (LDP) if the algorithm that outputs privatized responses for
any agent p — A(p) is (¢, d)-differentially private. Again, if 6 = 0, we can say that a protocol is e-locally
differentially private.

Remark 2.5 (Notation). We use O(-) to denote that certain terms have been suppressed in the argument.
Concretely, in this notation we omit terms that are logarithmic in the multiplicative approximation factor
«a, the failure probability 5 and logn. We use the expression poly logn to denote terms that are O(log? n)
for some constant power p.

2.2 Dimension reduction for k-means clustering

In this subsection we recall some results about distance preserving dimension reduction maps that are
fundamental to the construction of both algorithms described in this work. We follow the description in
Makarychev et al.|[2019], where the state of the art for the application of dimension reduction to ¢, clustering
is stated and proved. We adopt the notation that for any z,y,a € R, x ~1,, vy if Ha Sy < (1+ a)z, note
that for any x,y, for all sufficiently small «, this is equivalent to y = (1 £ O(«a)z.

Lemma 2.6 (Johnson-Lindenstrauss lemma, [Johnson and Lindenstrauss| [1984]). There is a family of
random linear maps Ty 4 : RY — RY with the property that for every d > 1, a,8 € (0,1/2) and all
r€RY,

Iz
Prory (17 € [ 0 s el ) 2 15,

where d = O (logé%)

This result is often cited in the form that for a data set D’ C R? of size n, in order to preserve all
pair-wise distances with probability 1 — /3 it suffices to reduce dimensions to O (log(n/ B8)/ 042); this version
follows directly by scaling the failure probability for the statement above by a factor of 1/n and applying the
union bound. It is a well-known fact that the k-means clustering function can be written entirely in terms of
pair-wise distances between the points in each cluster, i.e. for a k-means solution S that induces a partition

(C1,...,Ch),

k k
for(S) = 20,9 =Y 2(p,) = Z 2|é’-| > 29

peD’ i=1 peC; " pgec;

It follows that preserving ¢5 distances within a (1+«) approximation guarantees that the k-means clustering
cost for the same cluster sets is preserved within a (1 £ O(«)) factor. This is the formulation that we appeal
to for the multi-round clustering algorithm with low additive error.

For the purpose of k-, clustering it has been shown that one can reduce dimensions far more aggressively;
this line of work culminates in the following near-optimal result of Makarychev et al. [2019):



Theorem 2.7 (Theorem 1.3 of Makarychev et al.|[2019]). Any family of linear maps Ty 4 : RY = R? that
satisfies the conditions of the JL lemma and is sub-Gaussian tailed has the property that for any clustering
(C1,...,Ck) of D" with probability 1 — B over the choice of T ~ Tg 4

Z

where d = O(log(k/aB)/a?).

Z Z Z (Tp,Tq) |:1_:~l_a,(1+01):|.

;tuqu p q€ES;

We recall that a family of linear maps Ty 4 is called sub-Gaussian-tailed if for every unit vector = € RY
and t > 0,

For our purposes, we will also need a bound on the lengths of the vectors that holds with probability
1 — B after map reducing dimensions to log(k/a3)/a?. We can use the fact that the dimension reduction
maps are sub-Gaussian-tailed to get the following bound.

Lemma 2.8. For every point p in a dataset D' of size n, given a sub-Gaussian tailed dimension reducing
family of maps Ty 4, we have that with probability 1 — B, || Tp|| < O(a+/logn/B)|pl.

Proof. For any p € D' we have that

Pre (129 2 @+ 0l < exp (o (#12E0220) ).

a2

It follows that there is a choice of t = O(\/log n/p- m) = O(ay/logn/B) such that the bound above
is at most 8/n. Applying the union bound, the desired inequality follows. O

2.3 Fundamental privacy subroutines

We briefly recall a couple of standard results from the differential privacy literature that are used in the
sequel. We rely on the following composition theorem which bounds the loss in privacy of the composition
of multiple DP algorithms by appealing to their individual privacy guarantees in a modular fashion.

Theorem 2.9 (Basic Composition, Dwork et al. [2006]). A mechanism with N adaptive interactions with
(€i,0:)-DP mechanisms each for i € [N] and no other accesses to the database is (3¢ ny € 2wy 61)-DP-

We also use the Gaussian mechanism and its privacy guarantee as formalized in the following lemma.

Lemma 2.10 (Gaussian mechanism, Dwork and Roth|[2014]). Given a d-dimensional function f : X — R?
which has ly-sensitivity maxg yex | f(x) — f(y)|l2 < Ay, randomized response via the Gaussian mechanism
which for an agent with private data p returns f(p) +Y for Y ~ N(0, CGA“ded) is (e, 6)-differentially
private for any cZ > 21n(1.25/9).

2.4 Bitstogram and the Heavy Sums Oracle

The contents of this subsection are used in the cost analysis for both clustering algorithms. In the sequel we
make extensive use of locally private frequency estimation. For private frequency estimation a lower bound
of Q.(y/n) is known [Chan et al |2012]. A state of the art construction for this problem is the Bitstogram
algorithm Bassily et al.|[2020|, which is an e-LDP algorithm for the heavy-hitters problem that achieves low
€error.



Lemma 2.11 (Algorithm Bitstogram, [Bassily et al.| [2020]). Let V' be a finite domain of values, let f : D' —
V, and let n(v) denote the frequency with which v occurs in f(D'). Let e < 1. Algorithm Bitstogram(f,e, 5)
interacts with the set of n users in 1 round and satisfies e-LDP. Further, it returns a list L = ((v;,a;)); of
value-frequency pairs with length O(\/ﬁ) such that with probability 1 — B the following statements hold:

1. For every (v,a) € L, |la — f(v)|| < E where E =0 (% nlog(n/,@)).

2. For every v € V such that f(v) > M, v € L, where M = O (%\/nlog\V\/ﬁlog(l/ﬁ)).

We overload notation to treat the list returned by Bitstogram returns as either a set of (heavy-hitter, frequency)
pairs or a function which may be queried on a value to return either the corresponding frequency if it is a
heavy hitter or a value of 0 otherwise. A subscript of M will denote the upper bound on the mazimum
frequency omitted. We see that whenever |V| = Q(n), M = Q(FE) and Bitstogram promises a uniform error
bound of M when estimating the frequency of any element in the co-domain for an appropriate choice of
constants.

We introduce an extension of the Bitstogram algorithm called HeavySumsOracle that allows us to query the
sums of some vector valued function over the set of elements that map to a queried heavy-hitter value. For a
given value-mapping function f : X — V and a vector-valued function g : X — R? the sum estimation oracle
privately returns for every heavy hitter v € V the sum of all agents that map to z, i.e. Zp: F(p)=z P We recall
that Bitstogram is a modular algorithm with two subroutines; a frequency oracle that privately estimates
the frequency of any value in the data universe, and a succinct histogram construction that constructs the
heavy hitters in a bit-wise manner by making relatively few calls to the frequency oracle. The construction
of HeavySumsOracle essentially mimics the frequency oracle construction called Hashtogram from Bassily!
et al. [2020] and can be run in parallel with Bitstogram, allowing us to reduce the round complexity of our
protocols. The pseudo-code and proof of lemma may be found in appendix

Lemma 2.12 (HeavySumsOracle). Let f : X — V, g : X — B(0,A/2) € RY be some functions where g
has bounded sensitivity Ay o and let D' C X be a distributed dataset over n users. With probability at least
— B, for every v € V that occurs in f(D'), if S(v) is the value returned by Algomthm@ then

/
S(v) — Z g(y)|| <2A 2nlogd+1 4CGA92\/W

fy)=v

Here cq is the constant derived from the Gaussian mechanism (lemma , and Ag o is the lo-sensitivity
of g. Note that since Ago < A, this also implies (whenever € < cq = 1/21n(1.25/6))

Sw)— > gy) SO(CiA\/d’nlog;)-

fly)=v

Further, Algorithm@ is (¢,0)-LDP.

2.5 Locality Sensitive Hashing

The contents of this subsection are used only for the construction and analysis of the multi-round k-means
algorithm with low additive error. We start by recalling the definition of an LSH family. Complete proofs
may be found in the appendix.

Definition 2.13 (Locality sensitive hashing (LSH)). We say that a family of hash functions H : R? — B
for a finite set of buckets B is locality-sensitive with parameters (p, q,r,cr) if for every z,y € R? for some
1>p>q>0,r>0andc>1

>pifd(z,y) <r
<gqif d(z,y) > cr.

P(H(x) =H(y)){



In this work we use an LSH family construction from |[Andoni and Indyk] [2006].

Theorem 2.14. For every sufficiently large d and n there exists a family H of hash functions defined on
R? such that for a dataset of size n,

1. A function from this family can be sampled, stored and computed in time t°®) logn + O(dt), where t
is a free positive parameter of our choosing.

2. The collision probability for two points u,v € R? depends only on the £ distance between them, which
we henceforth denote by p(||lu — vl|).

3. The following inequalities hold:

>4 _ 1
T 2VE (L4 e+ 8e2)t/2

2
Ve > 1, p(e) < m

p(1)

where A is an absolute constant < 1, and e = ©(t~'/2). One can choose € = 4%5'

4. The number of buckets Ng an LSH function with parameter t uses is t°) logn.

Note that by scaling the input to the LSH function this gives us constructions for (p, g, r, c¢r)-sensitive LSH
families for arbitrary values of r > 0. Due to the occurrence of terms like t(*) in the collision probabilities
and the number of buckets, the performance of an LSH family is very sensitive to the choice of ¢. In the
following lemma we show how to choose a value of ¢ for a desired ratio of p?(1) to p(c).

Lemma 2.15. Given a fized ¢ > /2, for any B > 1, there is a choice of t = O (log2 B) for the LSH function
described in theorem [2.1]] such that

p(1) 2 B~ /log B),
log Ng = O(log® Bloglog B + loglogn),

where ¢’ = (c?/8 — 1/4). It will be convenient to note that 1/c’ = O(1/(2¢% — 1)).

In the construction of the multi-round k-means algorithm with low additive error, we will need to estimate
the average of all points that map to a given heavy bucket. Due to the pair-wise nature of the LSH guarantee,
the analysis of this requires us to use an arbitrary point from the bucket as a filter to ensure that sufficiently
many points close to it and not too many points far from it map to that bucket.

Lemma 2.16. Let C C D be a set of points with diameter v and let the diameter of D be A. For any
xo € C, if ¥y is the average over all points colliding with xo under a (p(1),p(c),r,rc)-sensitive LSH function
H applied to D, then with probability p(1)/4,

) 8p(c)|D|
lzo — Zoll < er + =4,
p*(D)[C]

and the number of points of C' that collide with xq is at least #.



Notation Meaning
D' c RY Original data set
Q: RY — R4 mapping from high-dim. to low-dim. space
D c R4 Q(D'"), dimension reduced data set
Gy Rectangular grid in dimension reduced space
Gi() Mapping from R? to coordinate-wise floor in G,
t Unit length of grid G;
PH! Succinct histogram of number of points mapping to g € G; for “heavy" g
Count(+) Count of previously uncovered data points g € G} serves
Gy Candidate centers picked from grid points in Gy, G} C PH!
Ng A k0(/9”) term used to greedily pick G}
PSO! Vector sums of points in original space mapping to g € G; for “heavy" g
Sum(+) Sum of previously uncovered points in original space whose image served by g € G}
Gr, Points of G} for which s} € S* is closest center
M Maximal grid points picked from Gy, ...,G;
D* Cc R Proxy data set generated by weighing points in G7,..., G} by points served
S* k-means solution derived by clustering D*
S’ k-means solution for D’ output by algorithm

Table 2: Summary of notation used in algorithm

3 LDP k-means with arbitrarily tight multiplicative approximation

In this section we describe a one-round k-means clustering algorithm and formally analyse its cost and
privacy guarantees. We start by describing our algorithm and provide the pseudo-code. We then give an
informal description of our methods and a high-level justification for various algorithmic choices. In one line,
what we will do is find a small collection of candidate centers for the bi-criteria relaxation to the k-means
problem, derive cluster centers for a proxy data set derived by weighing the candidate centers by counts of
points served, and use these cluster centers to cluster the original data set.

3.1 Pseudo-code and algorithm description

Step 1 - Initialization and interaction: From line[I] to line[I2] we first formalize the publicly available
dimension reduction, scaling and projection required to ensure that every point lies inside the domain B(0, 1);
this is the map Q. We define L = lgn grids G1,... Gy where G; has unit length ¢; = QZ_L‘H/a\/a. This
definition ensures that the distance from any point in the space to its coordinate-wise floor is at most a2/~ F+1
units. The end of Step 1 occurs by L calls to the Bitstogram and HeavySumsOracle routines to privately
generate succinct histograms PH! and sum oracles PSO' over points mapping to any given grid-point.

Step 2 - Construction of proxy dataset From line[I3]to line[30] we iteratively construct the proxy data
set by going from low to high threshold and greedily picking some 2N¢ log 1/a grid points G} that maximize
the Count(-) function. The Count(-) function maintains estimate of the number of previously uncovered data
points that would be covered by g € G, if picked. We also keep track of the “maximal" grid points in the
sets M;"; at the beginning of round /, M;* ;| consists of all grid points that have been picked so far that have
the property that no grid point which would cover them has yet been picked. This will ensure that when we
update the Count(-) function to account for data points that have already been covered, we do not subtract
for any one data points multiple times. Along the way we mimic the Count(-) construction by generating a
similar Sum(-) mapping that estimates the vector sum of all points in the original space served by g € Gj.
This step ends with the construction of the proxy dataset D* where we repeat each grid point g € G} with
multiplicity equal to the number of data points it served, i.e. Count(g).
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Data: Data set D' C R? distributed over n agents, privacy parameters €, d, accuracy parameter «,
failure probability S
/* Step 1: Initialization and interaction */
T : RY — R dimension reduction for d = O(log(k/a)/a?)
S : R? — R scaling by a factor Q(1/(ay/logn/B))
P :R¢ — B(0,1) projection to the unit ball
Q=PoSoT: RY — B(0,1) C R?; /* Publicly available mapping */
L = lgn number of grids in dimension reduced space
ty=2"t Ja/dfor 1 =1,...,L
Gy = t;(Z%) grid with unit length ¢,
G; : R — G; map flooring points coordinate-wise to the grid G ; /* Overloaded notation */
do in parallel for | € [L + 1]:
PH! « Bitstogram(G; o Q,¢,3) ; /* Get frequency oracle for number of points snapping
to grid point */
PSO' + HeavySumsOracle(G; o M,p +— p,e,3) ;  /* Get sum oracle for points mapping to
grid point */

end
/* Step 2: Construction of proxy data set */
Mg+ 0; /* Keeps track of ‘‘maximal" points in grid */

fori=1,...,L do
(Count : G; — R) + PH'(:)
(Sum : G; — RY) « PSO'(.)
for g € M}, do
Count(Gi(g)) + Count(Gi(g)) — PH(g)
Sum(Gi(g)) < Sum(Gi(g)) — PSO(g)
end
Gf < {(g,Count(g)) : g € [2Nglog1/«] points with largest values of Count in G;}
My M,
for g € M} do
if Gi(g) € Gf then
| M~ M\ {g}

end

end

My MP UG
end
D* + {g with multiplicity Count(g) for (g, Count(g)) € GF,...,G%} ; /* Proxy data set */
/* Step 3: Cluster center recovery */
S* ={s},...,s;} < Standard k — Means, (D*)
Gi, < {9 € G r argmin,cg- 2(g,c) = s7} for each level | =1,..., L and cluster center s; € S

for j=1,...,k do
L
Sum <327, Zg;eG;(s;) Sum(g)
L
Count + > ;7 Zg:EG;‘((e;f) Count(g)

~ Sum
Hj < Count

end
return S’ = {fiy, ..., i}

Algorithm 1: 1-Round k-means Clustering
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Step 3 - Cluster center recovery: From line [31] to line [38] we compute the final cluster centers S’ in
the original space. We start by first using a non-private k-means algorithm Standard k — Means, with an
n-multiplicative approximation guarantee on the privately derived proxy data set D* to derive cluster centers
S* in the low dimensional space. Then, we iterate over each cluster center s; € S* and for every fixed cluster
center we use the Sum(+) functions constructed in step 2 to compute the vector sums over all points snapping
to grid points Gzﬁyi which are closer to s} than to any other center in S*, as well as the count of all such data
points (via Count). Our estimate for the true average of this cluster in the original space is then simply
it; = Sum/Count, and these k estimates {fi{, ..., f1;} form the final output of our algorithm.

3.2 Technical discussion

We recall from the introduction that for the error we are targeting we need to find O(poly & poly logn)
candidate centers with respect to which additive error in a 14+« approximation to OPT is O(poly k+/n poly logn).
We recall from that discussion that in the LDP setting one approach to get around the large amount of error
added is to discretize the response of the agents. A natural way to achieve this is to the domain is via a
rectangular d’-dimensional grid of points and ask agents to reveal their closest grid point; the question then
becomes how best to exploit this privately derived information for k-means clustering. Previous work on
k-means clustering in the central DP setting [Chaturvedi et all |2020] uses such an approach where in order
to get an O(1) multiplicative factor approximation to the optimal clustering cost, a sequence of grids is used
where the unit length of the Ith grid equals 27!/ V.

To analyse this approach, one fixes an arbitrary optimal solution to the k-means problem Sopt and
partitions the data set based on how far a point lies from the optimal solution via geometrically increasing
thresholds 2. Then for any point p which lies at a distance between 27! and 27/*1, the closest grid point
to p in the grid with unit length 24/\/& is at a distance of at most 27!, i.e. closer than the optimal solution.
One then reverses the argument to observe that if a point lies within a distance of 27!+ units of Sopr,
then by the triangle inequality its closest grid point must lie within a distance of O(27/*!) units of Sopr .
The authors then bound the total number of grid points that lie within any collection of k£ centers to derive
the promise that there is a small set of grid points which serve almost all data points which lie at a distance
between 27! and 27*! of the candidate centers.

Choice of grid construction: As in this work we are targeting a (1 + «) multiplicative approximation,
we scale the grid unit lengths by a factor of « to get the promise that if a point lies within a distance of
27! of Sopr, it lies within a distance of O(a27") of some grid point. Since we can only identify grid points
whose counts are at least \/n, we can afford to miss at most O(poly k poly logn) many such grid points
serving the dataset across all levels for an additive error of O(poly kv/npolylogn). It follows that we will
need an O(poly k poly logn) bound on the number of grid points that lie close to the optimal centers. We
will address this point further ahead in this discussion.

One technicality suppressed so far is that we must have a finite (in fact O(poly & poly logn)) sequence of
grids and thresholds for the set of candidate centers accrued across grids to be finite. We observe that if the
smallest threshold is 1/n, then the discretization error for all points which lie within 1/n of Sopr is absorbed
by an additive O(1) term instead of the O(1) multiplicative approximation factor; this in conjunction with
the fact that the diameter of the domain is O(1) shows that a set of O(logn)-many thresholds suffices.

Returning to the identification of grid points close to Sopr in the grid, we observe that there is an issue
with this approach; the choice of Sopt was arbitrary and different choices can possibly lead to very different
sets of grid points close to Sopr. It is not immediately clear what is a good way to pick grid points when
we are oblivious of any choice of Sopr using only the grid points histogram data.

Greedy maximum coverage: Reasoning along the lines of [Jones et al.| [2020] for the k-medians problem
shows that a choice of grid points that greedily maximizes how many data points are covered by including
these grid points among the candidate centers ensures that the clustering cost of the data set with respect
to this set of grid points is at most O( OPT). Since the number of grid points is larger than k, and the cost
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is a constant factor multiplicative approximation to OPT, this set of grid-points chosen across grids is a
solution to the bi-criteria relaxation of the k-means solution (modulo some additive error).

A closer look at the argument in [Jones et al. [2020] shows that the greedy picks must maximize coverage
only over yet-uncovered points, when proceeding from low to high thresholds. In the centrally private
setting one can dynamically update the coverage of candidate grid points by directly accessing the data set
and marking points off as they are covered, but this is not possible in the local setting. We get around this
hurdle by two tools; one, ensuring a consistency across grids in the sense that if two points map to the same
grid point in a low-level grid then they also map to the same grid point in all higher-level grids; and two;
keeping track of all grid points picked so far such that they are mazimal in the sense that no grid point that
they themselves snap to in a coarser grid has been picked. We will then be able to evaluate the count of
yet uncovered data points covered by any candidate grid point by simply subtracting the histogram counts
of all maximal grid points picked so far snapping to that candidate grid points from the histogram count of
that candidate grid point.

We will ensure consistency by mapping each point to its coordinate-wise floor in the d-dimensional grid
instead of its closest point; this makes no significant different in the arguments made so far as the floor
always lies within a distance of 27! in a grid with unit length Q’l/\/g.

Dimension reduction for bounded candidate centers: We now discuss how to get the O(poly k
polylogn) bound on the number of grid points within the aforementioned threshold distance of Sopr. For
reasons of time and space efficiency, in [Chaturvedi et al| [2020] the authors needed to bound the number
of grid points close to any choice of Sopr by O(poly(n)). They showed that by dimension reduction to
O(logn/a?) many dimensions, there are at most O(n'/ (’2) many grid points within a distance of r of any
optimal center for a grid with unit length ar/ V/d. They then appeal to the well-known Johnson-Lindenstrauss
lemma that shows that there is a choice of O(logn/a?) many dimensions so that the £y distance between
all pairs of data points in a data set of size n is preserved within a multiplicative factor of (1 + «). It is
relatively easy to show that the k-means clustering cost for any choice of clusters is also preserved within a
factor of (1 £+ «).

A recent work by [Makarychev et al.|[2019] generalized the Johnson-Lindenstrauss guarantee for k-means
clustering by showing that in fact performing dimension reduction to log(k/(a/3))/a?-dimensions ensures
that with probability 1 — 8 the cost of every clustering solution is preserved within a multiplicative cost of
(1 £ ). By tracing the argument of (Chaturvedi et al. [2020] for upper bounding the number of grid points
close to any optimal center with this stronger bound on the dimensionality of the dimension-reduced space
leads to a k2(/%") hound on the number of grid points close to Sopr. For any fixed approximation factor
(14 «), this immediately gives us the desired O(poly & poly log n) bound on the number of grid points close
to Sopr as well as the O(poly k poly logn) bound on the number of candidate centers picked.

Proxy data set construction: To recap, the set of candidate centers derived to construct the proxy data
set has the property that for all but O(poly k poly log n) many data points, there is a candidate center at a
distance of O(«) times the distance between a data point and the optimal centers. We construct the proxy
data set by repeating each candidate center with an estimate of the number of points it covers in this manner.
This can be seen as essentially moving each data point to the candidate center that covers it; in sum what
we have shown is that the net movement is O(a« OPT ). We can then show by the triangle inequality that
the k-means clustering functions of the original and the proxy data set are within a (1+ O(«)) multiplicative
approximation factor and O(poly & poly logn) additive error. It will follow that the optimal clustering cost
for the proxy data set is a (1+«) factor more than the optimal cost for the original data set (modulo additive
error), and therefore that any clustering solution derived by a non-private k-means clustering algorithm with
multiplicative approximation factor n has net clustering cost at most (1 4+ «)n. Using the relation between
the k-means clustering functions this time in reverse, we get that the privately derived cluster centers for
the proxy data set serve as cluster centers for the original data set with cost (1 + O(a))n.

Undoing the dimension reduction: We have privately derived k cluster centers in the dimension reduced
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space that serve the data set D with clustering cost (1+O(a))n OPT and additive error O(poly k poly logn).
This implicitly clusters the original data set with a similar error guarantee by mapping each data point to a
cluster corresponding to the center in the low-dimensional solution that its image is closest to. To compute the
centers of these clusters in the original space, we use the sum oracles derived from calls to HeavySumsOracle
to recover the vector sums of all data points in the original space that lie in these implicitly defined clusters.
Dividing these sums by the counts derived during our proxy data set construction gives us good estimates
to the cluster-wise centers.

3.3 Formal cost and privacy analysis

Proof outline: We begin by relating the optimal clustering cost in the original space OPT’, and the
clustering cost in the dimension reduced space OPT (lemma . We then formally derive some properties
of the grids G;, the maximal points identified at the end of round [ i.e. M}, and the accuracy of the Count
map used in step 2 to choose grid points as candidate cluster centers (lemma to lemma . Since the
error bound for the Sum map is practically identical to that of the Count map, we prove that in immediate
succession.

The core of our cost analysis for the bi-criteria solution is showing that the clustering cost of the data
set with respect to many greedy choices of candidate centers is competitive with the optimal clustering
(definition and lemma . These results allow us to show in that the k-means clustering functions for
the dimension reduced data set D and the proxy data set D* are close in £ norm (lemma. Lemma m
is then exploited in turn to show that the output of the non-private clustering algorithm works well for the
original dimension reduced data set (corollary .

Finally, starting from definition [3.14] we start the work of recovering cluster center in the original space.
We begin in the definition by formalizing the actual clustering of the dimension reduced data set that results
from identifying each data point with the first grid point that serves it in some grid. Then we show that the
output of the algorithm works well for this actual clustering and leads to a (1 + O(«))n factor multiplicative
approximation ( lemma to lemma . This section culminates in the main result theorem which
accounts for all privacy loss which occurs across all calls to Bitstogram and HeavySumsOracle and after scaling
the privacy parameters in the calls to these routines formalizes the final cost guarantee of algorithm [I}

Definition 3.1. We recall some notation used in the algorithm description and introduce some definitions
that help with the cost analysis for this algorithm.

e There is a sensitive dataset D’ C B(0,1) distributed among n users, exactly one point per user. We
denote the cost of the optimal k-means solution by OPT'.

o Let Q : RY — R be a publicly available function that maps the data domain to B(0,1) in the
dimension reduced space R?. It is computed by first computing the output of the dimension reduction
map T, followed by a scaling S by 1/a+/logn units (which ensures that with high probability all points
lie inside the unit ball in the dimension reduced space, followed by a projection P to the unit ball to
deal with any outliers.

e We denote the dimension-reduced data set Q(D’) by D. We denote its optimal clustering cost by
OPT. We fix any optimal k-means solution Sopr for D with clustering cost OPT.

e Let L = [lgn] denote the number of levels.

o Let 7, = 2!/2E71 for | = 1,..., L denote the ¢3 distances which we use as thresholds to partition D
depending on how far points lie from Sopt. Note that r; < 1/n and ry, = 2. Further, we set 79 = 0.
With this notation we see that D C B(0,1) C B(p,ry) for any p € B(0,1).

e Let o :={p € D:zp,Sopr) € [r1,r141)} for I = 1,..., L denote the thresholded partitions of D.
Note that with our choice of r; this definition implies D = UX ;0.
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o Let t; = arl/\/a denote the unit length of the grid G; for I =1,..., L. Let G; be the axis aligned grid
of unit length ¢; units centered at the origin in B(0,1), i.e. Gy := B(0,1)N(#;Z%). We overload notation
and let G;(-) : R? — G; map each point to its floor in Gy, i.e. p maps to t;(|p1/ti], ..., |pa/ti]). Note
that these multidimensional floor maps are consistent in the sense that for any m > 4, for the jth
coordinate we have

Gm OGl() tmull_pj/tlj/t J
tm 27 0 /1]
|

tm 2l mpj/tlJ

= tm[p; / tm]
so putting all coordinates together G, 0 G;(p); = Gy (p). Note that t,, |21 |p;/t || = tm 2" ™p; /]

because 1/2!-™ € Z.

e We assume each grid point is implicitly tagged with the index of its parent grid point. We will abuse
notation and drop indices for the succinct histograms PH! and PSO' where they may be deduced from
the grid point for which the frequency or sum is being queried.

Lemma 3.2 (Accounting for dimension reduction). With probability 1 — 3, we have that for every clustering
(D1,...,Dy) of ',

/  M(q)

qeD; quDi

Z Z ( ’|D’> lta (alogn/ﬁ)z Z s (Q(p)’|D§|> .
i€k peD;] i€k peQ(D})

As a direct corollary OPT’' ~14, (alogn/B) OPT.

Proof. We write Q = Po SoT, where T is the dimension reduction to O(log(k/a3)/a?), S is the scaling by
a factor of Q(1/ay/n/fB), and P is projection to the unit ball. Given any clustering (D1,...,Dj},) of D', by
theorem [2.7] we have that

/ , T
55 (n ) s T (o 2
i€k peD)] i€k peD] ¢

The scaling map changes all /5-distances by precisely the scaling factor, so we also have that

;T , SoT
Z Z s (T(p)aijqeg,l| 4 )> (alogn/pB) Z Z (SOT ZqEDiD” (Q)) .

i€k peD] i€k peSoT D]

Finally, since with probability 1 — 8 all points lie in the unit ball after scaling by a factor of 1/a/logn/j,
the projection map does not move any point and hence the same clustering cost holds for P o .S o T(D’) =

QD). 0

In the following lemma we derive a bound on the discretization error and use that to derive a promise
that in every level [ if we snap o; to the grid then we get at most k9(/ a®) many grid points.

Lemma 3.3 (Properties of grids G;). For alll =1,..., L, the following bound statements hold for each grid
Gl,'

1. For any p € B(0,1), ||p — Gi(p)|| < a27! = t;v/d = ar.

2
2. |Gy(UL_y05)| = KO/,
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Proof. 1. By definition Gi(p) = t(|p1/ti],..., pa/t1)). Since |p;j/ti — [p;j/ti]| < 1, it follows that
p; — Gi(p);| < ti = |lp = Gulp)|| < tivd = ary.

2. Let p € (Ui_,05). By definition of z(-,-), 2(Gi(p), Sopr) < 2(Gi(p),argmin.cg .. 2(p,c)). Then,
since z(p, Gi(p)) < a?r} = O(a?r;) and 7, = O(z(p, arg min z(p,c))), by the weak triangle
inequality z(G;(p), Sopt) < (14 O(a))r;.

Since we have shown G;(U\_,0;) C {g € G : 2(g,Sopr) < (1 4+ O())r}, it will suffice to bound the
size of the latter set. Fix any s € Sopr. If g € G} is such that z(g,s) < (1 + O(«))r; then by the
weak triangle inequality z(G(s),g) < (1 + O(«))r;. By translating G;(s) and G so that G;(s) lies at
the origin and scaling the space up by a factor of 1/# so that G; maps onto Z¢, we see that there is
an injection from {g € G; : z(g,s) < (1 +O(a))r)} into V = {j € Z¢: 2(5,0) < d/a® + O(1)}.
Expanding the definition of V', we get

ceESopT

veV = va <d/a® +0(1).
i€[d]

It follows that the number of unsigned v € V is at most the number of ways of partitioning d/a?+O(1)
balls into d + 1 distinguishable bins. Then,

- (970

B (e~ (d/a? +0(1))>d+1

d+1
_ ,001/a%)

where we use that d = O (log(k/(af))/a?). Hence, |{g € G;: 2(g9,Sopr) < (1 4+ O(a))ri}| = k-2
k.é(l/ch) —_ k()(l/oﬁ).
O

Definition 3.4. We make a couple of definitions to ease our analysis from this point.

1. Let Ng be a uniform upper bound on the the sizes of the sets Gl(Ué-:loj). It follows from lemma
that we can choose a value of Ng = EO/a?),

2. We define a sequence of subsets a; inductively. Let a1 = {p € D : G1(p) € G5} and let oy = {p € D :
Gi(p) € GF 1\ (Ué;llaj). Informally, a; consists of those points which were not explicitly covered at a
distance of ar; for any j < [ but are successfully covered by some g € G} at an {5 distance of ar,
since its floor in the grid was added to Gj.

3. My is the set of grid points constructed iteratively by adding all grid points picked in round ! from G|
to grid points picked in previous rounds and then removing all grid points picked in previous rounds
which snap to any grid point picked in round I. Intuitively, we can think of this set as the set of
“maximal" grid points that have been picked so far. Keeping track of this set will allow us to avoid
over-counting data points being covered at different levels and keep private estimation error terms
small.

Lemma 3.5 (Properties of maximal grid point sets M;*). The following properties hold for the sets M;* for
l=1,...,L.

1. If p € a; for some j <1 then Ik € {j,...,1} such that Gy(p) € M.

2. |M;| = INg

16



Proof. 1. Given that p € aj, by construction of M7, G; (p) € M;. If for some j' > j there is some
g € G7, such that G (G;(p)) = g and G;(p) is removed from M7, then since G/ (G;(p)) = G (p) and
Gj (p) = g is included in M}, proceeding inductively it follows that Gy (p) € M for some k € {j,...,1}.

To see that this value of k is unique suppose to the contrary that Gy, (p) and Gg,(p) both lie in
M. Assume without loss of generality that k1 < ka. Then since Gy, (G, (p)) = G, (p) we see that
G, (p) € My, and therefore Gy, (p) & M.

2. We see that by construction in every loop |M}| < |M l*_l‘ + Ng. The bound follows directly.
O

In order to proceed with the cost analysis, we derive bounds on the estimation error for the point
histograms PH! and point sum oracles PSO'. We will avoid substituting for these error terms until we have
reached the end of this analysis but it will be useful to keep in mind that, as the lemma shows, they are
roughly O(%\/ﬁlog n). These bounds are essentially corollaries of the Bitstogram and HeavySumsOracle error
bounds.

Lemma 3.6 (Private estimation error bounds). With probability 1 — 3, for alll = 1,...,L, suppressing
terms logarithmic in 1/a, 1/8 and logn, the following guarantees hold.

1. For every g € Gy, |PHi(g) — G;l(g)’ < PHg:=0 (i\/nlog?’n).
2. For every g € PHl, PSOr < O (%\/d’n).

Proof. 1. We simplify the Bitstogram guarantee and use PHj; as a uniform upper bound for both PHE
and PHj;. In other words, since PH,; is larger than PHg, which we show below using the bound on
log(|Gi]), every heavy hitter in PH is already estimated within an error of PHy,. If a value does not
occur in PH, it must be the case that its frequency is less than PHj;, so we estimate the frequency of
any omitted element by 0 and use the upper bound for PH,; as a uniform bound for the frequency
estimates of g € GG;. Similarly, we bound PSOg by PSO,,.

To derive the expression for the bound we need to bound from above the sizes of the grids G;. The
domain B(0,1) is contained inside the unit cube with side-length 2 units centered at the origin. The
length of each axis that lies within this unit cube is 2. For every g € Gj, g; for every coordinate j
can take at most 2/t; = 2¢7'\/d/a many values. Since the number of dimension is O((log k)/a?), it
follows that |G| = (2L=1Vd/a)0ek)/*) = 10g(|G|-2L/B) < O(((log k)/a2)log(n/a)) +log(2L/B).
Substituting, for any I = 1,...,L, [PH'(g) — Gl_l(g)’ <O (%\/n((logk)/oﬂ) log(n) log(2L/ﬂ)> =

O (i v/nlog® n) with probability 1 — 8/2L.

2. We recall that the diameter of the data domain is O(1). Scaling the failure probability by 1/2L so that
we may apply the union bound and absorbing the resulting /loglogn/8 term in the O notation, the

HeavySumsOracle guarantee gives us that |[PSOz| = O (CTG v d’n).

O

The significance of the following lemma is that Count(g) is a good estimate of the number of previously
uncovered data points covered by a grid point g € G; for any [ = 1,..., L within a distance of ar;.

Lemma 3.7. Forl=1,...,L and any g € PH',

|Count(g) — [{p € D : Gi(p) = g}\ (Ujepai)|| < (I- No)PHE
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Proof. By construction of Count, we can write

Count(g) = PH'(9) = > PH(g)). (1)
geM;_,
Gi(g9)=g

Similarly, by definition we can write
— . _ -1
ar={p € D: Gi(p) = g}\ (U;21a;) -

By lemma we see that the sets {p € D : G;(p) = ¢',j <1} for ¢ € M} | form a partition of Ué-_:llaj.
Similarly, the sets {p € D : G,(p) = ¢’ for some j} for ¢’ € M} such that G;(¢') = ¢ form a partition of
{pe D:Gi(p)=g}N (Ué;llai). This implies

[{pe D:Gi(p) =g} N (U;;llaj)| = Z {p € D: G;(p) = ¢ for some j}|
g’EMl*il,
Gi(g")=g

= {pe D:Gi(p) = g}\ (UjZ\ai)|
={peD:Gip)=g}— > HpeD:Gj(p)=g for some j}|. (2)

9/61\41117
Gi(9")=g

By the Bitstogram guarantee we have that for every ¢’ € PH/, ‘PHj(g’) —H{peD:Gilp) = g’}|| < PHyy.
Subtracting eq. (2)) from eq. (1)) and using the error bound derived from the Bitstogram guarantee (lemmal|3.6])
we get

Count(g) — ‘{p € D:Gi(p) =g}\ (Ué-;llaj)’ < PHuy + Z PH s
QIEM;LI,GL(Q):Q
< O (| M} ,|PHar)
< INgPH),.
O

The following lemma is used only for the cluster center recovery in the original space but we state and
prove it here due to its similarity to lemma [3.7]

Proof. The proof is essentially identical to that of lemma[3.7} but we reproduce the calculations for completeness.
In the level [ we can write by construction that

Lemma 3.8. For any g € G},

Sum(g) — Z pH < INgPSO,,.

Gi(Q(p)EG;  (9)
Q(p)Z(U'Z1a;)

Sum(g) = PSO(g) — > PSO(¢).

g'EM] |,Gi(g9")=g
By lemmawe see that {p : Q(p) € D : G;(Q(p)) = ¢',j < I} for ¢ € M}" | is a partition of Ué-;llaj.

We can write these sets more succinctly as {p : Q(p) € G71(¢’)} where we can drop the index of the
G~ as it depends upon and can be inferred by the argument ¢’. Continuing, we also have that the sets
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{p:T(p) € G (g)} for ¢ € M} |,Gi(¢') = g form a partition of {p : T(p) € G;*(g)} N ( Ya;). This

implies
> >

QP)EG; *(9) g'eM; ; Qp)EG~1(g")
N(Uiia;) Gi(g)=g
= D> p= > p- > D>
Q(p)EG™(9) Q(P)EG; (9) g eEM; Q(p)eG~(g")
\(Ujzia:) Gilg')=g

By the HeavySumsOracle guarantee we have that ‘PSO(g’) = 2 0m)ec-1(g) p‘ < PSOg < PSOy,. Subtracting
the second equation from the first and using the error bound derived from the HeavySumsOracle guarantee

(lemma [3.6) we get

Sum(g) — Y pH§PSOM+ > PSOu

Q)G (9) g EM]_,
\(UjZiay) Gi(9')=g
< INgPSO,,.
O
Definition 3.9. We let O, = Z]L:ﬂoj‘ and A; = Z]L:l|aj|. Note that with these definitions,
L—1
ZAZ T —Ti-1) = Z( 1= Aip)r —rods
L

= lailr. (3)

I
—

This relation will be useful to us in the cost analysis. Further, we observe that A; — O;11 = (n — Op41) —
(n—A4) = Zé-:l\oﬂ — Zé;ll|aj| Since the o; are disjoint, it follows that A; — O;_; is a lower bound for

|Ué‘:10j\ Ué‘;ll
at the beginning of the Ith round, i.e. before a; is picked.

Lemma 3.10. Forl=1,...,L and for err = 4N2PHy,,

la;| > (1 — «)(A4; — O141) — err.

Proof. From lemmawe know that |Gy (Ul_,0;))| < Ne. For all g € G, let Cover(g) = {p € D : Gi(p) =
g\ Ué;ll aj, i.e. the set of yet uncovered data points that would be served by g if g were picked. We note

that the sets Cover(g) as defined are disjoint for distinct g € G;. Let G;r = (g}L7 e ,gNG) be the Ng many
grid points g with the greatest values of |Cover(g)| sorted in decreasing order. Then by the observations in
definition 3.9 it follows that

{peD:Gilp) € GNUZ o] > o\ U o)

= Z ’Cover ‘ > A —Op41.

JjENG

In algorithm |1} we pick grid points greedily via the privatized counts Count(g). By lemma we know that
for all g € PH",

|Count(g) — |Cover(g)|| < INgPH .
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It follows that if g7 is our jth greedy pick maximizing Count(g) and the maximum value of |Cover(g)| over
all unpicked grid points is 4NgPHyy, then |Cover(g i) = 4INGgPHy > (1/2) maxgeg, |Cover(g).
Let m be the largest index such that ‘Cover gm)’ > 4AINgPH)ys. In the context of lemma we let

= {Cover(g ) : j < m}, a family of sets guaranteed to cover U = U,czz, and S the family of all possible
sets we can p1ck from {Cover(g) : g € G;}. Then, since in the jth round each greedy pick g covers at
least half of the maximum that any pick could cover, we see that (2|Ng|log(1l/a) + 1) greedy picks cover

(1 = a)|ur,Cover(gy)| = (1 - a) ({ZjeNg Cover(gj)H —4lN(2;PHM) > (1 — a)|o)| — 4NEPH); points,

which is what we wanted to show. We use err = 4INZPH; as shorthand going forward. O

Lemma 3.11. We can relate the optimal clustering cost OPT to the sizes of the sets a; and o; via the
following bounds.

1. SF Joulri = O(OPT) 4+ 0(1).
2. Yy larlr < (14 0(@) Sy [olr + O(err).
3. SE |l < O(OPT) + Oferr).

Proof. 1. Since r;41 = 2r; for 1 > 0, and r1 < 1/n,

L L
Z|ol|rl = Z|ol|4rl_1 + |og|r1
1=1 1=1

L

< 22|0l|7"l71 +1
=1

L
<2% % z(p,Soer) +1

=1 p€o;
<2fp(Sopr) + 1.

2. By lemma [3.10]

la;| > (1 — «)(4; — O141) —err
> (1 —a)(Ja| + Aipr — Orgr) —err

11—« err
> A O
> (152) G - 0u) -
ala rr
:>Al+1§1|l‘+0l+1+1

= O(a)|ar] + O141 + Oferr).

Continuing from eq. and using the convention that ag begin undefined is empty,

Z|al|7"l

Ay(ry —ri—1)

IN

M= I\Mh

(O(a)ai—1 + Oy + O(err)) (r; — r1-1)

I
=

O(a)|a—1|(r = ri—1) + Y _ Oi(ri = ri—1) + O(err)(rp41 — ro)
=1

Mh

Il
_

20



L L

< O(a) Z|al—1|7’z—1 + Z|Oz|?"z + O(err)

=1 =1
L L
= (1-0(x)) Z|al|rl < Z|Ol|m + O(err)
=1 =1
L
:>Z|al|rl <(140(x Z|ol|n—|—0 err)
I=1 =1

3. This is a direct consequence of the first and second results of this lemma.
O

Lemma 3.12. The k-means clustering functions for the dimension reduced dataset D and the proxy dataset
D* are close in €1 norm. Concretely, for any finite set C,

fp-(C) < (14+0(a)fp(C) 4+ O(a OPT) + O(aerr) + O(L*NZPHyy),
fp(C) <1+ 0()fp-(C)+ O(aOPT) + O(aerr) + O(LQNC%PHM).

Proof. We can write D* = UL | Ugec; {g with multiplicity Count(g)}. Then it follows that

fp=(C Z Z Count(g) f4(C)

=1 g€Gy

Z Z Count(g)z(g, C)

L
< Z (’al N Gfl(g)| + INPHr) 2(g,C)

=1 geGy
L
< (Z Z(Gl(p)a0)> +O(L*N&PHy)
=1 peay
L
= (Z Z(Gz(p),argrginZ(p,S))> +O(L*NEPHu)
=1 peay s€

To bound z(G;(p),argmin,.~ 2(p,s)), we use the AM-GM inequality in conjunction with the triangle
inequality for the /5 norm as follows:

2(G(p), arg min z(p, s \/z Gi(p),p) + \/z(p,C 2

seC

< agr? + 2ari\/2(p,C) + z(p, C)

rf 4+ 2r(Va - Vaz(p,0)) + z(p,C

< a?rf 4+ arg + arz(p, C) + z(p,C)
< O(ar) + (1 +0(a))z(p, 0)

Applying this bound for every point p € q; for alll =1,..., L we get

L
fo(C) = (1+0(a)) fp(C) + O(a) > laslr; + O(L*NEGPH)

=1
= (1+0(a))fp(C) + O(aOPT) + O(aerr) + O(L*NZPHyy).
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Similarly,

fn(C)

z(p, C)

5]

p

>z arg min 2(Gi(p), s))

€
L
=1 p€a;

L

331+ 0(0))2(p, C) + O(a)r

pEa;

iz 1+ O(a

=1 pca;

IN

L

IN

(Count(g) + INgPHu) (1 4+ O(a))2(Gi(p), C) | + O(a OPT) + O(aerr)
=1 geGy

L

Z Count )2(Gi(p), C) | + O(L2NZPH)y;) + O(a OPT) + O(cerr)
l 1 geG

p(C) + O(L2NGPHM) + O(aOPT) + O(werr).

IN

Corollary 3.13. As a direct consequence of lemma[3.13, it follows that
fp(S*) < (1+0(a))nOPT + O(aerr) + O(L*NEZPH ),

where we absorb the n factor in the additive error terms in the big-Oh notation and an O(a OPT) term in
the first term.

We now want to recover the cluster centers of the clusters derived from the low-dimension space by using
the PSO derived from calls to HeavySumsOracle. Since we identify points by their images in level-wise grids,
we incur additional discretization error that must be accounted for. Concretely, the clustering we actually
derive is not p — argmin, g 2(T(p),s’) but instead given by the following definition.

Definition 3.14. 1. Let G : RY — (UlelGl) denote G;o Q(p’) where [ is the minimum index such that
GioQ(p') € Gf. We then define a clustering of D’ via the solution S* by letting D’'(s}) = {p’ € D’ :
argminge g. 2(s, G5 (p')) = s;}. Alternatively, we can first define G7; = {g € G} : argmingcg- 2(g,s) =
si}, then let Dj(sf) ={p' € D' : GioQ € Gf,and Gj 0 Q ¢ G* for j < l} and then let D'(s}) =
Userz) D;(s7); these two formulations are equivalent

2. We see that with these definitions a; = Q(Usres+Dj(s7)). Further, this also defines a clustering of D
by identifying each point in D’ with its dimension-reduced image in D, with clustering cost

L
SN 2Gip). 5 = D (GLK), 5.

=1 p€a; p’eD’

Lemma 3.15. For the privately derived cluster centers S* in the dimension reduced space, we have the
following bound for the clustering of D as defined in definition [3.17)

L
> 2Gi(p), $%) =n(1 + O(a)) OPT + O(aerr) + O(NEPH log” n).

=1 pEa;
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As a direct corollary,

D 2(Ghlp), $*) = n(1+ O(a)) OPT + O(aerr) + O(NEPHyslog® n).

p/ED/

Proof. We want to understand the increase in clustering cost due to discretization.

L
ZZ (Gi(p ) —z(p, S gzz (Gi(p),argmin z(p, s)) — z(p, S™¥).

=1 pEa; seS*

Here we use the same trick of applying the /fs-triangle inequality in conjunction with the A.M.-G.M.
inequality as in the proof of lemma and bound z(G;(p), arg min,cg. 2(p, s)) from above by O(ar;) +
(14 O(a))z(p, S*). Continuing,

ZZ (Gi(p),S™) — z(p, ™) <ZZO@T;+ZZO z(p,C*)

lel pea; i=1 pEa; i=1 pEa;
E lag|r; + E E O(a)z(p,S™)
i=1 pE€ay

< O(a OPT) + O(aerr) + O(a) fp(S™).

Since we use a non-private clustering algorithm with multiplicative approximation factor 7, we can substitute
for fp(S*) by n OPT, and rearranging terms we get the stated bound. O

We now use the error bounds for the sum oracle and the succinct histogram to recover the cluster centers
of the cluster as defined in definition [3.14

Lemma 3.16. For every cluster center s} € S*, we have the following estimation error bound for the cluster
centers of the clusters derived in the original space.

L
2121 ZQEG;*J. Sum(g) B Zp/GD’(s;‘) p/ < L2N2 Zp e/ (s )p
St Ygeqy, Count(g)  1D'(5)] D' (s D' (s

PHy + PSOM> .

Proof. The proof of this result is essentially the same as that of lemma with the additional complication
that we must account for the error accrued when summing over queries for multiple heavy values.

L
P deG;ﬁi Sum(g) Ep'eD’(Sf) v

Sy Sgeq: Comnt(g)  1D'(s)]
L
PO deG;i Sum(g) Zp'ED’(Sf) 4 Zp’eD’(s;-*) v B Zp’eD/(sf) 4

T L — + =z 1D'(s7)]
P Egec;i Count(g)  >2;., ZQGGL Count(g) >, EQEG?J Count(g) (s]
L * L
Zl:l ZgEG?‘i Sum(g) - Zp’ED’(s:) p/ Zp/ED’(SZ) pl |D/(Si )| - lel quG«* Count(g)

L * L
Do ZQEG% Count(g) |D’(s7)] Do deG?,i Count(g)
L
N Zl:l ZQEGZi Sum(.g) B ZpleD/(S;«) p/
Yt Ygea;, Count(g)  1D(s5)]
L-Ng - LNoPSO DpepspnP L-Ng-LNgPHy
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So for all clusters D’(s}) such that with at least 2L? N2PH s many points, we can bound the /5 estimation
error by

2L2NZ PSOM >y GD/(S )p 2L2NZPH
D' (s} D' (s 1D’ (s7)]
2L2NZ Zp eD/(q )P
PHy + P .
G (H ZEII

Now we can derive the cost bound for the private clustering solution derived in the original space.

Lemma 3.17.
for(S") < (1+0(a))nOPT’ + O(a®errlogn/B) + O(aL>?NE&PHy logn/B) + O(kL* NZPSOxy).

Proof. We are interested in bounding the clustering cost of D’ with respect to the clusters (D’(s}), ..., D’(s})).

In lemma we bounded the cost of the dimension reduced image of this clustering ( ( 1),-..,D(sg)) =
(Q(D'(s7))s-..,Q(D'(sy))). From lemma we recall that for any clustering (D], ..., D;) of D we have
that

eD! = {M
Sy, <|qu3> ~1ia (alogn/B) S 5<Q<p)vz|%<|@>'

i€k peD), i€k peQ (D))

If we let D, = D'(s}), and denote the (unknown) true cluster centers of the clusters in the original space by
Z;DIED/(§ )p

i = D/t fori=1,...,k then we get

fD'({,u’lv sy /u‘k}) lta (Othg?’L/ﬂ)fD({S; ) SZ})
~1iq alogn/B(1 + O(a))nOPT + O(a’errlogn/B) + O(aL?*NEPH s logn/B).

Then, since OPT’ ~y,, alogn/8OPT, we can write
for({pa, s pr}) ~1v0@) (14 0(a))nOPT' + O(a?errlogn/B) + O(aL?NEZPHy  logn/p).
We have estimates

Yl Ygea (52 Sum(g)
it 2 gear (sr) Count(g)

for the true cluster centers u; for i = 1,..., k. From lemma|D.3] in order to bound the additive error incurred
due to the estimation error, i.e. fps (s ({,ul}) Jprsy({pi}), it will suffice to bound [D’(s;)*[||p: — |-
Lemma [3.16 bounds the estimation error e — |- Puttmg everything together, we get

2
2 /
Ty (it 1)) = Ty () < 1D (55) (flf Ne (HZT;,D PHM+PsoM>>

SLANAPH?, 8L4NGPSO?M
— D)) [D'(s7)]
_ L'NG
—[D(s7)

fii =

O(PS02,).
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For each s} € S*, if D'(s}) > L2NZPSO,y, then the first factor is O(L2NZPSOy). On the other hand,
if D(s7) < LANZPSO),; then the clustering cost for D’(s}) i.e. fpr(s,)({fi1,-- ../t }) is unconditionally less
than L2NZPSO,, as the diameter of the data domain is O(1). It follows that the additive error over all k
clusters is at most O(kL*NEPSO). Since fpr(s+)({pi}) = for(sy({ft1, -, i1y, }), putting everything together

we get that

fD'({:ala v alak}) < fD'({,uh B ,uk}) + O(kLQNéPSOM)
< (14 0(a))n OPT’ + O(a?errlogn/B) + O(aL? NE&PHys logn/B) + O(kL* NEPSOxy).

O

Theorem 1.1. Algorithm |1| is an (¢, 0)-locally differentially private algorithm that after one round of
interaction with a private distributed data set D' C R of size n, outputs a set S' of size k such that
for failure probability polynomially small in n,

1. - 2
fp(8") < (1+0(a))nOPT’' + Eko(l/o‘ )\/d'nlog1/8 poly log n.

Proof. We make 2L = 2logn calls (in parallel) to Bitstogram and HeavySumsOracle. From their respective
privacy guarantees, we know that each call is (e, §)-differentially private. By simple composition of privacy,
it follows that the net privacy loss is (2(logn)e, 2(logn)d). To ensure net (e, §) privacy loss, we must scale the

respective privacy parameters by a factor of 1/(2logn); with this scaling we have PHy, = O (é Vv/nlog® n)

and PSOy; = O (%G\/ d'nlog? n) We recall that Ng = kO(/o”). Substituting all these bounds in the
guarantee of lemma [3.17 we get

for{iig, . i) < (14 0(a))nOPT’ 4 O(a?errlogn/B) + O(aL*NEPHy logn/B) + O(kL*NZPSO )
1. - 2
< (14 0(a))nOPT’ + =KW/ /d'nlog 1/6 poly log n.
€

To simplify the error term in the above expression we assume without loss that k > 2, as k = 1 is a degenerate
case i.e. mean estimation of vectors in d’ dimensional space. We then absorb all constants in the O term in
the exponent of the k to state a simplified bound. O

4 LDP k-means with low additive error

In this section we describe our second algorithm that, given a constant ¢ > /2, can achieve a constant factor
multiplicative approximation and O(k°(/2¢*=1)\/nd’ poly log n) additive error. Our algorithm is described
in a modular fashion, and one may refer to the respective section for the pseudo-code and an informal walk-
through of how the algorithm proceeds. We begin with a technical discussion to help explain some of the
algorithmic choices made along the way.

4.1 Technical discussion

We recall from the introduction that any differentially private solution for k-means clustering in the local
setting has to somehow indirectly access the aggregate geometry of the data set because of the high magnitude
of the noise that is added to maintain privacy. We then discussed how discretizing the response function that
is sensitive to the location of each point allows us to do precisely this and understand the geometry of the
data set in sum. The one-round clustering algorithm uses a grid-based discretization of the domain to elicit
a discrete response. For our four-round algorithm, we will use a combination of a cell-based discretization
(which is similar in essence to the grid-based discretization used before) in combination with LSH functions.
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Notation
D' c R?

Meaning

Q:RY — R4
DcR?
L
G
t
Gi()

Anc* : C — 017(3/2) lgd

CH!

Original data set
mapping from high-dim. to low-dim. space
Q(D'), dimension reduced data set
Number of cell grid levels
Grid of cells in dimension reduced space for [ € [L]
Side-length of any cell in C; (equals 27)
Mapping from R? to unique containing cell
Mapping from cells to the set of their ancestors j with side-length d3/2t,
Succinct histogram of number of points mapping to C' € C; for “heavy" C
Number of geometrically varying guesses for true optimal clusternig cost OPT
Heavy cells identified CH' where guess for OPT = ky/n -2/, f € [F]
Cells which are not heavy
Light children of heavy cells
Number of distance scales with which LSH functions applied
Scales at which LSH functions are used to allocate cluster centers for points in M;
Number of repetitions of LSH subroutine to boost success probability
Synthetic space of heavy cells in Anc* level
Mapping from R? to synthetic space
(p(1),p(€), 71, m, cr1,m)-sensitive hash function with domain A'lf for points in le
Histogram of number of points per hash bucket
Vector sums of points in original space mapping to heavy buckets
Average vector mapping to bucket b € BHy 1, . ¢
projection of b to A{(UCGH{ )
Candidate centers allocated in one level for some guess of OPT
Candidate centers allocated at the center of heavy cells for some guess of OPT

k-means bi-criteria solution

Table 3: Summary of notation used in algorithm [4]
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Dyadic hierarchy of cells: In Braverman et al.|[2017], the authors describe a way of decomposing the
data domain in a way that helps identify regions of the domain where data accumulates. Given a rectangular
domain [0,1)?, they construct a dyadic 2¢-ary tree of cells, where each rectangular cell is sub-divided into 24
child cells by bisecting the cell along each axis. The cell at the top of the hierarchy with side-length one unit
is simply the whole domain, and it has 2¢ children with side-length half units that collectively again cover
the whole domain. Each child cell is recursively divided in the same manner, and in level ! the side length
of each cell is ¢; = 27! units. The idea is that although each point in the domain is covered by each level of
cells, the further down the hierarchy one goes the finer is the resolution at which the domain is discretized
and the smaller is the diameter of the bounding box at a level. L = logn levels of the grid will suffice to
discretize the domain to a sufficiently fine degree so as to capture clusters at all relevant scales; the cost of
clustering cluster with radius smaller than O(1/n) will be dominated by the additive error terms that any
private k-means clustering algorithm must have. This entire construction can be done after an application
of the JL transform for dimension reduction which ensures that d = O(logn). We will see during the course
of our discussion why this is crucial for our cost analysis.

The authors of Braverman et al.[[2017] then observe that if we randomly shift this hierarchy of cells, then
one can show that with probability 1 — 3, for any point in the domain there are at most O(1/3) many cells
with side-length ¢; within an ¢5 distance of ¢;/d units of that point. Applying this on any choice of optimal
centers Sopr means that there are O(k/f3) many cells close to Sopr at any level. How can we exploit this
to capture the aggregate geometry of the data set?

Guessing the optimal cost: Suppose that we knew what the optimal cost OPT were. If this were the
case, then we can bound the number of cells further than ¢;/d units away from any choice of optimal centers
Sopr that carry significantly many data points. Concretely, all data points in cells further than ¢;/d units
away from Sopr must have a clustering cost of at least t7/d*. On the other hand, their clustering cost with
respect to Sopr cannot exceed the total clustering cost OPT, which means there cannot be more than
OPT d?/t? many such points. Tracing a similar argument with cells, we compute a threshold depending on
the level’s side length ¢; such that there cannot be more then O(kL/5) many cells that have more than the
number of points in the threshold and lie further than ¢;/d units away from Sopr. To see why the bound
has changed from O(k/S) to O(kL/B), note that we scale the failure probability by a factor of 1/L so that
it apply across all L levels with probability 1 — 8. Coupled with the guarantee that there cannot be more
than O(kL/) many cells closer than t;/d to Sopt we get that regardless of where they lie in the domain
there are at most O(kL/B) heavy cells in any level, i.e. cells that beat the threshold 7; for their level.

In the top cell, this threshold is lower than n, so the top cell is always marked heavy. In the bottom
level, this threshold exceeds n, so all bottom cells are marked light (i.e. not heavy). Between these two
extremes the threshold increases monotonically as t; decreases, which means that there is a unique level for
every point where the cell it belongs to transitions from being heavy to light. There is a small technicality
here that since we can only identify cell counts via noisy privatized responses we can inadvertently mark
heavy cells light and light cells heavy. In practice we will appeal to the locally private histogram construction
Bitstogram of [Bassily et al.| [2020] to estimate the data point counts of cells. The issue of incorrect labelling
of cells as heavy or light is readily resolved by requiring that heavy cells have only heavy ancestors, and
using the accuracy guarantees of Bitstogram to bound the consequences of such errors in our cost analysis.

In sum, under the promise that OPT is known, we have identified regions of the domain at different
scales where the data set accumulates beyond some thresholds. Since we are targeting an additive error of
O(k‘\/ﬁ), we let OPT vary in factors of 2 from k+/n to n and simply run the algorithm with varying values
of OPT at different scales to ensure that the promise holds for at least some run. This leads to an inflation
in our additive error on the order of logn as the number of candidate centers grows by this factor.

We recall that in the introduction we mentioned that when finding a bi-criteria solution, to get O(poly k+/n
poly logn) error we would like to find O(poly k poly log n) many candidate centers with respect to which the
data set has a clustering cost within a constant factor multiplicative approximation to OPT and additive
error at most O(poly kv/n polylogn). It is in fact the case that if we can limit the exponent of k in both the
number of centers allocated and the additive error incurred, then we will have at most that same exponent
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in the final error term. Keeping this in mind we observe that we have partitioned the data set across
O(klog®n/B) many heavy cells. If we can allocate some O(polylogn) centers in each cell such that the
additive error with respect to these centers is O(k+/n polylogn), then we would achieve O(k+/n poly logn)
error in sum. Although we do not achieve exactly this term, the reason we are able to get arbitrarily close
to it is because of the relatively small number of cells within which we have partitioned the data set. We
turn to using LSH functions to allocate candidate centers in a cell-wise fashion.

The n'/?t% barrier: We recall that a (p,q,r,cr) LSH function has the property that if two points are
within a distance of r units, they must collide with probability at least p, and if two points are further than
cr units, then they cannot collide with probability more than ¢q. By applying LSH functions on the data
domain and appealing to locally private succinct histograms, we can recover all heavy LSH buckets; the idea
then is that any sufficiently large cluster with radius less than r units must populate one of these heavy
buckets with a lot of points, possibly with some false positives. We estimate the point average over each
heavy bucket to get a point that is no more than c¢r units away from the cluster, and serves as a cluster
center with a constant factor approximation to the true radius.

We now describe why prior work taking this approach suffer an O(n'/?*¢ poly log n) dependence on n
in the additive error. When dealing with LSH functions one technicality that has to be dealt with is that
the LSH guarantee holds only in a pair-wise fashion, i.e. you only get bounds on the likelihood of points
colliding a pair of points at a time. Fixing some cluster C' with radius r, this leads us to use some arbitrary
fixed point from C as a filter, using the LSH guarantee to argue that (1) “most" points which collide with
it under the LSH function with parameters (p, ¢,r, cr) must lie at a distance of at most ¢r units and (2) for
every cluster, at least a p fraction of points from that cluster must collide with it. What we would like to be
the case is that the average over all points colliding with our filter lie at a distance of O(er) from the filter;
since the filter itself lies in the cluster, by the triangle inequality the average can then serve as a candidate
center for the cluster with an O(c) constant factor approximation to the radius.

Let A be the diameter of the data domain. The distance of the weighted mean of all points colliding
with the filter under the LSH function, from that filter, can roughly be bounded from above by

cr - |[{points from C colliding with filter}| + A - |{points further than ¢r units from filter}|

We are bounding the impact of points from outside the cluster by the diameter of the domain, and dealing
with the arbitrarily many points that lie between a distance of r and cr units by simply inflating the
distance considered “close" to cr units so they can be dropped from consideration without giving us an
unfair advantage (notice that they can only pull this average towards ¢r units). It is easy to see by linearity
of expectation that the expected number of points from the cluster that collide with the filter is at least
p|C|, and the number of points from further than cr units that collide with the filter is at most ¢|D| (again
using the worst case as an upper bound).

To get this weighted mean to be of the order of c¢r, we tune the LSH parameters to get the collision
probability ratios to fulfill

> QIDIA_
p|C]|

One can see this as a tug of war between false positives which in expectation increase with the side of the
data set and whose impact is exacerbated by the diameter of the data domain and “true" cluster points
whose impact can be as low as ¢r units and whose number scales with the size of the cluster C'. Rearranging
terms gives us

p_ DA

g = |Cler

It follows that if one needs this procedure to work for clusters C' with as few as y/n many points, as well
as for cluster radii that are a poly(n) factor smaller than A, then since |D| = n, one would need the ratio
between the collision probabilities of near and far points to beat a poly(n) term.
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It is an intrinsic property of LSH functions that tuning parameters to increase the ratio between p and ¢
causes both p and ¢ to fall individually. This is an issue because we also need sufficiently many points from
the cluster to accumulate in a bucket to ensure we can distinguish the heavy bucket from random noise;
in expectation the number of true points accumulating in a bucket number drops with p. It is in fact the
case that p scales with n~©(1/¢) which leads us to try and boost the success probability with n®(1/¢) many
independent runs. Since we cannot test which runs are successful and which are not, we are forced to include
all bucket averages generated along the way as candidate centers; this n®(/¢) factor in the number of centers
is what leads to the greater than 1/2 exponent of n that is incurred in previous work applying LSH functions
for clustering as discussed in the introduction. We can push this exponent arbitrarily close to 1/2 by letting
¢ — o0, but naturally this causes the multiplicative approximation guarantee to blow up.

Even if we were to somehow reduce the number of possible false positives (i.e. the size of the data set
D that lies in the LSH domain) from n to something that scales with the cluster size, there is still the issue
that A/er could again be poly(n). We must find a way to both limit the sizes of the subset of the data that
participate in the LSH procedure as well as the diameter of the data domain within which that subset can
lie. We describe how we achieve exactly this in the sequel.

If we apply this LSH subroutine heavy cell by heavy cell, then the impact of any point from more than
O(cr) units can be at most the diameter of the cell, i.e. 27v/d in the Ith level, which resolves the n'/?*+@
issue for all LSH scales which are

271
Q——— ).
(poly log n)

However, there are still two issues to be resolved. We have yet to bound the size of the data subset lying in
the LSH domain, as we discussed is necessary. Further, if the lowest LSH scale is still 27! /\/n (for example),
then the ratio of collision probabilities still has a factor of n, which will lead to an exponent of n greater
than 1/2, as described above. In order to get a truly O(y/n polylogn) term, we need to increase the smallest
cut-off distance for the set of LSH scale parameters.

Limiting the sequence of LSH scale parameters: We first take a small detour and describe how a
finite sequence of scale parameters is chosen for cluster radii when identifying a bi-criteria solution. The
analysis fixes some arbitrary optimal clustering solution S opr and decomposes the data set using concentric
rings around Sopr at geometrically varying thresholds. More concretely, each partition of the data set
consists of points which lie between 27! and 27+ units for [ = 1,2,.... The goal then is to allocate cluster
centers so that for each partition we can derive the promise that most points are covered by some candidate
center at a distance of O(27!). Since the optimal clustering distance was at least 27! units per partition,
this would give us a bi-criteria solution with an O( OPT') cost.

One typically tries to identify these partitions and allocate centers separately for each partition, but
doing so requires that there be a finite (and in fact small) set of distance thresholds and partitions. One way
of accomplishing this is to cut off the sequence of thresholds at logn and instead of promising a constant
multiplicative approximation to the optimal clustering distance for points which lie closer than 271°8™ = 1 /n
units to OPT, one observes that as long as there is a candidate center at a distance of O(1/n), the net
clustering cost for the at most n such points there could be is O(n - 1/n%) = o(1). The cost of clustering
such points is then treated as a small additive error term in the constant factor approximation guarantee.

When using LSH at a sequence of geometrically varying scales, one runs into a similar issue of needing
to identify a lower bound for the smallest distance at which we allocate candidate centers. If the smallest
such scale is t units, then as there could be as many as n points within this distance we will need ¢?>n units
to be dominated by O(k+/n), which would require ¢ to scale with O(1/4/n) in the case where k is small. As
discussed, we need to avoid a 1/ poly(n) scaling factor for the lowest threshold ¢ so as to avoid an exponent
of n greater than 1/2; it follows that the only way to do this is to reduce the size of the data subset on which
LSH being applied. Essentially, this issue has been reduced to other condition which we needed to fulfill;
that of bounding the size of the data subset participating in the LSH subroutine.

29



Bounding the subset of D participating in LSH subroutines: We see that simply using LSH on
heavy cells does not work as is since there could again be arbitrarily many points in a heavy cell; all we have
is a lower bound on the number of points it contains. To derive an upper bound we instead focus on the
light children of heavy cells. By virtue of being light, they have fewer points than the threshold mentioned
before; we will be able to show that in level I where the side length ¢; = 27! the total number of points which
lie in such cells is O(d? OPT /t?). From the previous discussion, this will allow us to set the lower LSH scale
parameter t = O(t;/(dv/L)) and incur only O( OPT /L) additional error per level, leading to an additional
O(OPT) cost across all levels. Observe that the lowest LSH scale parameter is essentially ¢;/ poly logn,
which implies a polylogn ratio between the diameter of the cell to the scale parameter, which is exactly
what we wanted. The additional O(OPT) additive error term is readily absorbed in our multiplicative
approximation factor (as opposed to a small additive error as is usually the case). Since the dimension d and
the number of levels in our cell hierarchy are both O(logn), this means that we have successfully avoided an
exponent greater than 1/2 on the factor of n in the additive error.

However, there is a different sort of issue in the dyadic hierarchy approach that we have not yet addressed;
for any level the collection of light children of heavy cells partitions the data in arbitrary ways. It need not
be the case that a cluster will lie entirely inside the domain of a single LSH function when making calls to
the LSH subroutine. How do we account for the division of clusters across data partitions and cells?

Clusters and cluster sections: Let us denote the partition of the data set D that lies in heavy cells in
level [ — 1 but light cells in level [ by D;. With this notation it follows from our observations regarding the
existence of a unique level for each data point such that its containing cell is light for the first time when
going down levels that Dy, ..., Dy _1 form a partition of D. For any fixed optimal clustering solution, we see
that each cluster too can be partitioned across all levels D;. Based on the discussion above, we would ideally
like to use LSH functions on O(kL/B) many cells in level I — 1 and elicit a response only from D; to ensure
that the diameter of the bounding box is not too high and the number of points participating in the LSH
subroutine is not too many. This implies that we only need to allocate cluster competitively with respect
to the sections of the optimal clusters that lie in heavy cells. However, this could lead to O(k*L/#3) many
cluster sections per level, which would lead to a candidate center set of size at least Q(k? poly logn), leading
to Q(k2y/npolylogn) error down the line. In order to try and reduce the exponent of & in the number of
cluster centers allocated, we make three technical algorithmic choices.

Firstly, we allocate a candidate center at the center of every heavy cells (which would be at most O(kL?/$3)
many more candidate centers). This gives us the guarantee that every point in the data set partition D
has a candidate center at a distance of 27!v/d. Secondly, we go up a few levels and apply LSH functions to
the ancestors of these heavy cells of interest which have side-length d/22~!. The consequence of these two
modifications is that we only need to allocate cluster centers within a distance of 27'v/d units of any point
of Dy, and that since there are only O(L/#3) many cells with side-length /22! within a distance of 2-v/d
units of an optimal center, there are only O(kL//) many cluster sections we must account for.

Thirdly, in order to avoid dealing with the worst case O(k) many cluster sections for every heavy cell
when calling the LSH subroutine heavy cell by heavy cell, we construct a synthetic space out of the union of
all heavy cells in a level and apply the LSH subroutine on this entire space. We will be able to extend the
{5 metric in a natural way to work across cells, ensure that the cells are far enough apart in this distance
measure so that bucket averages that land up “between" cells end up in the correct cell after projection, and
that the diameter of this synthetic space is still small enough to keep the improvements we have derived so
far.

There is one final technical point which must be addressed; we need to identify a lower bound on the
cluster section size to ensure that the ratio of the participating subset of the data to the size of the cluster
section does not grow to poly(n), which would lose us the advances we have made. Since there are at most
O(kL/B) many such cluster sections in a level, we simply set the threshold to be OPT - % : % . é. Why
does this work? We recall that we allocated a cluster center at the center of every heavy cell, that ensures
that any cluster section has a candidate center at a distance of v/dt;, so for a cluster section below the
threshold the cluster cost can be at most OPT - % - +. Then, since there are at most O(kL/8) many such
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cluster sections, the net clustering cost for any one level across all cluster sections is OPT - % Summing this
up over all L levels leads to an additional OPT term which again we can absorb into our constant factor
approximation.

We can summarize this lower bound on the cluster section size as O(ktzl&%). We recall that the size
1

of the participating data set D; was at most O( OPT /¢?), which implies a ratio of k poly logn. A dependence
on n in the ratio that the LSH collision probabilities have to beat has been replaced by a dependence on k,

leading to a O (k“o(l/zcz_l)\/ﬁpoly log n) bound on the number of candidate centers allocated.

Constructing the proxy data set and undoing dimension reduction: In the one-round algorithm,
we constructed a set of candidate centers and undid the dimension reduction in essentially one round of
interaction. However, doing everything in one round increases the exponent of k; this was not apparent in
that analysis unless studies it carefully since the big-Oh term in the power of k£ in the number of candidate
centers dominated any similar order increases (such as being squared) in the big-Oh notation. Since our goal
in this section is to keep the error as low as possible, we avoid reducing the round complexity and instead
use two rounds of interaction; one to construct the proxy data set, and one to recover the cluster centers in
the original space.

The construction of the proxy data set is relatively straightforward; we release the collection of candidate
centers found and invite agents to privately reveal which candidate center is closest to them. Again by an
appeal to Bitstogram, we estimate the number of data points a candidate center serves and construct a proxy
data set by repeating each candidate center with multiplicity equal to its respective estimate. We then apply
the non-private clustering algorithm of our choice on the privately generated proxy data set to get cluster
centers S* = {s},...,s;} in the dimension reduced space.

In the final round of interaction we reveal the set S*, and we ask agents to privately reveal a k-tuple
of d’-dimensional vector where the ith vector equals its true location if s is its closest cluster center in
the dimension reduced space, and is otherwise the 0 vector. In the same round of interaction, we ask them
to reveal which is the center closest to them. We then simply compute the noisy sum for each of the k
coordinates and divide that by the noisy count of the number of points mapping to the center corresponding
to that coordinate; we will be able to show that this estimate for the cluster center in the original space
works well in its place for a k-means clustering solution.

Outline: We divide the description and technical analysis of this algorithm into 4 parts. In subsection [{.2]
we formally describe the dyadic hierarchy of cells needed to construct the algorithm. In subsection we
use the identification of heavy and light cells in the previous subsection to partition the data set level-by-
level. Fixing any level, we prove that for any fixed optimal clustering, with probability 1 — 8 we allocate
candidate centers for most points in the partition corresponding to that level at an ¢2 distance at most O(c?)
times their distance from the optimal centers. In subsection [£:4] we use the guarantees of subsection [4.3] to
show that the sum-of-squares cost of clustering the dimension reduced dataset via the candidate centers is
O(OPT ) modulo some additive error. We go on to show by applications of the weak triangle inequality
that the clustering functions of the proxy dataset and the dimension reduced dataset are close in £3 distance
up to an O(OPT) additive error. Then we bound the cost of the original dataset with respect to cluster
centers derived via the dimension reduced clustering and account for the privacy loss to derive our net cost
guarantee.

4.2 The cell grids and their hierarchy

In this subsection we formally define the cell grid hierarchy used to allocate candidate centers in the next
section and describe an algorithm that uses succinct histogram of cell counts to tag cells as being either heavy
or light. Apart from the definitions made, the main results of this subsection are lemma [{.8 which guarantees
lower and upper bounds for the number of data points that can lie in heavy and light cells respectively; and
lemma which shows how we can use the identification of heavy and light cells to partition the data set
D, one partition per level, to get the subsets D, for I € [L].

31



Data: For every level [ € [L], a succinct histogram of heavy-hitter cells CH! with error bound CHZE
and maximum frequency omitted CH’,.

1 for l € [L] do

2 H )

3 £l «—0

4 end

5 Ho < Co

6 fori=1€{2,...,L—1} do

7 | for C € CH do

8 if CH'(C) > 24.08L + CH}; and Ancy (Cy) € Hy-1 then
9 ‘ H; «— H, U {CJ}

10 else

11 ‘ L (—ﬁlU{Cj}
12 end
13 L+ LU Cl\Hl
14 end
15 ﬁL—l «— CL_1
16 for [ € [L] do

17 | My {C €L :Anci(C) € Hi1}
18 end
19 return {H;, £;, M, : 1 € [L]}

Algorithm 2: Heavy cell marker

We work over the domain [0,1)%. We start by dividing this domain recursively in a dyadic fashion, with
L = [lgn] levels in all.

Definition 4.1. We formalize the construction of the dyadic hierarchy of cells.
1. A cell is a dyadic cube in (0,1]¢. Explicitly, if we let the set of cells at level [ be denoted C;; then

d . .
Je Jet1 .
C = {H {2121) ;]e{o,l,...,211}d}.

e=1
We also define the notation C := U;C;.

2. We let t; = 27! for | € [L]; with this notation, every C' € C; has side-length ¢;. Note that with these
definitions the minimum side-length t; < %

3. For all [ € [L], Anc; : 2¢ — 2€ and Ch; : 2¢ — 2€ are defined by the following expressions:

for C" € C;, Anc;(C') ={C €(C,_;: C' C C for some C’" € C'},
for C' c C;, Ch;(C") ={C € Ciyi: C C C’ for some C' € C'}.

We set C; = {[0,1)4} for i < 0; with this definition seeking the ancestor at a level above 0 always
returns the entire domain. It will not be necessary to define cells below level L. We abuse notation
so that any singleton set of cells is identified with the element in it; with this notation we also have
Ch; : C — 2€ and Anc; : C — C.

4. Anc" := Ancy 5154. Note that for C € C;, Anc™(C) is the unique cell that contains C' and has side
length d3/2t;.

We recall the following lemma from Braverman et al.|[2017]:
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Lemma 4.2 (Lemma 2.2, Braverman et al.|[2017]). Let S be a finite set of points and Cr be a d-dimensional
rectangular grid of cells with unit length R shifted by a uniformly random displacement in [0, R] along each
dimension. With probability at least 1 — B, |{C € Cr : 2(5,C) < R2/d2}‘ = 0(|51]/8).

Proof. The number of cells with side-length R within an ¢» distance of x < R/2 from any s € S can be
bounded from above by N1 Ns ... Ny where N; is 1 if there is no cell wall within a distance of s along the ¢th
dimension and 2 otherwise. Since the random shifts along each dimension are independent, it follows that

d d
H Ni] = H]E[Ni].

The probability of s; lying within a distance of 2 units of one of the sides is (2z/R). It follows that

E

2 2
E[Ni](1;>~1+}§~2
2x
—14+ 2

R

Substituting in the first display, we get

=E

HN] _ @ﬁ;)d.

It follows that for x < %, the expected number of cells within an ¢y distance of z from s is at most O(1).
By linearity of expectation, the expected number of cells within a distance of R/d of S is at most O(|S]).
By Markov’s inequality, with probability 1 — §, the number of cells within a ¢ distance of R/d from S is
< O(|S|/B). The result follows directly as by definition z(-,-) is the ¢3 distance. O

Remark 4.3. We fix any arbitrary optimal k-means clustering solution S opt with clustering cost < OPT
and condition on the event that the number of cells in any level [ within a distance of ¢;/d from Sopr is
at most O(kL/S). By scaling the failure probability in lemma by a factor of % and applying the union
bound over L such events (one for each level) we see that this event holds with probability 1 — 5. We will
also assume that OPT > ky/n. Note that if OPT < k+/n then for any choice of Sopr fp(SopT) < kv/n.
Once we obtain an O(1) multiplicative approximation to k+/n, this term can be absorbed by the additive
error term, so the guarantee as stated will hold unconditionally.

We partition the C; into collections of heavy and light cells at every level depending on the number of
data points within each cell. We perform this partitioning algorithmically via algorithm [2]

Definition 4.4. C € C is called heavy if C € H; for some | € [L] where H; C C; is defined by the output
of algorithm [2| Similarly, C' € C; is called light if C € L; for some [ € [L] for £; defined by the output of
algorithm 2] We summarize the notation of algorithm [2] for cells and collections of cells here:

1. We denote the set of heavy cells at level [ by H;, and the set of light cells by £;.
2. We denote the collection of all heavy cells by H := U;H; and the collection of all light cells by £ := U;L;.
3. The center of any cell C is denoted by o(C) (this may be thought of as the origin of C).
4. The cell at level I containing p € D is denoted by C;(p).
We summarize some basic properties of heavy and light cells in lemma as a sanity check.
Lemma 4.5. The following statements hold:
1.Vl e|[L],C;=H, U L.

33



2. I C € L, then Chy(C) C LI > 0.
3. Ho =Co = {[0,1)%}
4. Ly 1=Cr_1.

Proof. 1. This statement follows from the algorithm description - for every level < L a cell recovered from
Bitstogram is marked either heavy or light, and all other cells in that level are marked light. For level
L all cells are marked light.

2. This statement holds because a cell is marked heavy only if its parent was marked heavy in the previous
iteration.

3. This statement holds by line [5] of algorithm

4. This statement holds by line [I5] of algorithm [2]
O

The definition of the succinct cell count histograms CH! occurs later in this section in algorithm |4} Tts
properties follow entirely from the Bitstogram guarantee and the definition of the value mapping. Since it is
used in algorithm [2] and is necessary in the analysis of algorithm [2] we will state and prove them here.

Corollary 4.6. CH}, = O (%wnlog n/ﬁ) and CH',; = O (%\/npoly logn/ﬁ>.

Proof. Fix any | € [L]. Looking ahead, we see that CH! is derived from a call to Bitstogram on line |§| of
algorithm [4| with mapping f; : p — Cj(p), privacy parameter ecn, and failure probability 8/L. We note that
the size of the co-domain for the mapping f; is at most 2¢%. Since d, L = O(logn), substituting we get the
stated bounds. O

Note that since |V| = 2% = Q(n), we can bound CH}, = O(CH},).
Remark 4.7. We recall that the significance of corollary [£.6] is that the Bitstogram guarantee gives us that
with probability 1 — 3, for every C € C; such that |[D N C| > CH},, C € CH' and [CH'(C) — |D N C|| < CHY,.
In lemma [£.8 we characterize the accumulation of data in heavy and light cells across different levels.

Lemma 4.8. For alll € [L], the following properties hold:

1. IfC € H;, |IDNC| > max (CHlM7%>'

2. IfC € L, |IDNC| < min (CHlM, BOPT | 2CHZM) — CH!,,.
1

3. |Hi| SO(%).

Proof. 1. If a cell C' € C; is marked heavy, then it must have occurred in the histogram CH' and so
|IDNC| > CH%VI, or it is the solitary top cell. In the former case, since the count estimate crossed

the threshold to be considered heavy, |[DNC| > ﬁtfokig + CHY, — CHY, = é?oklzg . In the latter case,
OPT

substituting / = 0 we see that the desired lower bound is 7. Since OPT can be at most n, and
|D N C| = n, the bound holds.

2. If a cell C' is marked light then either |D N C| < CHY,, Anc;(C) € £;_1, or it is a bottom level cell. In

the first three cases, by induction down the levels I, since |D N C| C |D N Ancy(C)| and both ﬂilzkoLP;T
1

and CHlM are monotonically increasing with [/, the result follows by the induction hypothesis. Note that
since the top cell is always marked heavy, the base case is vacuously true. In the last case, we substitute

Il =logn —1 to get CHlM > %Oklzg > ﬁ"l:ff > an's/log2 n, which is asymptotically impossible for

failure probability 8 > - and certainly for 8 = O(1).
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3. We fix any optimal k-means solution Sopr. By remark {C €Ci:2(C,Sopr) < 1/(4'd?)}| =
O(kL/B). For any C' € H; such that z(C,Sopr) > 1/(4'd?), from statement 1 we have that |C' N

OPT l d? OPT t? d? OPT OPT .
D| = max (%7CHM) > BtlgkL . It follows that fcnp(SopT) > 2 - Btka = 5“ . Since

ZCEHL feap(Sopr) < fp(Sopr) < OPT it follows that there cannot be more than ££ many such

C. In sum, |H;| <O (%) i

O
We now define a decomposition of the data set D using the definitions of the heavy and light cells.
Definition 4.9. For [ € [L], we define D; = {p € D : C;_1(p) € H,C,(p) € L}.
Lemma 4.10. The following statements hold.
1. D = U D

2. Vi€ [L], |Di| = O(d* OPT /1}) + O <%)

3. ZlG[L] ﬁmz\ =0O(OPT)+ O (%)

Proof. 1. By lemma we see that the solitary top cell [0,1)? is heavy, and that C;, C £. Further, for
every | € [L], if C' € L; then Ch;(C) € L. It follow that for any point p, in the sequence of cells
Co(p),C1(p),...,Cr(p) there exists a unique index I* such that C;«_1(p) € H and C;~(p) € L. The
existence of such an index shows that the sets D; cover D, and the uniqueness shows that this is in
fact a partition.

2. By definition, D; is a subset of Ugeg,C, which means we can write D; = Uceg, D NC. This union can
in turn be written as a disjoint union of points in light cells at a distance < ¢;/d from SopT and points
in light cells > ¢;/d away from Sopr. From lemma any light cell contains at most CHj; many
points of D. Since there are at most O(kL/3) cells with side length ¢; within a distance of ¢;/d, it

follows that there are at most CH,; - O % many points within a distance of ¢;/d from Sopr. Since

the total clustering cost for Sopr must equal OPT), there can be at most d> OPT ? many points more
than t;/d away from Sopr. Therefore in sum |D;| < O(d? OPT /t?) + O (%)

3. The second bound follows directly from the first.

4.3 Candidate center allocation

We begin by giving a brief overview of the main steps in algorithm [4]

Step 1 - Initialization and first interaction: We start by setting up the dimension reduction, scaling
and projection map . We then have our first round of interaction with the agents where we make L calls to
Bitstogram in parallel to receive estimates of how many points lie in each cell. We then make geometrically
varying guesses for OPT ky/n2f for f € [F] where F = log, \/%; note that with this definition our guesses
vary in powers of two from k+/n to n. For each guess we generate a marking of cells {Hlf , ,le , M{ } by calls to
algorithm [2, where le (think medium) is notation of convenience to denote light cells with heavy parents.
Note that D; defined earlier is precisely the set of data points which happen to lie in cells in M{ in level [.
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Data: Guess for OPT = k/n - 2 Cell labels (Hi, My, L), Bucket histogram BH; ,, ., Bucket Sum
Oracle BSO, , , for | € [L], m € [M], r € [R],
1 Data drawn from global variables: number of levels L, number of LSH scales M, number of
repetitions R

2 Sy {O(C) :3iC € Hi}

s Ty = 25 - max (ff?ffd» O (CG i )) ; /% Bucket threshold */
4 Sl «— @

5 for | € [L], m € [M], r € [R] do

6 for (b,7,) € BH; 1 such that g > T; do

T | b T

8 I1;(b) « project b to A{(UCeﬂlfC)

9 S+ Siu {?)}
10 end
11 end
12 return Sy UJ;, S

Algorithm 3: Candidate Center Allocation for k-Means in Dimension-Reduced Space given OPT

Step 2 - Candidate center allocation and second interaction We start by defining M, the number
of LSH scales, and R the number of independent repetitions of the hashing subroutine to boost the success
probability. We then define a mapping A/ : R? — R* x R? where the co-domain is a synthetic space
mimicking the union of all heavy cells upon which we can define our LSH functions. Concretely, for points p
such that Anc*(C;(p)) is a heavy cell, the image is a 2-tuple of a [H;_1.51¢ 4| length indicator vector indicating
which heavy ancestor cell p lies in, and the p’s position with respect to the center of its ancestor cell. Finally
we construct the mapping H; ,,, », ; which computes the output of a (p(1),p(¢), 71, m,cri,m) hash function if
the point p lies in D; (which is true if and only if C;(p) € M;) and a null bucket value otherwise (i.e. no
participation). The heavy buckets of these hash functions are privately recovered via calls to Bitstogram
and we also recover the sums of all vectors mapping to heavy buckets via a call to HeavySumsOracle, the
consequence succinct histogram and sum oracle are BH; ,, ..y and BSOy , » s respectively.

For every guess for OPT we pass these histograms and oracles to algorithm 3] which allocates a candidate
center Hl(l;) for every heavy bucket b whose count 7 crosses a certain threshold 7;. The location at which it
allocates that actual center is found by querying the oracle for the sum of all points mapping to this bucket
to get a value BSO"™"™/(b) and dividing this vector sum by the histogram count BH"™"/ (b) = fy; this is
an estimate of the average over all points mapping to this bucket. We then project this average to the space
A; to get the point Hl(l;). Algorithm |3| also allocates a candidate center at the center of every heavy cell. It
then returns all centers found to the calling function algorithm [ which stores the centers passed by the call
with the guess ky/n - 2/ for OPT in S;. The net bi-criteria solution then is simply S = Ure(r) S/ which it
passes to the center recovery algorithm algorithm [f] along with the dimension reduction and random shift
mapping Q.

The main results of this section are lemma which allows us to derive a guarantee and lemma
which bounds the total number of candidate centers allocated.

Definition 4.11. We record some notation that will be convenient to use in the course of our analysis.

1. We denote the data set in the original space RY by D’ and in the dimension reduced space R (after
scaling, projection, and translation) by D = M (D).

2. We let the optimal clustering cost in the original space be denote OPT’, and the dimension reduced
optimal clustering cost be denoted OPT.
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Setting: Distributed dataset D’ C RY over n agents

/* Step 1: Initialization and first interaction
7 ¢ uniformly random vector in [—1/2,1/2]¢

T : RY — R dimension reduction for d = O(log(k/a8)/a?)
S : R% — R scaling by a factor m

P :R% — B(0,1/2) projection to B(0,1/2) followed by translation by ~y
Q=PoSoT:R¥ - B(0,1) c RY

L=I1gn

Do in parallel:

‘ CH! « Bitstogram(C; o Q(+), ecn, 3/L) ; /* Cell-wise Histogram of points
end

F =log, ﬁ ; /* Exponent of 2 in guess for OPT
for f € [F] do

‘ (!, £l M! i e |L]} « HeavyCellMarker({CH' : I € [L]}, guess for OPT = ky/n - 2/)

3
end

/* Step 2: Candidate center allocation and second interaction

M =1+ log, d*/?>v/L = O(loglogn) ; /* Number of LSH scales

Tim = Z:}% for m € [M] ; /* LSH scales
2

R=0 (W) ; /* Number of repetitions for LSH

N = (l4c + 5)4V/d

AN lape — if .
Alf() — D {( 1L Anc*(C(p)): P O(Cl(p))) it p € Uceane (Hf)C . /% Mapping to LSH domain

0 otherwise

(p(1),p(€), 71, m, cri,m)-sensitive Hash function on the space Alf if Ci(p) € M,
1 otherwise

Hl,r,m,f(p) = {

Do in parallel for f € [F],l € [L],m € [M],r € |R]:

BHim.rp < Bitstogram(H{m,T,ﬁ,eBH) ; /* Bucket-wise Histogram of points
BSOy,m,r, s < HeavySumsOracle(Hj . r, As, B, €Bs0) ; /* Bucket Sum Oracle
end
S0
for f € [F] do

S algorithm (Guess for OPT = ky/n -2/, {"H{,E{,M{ 24 € [L]}, BHym,r 5, BSO1m r. )
S« Sus/

end
return (algorithm S, Q))

*/

*/

*/

*/
*/

Algorithm 4: LDP k-means with low additive error
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3. We fix an arbitrary optimal solution Sopt in the dimension reduced space; we will show that our
allocation of candidate centers competes well with Sopr. Note that in particular fp(Sopr) = OPT.

Lemma 4.12. With probability 1 — 8, we have that for every clustering (D4,...,D;) of D',
q€D;] ZqEDg Q(q)
Z Z ( 7|Z)/> 214»0(6&) Z Z S (Q(p>7 W .
i€k peD] i€k pe M (D)) v
Further, with this notation OPT = ©(OPT') and D = M(D') C [0,1)4.

Proof. We write @ = P o S oT, where T is the dimension reduction to O(log(k/a3)/a?), S is the scaling
by a factor of 1/2(1 + «), and P is projection to the unit ball. Given any clustering (D, ..., D) of D, by
theorem 2.7 we have that

Z D, 4 Z D, T(Q)
© %o (S5 2o T 8 o (100 =555
i€k peD; | Dil i€k peD; |Dil
The scaling map changes all ¢5-distances by precisely the scaling factor, so we also have that

S5 (0 =) s § o(soro S,

ick peD; i€k peSoTD;

Since with probability 1 — S all points lie in B(0,1/2) after scaling by a factor of 1/2(1 + «), the projection
map does not move any point and hence the same clustering cost is preserved. Finally, translating all points
by the same offset v makes no difference to the clustering cost. The fact that OPT = O( OPT’) is a direct
consequence of the equality between clustering costs (up to small multiplicative approximation) derived
above. O

Definition 4.13. Fixing any level [, we make some definitions to aid our cost analysis.

1. Let D;r = {p € D;:z(p,Sopr) < dtlz}. We make this definition because for every p € Dy, o(Ci—1(p)) €

Sw and z(p,0(Ci—1(p))) < dt?, so DlT is the set of points that remains to be covered competitively with
Sopr by allocating candidate cluster centers via LSH.

2. For s € Sopr, let D (s) = {p e D} : argming cg .. 2(p,s") = s}.

3. From remark we see that there are at most O(kL/B) non-empty intersections of cells C' with
clusters D;(s) For every such cell C, we call D} (s) N C a cluster section.

4. Let s be the optimal center for a cluster section A. We can partition A depending on what distance

any point in it lies from s4 via geometrically increasing thresholds { df}f’ dz\jlf, 2?;%, ey \/thl}. For
ease of notation we denote these thresholds 71, ..., 3 and set 7, o = 0. By definition, there are M =

log,(d*/?v/L) = O(loglogn) many such thresholds. With this notation we define the geometrically
thresholded partitions of A as A; :== {p€ A: ||p—sa| € [r1j,r1,j+1)} for j = 0,... M. Further, let
A" denote the partial union |Jj_, A; for m =0,..., M.

Lemma 4.14. With probability 1 — 8, for all l € [L] we have the following bound on the number of cluster
sections.

‘{c € Anc*(H;) : C N Di(s) # 0} = O(kL/B)

s€Sopt
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Proof. From lemma we know that
E H{c € Anc™(H;) : C N Di(s) # @}H = 0(1).
By linearity of expectation and Markov’s inequality (in that order), it follows that with probability 1 — /L,

> |tc e anc* () 0 Df(s) 2 0}| = OkL/B).

s€SopT

O
BOPT
2kL2d
union of heavy cells, where we modify the norm so that the distance between two different cells is always
> 2¢-Vd- (d®/?), i.e. 2¢-Diam(C) units where C is any cell in the ancestor level. The diameter of this
entire space is still O(Diam(C')) and since the smallest distance at which we need to allocate cluster centers
to serve cluster sections is df}f’ the ratio of the distance to the farthest false positive to the ratio of the
distance of the closest clustering distance is O(poly logn).

As discussed in the beginning of the section, this allows us to use LSH functions with reasonable
parameters and not end up allocating too many candidate centers. The average of heavy buckets corresponding
to sufficiently large cluster sections lie within a distance of ¢ times the threshold at which we are competing
with Sopr. Then, by the triangle inequality it will follow that since any two cells are at a distance of strictly
greater than 2¢Diam(C), this average will be closer to the cell in which the cluster section lies than to all
other cells. Since a cell is a convex set, we can project to this cell and be assured that the distance to the
cluster section the candidate center is meant to cover is not any greater and therefore that we have allocated
a candidate center at the desired distance.

To catch cluster sections which have some O ( )—many points, we use LSH functions applied on a

Remark 4.15. For the rest of this subsection, we analyse the call to algorithm [3| with the “correct" value
of f, i.e. the call such that k\/n2/~' < OPT < ky/n2/. Since ky/n2/ = ©(OPT), we will simply refer
to ky/n27 as OPT. We will need to scale all failure probabilities by F' to ensure that the guarantees hold
simultaenously for all calls to algorithm [3| with probability 1 — 3.

Definition 4.16 (Synthetic space for LSH functions). 1. Let \; denote (14c + 5)ry ar = (14c + 5)tV/d.
2. Let A; = RA (H)  R?, We define a mapping A; : [0,1)% — A; as follows;

Al (p) _ ()‘llAnc*(Cl(p))ap - O(Cl (p))) ifp €D
0 otherwise

We note that for p € D;, A;(p) is a two-tuple consisting of scaled indicator vector and a copy of the
cell itself translated so that the center of the cell lies at the origin. In words, if p € D; then the
indicator vector indicates which cell in the ancestor level a point lies in. Since this space as defined
lies in RA"" (M) » R? it inherits the £5 norm in the canonical way which we denote |[|-|,.

3. We have the projection maps to the factor spaces p; : A; — RA () and py : Ay — R Since
Ay = RA (M) 5 RY is the direct sum of the vector subspaces R4 (1) and R? we have that ||||il =

s I + llp2 ()11
Lemma 4.17. The following statements hold.
1. For any p,q € [0,1)% if it is the case that Anc*(C;(p)) # Anc*(Ci(q)), then ||p — qlla > .
2. The diameter of the set of points Aj(D;) is O(N;).

Proof. 1. By the properties of [|-|| ,,, we have that |[p — g|[, > [[p1(p — ¢)||. Since Anc"(Ci(p)) # Anc™(Ci(q)),

lp1(p — )|l > \v2 (||lp1(p — q)|| being the difference of two different basis vectors in RA%¢"(€1) scaled
by A;. The result follows directly.
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2. The bound follows by appealing to the properties of ||| ,.

Ip = alla = /Ipr(p — )2 + o2 (o — DI
< lp1(p = @l + llp2(p — @)l
< NV2 4 d3?
= 0(\).

Lemma 4.18. For ¢ > /2, there is a choice of LSH parameters such that
p?(1) S kpolylogn
plc) —  ecnf?
p(1) > Q ((k poly logn)’l/cl) :

log Ng = O(poly logn/(ecuf)),

where the O and Q notation suppress O(loglogn) terms and ¢ = ¢/8 — 1/4. It will be convenient to write

1/¢ = 0(1/(2¢2 — 1)).

Proof. This result is a direct corollary of lemma [2.15] We bound all occurrences of logk from above by
log n. O

We state and prove the guarantees of the bucket histogram as derived from the Bitstogram guarantee.

Lemma 4.19. For every ! € [L], m € [M], r € [R], and f € [F]| with probability 1 — /(LM RF) in every
call to algorithm[3,

1
BHL™ ™/ — 0 < nlogn/5>
€BH
Lym,r,f __ 1
BHL =0 —+/npolylogn/s
€BH

As these bounds are invariant in l, m, r, and f we will find it convenient to drop these indices without loss.
Since BHy = Q(BHg), we will simply use a uniform bound of BHys for the estimation error of any frequency
query.

Proof. Fix any | € [L], m € [M], r € [R], and f € [F]. We see that BH;, , s is derived from a call to
Bitstogram with the mapping hym,» = p = Hanc(cy(p),m,r)(P) and failure probability 3/(LM R). If the size
of the co-domain is the number of buckets N for this LSH function, then from lemma [2.11| we have that

BH:™ "/ = O (61 V/nlog(Ng - LMRF/B) log(LMRF/ﬂ)) :
BH

From lemma we have that log Ng = O(polylogn/(ecuf3)). Note that since L, M, F = O(logn), R =
0 (W) and p(1) = O ((kpolylogn)_o(l/(2c2_1))), it follows that log(LMRF/B) = O(logn/B).
Substituting, we get the stated bound. The expression for BHlém’T’f follows similarly. O

We see that BHlEm’T’f = O(BHé\’f’r’f), which we use throughout the remainder of the proof.

Remark 4.20. We observe that by the union bound, lemma [£.19 implies that with probability 1 — 3, for
all levels [ € [L], thresholds m € [M], repetitions r € [R], and OPT guess parameter f € [F], the frequency
query estimation error bound BHj; holds.
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Lemma 4.21. Let A7’ be a partial union for some cluster section A C DlT(s*) N C such that |A7'| >
max <BOPT BHy O (CG V1 poly log Wﬁ)). With probability 1 — % there is a point IL;(p,,) € Si such

tZ2kL2d’ p(1) > €850

that for every point p € AT, ||lp — Pl = O(crim).

Proof. We observe that if r is the diameter of A" in A; then r < 7,41 (as all points lie inside the
same ancestor cell, the distance between them does not increase in the space A;). Lemma m gives us
m

that for any fixed arbitrary point p, € Ay, if the average of all points that collide with p,, under a
(p(1),p(c), 271 mt1, 27, m+1¢)-sensitive hash function is denoted p,,, then with probability p(1)/4,

_ 8p(A)| Di| ns
1P = P lla, < 26r1me1 + S =5mm AL
A P*(D]Ag|

Since |D;| = O(OPT d?/t?), A’ is Diam(A;) = O(ct;V/d), and |A| > 525F  we get
l

p(c) (O(OPT d*/t}) + O(5k+/npolylogn))tikL?d

— D <92 ecHB )
||pm pm”Al < Z2erpmyr + pg(l) ﬂOPT Ctl\/a
2 /42) 2k [,2 O(—=—+k+/npolylogn))t?kL%d
< Zerman + p(c) [ O(OPTd2/t2) tlde+( (3kv/npolylogn))t; et/
’ p%(1) BOPT BOPT
p(c) <O(ctlk polylogn)  O(ctk polylogn) )
< 2¢crima1 + +
= S () B ecnf3?

where in the above we use that OPT > ky/n. Since TlLm41 = dfl@ if we choose the LSH parameter such
that

p(c) < ecnf3?

p%(1) ~ kpolylogn
then ||p, — pmHAl < 3¢rym+1. Note that the bound on this ratio does not vary with threshold r; ,,, or level
[. This explains the uniform choice of LSH parameters used in algorithm [d] Lemma [4.18 bounds from below
the probability p(1) and from above the number of buckets Np for this choice of LSH parameter.

For any successful run, since ||pm — Py, |y, < 3¢ri,m+1, by the triangle inequality, for any p € A,,

”p - ?m”/\l < ”p _pmHAl + ”pm _pmHAl
< Timt1 + 3CT 1 m4
< (Be+1)(2r1m)-
Since the success probability p(1)/4 does not depend upon the level or threshold, a uniform number of
R =0O(log(kL*F/3)/p(1)) = O((klo#)o(l/@“z_l)) logn) many independent repetitions of this LSH scheme
boost the success probability from %1) to1— % Lemma [2.16[also guarantees that in the successful LSH
run at least @~|A6"| many points in Af" will collide with p,,. If @WAS"\ > BHyy, then by (Pm) € BHi
(lemma [4.19)), where BHy, = O (%«/npoly log n/ﬂ) For every Hj,mr ¢(pm) € BHipm s, algorithm

computes an estimate for p,, which we denote

b = BSOl,m,r(pm)
m BHl,m,T,f(pm)

By lemma [B.1} if hy . (pm) € BHim,r g, then the estimation error on querying BSO(hym.»(pm)) obeys the

bound
1 cg Diam(A;) 5
<o © otog /)

€BSO

Zp:Hl.m.r,f(p)ZHlJn,r,f(pWL) p - O(C) . BSOl,m,r,f(pm)
|{p : Hlm%,r,f(p) = Hl,mm,f(pm)” BHLm,r,f(pm)

A
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“o cG)\“/nlog2n/,6’

|Af'|eBso

In the above we used that d = O(logn) to substitute for it in the estimation error. It follows that if |Af"| >

cacegso Diam(A;)4/nlog? n/B

CT'1,m€BSO
the additional estimation error in ||-||, norm incurred is cry . Substituting, we get that it would suffice to

have
c(;/\“/nlog2 n/pB
|AG'| >

CT1,m€BSO

cq - cd*ty - \/nlog®n/B
o147 = 0 v

CT'1,m€BSO

2¢G\/ndSLlog®n/
< A= Q

€BSO

for some universal constant cgso derived from the HeavySumsOracle guarantee then

where in the above we lower bound 77 ,,, by 77.1.
6 2
such that |A| > GV 08 WP Vnd®Llog n/B g1 some fixed

So in sum, we have that for any cluster union Ay’ P
arbitrary point p,, € AJ', with probability 1 — 3/(kL?F) there exists a hash function Hj,,, ; for some
r € [R] such that the estimate of the average p,, over the bucket that p,, maps to lies within a distance of
cry,m units of p,,, the true average over the heavy bucket, which lies within a distance of (6¢ + 2)ry ,,, of the
point p,,, and by the triangle inequality ||pm, — D, || < (Te + 2)rym.

Now since the distance between any two different cells in the space A; is strictly greater than (14c¢ +
5)1m > 2||pm — Dy, ||, it follows from the triangle inequality that II;(,,,) the projection of p,, onto Ucey, C
lies in the cell C. Indeed, it was to ensure this guarantee that we chose our value of A;. Since II;(,,) is a
projection onto a convex set, |I1;(9,,) — Dl < |Pm — P ll- Now since the diameter of A" is 7y mi1 = 27 m,
it follows that every point in A" lies within a distance of O(cry,,,,) units of IL;(p,,)- O

Lemma 4.22. We have the following bound on S;, the number of candidate centers allocated per level in
algorithm [3.
kpolylogn
S =0 ( poly log
p
Proof. A candidate center is allocated for every b € BH'™" such that BHl’m’r(b) > T, — BH,; where

7 p(1) (ﬁOPT 4BH 0 (cG\/npolylogn/6>>.

~ 2 M\ kL2 p(1) €50

>1+O(1/(2c21))

The set of buckets which are identified as having these many points is at most the set of buckets which have
T; — 2BH s many points in them. Therefore we want to bound from above the quantity |D;|/(T; — 2BHyy).
Since T; > 4BH),, we can write
Dl _ 2D
T;—2BHy = TG
O(d OPT /82) + O ((:EGHar )

<
max{@f?(k)gz,QBHM}
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2 2
_ O(d?OPT /i}) +O(kLCHM 1 >

p(1) BOPT '
"2 ?kL%d b BHa

2 kL2d3 kLCH,,
SO(P(l). B >+O<5BHM>.

We use that OPT > ky/@, CHar = O (%«/npolylog n/ﬂ), BHu = L v/ polylogn and that

€BH

! €CH _ 10(1/(2¢*~1)
A<
007G D) poly log n S ean S k poly logn

to get
| Dy <O< 2 .kL2d3> kLCH s
T, —2BHy —  \p(1) B BBH
(kpoly 1ogn) 1+0(1/(2¢* 1)) k poly logn
=0 —=_ 4= =
B B
_0 (kpol}élogn) 1+0(1/(2¢*~1)) |

Taking the union over all possible values of (I,m,r) and absorbing the addition log factors in the poly log
term, we get the stated bound. The fact that the bounds on the ratio of ecy to egy is adhered to can be
checked in the proof of the main theorem at the end of this section. O

Lemma 4.23. In algorithm[], the following bound holds for the total number of candidate centers allocated.
kpolylogn
S| = (2222

15 ( g

Proof. We observe that S in algorithm 4| equals Ufeo(iogn)Sy is the union of F' = O(logn) many sets of
candidate centers returned by calls to algorithm [3] It therefore suffices to bound the set of candidate centers

) 1+0(1/(2¢2—1))

Sy U U S

le[L]

returned by algorithm [3] From lemma by adding the bounds for S; over L levels, absorbing the factor
of L into the poly log n term and noting that the |Sy| = O(kL?/f)- L summand is asymptotically dominated
by |UierSi|, we get that

’Sf| _0 (kpol}élogn

The stated bound now follows simply be absorbing an O(logn) factor in the poly log term. O

) 1+0(1/(2¢%—1))

Definition 4.24. Let f* denote the “correct” call to algorithm [3] i.e. the unique value of f € [F] such that
kyn2/=1 < OPT < ky/n2f

Lemma 4.25. Let A C DlT (s) N C be some cluster section. Then with probability 1 — 3/kL? we have that

FAST) = O(fa(Sopr) + max (fBOPT By (Gm>> i+ S,

kL4 p(1) | €850 L
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t2kL2d’> p(1 €850

. m’ a+/npolylogn
Proof. Let m’ be the largest index such that |[Af" | < max <BOPT 4BHM ,O ( polviosn/6) ) We can

write

Fa(877) < fape(877) Z fa,.(87)

m=m'+1

For every m > m/, by lemma we know there is a candidate center II;(p,,) € Sf " such that for every
point p € A7, |lp — I(D,,)]| = O(erym). Since for all p € Ay C AR, |lp— s|| > rim, it follows that with
probability 1 —8/kL?M, fa,,(S) < O(fa,,(Sopt)+c*r},. By the union bound, we have that this guarantee
holds for all thresholds with probability 1 — 3/kL?. Substituting this bound, we get

£4(S57) < max <5OPT 4BH,, O(ccx/npolylognw)) i+ Z O(cfa. (Sopr)) + ¢ 2]

cr
2kL2d’ p(1) ’ €8BSO T

m=m'+1

CQtf

>> ~dt} +O(fa(Sopr) + L <Al

ly 1
< max (ﬁOPT 4BH O(cG\/npoy ogn/fB

t%k[ﬁd’ p(l) ’ €BSO

Lemma 4.26. The following bound holds.
fp.(87") = O(fp,(Sopr)) + O(OPT /L) + O(CHyr/(d*B))
+0 ( ﬁ(k poly logn)HO(l/(2C _1))f)
BSO

Proof. Let A be the set of all cluster sections. We know that |A] = O(kL/B) and that DlT = UaecaA. We
can write

For(87) =37 falsh)

AcA
2t BOPT 4BHj cgy/npolylogn/g
= (S Al +m , ,0 - dt?
/§4 fA OPT) d2L ‘ | (t?k‘LQd p(l) ( €850 l
At? OPT \ 4BHj, kLd cgk+/npolylogn/3
- D} il e
Ofp; (Sopr)) + St | \+max<0( - ) o0 0( : ),o o

where in the above we absorb a factor of d in the poly log n expression. To bound the second term, we recall
that |D;| < O(d? OPT /t?) + O(kLCHys /). Substituting, we get

62t2

d2L

242
2;;4 - (O(d? OPT /#2) + O(kLCHu1/8))

< O(OPT /L) + O(kCHyy /(d*B))

|pi] <

We now simplify the last term in the upper bound for f,+ by noting that for any call to algorithm @} the
l

parameter c is a constant, that d, L = logn, and that since we can let egso = egn (as they are called exactly
the same number of times). In sum

ax <O ( OPT) 4BHMO (kzLd) 0 (c&m/npolylogn/ﬁ))

L " p(1) B eBsof

<0 ( - (k poly logn)HO(l/(%gl))\/ﬁ) '
egsof3
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We recall that DlT ={p € Dy: z(p,Sopr) < dt}}. It follows that if p € Dl\DlJr then z(p, Sopr) > dt?,
in which case z(p, Sy) < z(p,Sopr). In sum, fp,(SF) < fDlT (7Y + fp,(SopT ), from which the stated
bound follows directly. O

Lemma 4.27. The following bound holds.

fp(S)=0(OPT)+0O (( CGB 4 1 ) (kpolylogn)1+0(1/(2c2—1))\/ﬁ> )
€BSO

Proof.

fo(S7) =" fp,(87)

le[L]

Z { (fp,(Sopr)) + O(OPT /L) + O(kCHy /(d?B))
€[L]

( kpolylogn)lJrO(l/(zCQ1))\/ﬁ>}

€8BSO 5

= O(OPT) + O(kCHa/(d8)) + O ( 5k poly 1ogn>1+0<1/<2c”>>f)
€BSO

where in the above we use that L = logn to absorb a factor of L in the polylogn expression. Now since
SI7 ¢ 8, we can write

O(OPT) + O(kCHar /(6) + O =2 (hpoly og ) 04/ 1) )
€B

sof

We now simplify this expression by opening up the expression for CHj;, and by absorbing the ¢? term in the
big-Oh notation.

1 2
fp(S)=0(OPT)+0O (( e + ) (kpolylogn)“ro(l/@c —1))\/ﬁ> )
egsoB  €cH

4.4 Cost analysis

In this subsection we complete the cost analysis of this algorithm. In the previous section we showed that
the candidate centers allocated serve as a good bi-criteria solution for the k-means problem with respect
to the dimension reduced data set D. We will be able to use this in turn to show that proxy data set D*
constructed in algorithm [5| has a similar k-means clustering function to that of D. This result implies that
the k cluster centers derived from non-private clustering of D* work well as cluster centers for D. Finally,
we conclude our cost analysis by bounding the cost incurred when clustering the original data set D’ with
the k centers in S’ returned after undoing the dimension reduction.

Definition 4.28 (Proxy dataset). 1. From algorithm [5| we see that
D* = {s € S with multiplicity f, for all (s,7s) € CCH}.
We call this the prozy data set for D.
2. We let D(s) = {p € D :argming g 2(p,s1) = s}.
Lemma 4.29. With probability 1 — 23 we have that
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Data: Bicriteria k-means relaxation S for k-means clustering under dimension reducing
transformation M, the tranformation M : RY — R¢

1 s(p) :=p+—> argmin,g|lp — sl2
2 CCH = Bitstogram(s(+), 8, €sn) ; /* Candidate center histogram */
3 D* « {s € S with multiplicity SH(s)}
4 S* ={s7,...,s5} < Standard k — Means
5 s*(p) :=p— argming,..g. || M(p) — s*|2
6 Do in parallel:
7 Agents reveal 0(p) for p € D’ where
pif s =s*(p
v(p)s = . ( )
0 otherwise
R e, -2
o(9) = o) + ¥ (0. S5 21
€2
SH = Bitstogram(s*(-), 8, €sn) ; /* Cluster centers histogram */
9 end
10 9=>3 p 9(p)

11
12
13

14
15

8 =2 pen 8 ()

for j=1,...,k do

‘ fu; = SH(s)

end

return S’ = {{i;,..., i}

Algorithm 5: 2-Round Center Recovery
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1. For all s € S we have ||[{p € D : s(p) = s}| — CCH(s)| < O(6c1CH ).

2. For all s* € S* we have that ||p € D' : s*(M(p)) = s*|| < O( logn/B3)

€SH

Proof. The stated bounds follow from the Bitstogram guarantee. We use the values CCHj; and SHjy, as
uniform error bounds. Note that the size of the co-domain for s(-) is |S| and log|S| = O(logn). Similarly
the size of the co-domain for s*(-) is |S*| = k, so the second bound follows directly as well. O

Lemma 4.30. The k-means clustering functions of D and D* are similar. Concretely, for any finite set
S1, the following bounds hold.

Fo-(S1) < 2f(S >+2fD<sl>+0(' | flogn/ﬂ)
F5(S1) < 2/n(S >+2fp*<sl>+o( 151 flogn/ﬁ)

As a direct corollary,

fD%SopT)SCKOPT)+()(< ‘¢, 1>(kpdybgnﬂ+00“%21ﬁv%>
eBso}  €cH

0 ('S'mogn/g) .
€ccH

Proof. We can enumerate all points in D* by counting each candidate center in s € S a total of ny many
times.

for(5)= 3 min=(,)

SES,
p*€D*
= Zns mln 2(s,s")
ses €S
= Z\D )| HllIl 2(s,8") +hs — | D(s)]
seS
< 3 s(s(p)agmin+(6(9),5) + 0 (2L yitog /)
oeD s'€5) ECCH
< Z argmm 2(p,s')) + O <|S|\/ﬁlogn/[3>
D s'€S) €CCH
< Z 2z(s(p), p) + 2z(p, argmm 2(p,s')) + O <|S\/ﬁlogn/6>
s'€Sy €CCH

peED

<2fn(S >+2fD(sl>+0(' | flogn/ﬂ)

where we apply the weak triangle inequality for £3 distance. Proceeding similarly,

E man p,
seS

peD

ST mincts
s€S peD(s)

< Z Z z(p, argmin z(s, s1))
s€S peD(s) s1€51
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< Z Z mln 2z(p, ) + 2z(s,argmin z(s, s1))

seSpeD(s ) S 51€51
<2fp(S) + Z\D )|22(s, arg min z(s, 1))
s€S $1€51
<2fp(S +Z fs)22(s, argmin z(s, s1)) + (|D(s)| — fig)
sES 51€51

< 27p(8)+ 20550 + 0 (L Viitogays)

The corollary follows by substituting our upper bound for fp(.S) in its place. O

Lemma 4.31. If the set S* is such that

fp-(5%) < "slﬁmfﬂ ka*(Sl)

for some universal constant n (for instance the guarantee of the non-private clustering algorithm) then

fD*(S*)O(OPT)JrO(( ‘e + - ! >(kpo1y1ogn)1+0(1/<262”)\F) +0< 15] \Flogn/g)
CH

eBsof

1 2

fp(S*) = O(OPT) + 0O ((6 CGB + ) (k poly log n)'+01/(2¢ 1>>\f) Lo ( IS flogn/@
BSO

Proof. The first bound follows from the lemma by noting that fp«(Sopr) is an upper bound for

ming:.g/|=k fp~(S’), and by absorbing the universal constant 1 in the big-Oh notation. The second bound

follows from the first bound and lemma [4.30) O

We have shown that the k-means solution found in the dimension reduced space for the proxy dataset
works well for the dimension reduced dataset. Now we use the cluster sets hence derived to privately estimate
cluster centers in the original space.

Given a clustering of D’ in the original space by identifying points with the clusters derived from S* in
the dimension reduced space, we know that the k-means cost of the clustering is of the same order as the
k-means cost in the dimension reduced space, as proved in lemma We recover the cluster centers in
the original space via noisy averaging. In algorithm [ each point holds a k-tuple of d’-dimensional vector
v(p) which we can naturally identify as a kd’ dimensional vector. If s} is closest to p in the low-dimensional
space (breaking ties arbitrarily), then the ith tuple value is p and all other tuples are the zero vector. To
preserve privacy, agents release this vector via the Gaussian mechanism.

Lemma 4.32.
fp(8")y=0(0OPT)+ O (( <C 4 ! )(kpolylogn)l+o(1/ (2e _1))f> +O( 4] flogn/ﬂ)

egsof  €cH

+0 <(CG/ + 1> k\/%logn/ﬂ> .
€SH

(Tel

Proof. For s € S* let D'(s) = {p € D' : M(p) € D(s)}, where we recall that M was the composition of the
dimension reduction, scaling, projection and translation maps, and D(s) = {p € D : argmin, cg. 2(p, 51) =

s}. Let p; = ZpeD(sj)p”D(sj)\. From lemma we have that
for{pas - me}) = O(fp(57))-

In lemma [£.31] we have derived the bound

+ 1) (k poly log n)1+0(1/(2621))\/ﬁ) +0 (|S|\/ﬁ10g n/ﬂ) )
€CCH

esoB  €cH

cq

o(s) < 0(0PT) +0 (2
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In algorlthmlwe construct estimates 4i; = 0;/SH(s}) for the ;. We now bound the addition error incurred
during this approximation step.

We see that 0; = ZPGD,(Sf) p+ N (O, 26%2@]1(1:). If we denote the random noise added by the agent with
J G
data p by 7,, then we have

P

Z Mlp

peD’(s})

So there is a choice of
o <CG/,/d/nlog k:/ﬁ)

(Tel

such that ||0; — ZpeD, ypll <t with probability 1 — 8/k. From lemma we have that

|&@pD@>soQ;¢m%m@.

It follows that by the union bound that all these bounds hold simultaneously with probability 1 — 23. For
all clusters D'(s}) which have more than 25H;, data points we have that SH(s}) = @(|D’(s;)|), and for all

smaller clusters since the diameter of the data domain is 1 unit, fpr(s:) < |D’ *)’ = (eliL Vvnlogn/B
unconditionally. Assuming that the former case holds, we get that the error bounds for o5 and SH(s}) give

us

Vj ZpeD/(s;)p

H“j 7”]’” = SH(S;) - |D s* }
v; ZPGD/ )p ZPED' *)p_ ZPGD'(Sf)p
SH(s?) SH(s |D(s7)
CG/\/W
< cary/anlogr/b o )
—0<6QD@M >+o@5w, ¢l%w@mw

We can bound ||| from above by O(1) since the domain is of unit diameter. We can then state a simplified

bound of
) car 1\ Vdnlogn/p
=il =0 —+— ) |
H/J“J 'UJH ((6@/+€SH> ‘D/(S;” )

From lemma we can bound the cost of cluster D'(s}) via 8" = {ji; : j = 1,...,k} by the following
relation

,\ 2
fD’(s;)(S/) < fDl(Sj)({/’[/l""7Mk} + |D/(Sj |H,Uj —Hy ‘

2 d'nlog®n
< O(fp(s3)(S)) + 1D’ (57)10 L [
o ") ol

For each cluster D'(s}), we see that if D'(s}) > <CG’ €SH) Vd'nlogn/B, then

- €/

/ Wlogn/ﬁ
fors)(8") < O(fps)(57)) + O <<€G/ + €SH) ’D’ )
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On the other hand, if D'(s) < (CG' ) Vd'nlogn/B, then we have the same bound unconditionally since

€/ €SH
the diameter of the data domain is O(1). Summing up over cluster over all size ranges, we get

1 > k\/%logn/ﬁ)

€SH

(8 = 0(n(5) + 0 (L kyinognys) +0 (2

=0O(0OPT)+ 0O (( + 1) (kpolylogn)1+o(1/ (2¢ _1))f> +O( 5] flogn/ﬂ)
€gsof  €cw

+0 <(CG/ + 1> k\/%logn/ﬂ> .
€SH

(Tel

We can now derive the main result of this section.

Theorem 1.2. Algomthml is an (e, 6)-locally differentially private algomthm such that given ¢ > \/2, after
four rounds of interaction with a private distributed data set D' C RY of size n outputs a set S' of size k
such that with probability 1 — 3,

kpolylogn
B

Proof. To prove this theorem, we will account for all privacy loss and then scale the privacy parameters used
in each data access subroutine to ensure a net (¢,) privacy loss guarantee. We will then substitute these
parameters into lemma [£:32] to derive the bound on the cost incurred with this choice of parameters.

We see that data access occurs in 4 rounds through the following mechanisms:

1 1+0(1/(2¢2-1))
o (8" =0(0OPT’) +0O (e d’nln(n/5)> ( ) .

1. L calls in parallel to Bitstogram to construct CH! for [ € [L] with privacy parameter ecy.

2. FLMR calls in parallel to Bitstogram and HeavySumsOracle to construct BH; ,, »  and BSOy p, . ¢ for
le[L],m € [M],r € [R] and f € [F]. The two types of calls have respective privacy parameters egy
and (egso, 0so) (note that dgsp occurs in our cost guarantee inside the Gaussian mechanism parameter
ci). Recall that during the course of our analysis we required that egy = egso with the observation
that they were called an equal number of times.

3. One call to Bitstogram to construct CCH with privacy parameter eccy

4. Gaussian mechanism and one call to Bitstogram to construct SH in parallel when computing the noisy
averages over cluster sets derived from low-dimensional clustering. The respective privacy parameters
are (eg,d0¢/) and esy (note that dg occurs in our cost guarantee inside the Gaussian mechanism
parameter cZ,).

We allocate private parameters of (e/4,0), (e/4,3/2), (¢/4,0) and (e/4,6/2) to each of these four steps, and
sub-divide the privacy parameters within. Since

FLMR = O(logn) - O(logn) - O(loglogn) - O (k poly log n)o(l/@cg*l))
= |0/ (2¢*-1) poly logn

we can write

€

N~ Llogn
B B €
€BH = €BSO = ]KO(1/(2¢2—1)) poly logn
1)
dBso =

2k0(1/(2¢*=1)) poly log n
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= cg < O(1/(2¢% — 1))y/In(n/d)
eccH = =

4

€

€cr = esH = g
1)
bor = 5

= Ccqr = O(\/ 111(1/5))
Substituting these terms along with the bound

k poly log n) 1+0(1/(2¢2~1))

|S|<O(

in the cost guarantee of lemma [£:32 we get

ln(ﬁn/é) + logn> (kpoly logn)1+o(1/(2cz_1))\/ﬁ>
€ €

1+0(1/(2¢2-1))
+0 (1\/5 (kpd;logn) ) +0 <<ln£1/6)> kx/%logn/ﬂ)

for(S') = O(OPT) + O ((

kpoly logn

1+0(1/(2¢%—1))
) ~

< O(OPT)+ 0O (1 d’nln(n/5)> (
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A Concentration bounds

We recall some basic concentrations bounds that we draw upon for our proofs.

Lemma A.1 (Hoeffding’s inequality). Given n i.i.d. Bernoulli random variables X; that take values in
{0,1} with mean p,

P Z X; —np| >t | < 2exp(—2t3/n).

i€[n]

Lemma A.2 (Chernoff bound for Gaussian random variables). Given n i.i.d. Gaussian random variables
ni ~ N(0, 02)7

—¢2
P Zm >t <Qexp<2n02).

i€[n]

We will also need the following more involved concentration bound to bound the estimation error of the
HeavySumsOracle developed later as a tool which allows us to reduce the round complexity of our protocols.
We follow the formulation in §1.6.2 of Tropp| [2015], who attributes it to |Oliveira [2009] and |Tropp| [2012].

Lemma A.3 (Matrix Bernstein’s inequality). Let Sy, ..., S, be independence centered random matrices with
common dimension dy X dy and assume that each one is uniformly bounded, i.e.

E[Sy] = 0,
I1Se]l < L Vk € [n).

Let Z =Y%"_, Sk and v(Z) denote the matriz variance statistic of Z i,e,

v(Z) = max{|[E(ZZ")|, |[EZ*Z| }

:max{ ZESkSZ , X:IES,:S;C }
k=1 k=1
Then
PAIZ] > 1) < (dy +do)-exp (L2 ) iz 0
- ex —_— .
=W =TSR L7+ Lt/3 =
Further,

B[] < V/20(2) og{ds + da) + 5 Llog(ds + ).
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B Bitstogram and the Heavy Sums Oracle

The contents of this subsection are used in the cost analysis for both clustering algorithms. In the sequel we
make extensive use of locally private frequency estimation. For private frequency estimation a lower bound
of Q.(y/n) is known |Chan et al., |2012|. A state of the art construction for this problem is the Bitstogram
algorithm Bassily et al.|[2020], which is an e-LDP algorithm for the heavy-hitters problem that achieves low
error.

Lemma 2.11 (Algorithm Bitstogram, [Bassily et al.| [2020]). Let V' be a finite domain of values, let f : D' —
V, and let n(v) denote the frequency with which v occurs in f(D’). Let e < 1. Algorithm Bitstogram(f,e, §)
interacts with the set of n users in 1 round and satisfies e-LDP. Further, it returns a list L = ((v;,a;)); of
value-frequency pairs with length O(\/ﬁ) such that with probability 1 — B the following statements hold:

1. For every (v,a) € L, ||a — f(v)|| < E where E = O (%\/nlog(n/b’)).

2. For every v € V such that f(v) > M, v € L, where M = O (%\/nlog\V\/ﬁlog(l/ﬁ))

We overload notation to treat the list returned by Bitstogram returns as either a set of (heavy-hitter, frequency)
pairs or a function which may be queried on a value to return either the corresponding frequency if it is a
heavy hitter or a value of 0 otherwise. A subscript of M will denote the upper bound on the mazimum
frequency omitted. We see that whenever |V| = Q(n), M = Q(E) and Bitstogram promises a uniform error
bound of M when estimating the frequency of any element in the co-domain for an appropriate choice of
constants.

We introduce an extension of the Bitstogram algorithm called HeavySumsOracle that allows us to query the
sums of some vector valued function over the set of elements that map to a queried heavy-hitter value. For a
given value-mapping function f : X — V and a vector-valued function g : X — R? the sum estimation oracle
privately returns for every heavy hitter v € V the sum of all agents that map to z, i.e. Zp: F(p)=z P We recall
that Bitstogram is a modular algorithm with two subroutines; a frequency oracle that privately estimates
the frequency of any value in the data universe, and a succinct histogram construction that constructs the
heavy hitters in a bit-wise manner by making relatively few calls to the frequency oracle. The construction
of HeavySumsOracle essentially mimics the frequency oracle construction called Hashtogram from [Bassily
et al. [2020] and can be run in parallel with Bitstogram, allowing us to reduce the round complexity of our
protocols.

-

Public randomness: Uniformly random matrix Z € {£1}/VIx»

2 Setting: Agent j € [n] holds x; € X, public functions f: X =V, g: X — [0,b]¢, g has known
bounded sensitivity Ag .
3 For j € [n] let y; < Z[f(x;),j] - g(x;) +n; for n; ~ N (O7 de 3*‘7'2) where ¢? is according to

lemma [2.10)
4 On input v € V return S(v) = Zje["] y; - Z[v, j] and wait for next query

Algorithm 6: HeavySumsOracle

Lemma 2.12 (HeavySumsOracle). Let f : X — V, g : X — B(0,A/2) C RY be some functions where g
has bounded sensitivity Ay o and let D' C X be a distributed dataset over n users. With probability at least
1 — B, for every v € V that occurs in f(D’), if S(v) is the value returned by Algorithm[6 then

"+1  4degA 4
S(v) — Z gy <2A 2nlogd; + CGG g’2m.

fy)=v
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Here cg is the constant derived from the Gaussian mechanism (lemma , and Ay o is the ly-sensitivity
of g. Note that since Ngo < A, this also implies (whenever € < cq = /21In(1.25/6))

S(v) - Z 9(y) SO(CGA d’nlogl).
fly)=v ‘ b

Further, Algorithm[6 is (e, 8)-LDP.

Proof. Let the data of the jth agent be denoted z;, and let y; denote the value sent by the jth agent, i.e.
3 2 A2
Z[f(x;), 4] - (9(x;) + n;) where n; ~ N (0’ % )

S(“) = Z Yj - Z[U7j]
JEn]

=Y (Z[f(x;),4] - g(x;) +n;) - Z[v, j]

JE[n]
= E[S()] = Y E[Z[f(x)),4] - Z[v,5] - (9(x;))] + Eln; - Z[v, j]]-

J€[n]
= > Elg)l+ Y. EZ[f(v), JE[Z[f(x;), 4] g(x;)] +0
3if(zj)=v 3:f () #v

= Z g(x;)+0.

J:f(zj)=v

This gives us that in expectation, S(v) = ZyeDf( )g(y). Now we derive high probability bounds on the
estimation error. Let S denote the quantity of interest, i.e. > . ¢, y_, g(x;). We have

15) — Sl = | S (210,31 atas) +ny) - 2lo, 3] - SH
JE[n]
< D0 biglw)+ > by
Jif(zj)#v j€ln]
< Z big(z;) ‘ + Z bin ||,
jif(xj)#v jE€n]

where we let b; denote uniformly random {+1} bits. Note that the cancellations of the summands g(x;) in
S(v) (where j was such that f(z;) = v) with S were deterministic, but the Gaussian noise introduced to
retain privacy remains for all agents. To bound the first summand, we observe that b;g(x;) are at most n
independent vectors with ¢, norm at most A such that E[b;g(z;)] = E[b;]E[g(x;)] = 0 and matrix variance

max(E[|| (b;9(x;)-b;g(2)) |, Ell[b;g(x;) @ big(x;)]) = llg(x;)[|* < A2 Then, identifying bjg(x;) with S; in
1emma and bounding the size of the set {j : f(z;) # v} by n, we have that

n 2
—t/2
P Sill>t)] <(d+1 = | ¥t >0.
(25 21) = vee (s 2
For an error probability of at most 3, we see that it would suffice to set ¢ such that

42
(d +1)exp (A%Lj—f)ﬁ/?)) <B
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A?n+ At/3 < 1

©2/2  ~log(d + 1)/8
2A%n  2A 1
2 T3 Slegd +1)/8

We see that it suffices to let ¢ > 2v/2Ay/nlog(d’ + 1)/3. Next, we would like to bound the second summand
sze[n] b;n;||- We have that

2
= < Z bjng, Z bjﬂj>
Z”UJH + Z bjbr (M, k)

Z bjn;

j€ln]

[n] j,k€[n]
Z S 2a+ S bl
€[n] de(d’] j.k€[n]
< Z S 2at S (gl + lell?)
j€[n] deld’] j.k€[n]
<2y )

j€[n] deld’]

2 2
2 _ 4eghye

Since the upper bound is a sum of d'n i.i.d. normal random variables with variance o =22 We can

now apply lemma [A2] which gives us

—¢2
> 2ty | <2 —2_ ),
2] =2exp <2d’n02>

> by

JE[n]

A?
where 02 = 4PG —<522 . We again set the error probability to be /2 to get

—t3 3
2exp (-2 ) <2
P <802d’n) =3

/ 4
&ty > 0y /8d'nlog B

Substituting for o we get the stated error bound. To see why this routine is (e, d)-differentially private, we
see that the sensitivity of the response Z[f(x;), ] - g(x;) is 2A4 2. The privacy guarantee is hence a direct
consequence of lemma [2.10

O

The objects returned by Bitstogram and HeavySumsOracle are often used in conjunction to estimate
the average vector value for collections of data points that accumulate under some value-mapping. The
consequent error bound in all these applications is formalized in the following lemma.

Lemma B.1. Given a function f : X =V, and g : X — B(0,A/2) C RY, if a succinct histogram HG : X —
R is returned by Bitstogram(f, 3,€) and a sum oracle SO : V — R? is returned by HeavySumsOracle(f, g, 3, €),
then with total probability 1 — 23, for every heavy hitter if v € HG S, denotes the sum erx:f(z):v g(z) and
ny denotes its frequency |{x € X : f(x) = v}|, the following bound holds

ot
~— n, — HGg

SO(v) S,
HG(v)  ny

SU

),

v

. <SOE + HGg
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In the above, as per our convention, HGg refers to the error term in the estimation of HG, and SOg refers
to the error term in the estimation error of SO. Note that for every heavy hitter n, we can assume without

loss that n, > 2HGE, that ‘ 5—” = O(A), and that HGg = O((cgA/e)/dnlogn/f), from which it follows
that

SO(v)  Su <0 cgAv/dnlogn/p

HG(v) n,| — €Ny -

Proof. The proof is a direct consequence of the triangle inequality and some algebra.

SO(v)  Sull _[[SO(w) S, n Sy Sy
HG(v) n,| |[HG(v) HG(v) HGw) n,
< 150() = Sull | Inw — HG()[ || Sy
- HG(v) HG(v) Ty
1 Sy
< . vl
= HGR (SOE+HGE ) >

C Locality Sensitive Hashing

The contents of this subsection are used only for the construction and analysis of the multi-round k-means
algorithm with low additive error. We start by recalling the definition of an LSH family.

Definition 2.13 (Locality sensitive hashing (LSH)). We say that a family of hash functions H : R? — B
for a finite set of buckets B is locality-sensitive with parameters (p, q,r, cr) if for every z,y € R¢ for some
1>p>q>0,r>0andc>1

>pifd(z,y) <r

<qifd(z,y) > cr

P(H(x) = H(y)){

In this work we use an LSH-family construction construction from |Andoni and Indyk| [2006].

Theorem 2.14. For every sufficiently large d and n there exists a family H of hash functions defined on
R? such that for a dataset of size n,

1. A function from this family can be sampled, stored and computed in time t°®) logn + O(dt), where t
is a free positive parameter of our choosing.

2. The collision probability for two points u,v € R% depends only on the £ distance between them, which
we henceforth denote by p(||lu — vl]).

3. The following inequalities hold:

>4 1
T2Vt (14 €+ 8€2)t/?

2
Ve > 1, p(e) < m

p(1)

where A is an absolute constant < 1, and e = O(t~/?). One can choose ¢ = 4%/{.

4. The number of buckets Ng an LSH function with parameter t uses is t°®) logn.
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Note that by scaling the input to the LSH function this gives us constructions for (p, g, r, cr)-sensitive LSH
families for arbitrary values of r > 0. Due to the occurrence of terms like t©(*) in the collision probabilities
and the number of buckets, the performance of an LSH family is very sensitive to the choice of ¢. In the
following lemma we show how to choose a value of t for a desired ratio of p?(1) to p(c).

Lemma 2.15. Given a fived ¢ > /2, for any B > 1, there is a choice of t = O (log2 B) for the LSH function
described in theorem [2.1]] such that

p(1) = QB /log B),
log Ng = O(log? Bloglog B + loglogn),

where ¢ = (c?/8 — 1/4). It will be convenient to note that 1/¢’ = O(1/(2¢* — 1)).
Proof. We have that

() A7 (1 + /A2
8t (1+ (1/4V/t) +1/2t)t
A2 exp (? /4t — c4/32t)t/2
8t exp(1/4vt+1/2t)t

> g—: exp((c?/8 — 1/4)Vt — ¢t /64 +1/2)

=0 (exp(c/\/i)/t) .
where ¢ = (¢?/8 — 1/4). It follows that for ¢t = (log B + loglog B)?/(c’)?,
B +log B
(log B + loglog B)?
=Q(B)
p(1) > exp(~Vi/s - 1/1)
2Vt
= QB /log B)
log Ng = O(tlogt + loglog n)
= O(log® Bloglog B + loglogn).

Y

Z (C/)2

O

In the construction of the multi-round k-means algorithm with low additive error, we will need to estimate
the average of all points that map to a given heavy bucket. Due to the pair-wise nature of the LSH guarantee,
the analysis of this requires us to use an arbitrary point from the bucket as a filter to ensure that sufficiently
many points close to it and not too many points far from it map to that bucket. This result and its proof
follow the lines of a similar result by Nissim and Stemmer| [2018], but are modified to allow for the possibility
of false positives and have been phrased differently.

Lemma 2.16. Let C C D be a set of points with diameter r and let the diameter of D be A. For any
xo € C, if Xy is the average over all points colliding with xo under a (p(1),p(c),r,rc)-sensitive LSH function
H applied to D, then with probability p(1)/4,

8p(c)|D|

To — Tol| < er +
o = o] 200

A,

and the number of points of C' that collide with xq is at least #.
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Proof. Let xg be an arbitrary fixed point in C. Let N C C be the set of points that lie near ¢ and collide
with it under the LSH function, i.e. N ={y € D : H(y) = H(xo),d(y,x0) < r}. Since Yy € C, d(zo,y) < r,
E[|N]] > p(1)|C|. We note that |N| is supported on {0,...,|C|} and let p := P(|N| > ¥|C’|) Then we

can write

|C]
E[|N| =Z (IN| =) -
1=0
2B c|]-1 1|
= P(N|=i)-i+ > P(N|=i)-i
=0 i=[ 232 |C]]
<(-p)- 24y
= p(je) < P o - 2L,
p(1)
TP

Let FF C C be the set of all points which lie far from zy and collide with it under H, i.e. {y € D :
H(y) = H(xo),d(y,zo) > cr}. It again follows from the LSH guarantee that E[|F|] < p(c)|D| < E[|D\F|] >
(1 =p(c)|D|. If ¢ := P(|D\F| > ( 4p( )\D\) then we can write

D]
E[|D\F[] =) P(ID\F| =1)] -

1=0

<(1-q)- ( ‘ij’((f)))wqum

= (- pe)ID] < (1 - q) (1 - 4”(6)) D] +qD|

)
= (1-p(e)|D| < (1 _ 4p<c>) 4p(< ))

r(1)
=1- 1
With probability at least 1 — p(1)/4, |F| < 4p(c)|D|/p(1), and with probability at least p(1)/2, |N| >
p(1)|C]/2. Applying the union bound on the negation of these events it follows that with probability at least
p(1)/4 both these events hold. Conditioning on their intersection, we want to bound the distance between the
average o of all points that collide with xo and ¢ itself. Let N' = {y € D : H(y) = H(xo),d(y, z0) < cr},
with which definition we have |N’| > |N| > p(1)|C|/2. Further, the set of all points that collide with z( are
partitioned by N’ and F. It follows that

ZyEN’ Y+ ZyGF Y
[N'| + | F|
> yent lmo =yl + > e p llzo — yll
N[+ |F|
< cr|N'| + A|F|
TN+ |F

2o — Zo| = ||z0 —

IN
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|F|

A
|N'|
8p(c)|D|

<er+ —5—A.
p(1)?[C

<ecr-+

D Miscellaneous tools

In the course of our analysis, we will make extensive use of two weak triangle inequalities which hold for the
distance function d.

Lemma D.1 (Weak triangle inequalities). 1. Given points p,q and r € R? such that z(q,7) < ca®z(p, q),
where ¢ is some constant and a < 1,

z(p,r) < (1+ O(a))z(p; ).
2. Given arbitrary points p,q and r € R?,

z(p, 1) < 22(p,q) + 22(q, 7).
Proof. 1. The bound follows from an application of the triangle inequality for the 5 norm.
Va2, r) < Vzpa) + Vz(g,7)
= 2(p,7) < 2(p,q) +2v/2(p, 9)z(q,7) + 2(q,7)

< 2(p, q) + 2a/cz(p, q) + ca®z(p, q)
< (14 O(a))z(p,q).

2. The bound follows from an application of the triangle inequality for the 5 norm and the A.M.-G.M.
inequality.

Va(p,r) < Vz(p,9) + V2(q,7)
= z2(p,r) < 2(p,q) + 2V 2(p,9)2(q,7) + 2(q,7)
< 2z(p,q) + 2z(q, 7).

O

Lemma D.2. Let there be a set U and a family of subsets S C 2V such that some subfamily Z C S covers

U, that is
U z="U.

z€Z
If we pick a collection of sets C = {cy,...,cy} CS where Y = [2|Z]log(1/«)] such that for each i € [Y]

i—1
Ui = U\ U Cj
j=1

maxces|cNU;|

|CinUi|Z 9

then |U; € [Ye| > (1 —a)|U|.
We refer the reader to Lemma 2.7, [Chaturvedi et al] [2020] for a proof of lemma[D.2]
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Lemma D.3. Given a k-means clustering D1, ..., D), of a data set D" where

ZpED; b
Hj = —pmr
T Dy
if fu; is an estimate for p; then the k-means clustering cost with respect to {ji; : j = 1,...,k} for any cluster

D’ can be bounded by

For (g 3 =10 k) < for () + | DS l1g — 5]

Proof. First we observe that fD;({ﬂj cj=1,...,k}) < fp (f1;) by definition. To get the stated bound, we
perform a couple of algebraic manipulations.

fD;(ﬂj): Z Z(p/’ﬂj)

p'€Dj

= Z ||p’_ﬂj |2
p’GD;

= Sl -+ — iy
p'eD;

= > W =y — Ry — g — )
p'€D}
2 N ~
= > = w200 — gy — )+ | — i
yeD,
‘2

= for({u; : 5 € [KI}) + | Dj| ||y — ia

‘ 2
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