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Abstract

Given a data set of size n in d′-dimensional Euclidean space, the k-means problem asks for a set
of k points (called centers) so that the sum of the ℓ22-distances between points of a given data set of
size n and the set of k centers is minimized. Recent work on this problem in the locally private setting
achieves constant multiplicative approximation with additive error Õ(n1/2+a · k · max{

√
d,
√
k}) and

proves a lower bound of Ω(
√
n) on the additive error for any solution with a constant number of rounds.

In this work we bridge the gap between the exponents of n in the upper and lower bounds on the
additive error with two new algorithms. Given any α > 0, our first algorithm achieves a multiplicative
approximation guarantee which is at most a (1+α) factor greater than that of any non-private k-means
clustering algorithm with kÕ(1/α2)

√
d′npoly logn additive error. Given any c >

√
2, our second algorithm

achieves O(k1+Õ(1/(2c2−1))
√
d′npoly logn) additive error with constant multiplicative approximation.

Both algorithms go beyond the Ω(n1/2+a) factor that occurs in the additive error for arbitrarily small
parameters a in previous work, and the second algorithm in particular shows for the first time that it
is possible to solve the locally private k-means problem in a constant number of rounds with constant
factor multiplicative approximation and polynomial dependence on k in the additive error arbitrarily
close to linear.

1 Introduction
Given n points in a d-dimensional Euclidean space, the k-means clustering problem asks for a set of k points
S such that the sum of ℓ22-distances from each data point to the closest respective point in S is minimized.
Although k-means clustering in the non-private setting is well-studied, over the past few years there have
been several developments in the differentially private (DP) setting. Differential privacy [Dwork et al., 2006]
provides a framework to characterize the loss in privacy which occurs when sensitive data is processed and
the output of this computation is revealed publicly. Although there are different ways to define and capture
this loss in privacy, broadly speaking these characterizations tend to be either central or local in nature.

Informally, differential privacy asks for a guarantee that the likelihood of any possible output does not
change too much by adding to or dropping from our data set any possible private value from the data universe.
In any private algorithm such a guarantee is fulfilled by adding carefully calibrated noise to quantities that
are information-theoretically sensitive to the private data in the course of the computation, and under the
constraints of being private the goal is to achieve relatively low error. Perfect answers to the algorithmic
problem at hand typically violate privacy; as a consequence, the constraints of privacy usually enforce harsher
lower bounds on accuracy or utility than those imposed by the limits of time or sample efficient computation.

In local differentially privacy (LDP) the constraints are even more severe; the entity solving the algorithmic
problem only gets access to noisy, privatized data. This constraint forces even stronger lower bounds on the
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Table 1: Comparison with recent LDP algorithms for k-means
Work Multiplicative Approximation Additive Error

Nissim and Stemmer [2018] O(k) Õ(n2/3+a · d′1/3 ·
√
k)

Kaplan and Stemmer [2018] O(1) Õ(n2/3+a · d′1/3 · k2)
Stemmer [2020] O(1) Õ(n1/2+a · k ·max{

√
d′,
√
k})

This work, algorithm 1 (1 + α)η Õ(n1/2 · d′1/2 · kÕ(1/α2))

This work, algorithm 4 O(c2) Õ(n1/2 · d′1/2 · k1+O(1/(2c2−1)))

The additive error assumes a data set of size n inside a ball with unit radius. The Õ notation hides
dependence on the privacy parameters, the failure probability, and log terms. The user-defined parameter c

can take any real value greater than
√
2.

accuracy of locally private protocols; for the k-means clustering problem a lower bound of Ω(
√
n) is known

for the additive error of any interactive constant factor multiplicative approximation algorithm [Stemmer,
2020].

Recent work on LDP k-means The first LDP algorithm for the k-means problem with provable
guarantees was given by Nissim and Stemmer [2018] wherein they achieved a multiplicative approximation
of O(k) and and an additive error term of Õ(n2/3+a · d1/3 ·

√
k). They achieved this result by solving the

related 1-cluster problem that asks the solver to privately allocate a small number of centers so that some
center in that set covers all data points within a ball of minimal radius; by an observation of Feldman et al.
[2017], there is a general algorithm that given access to a private solution for the 1-cluster problem solves
the private k-means problem. The exponent of n in the additive error term holds for arbitrarily small a at
the cost of looser multiplicative approximation guarantees; this artefact is the consequence of using locality
sensitive hashing (LSH), something which appears in most later work as well.

Kaplan and Stemmer [2018] gave the first constant factor multiplicative approximation algorithm for this
problem within an additive error of Õ(n2/3+a · d1/3 · k2). They refine the approach of the previous work
by specifically targeting the k-means problem but also use LSH functions to detect the accumulation of
data. The additive error was further brought down by Stemmer [2020], who achieved an additive error of
Õ(n1/2+a · k ·max{

√
d,
√
k} and also proved a lower bound of Ω(

√
n), as mentioned before. Given that all

previous works exhibit some trade-off between the exponent of n and the multiplicative approximation, the
exponents of 1/2 + a and 1/2 in the upper and lower bounds of Stemmer [2020] is particularly provocative.
It naturally leads to the question

Does there exist an LDP k-means clustering algorithm with constant multiplicative
approximation and additive error with a

√
n dependence on the size of the data set?

In the non-private setting it has been seen that the performance of k-means clustering algorithms is
usually not very sensitive to the multiplicative approximation guarantee, unless the data set is chosen in a
pathological fashion. Experimental work [Balcan et al., 2017, Chaturvedi et al., 2020] on k-means clustering
in the related central model of DP shows that the performance of private clustering algorithms seems to be
far more sensitive to the additive error, which as we have observed is bound to exist due to the constraints
of being private. This highlights the importance of the question of determining the true dependence of the
additive error term on the size of the data set.

Technical contributions: In this work we present two algorithms for the k-means problem in the LDP
setting, wherein we go beyond the n1/2+a barrier demonstrating that the trade-off can be independent of n
for some regimes of k and n. Our first algorithm is a one-round protocol that achieves a (1+α)-multiplicative
approximation to the cost guarantee of any non-private clustering algorithm that it is given acess to as a
subroutine. It achieves additive error kÕ(1/α2)

√
d′npoly log n; we see that the trade-off between the additive

and multiplicative approximations in this algorithm has been shifted from n to k. However, the Õ term in
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the exponent of k can hide large constants, which is an undesirable property in a setting where low additive
error seems to dictate performance.

Theorem 1.1. Algorithm 1 is an (ϵ, δ)-locally differentially private algorithm that after one round of
interaction with a private distributed data set D′ ⊂ Rd′

of size n, outputs a set S′ of size k such that
for failure probability polynomially small in n,

fD′(S′) ≤ (1 +O(α))ηOPT ′ +
1

ϵ
kÕ(1/α2)

√︁
d′n log 1/δ poly log n.

We address this deficit with our second algorithm, where we return to an LSH-based approach and drive
down the exponent of k to 1 + O(1/(2c2 − 1)). Again as this exponent approaches 1 the multiplicative
approximation factor blows up but this shows for the first time that it is possible to have constant factor
multiplicative approximation k-means clustering algorithms in the LDP setting with additive error that has
a truly square-root dependence on the data set size and the ambient dimension and arbitrarily close to linear
dependence on the number of cluster centers.

Theorem 1.2. Algorithm 4 is an (ϵ, δ)-locally differentially private algorithm such that given c >
√
2, after

four rounds of interaction with a private distributed data set D′ ⊂ Rd′
of size n outputs a set S′ of size k

such that with probability 1− β,

fD′(S′) = O(OPT ′) +O

(︃
1

ϵ

√︁
d′n ln(n/δ)

)︃(︃
k poly log n

β

)︃1+O(1/(2c2−1))

.

It was observed in Stemmer [2020] that one of the main road-blocks in computing solutions with low
additive error is figuring out how to generate a relatively small bi-criteria solution to the k-means problem
as a first step. A bi-criteria solution relaxes two constraints of the k-means problem; we permit picking more
than k centers, and we relax the minimum cost requirement to a multiplicative approximation guarantee.
Any such bi-criteria solution can be exploited to construct a proxy data set on which we can apply any non-
private k-means clustering algorithm. The fact that the clustering cost of the original data set with respect
to the candidate centers used to generate the proxy data set can be exploited to show that k-means solutions
for proxy data sets work well for the original data set as well. In order to avoid an exponent of 1/2+a on n,
it is necessary to find a bi-criteria solution with O(poly k poly log n) many candidate centers such that the
additive error to their respective multiplicative approximations is at most O(poly k

√
npoly log n) (omitting

the dependence on dimension). Both our algorithms achieve their improvements by generating such a small
size bi-criteria solutions for the k-means problem.

LDP k-means with arbitrarily tight multiplicative approximation: In our first algorithm, we appeal
to recent advances in dimension reduction for k-means clustering Makarychev et al. [2019] which show that
Johnson-Lindenstrauss style dimension reduction to Õ(log k/α2) preserves the cost of every k-clustering of a
data set within a multiplicative approximation of (1± α). Suppose we decompose the domain in concentric
shells depending on their distance from some fixed k cluster centers. By setting geometric thresholds of
1, 1/2, 1/4 units and so on, the lth ring has the property that every data point in that shell has a clustering
cost of O(1/(2l)2) units. To cluster the lth ring, we allocate a number of centers by appealing to a grid-based
approach following Chaturvedi et al. [2020]; since we were able to reduce dimensions to Õ(log k/α2) we are
able to show that allocating kÕ(1/α2) poly log n centers suffices to ensure that most points in the lth shell are
within an O(α/(2l)2) distance of some candidate center.

Extending this for every shell with appropriately scaled grids we get the promise that moving each data
point to its closest candidate center would lead to net movement of O(αOPT) where OPT is the optimal
clustering cost. The rest of the argument follows essentially by applications of the triangle inequality to prove
that the dimension reduced and proxy data sets have similar costs for any candidate k-means solutions.

3



LDP k-means with low additive error: We note that the constant absorbed by the Õ term in the
exponent of k of our first algorithm could be large, which is an undesirable property in a setting where low
additive error seems to dictate performance. We address this deficit with our second algorithm, where we
return to an LSH-based approach and drive down the exponent of k to 1 + O(1/(2c2 − 1)). This shows
for the first time that it is possible to have constant factor multiplicative approximation k-means clustering
algorithms in the LDP setting with additive error that has a square-root dependence on the data set size
and the ambient dimension (up to log factors) and arbitrarily close to linear dependence on the number of
cluster centers.

We achieve this improvement by appealing to a construction of Braverman et al. [2017] who impose a
randomly-shifted hierarchy of dyadic cells in a dimension reduced space. A tree structure is defined on
subsets of the domain [0, 1)d; starting with [0, 1)d as the root node, we bisect the hypercube along each axis
to generate 2d congruent octants. Each octant is itself a hypercube that we designate a child of the original
cell, on proceeding recursively for log n levels the side length of each cell in the lowest level is < 1/n.

The crucial observation made by Braverman et al. [2017] was that after a uniformly random shift of the
tiling there are O(1) cells with side-length t units within a distance of t/d units of any point. By applying
this observation to an optimal k-means solution, we are able to identify a small number of cells where the
data accumulates per level. These cells serve as our domains for LSH functions. The number of data points
that accumulate in these cells scales inversely with the side-length of the cells; this ensures that we only
allocate centers when such an allocation is certain to be helpful. We are able to allocate a far smaller number
of centers to generate our bi-criteria solution than in our first algorithm. Moving the 1/2 + a-style exponent
from n to k is technically involved and we give a more detailed explanation in section 4.

Challenges of the local setting: We recall that in the locally private setting, each agent must add noise
to any response they give under the assumption that it is public knowledge that all data lies in a domain of
diameter 1. This will require adding a noise vector with length proportional to 1/ϵ to their private data if
they were to ϵ-privately release their point directly. The implications of the large noise needed to obfuscate
information means that it is impossible to privately derive fine-grained information about where individual
points lie.

It follows from these considerations that we must try and get aggregate information about the geometry
of the data set indirectly. One way of accomplishing this is to discretize the agents’ response. Although
again the privatized individual responses are highly noisy, since the range of values taken by this discretized
response is finite the slight bias towards values which are heavy-hitters causes their counts to accumulate
and be distinguishable from the counts of false positives. We will appeal to prior work on locally private
succinct histogram recovery to recover such heavy hitting values with minimal loss in privacy.

From this perspective, we see that in the first algorithm we achieve our discretization by dividing our space
using proximity to grid points, and in the second algorithm we use a two different kinds of discretization; a
cell based discretization which is philosophically similar to that of the first, and an LSH-based discretization
which gives a geometrically meaningful response not in terms of the ambient space but instead in terms of
the rest of the data set.

Reducing round-complexity via HeavySumsOracle: In the course of our algorithms we often encounter
a situation where we first identify some subset of the data domain that is advantageous for us to allocate
a candidate center in and then we need to compute a vector average over points in that domain. Although
naively performing such a computation would require two rounds in the LDP setting, we construct a
subroutine that can be run in parallel with the succinct histograms used to identify such regions of the
data domain, and can be queried to estimate the vector sums of all points mapping to such domains.
Dividing these sums by the histogram counts yields the averages we need. Indeed, our construction is in
fact a bit more general, and allows one to recover sums of arbitrary private vector values for all points that
map to some heavy hitting value under a completely different value mapping. This construction allows us to
compute vector averages over points mapping to heavy LSH buckets as well as vector averages in the original
space over all points that map to a certain cluster in the dimension-reduced space; the two value mappings
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need not have anything to do with each other.

Concurrent work: In Chang et al. [2021] a one-round protocol for LDP k-means with similar cost
guarantees as algorithm 1 is introduced, also surpassing the n1/2+a barrier mentioned above. They operate
in the ϵ-DP setting and get a multiplicative approximation of η(1 + α) where η is the multiplicative
approximation guarantee of any given non-private k-means algorithm and an additive error term of kOα(1) ·√
nd′ ·poly log(n)/ϵ. They also demonstrate that their protocol can be extended to the shuffle model [Bittau

et al., 2017, Cheu et al., 2019, Erlingsson et al., 2019] of differential privacy.

Outline of paper: In section 2 we start by formalizing the problem statement and the definition of LDP
that our algorithms must fulfill. We then summarize some notation that eases the description of our analysis
and recall private subroutines from previous work. We also introduce the HeavySumsOracle, a one-round
protocol that can be run in parallel with a private succinct histogram and privately constructs a data
structure that may be queries to recover sums of vector-function values taken by all agents that happen to
map to a heavy-hitting value in the succinct histogram. We recall the LSH function definition and prove
some fundamental properties of the construction we use in section 4.

In section 3 we introduce our LDP k-means algorithm for arbitrarily tight multiplicative approximation,
algorithm 1. We start by establishing the pseudo-code and outlining the main steps, and then give a technical
discussion explaining some of the algorithmic choices made as well as sketching why the cost analysis works
out. We then give a formal proof of the cost and privacy guarantees. The main result of this section is
theorem 1.1.

In section 4, we introduce our LSH-based LDP k-means algorithm, algorithm 4. We start by giving a high
level overview of the core ideas and advantages behind our algorithmic choices. We provide the pseudo-code
in a modular fashion and analyse the cost guarantees of each subroutine in a separate subsection. The main
result of this section is theorem 1.2.

2 Preliminaries

2.1 Problem Definition
We start by formally defining the k-means clustering problem.

Definition 2.1 (Non-private k-means). For any Euclidean space E, let z : E×E → R denote the square of
the ℓ2 metric. Let D′ be a data set of n points in Rd′

such that D′ ⊂ B(0, 1), the d′-dimensional unit ball of
radius 1 centered at the origin. The k-means clustering cost fD′(S) of the data set D′ for a set S of k points
in B(0, 1) is defined by the expression

fD′(S) =
∑︂
p∈D′

z(p, S)

where we let z(p, S) = minq∈S z(p, q). The k-means clustering problems asks one to find a set of k points in
B(0, 1) such that fD′(·) is minimized.

Remark 2.2. Both algorithms introduced in this work start with a dimension reduction so it will be
convenient to let d′ denote the dimension of the given ambient space and d denote the dimension of the
space that the majority of the computation is done in. Similarly, D′ is used to denote the original data set
and D is used to denote the image of the data set in the dimension reduced space.

We require that our k-means algorithm also satisfy the constraints of local differential privacy. In this
framework, the dataset is distributed among n agents each of whom has a single point of D, and the constraint
of being locally differentially private requires that the transcript of any agent’s responses is not too sensitive
to their private data. This is formalized by appealing to the central model of differential privacy, which in
turn is defined as follows:
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Definition 2.3 (Differential privacy (DP), Dwork et al. [2006]). Two datasets D1, D2 ∈ Xn are neighbouring
if they differ in at most one member element, i.e. |D1△D2| = 1. An algorithm A : X → Y is said to be
(ϵ, δ)-differentially private (DP) if for any S ⊂ Y and any two neighbouring datasets D1, D2 ∈ X ,

P (A(D1) ∈ S) ≤ exp(ϵ)P (A(D2) ∈ S) + δ.

If δ = 0, we can say that A is ϵ-differentially private.

Given the definition of the central model of differential privacy, local differential privacy is then defined
as follows:

Definition 2.4 (Local differential privacy (LDP), Kasiviswanathan et al. [2011]). Consider a protocol which
interacts with any one agent in some r rounds, and let the response of the agent with private data p be
A(p) = (A1(p), . . . , Ar(p)), where Ai(p) is the response of the agent in the ith round. We say that this
protocol is (ϵ, δ)-locally differentially private (LDP) if the algorithm that outputs privatized responses for
any agent p ↦→ A(p) is (ϵ, δ)-differentially private. Again, if δ = 0, we can say that a protocol is ϵ-locally
differentially private.

Remark 2.5 (Notation). We use Õ(·) to denote that certain terms have been suppressed in the argument.
Concretely, in this notation we omit terms that are logarithmic in the multiplicative approximation factor
α, the failure probability β and log n. We use the expression poly log n to denote terms that are O(logp n)
for some constant power p.

2.2 Dimension reduction for k-means clustering
In this subsection we recall some results about distance preserving dimension reduction maps that are
fundamental to the construction of both algorithms described in this work. We follow the description in
Makarychev et al. [2019], where the state of the art for the application of dimension reduction to ℓp clustering
is stated and proved. We adopt the notation that for any x, y, α ∈ R, x ≃1+α y if x

1+α ≤ y ≤ (1 + α)x, note
that for any x, y, for all sufficiently small α, this is equivalent to y = (1±O(α)x.

Lemma 2.6 (Johnson-Lindenstrauss lemma, Johnson and Lindenstrauss [1984]). There is a family of
random linear maps Td′,d : Rd′ → Rd with the property that for every d′ ≥ 1, α, β ∈ (0, 1/2) and all
x ∈ Rd′

,

PT∼Td′,d

(︃
∥Tx∥ ∈

[︃
∥x∥
1 + α

, (1 + α)∥x∥
]︃)︃
≥ 1− β,

where d = O
(︂

log(1/β)
α2

)︂
.

This result is often cited in the form that for a data set D′ ⊂ Rd′
of size n, in order to preserve all

pair-wise distances with probability 1 − β it suffices to reduce dimensions to O
(︁
log(n/β)/α2

)︁
; this version

follows directly by scaling the failure probability for the statement above by a factor of 1/n and applying the
union bound. It is a well-known fact that the k-means clustering function can be written entirely in terms of
pair-wise distances between the points in each cluster, i.e. for a k-means solution S that induces a partition
(C1, . . . , Ck),

fD′(S) =
∑︂
p∈D′

z(p, S) =

k∑︂
i=1

∑︂
p∈Ci

z(p, µi) =

k∑︂
i=1

1

2|Ci|
∑︂

p,q∈Ci

z(p, q).

It follows that preserving ℓ2 distances within a (1±α) approximation guarantees that the k-means clustering
cost for the same cluster sets is preserved within a (1±O(α)) factor. This is the formulation that we appeal
to for the multi-round clustering algorithm with low additive error.

For the purpose of k-ℓp clustering it has been shown that one can reduce dimensions far more aggressively;
this line of work culminates in the following near-optimal result of Makarychev et al. [2019]:
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Theorem 2.7 (Theorem 1.3 of Makarychev et al. [2019]). Any family of linear maps Td′,d : Rd′ → Rd that
satisfies the conditions of the JL lemma and is sub-Gaussian tailed has the property that for any clustering
(C1, . . . , Ck) of D′ with probability 1− β over the choice of T ∼ Td′,d

k∑︂
i=1

1

2|Si|
∑︂

p,q∈Si

z(p, q) =

⎛⎝ k∑︂
i=1

1

2|Si|
∑︂

p,q∈Si

z(Tp, Tq)

⎞⎠[︃ 1

1 + α
, (1 + α)

]︃
.

where d = O(log(k/αβ)/α2).

We recall that a family of linear maps Td′,d is called sub-Gaussian-tailed if for every unit vector x ∈ Rd′

and t ≥ 0,

PT∼Td′,d(∥Tx∥ ≥ 1 + t) ≤ exp
(︁
−Ω(t2d)

)︁
.

For our purposes, we will also need a bound on the lengths of the vectors that holds with probability
1 − β after map reducing dimensions to log(k/αβ)/α2. We can use the fact that the dimension reduction
maps are sub-Gaussian-tailed to get the following bound.

Lemma 2.8. For every point p in a dataset D′ of size n, given a sub-Gaussian tailed dimension reducing
family of maps Td′,d, we have that with probability 1− β, ∥Tp∥ ≤ O(α

√︁
log n/β)∥p∥.

Proof. For any p ∈ D′ we have that

PT∼Td′,d(∥Tp∥ ≥ (1 + t)∥p∥) ≤ exp

(︃
−Ω

(︃
t2
log(k/αβ)

α2

)︃)︃
.

It follows that there is a choice of t = O(
√︂
log n/β · α2

log(k/αβ) ) = O(α
√︁
log n/β) such that the bound above

is at most β/n. Applying the union bound, the desired inequality follows.

2.3 Fundamental privacy subroutines
We briefly recall a couple of standard results from the differential privacy literature that are used in the
sequel. We rely on the following composition theorem which bounds the loss in privacy of the composition
of multiple DP algorithms by appealing to their individual privacy guarantees in a modular fashion.

Theorem 2.9 (Basic Composition, Dwork et al. [2006]). A mechanism with N adaptive interactions with
(ϵi, δi)-DP mechanisms each for i ∈ [N ] and no other accesses to the database is (

∑︁
i∈[N ] ϵi,

∑︁
i∈[N ] δi)-DP.

We also use the Gaussian mechanism and its privacy guarantee as formalized in the following lemma.

Lemma 2.10 (Gaussian mechanism, Dwork and Roth [2014]). Given a d-dimensional function f : X → Rd

which has ℓ2-sensitivity maxx,y∈X ∥f(x)− f(y)∥2 < ∆f,2, randomized response via the Gaussian mechanism

which for an agent with private data p returns f(p) + Y for Y ∼ N(0,
c2G∆2

f,2

ϵ2 Id×d) is (ϵ, δ)-differentially
private for any c2G > 2 ln(1.25/δ).

2.4 Bitstogram and the Heavy Sums Oracle
The contents of this subsection are used in the cost analysis for both clustering algorithms. In the sequel we
make extensive use of locally private frequency estimation. For private frequency estimation a lower bound
of Ωϵ(

√
n) is known [Chan et al., 2012]. A state of the art construction for this problem is the Bitstogram

algorithm Bassily et al. [2020], which is an ϵ-LDP algorithm for the heavy-hitters problem that achieves low
error.
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Lemma 2.11 (Algorithm Bitstogram, Bassily et al. [2020]). Let V be a finite domain of values, let f : D′ →
V , and let n(v) denote the frequency with which v occurs in f(D′). Let ϵ ≤ 1. Algorithm Bitstogram(f, ϵ, β)
interacts with the set of n users in 1 round and satisfies ϵ-LDP. Further, it returns a list L = ((vi, ai))i of
value-frequency pairs with length Õ(

√
n) such that with probability 1− β the following statements hold:

1. For every (v, a) ∈ L, ∥a− f(v)∥ ≤ E where E = O
(︂

1
ϵ

√︁
n log(n/β)

)︂
.

2. For every v ∈ V such that f(v) ≥M , v ∈ L, where M = O
(︂

1
ϵ

√︁
n log |V |/β log(1/β)

)︂
.

We overload notation to treat the list returned by Bitstogram returns as either a set of (heavy-hitter, frequency)
pairs or a function which may be queried on a value to return either the corresponding frequency if it is a
heavy hitter or a value of 0 otherwise. A subscript of M will denote the upper bound on the maximum
frequency omitted. We see that whenever |V | = Ω(n), M = Ω(E) and Bitstogram promises a uniform error
bound of M when estimating the frequency of any element in the co-domain for an appropriate choice of
constants.

We introduce an extension of the Bitstogram algorithm called HeavySumsOracle that allows us to query the
sums of some vector valued function over the set of elements that map to a queried heavy-hitter value. For a
given value-mapping function f : X → V and a vector-valued function g : X → Rd the sum estimation oracle
privately returns for every heavy hitter v ∈ V the sum of all agents that map to x, i.e.

∑︁
p:f(p)=x p. We recall

that Bitstogram is a modular algorithm with two subroutines; a frequency oracle that privately estimates
the frequency of any value in the data universe, and a succinct histogram construction that constructs the
heavy hitters in a bit-wise manner by making relatively few calls to the frequency oracle. The construction
of HeavySumsOracle essentially mimics the frequency oracle construction called Hashtogram from Bassily
et al. [2020] and can be run in parallel with Bitstogram, allowing us to reduce the round complexity of our
protocols. The pseudo-code and proof of lemma 2.12 may be found in appendix B.

Lemma 2.12 (HeavySumsOracle). Let f : X → V, g : X → B(0,∆/2) ⊂ Rd′
be some functions where g

has bounded sensitivity ∆g,2 and let D′ ⊂ X be a distributed dataset over n users. With probability at least
1− β, for every v ∈ V that occurs in f(D′), if S(v) is the value returned by Algorithm 6 then⃦⃦⃦⃦

⃦⃦S(v)− ∑︂
f(y)=v

g(y)

⃦⃦⃦⃦
⃦⃦ ≤ 2∆

√︄
2n log

d′ + 1

β
+

4cG∆g,2

ϵ

√︃
2d′n log

4

β
.

Here cG is the constant derived from the Gaussian mechanism (lemma 2.10), and ∆g,2 is the ℓ2-sensitivity
of g. Note that since ∆g,2 ≤ ∆, this also implies (whenever ϵ < cG =

√︁
2 ln(1.25/δ))⃦⃦⃦⃦

⃦⃦S(v)− ∑︂
f(y)=v

g(y)

⃦⃦⃦⃦
⃦⃦ ≤ O

(︃
cG∆

ϵ

√︃
d′n log

1

β

)︃
.

Further, Algorithm 6 is (ϵ, δ)-LDP.

2.5 Locality Sensitive Hashing
The contents of this subsection are used only for the construction and analysis of the multi-round k-means
algorithm with low additive error. We start by recalling the definition of an LSH family. Complete proofs
may be found in the appendix.

Definition 2.13 (Locality sensitive hashing (LSH)). We say that a family of hash functions H : Rd → B
for a finite set of buckets B is locality-sensitive with parameters (p, q, r, cr) if for every x, y ∈ Rd for some
1 ≥ p > q ≥ 0, r > 0 and c > 1

P (H(x) = H(y))

{︄
≥ p if d(x, y) ≤ r

≤ q if d(x, y) ≥ cr.
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In this work we use an LSH family construction from Andoni and Indyk [2006].

Theorem 2.14. For every sufficiently large d and n there exists a family H of hash functions defined on
Rd such that for a dataset of size n,

1. A function from this family can be sampled, stored and computed in time tO(t) log n + O(dt), where t
is a free positive parameter of our choosing.

2. The collision probability for two points u, v ∈ Rd depends only on the ℓ2 distance between them, which
we henceforth denote by p(∥u− v∥).

3. The following inequalities hold:

p(1) ≥ A

2
√
t

1

(1 + ϵ+ 8ϵ2)t/2

∀c > 1, p(c) ≤ 2

(1 + c2ϵ)t/2

where A is an absolute constant < 1, and ϵ = Θ(t−1/2). One can choose ϵ = 1
4
√
t
.

4. The number of buckets NB an LSH function with parameter t uses is tO(t) log n.

Note that by scaling the input to the LSH function this gives us constructions for (p, q, r, cr)-sensitive LSH
families for arbitrary values of r > 0. Due to the occurrence of terms like tO(t) in the collision probabilities
and the number of buckets, the performance of an LSH family is very sensitive to the choice of t. In the
following lemma we show how to choose a value of t for a desired ratio of p2(1) to p(c).

Lemma 2.15. Given a fixed c >
√
2, for any B > 1, there is a choice of t = O

(︁
log2 B

)︁
for the LSH function

described in theorem 2.14 such that

p2(1)

p(c)
= Ω(B),

p(1) ≥ Ω(B−1/c′/ logB),

logNB = O(log2 B log logB + log log n),

where c′ = (c2/8− 1/4). It will be convenient to note that 1/c′ = O(1/(2c2 − 1)).

In the construction of the multi-round k-means algorithm with low additive error, we will need to estimate
the average of all points that map to a given heavy bucket. Due to the pair-wise nature of the LSH guarantee,
the analysis of this requires us to use an arbitrary point from the bucket as a filter to ensure that sufficiently
many points close to it and not too many points far from it map to that bucket.

Lemma 2.16. Let C ⊂ D be a set of points with diameter r and let the diameter of D be ∆. For any
x0 ∈ C, if x0̂ is the average over all points colliding with x0 under a (p(1), p(c), r, rc)-sensitive LSH function
H applied to D, then with probability p(1)/4,

∥x0 − x̂0∥ ≤ cr +
8p(c)|D|
p2(1)|C|

∆,

and the number of points of C that collide with x0 is at least p(1)C
2 .
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Notation Meaning
D′ ⊂ Rd′

Original data set
Q : Rd′ → Rd mapping from high-dim. to low-dim. space

D ⊂ Rd Q(D′), dimension reduced data set
Gl Rectangular grid in dimension reduced space

Gl(·) Mapping from Rd to coordinate-wise floor in Gl

tl Unit length of grid Gl

PHl Succinct histogram of number of points mapping to g ∈ Gl for “heavy" g
Count(·) Count of previously uncovered data points g ∈ G∗

l serves
G∗

l Candidate centers picked from grid points in Gl, G∗
l ⊂ PHl

NG A kÕ(1/α2) term used to greedily pick G∗
l

PSOl Vector sums of points in original space mapping to g ∈ Gl for “heavy" g
Sum(·) Sum of previously uncovered points in original space whose image served by g ∈ G∗

l

G∗
l,i Points of G∗

l for which s∗i ∈ S∗ is closest center
M∗

l Maximal grid points picked from G1, . . . , Gl

D∗ ⊂ Rd Proxy data set generated by weighing points in G∗
1, . . . , G

∗
L by points served

S∗ k-means solution derived by clustering D∗

S′ k-means solution for D′ output by algorithm 1

Table 2: Summary of notation used in algorithm 1

3 LDP k-means with arbitrarily tight multiplicative approximation
In this section we describe a one-round k-means clustering algorithm and formally analyse its cost and
privacy guarantees. We start by describing our algorithm and provide the pseudo-code. We then give an
informal description of our methods and a high-level justification for various algorithmic choices. In one line,
what we will do is find a small collection of candidate centers for the bi-criteria relaxation to the k-means
problem, derive cluster centers for a proxy data set derived by weighing the candidate centers by counts of
points served, and use these cluster centers to cluster the original data set.

3.1 Pseudo-code and algorithm description
Step 1 - Initialization and interaction: From line 1 to line 12, we first formalize the publicly available
dimension reduction, scaling and projection required to ensure that every point lies inside the domain B(0, 1);
this is the map Q. We define L = lg n grids G1, . . . GL where Gl has unit length tl = 2l−L+1/α

√
d. This

definition ensures that the distance from any point in the space to its coordinate-wise floor is at most α2l−L+1

units. The end of Step 1 occurs by L calls to the Bitstogram and HeavySumsOracle routines to privately
generate succinct histograms PHl and sum oracles PSOl over points mapping to any given grid-point.

Step 2 - Construction of proxy dataset From line 13 to line 30 we iteratively construct the proxy data
set by going from low to high threshold and greedily picking some 2NG log 1/α grid points G∗

l that maximize
the Count(·) function. The Count(·) function maintains estimate of the number of previously uncovered data
points that would be covered by g ∈ Gl if picked. We also keep track of the “maximal" grid points in the
sets M∗

l ; at the beginning of round l, M∗
l−1 consists of all grid points that have been picked so far that have

the property that no grid point which would cover them has yet been picked. This will ensure that when we
update the Count(·) function to account for data points that have already been covered, we do not subtract
for any one data points multiple times. Along the way we mimic the Count(·) construction by generating a
similar Sum(·) mapping that estimates the vector sum of all points in the original space served by g ∈ Gl.
This step ends with the construction of the proxy dataset D∗ where we repeat each grid point g ∈ G∗

l with
multiplicity equal to the number of data points it served, i.e. Count(g).
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Data: Data set D′ ⊂ Rd′
distributed over n agents, privacy parameters ϵ, δ, accuracy parameter α,

failure probability β
/* Step 1: Initialization and interaction */

1 T : Rd′ → Rd dimension reduction for d = O(log(k/αβ)/α2)

2 S : Rd → Rd scaling by a factor Ω(1/(α
√︁

log n/β))

3 P : Rd → B(0, 1) projection to the unit ball
4 Q = P ◦ S ◦ T : Rd′ → B(0, 1) ⊂ Rd ; /* Publicly available mapping */
5 L = lg n number of grids in dimension reduced space
6 tl = 2l−L+1/α

√
d for l = 1, . . . , L

7 Gl = tl(Zd) grid with unit length tl
8 Gl : Rd → Gl map flooring points coordinate-wise to the grid Gl ; /* Overloaded notation */
9 do in parallel for l ∈ [L+ 1]:

10 PHl ← Bitstogram(Gl ◦Q, ϵ, β) ; /* Get frequency oracle for number of points snapping
to grid point */

11 PSOl ← HeavySumsOracle(Gl ◦M,p ↦→ p, ϵ, β) ; /* Get sum oracle for points mapping to
grid point */

12 end
/* Step 2: Construction of proxy data set */

13 M∗
0 ← ∅ ; /* Keeps track of “maximal" points in grid */

14 for l = 1, . . . , L do
15 (Count : Gl → R)← PHl(·)
16 (Sum : Gl → Rd′

)← PSOl(·)
17 for g ∈M∗

l−1 do
18 Count(Gl(g))← Count(Gl(g))− PH(g)
19 Sum(Gl(g))← Sum(Gl(g))− PSO(g)

20 end
21 G∗

l ← {(g,Count(g)) : g ∈ ⌈2NG log 1/α⌉ points with largest values of Count in Gl}
22 M∗

l ←M∗
l−1

23 for g ∈M∗
l do

24 if Gl(g) ∈ G∗
l then

25 M∗
l ←M∗

l \{g}
26 end
27 end
28 M∗

l ←M∗
l ∪G∗

l

29 end
30 D∗ ← {g with multiplicity Count(g) for (g,Count(g)) ∈ G∗

1, . . . , G
∗
L} ; /* Proxy data set */

/* Step 3: Cluster center recovery */
31 S∗ = {s∗1, . . . , s∗k} ← Standard k −Meansη(D

∗)
32 G∗

l,i ← {g ∈ G∗
l : argmins∈S∗ z(g, c) = s∗i } for each level l = 1, . . . , L and cluster center s∗i ∈ S

33 for j = 1, . . . , k do
34 Sum←

∑︁L
l=1

∑︁
g:∈G∗

l (s
∗
j )
Sum(g)

35 Count←
∑︁L

l=1

∑︁
g:∈G∗

l (s
∗
j )
Count(g)

36 µ̂j ← Sum
Count

37 end
38 return S′ = {µ̂1, . . . , µ̂k}

Algorithm 1: 1-Round k-means Clustering
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Step 3 - Cluster center recovery: From line 31 to line 38 we compute the final cluster centers S′ in
the original space. We start by first using a non-private k-means algorithm Standard k −Meansη with an
η-multiplicative approximation guarantee on the privately derived proxy data set D∗ to derive cluster centers
S∗ in the low dimensional space. Then, we iterate over each cluster center s∗i ∈ S∗ and for every fixed cluster
center we use the Sum(·) functions constructed in step 2 to compute the vector sums over all points snapping
to grid points G∗

l,i which are closer to s∗i than to any other center in S∗, as well as the count of all such data
points (via Count). Our estimate for the true average of this cluster in the original space is then simply
µ̂i = Sum/Count, and these k estimates {µ̂1, . . . , µ̂k} form the final output of our algorithm.

3.2 Technical discussion
We recall from the introduction that for the error we are targeting we need to find O(poly k poly log n)
candidate centers with respect to which additive error in a 1+α approximation to OPT is O(poly k

√
npoly log n).

We recall from that discussion that in the LDP setting one approach to get around the large amount of error
added is to discretize the response of the agents. A natural way to achieve this is to the domain is via a
rectangular d′-dimensional grid of points and ask agents to reveal their closest grid point; the question then
becomes how best to exploit this privately derived information for k-means clustering. Previous work on
k-means clustering in the central DP setting [Chaturvedi et al., 2020] uses such an approach where in order
to get an O(1) multiplicative factor approximation to the optimal clustering cost, a sequence of grids is used
where the unit length of the lth grid equals 2−l/

√
d.

To analyse this approach, one fixes an arbitrary optimal solution to the k-means problem SOPT and
partitions the data set based on how far a point lies from the optimal solution via geometrically increasing
thresholds 2−l. Then for any point p which lies at a distance between 2−l and 2−l+1, the closest grid point
to p in the grid with unit length 2−l/

√
d is at a distance of at most 2−l, i.e. closer than the optimal solution.

One then reverses the argument to observe that if a point lies within a distance of 2−l+1 units of SOPT ,
then by the triangle inequality its closest grid point must lie within a distance of O(2−l+1) units of SOPT .
The authors then bound the total number of grid points that lie within any collection of k centers to derive
the promise that there is a small set of grid points which serve almost all data points which lie at a distance
between 2−l and 2−l+1 of the candidate centers.

Choice of grid construction: As in this work we are targeting a (1 + α) multiplicative approximation,
we scale the grid unit lengths by a factor of α to get the promise that if a point lies within a distance of
2−l of SOPT , it lies within a distance of O(α2−l) of some grid point. Since we can only identify grid points
whose counts are at least

√
n, we can afford to miss at most O(poly k poly log n) many such grid points

serving the dataset across all levels for an additive error of O(poly k
√
npoly log n). It follows that we will

need an O(poly k poly log n) bound on the number of grid points that lie close to the optimal centers. We
will address this point further ahead in this discussion.

One technicality suppressed so far is that we must have a finite (in fact O(poly k poly log n)) sequence of
grids and thresholds for the set of candidate centers accrued across grids to be finite. We observe that if the
smallest threshold is 1/n, then the discretization error for all points which lie within 1/n of SOPT is absorbed
by an additive O(1) term instead of the O(1) multiplicative approximation factor; this in conjunction with
the fact that the diameter of the domain is O(1) shows that a set of O(log n)-many thresholds suffices.

Returning to the identification of grid points close to SOPT in the grid, we observe that there is an issue
with this approach; the choice of SOPT was arbitrary and different choices can possibly lead to very different
sets of grid points close to SOPT . It is not immediately clear what is a good way to pick grid points when
we are oblivious of any choice of SOPT using only the grid points histogram data.

Greedy maximum coverage: Reasoning along the lines of Jones et al. [2020] for the k-medians problem
shows that a choice of grid points that greedily maximizes how many data points are covered by including
these grid points among the candidate centers ensures that the clustering cost of the data set with respect
to this set of grid points is at most O(OPT ). Since the number of grid points is larger than k, and the cost

12



is a constant factor multiplicative approximation to OPT , this set of grid-points chosen across grids is a
solution to the bi-criteria relaxation of the k-means solution (modulo some additive error).

A closer look at the argument in Jones et al. [2020] shows that the greedy picks must maximize coverage
only over yet-uncovered points, when proceeding from low to high thresholds. In the centrally private
setting one can dynamically update the coverage of candidate grid points by directly accessing the data set
and marking points off as they are covered, but this is not possible in the local setting. We get around this
hurdle by two tools; one, ensuring a consistency across grids in the sense that if two points map to the same
grid point in a low-level grid then they also map to the same grid point in all higher-level grids; and two;
keeping track of all grid points picked so far such that they are maximal in the sense that no grid point that
they themselves snap to in a coarser grid has been picked. We will then be able to evaluate the count of
yet uncovered data points covered by any candidate grid point by simply subtracting the histogram counts
of all maximal grid points picked so far snapping to that candidate grid points from the histogram count of
that candidate grid point.

We will ensure consistency by mapping each point to its coordinate-wise floor in the d-dimensional grid
instead of its closest point; this makes no significant different in the arguments made so far as the floor
always lies within a distance of 2−l in a grid with unit length 2−l/

√
d.

Dimension reduction for bounded candidate centers: We now discuss how to get the O(poly k
poly log n) bound on the number of grid points within the aforementioned threshold distance of SOPT . For
reasons of time and space efficiency, in Chaturvedi et al. [2020] the authors needed to bound the number
of grid points close to any choice of SOPT by O(poly(n)). They showed that by dimension reduction to
O(log n/α2) many dimensions, there are at most O(n1/α2

) many grid points within a distance of r of any
optimal center for a grid with unit length αr/

√
d. They then appeal to the well-known Johnson-Lindenstrauss

lemma that shows that there is a choice of O(log n/α2) many dimensions so that the ℓ2 distance between
all pairs of data points in a data set of size n is preserved within a multiplicative factor of (1 ± α). It is
relatively easy to show that the k-means clustering cost for any choice of clusters is also preserved within a
factor of (1± α).

A recent work by Makarychev et al. [2019] generalized the Johnson-Lindenstrauss guarantee for k-means
clustering by showing that in fact performing dimension reduction to log(k/(αβ))/α2-dimensions ensures
that with probability 1− β the cost of every clustering solution is preserved within a multiplicative cost of
(1± α). By tracing the argument of Chaturvedi et al. [2020] for upper bounding the number of grid points
close to any optimal center with this stronger bound on the dimensionality of the dimension-reduced space
leads to a kÕ(1/α2) bound on the number of grid points close to SOPT . For any fixed approximation factor
(1 + α), this immediately gives us the desired O(poly k poly log n) bound on the number of grid points close
to SOPT as well as the O(poly k poly log n) bound on the number of candidate centers picked.

Proxy data set construction: To recap, the set of candidate centers derived to construct the proxy data
set has the property that for all but O(poly k poly log n) many data points, there is a candidate center at a
distance of O(α) times the distance between a data point and the optimal centers. We construct the proxy
data set by repeating each candidate center with an estimate of the number of points it covers in this manner.
This can be seen as essentially moving each data point to the candidate center that covers it; in sum what
we have shown is that the net movement is O(αOPT). We can then show by the triangle inequality that
the k-means clustering functions of the original and the proxy data set are within a (1+O(α)) multiplicative
approximation factor and O(poly k poly log n) additive error. It will follow that the optimal clustering cost
for the proxy data set is a (1+α) factor more than the optimal cost for the original data set (modulo additive
error), and therefore that any clustering solution derived by a non-private k-means clustering algorithm with
multiplicative approximation factor η has net clustering cost at most (1 + α)η. Using the relation between
the k-means clustering functions this time in reverse, we get that the privately derived cluster centers for
the proxy data set serve as cluster centers for the original data set with cost (1 +O(α))η.

Undoing the dimension reduction: We have privately derived k cluster centers in the dimension reduced
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space that serve the data set D with clustering cost (1+O(α))ηOPT and additive error O(poly k poly log n).
This implicitly clusters the original data set with a similar error guarantee by mapping each data point to a
cluster corresponding to the center in the low-dimensional solution that its image is closest to. To compute the
centers of these clusters in the original space, we use the sum oracles derived from calls to HeavySumsOracle
to recover the vector sums of all data points in the original space that lie in these implicitly defined clusters.
Dividing these sums by the counts derived during our proxy data set construction gives us good estimates
to the cluster-wise centers.

3.3 Formal cost and privacy analysis
Proof outline: We begin by relating the optimal clustering cost in the original space OPT ′, and the
clustering cost in the dimension reduced space OPT (lemma 3.2). We then formally derive some properties
of the grids Gl, the maximal points identified at the end of round l i.e. M∗

l , and the accuracy of the Count
map used in step 2 to choose grid points as candidate cluster centers (lemma 3.3 to lemma 3.7). Since the
error bound for the Sum map is practically identical to that of the Count map, we prove that in immediate
succession.

The core of our cost analysis for the bi-criteria solution is showing that the clustering cost of the data
set with respect to many greedy choices of candidate centers is competitive with the optimal clustering
(definition 3.9 and lemma 3.10). These results allow us to show in that the k-means clustering functions for
the dimension reduced data set D and the proxy data set D∗ are close in ℓ1 norm (lemma 3.12). Lemma 3.12
is then exploited in turn to show that the output of the non-private clustering algorithm works well for the
original dimension reduced data set (corollary 3.13).

Finally, starting from definition 3.14, we start the work of recovering cluster center in the original space.
We begin in the definition by formalizing the actual clustering of the dimension reduced data set that results
from identifying each data point with the first grid point that serves it in some grid. Then we show that the
output of the algorithm works well for this actual clustering and leads to a (1+O(α))η factor multiplicative
approximation ( lemma 3.15 to lemma 3.17). This section culminates in the main result theorem 1.1 which
accounts for all privacy loss which occurs across all calls to Bitstogram and HeavySumsOracle and after scaling
the privacy parameters in the calls to these routines formalizes the final cost guarantee of algorithm 1.

Definition 3.1. We recall some notation used in the algorithm description and introduce some definitions
that help with the cost analysis for this algorithm.

• There is a sensitive dataset D′ ⊂ B(0, 1) distributed among n users, exactly one point per user. We
denote the cost of the optimal k-means solution by OPT ′.

• Let Q : Rd′ → Rd be a publicly available function that maps the data domain to B(0, 1) in the
dimension reduced space Rd. It is computed by first computing the output of the dimension reduction
map T , followed by a scaling S by 1/α

√
log n units (which ensures that with high probability all points

lie inside the unit ball in the dimension reduced space, followed by a projection P to the unit ball to
deal with any outliers.

• We denote the dimension-reduced data set Q(D′) by D. We denote its optimal clustering cost by
OPT . We fix any optimal k-means solution SOPT for D with clustering cost OPT .

• Let L = ⌈lg n⌉ denote the number of levels.

• Let rl = 2l/2L−1 for l = 1, . . . , L denote the ℓ22 distances which we use as thresholds to partition D
depending on how far points lie from SOPT . Note that r1 < 1/n and rL = 2. Further, we set r0 = 0.
With this notation we see that D ⊂ B(0, 1) ⊂ B(p, rL) for any p ∈ B(0, 1).

• Let ol := {p ∈ D : z(p, SOPT ) ∈ [rl, rl+1)} for l = 1, . . . , L denote the thresholded partitions of D.
Note that with our choice of rl this definition implies D = ⊔Li=lol.
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• Let tl = αrl/
√
d denote the unit length of the grid Gl for l = 1, . . . , L. Let Gl be the axis aligned grid

of unit length tl units centered at the origin in B(0, 1), i.e. Gl := B(0, 1)∩(tlZd). We overload notation
and let Gl(·) : Rd → Gl map each point to its floor in Gl, i.e. p maps to tl(⌊p1/tl⌋, . . . , ⌊pd/tl⌋). Note
that these multidimensional floor maps are consistent in the sense that for any m > i, for the jth
coordinate we have

Gm ◦Gl(p)j = tm⌊tl⌊pj/tl⌋/tm⌋
= tm⌊2l−m⌊pj/tl⌋⌋
= tm⌊2l−mpj/tl⌋
= tm⌊pj/tm⌋
= Gm(p)j

so putting all coordinates together Gm ◦Gi(p)j = Gm(p). Note that tm⌊2l−m⌊pj/tl⌋⌋ = tm⌊2l−mpj/tl⌋
because 1/2l−m ∈ Z.

• We assume each grid point is implicitly tagged with the index of its parent grid point. We will abuse
notation and drop indices for the succinct histograms PHl and PSOl where they may be deduced from
the grid point for which the frequency or sum is being queried.

Lemma 3.2 (Accounting for dimension reduction). With probability 1−β, we have that for every clustering
(D′

1, . . . , D
′
k) of D′,

∑︂
i∈k

∑︂
p∈D′

i

s

(︄
p,

∑︁
q∈D′

i
q

|D′
i|

)︄
≃1+α (α log n/β)

∑︂
i∈k

∑︂
p∈Q(D′

i)

s

(︄
Q(p),

∑︁
q∈D′

i
M(q)

|D′
i|

)︄
.

As a direct corollary OPT ′ ≃1+α (α log n/β)OPT .

Proof. We write Q = P ◦S ◦ T , where T is the dimension reduction to O(log(k/αβ)/α2), S is the scaling by
a factor of Ω(1/α

√︁
n/β), and P is projection to the unit ball. Given any clustering (D′

1, . . . , D
′
k) of D′, by

theorem 2.7 we have that

∑︂
i∈k

∑︂
p∈D′

i

s

(︄
p,

∑︁
q∈D′

i
q

|D′
i|

)︄
≃1+α

∑︂
i∈k

∑︂
p∈D′

i

s

(︄
T (p),

∑︁
q∈D′

i
T (q)

|Di|

)︄
.

The scaling map changes all ℓ2-distances by precisely the scaling factor, so we also have that

∑︂
i∈k

∑︂
p∈D′

i

s

(︄
T (p),

∑︁
q∈D′

i
T (q)

|D′
i|

)︄
= (α log n/β)

∑︂
i∈k

∑︂
p∈S◦TD′

i

s

(︄
S ◦ T (p),

∑︁
q∈D′

i
S ◦ T (q)
|D′

i|

)︄
.

Finally, since with probability 1− β all points lie in the unit ball after scaling by a factor of 1/α
√︁
log n/β,

the projection map does not move any point and hence the same clustering cost holds for P ◦ S ◦ T (D′) =
Q(D′).

In the following lemma we derive a bound on the discretization error and use that to derive a promise
that in every level l if we snap ol to the grid then we get at most kÕ(1/α2) many grid points.

Lemma 3.3 (Properties of grids Gl). For all l = 1, . . . , L, the following bound statements hold for each grid
Gl:

1. For any p ∈ B(0, 1), ∥p−Gl(p)∥ ≤ α2−l = tl
√
d = αrl.

2.
⃓⃓
Gl(∪lj=1oj)

⃓⃓
= kO(1/α2).
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Proof. 1. By definition Gl(p) = tl(⌊p1/tl⌋, . . . , ⌊pd/tl⌋). Since |pj/tl − ⌊pj/tl⌋| ≤ 1, it follows that
|pj −Gl(p)j | ≤ tl ⇒ ∥p−Gl(p)∥ ≤ tl

√
d = αrl.

2. Let p ∈ (∪lj=1oj). By definition of z(·, ·), z(Gl(p), SOPT ) ≤ z(Gl(p), argminc∈SOPT
z(p, c)). Then,

since z(p,Gl(p)) ≤ α2r2l = O(α2rl) and rl = O(z(p, argminc∈SOPT
z(p, c))), by the weak triangle

inequality z(Gl(p), SOPT ) ≤ (1 +O(α))rl.

Since we have shown Gl(∪lj=1oj) ⊂ {g ∈ Gl : z(g, SOPT ) < (1 + O(α))rl}, it will suffice to bound the
size of the latter set. Fix any s ∈ SOPT . If g ∈ Gl is such that z(g, s) ≤ (1 + O(α))rl then by the
weak triangle inequality z(Gl(s), g) ≤ (1 + O(α))rl. By translating Gl(s) and Gl so that Gl(s) lies at
the origin and scaling the space up by a factor of 1/tl so that Gl maps onto Zd, we see that there is
an injection from {g ∈ Gl : z(g, s) ≤ (1 +O(α))rl)} into V = {j ∈ Zd : z(j, 0) ≤ d/α2 +O(1)}.
Expanding the definition of V , we get

v ∈ V ⇒
∑︂
i∈[d]

v2i ≤ d/α2 +O(1).

It follows that the number of unsigned v ∈ V is at most the number of ways of partitioning d/α2+O(1)
balls into d+ 1 distinguishable bins. Then,

|V | =
(︃
d/α2 +O(1)

d+ 1

)︃
<

(︃
e · (d/α2 +O(1))

d+ 1

)︃d+1

= kÕ(1/α2)

where we use that d = O
(︁
log(k/(αβ))/α2

)︁
. Hence, |{g ∈ Gl : z(g, SOPT ) < (1 +O(α))rl}| = k · 2d ·

kÕ(1/α2) = kÕ(1/α2).

Definition 3.4. We make a couple of definitions to ease our analysis from this point.

1. Let NG be a uniform upper bound on the the sizes of the sets Gl(∪lj=1oj). It follows from lemma 3.3
that we can choose a value of NG = kÕ(1/α2).

2. We define a sequence of subsets al inductively. Let a1 = {p ∈ D : G1(p) ∈ G∗
1} and let al = {p ∈ D :

Gl(p) ∈ G∗
l }\

(︁
∪l−1
j=1aj

)︁
. Informally, al consists of those points which were not explicitly covered at a

distance of αrj for any j < l but are successfully covered by some g ∈ G∗
l at an ℓ2 distance of αrl,

since its floor in the grid was added to G∗
l .

3. M∗
l is the set of grid points constructed iteratively by adding all grid points picked in round l from Gl

to grid points picked in previous rounds and then removing all grid points picked in previous rounds
which snap to any grid point picked in round l. Intuitively, we can think of this set as the set of
“maximal" grid points that have been picked so far. Keeping track of this set will allow us to avoid
over-counting data points being covered at different levels and keep private estimation error terms
small.

Lemma 3.5 (Properties of maximal grid point sets M∗
l ). The following properties hold for the sets M∗

l for
l = 1, . . . , L.

1. If p ∈ aj for some j ≤ l then ∃!k ∈ {j, . . . , l} such that Gk(p) ∈M∗
l .

2. |M∗
l | = lNG

16



Proof. 1. Given that p ∈ aj , by construction of M∗
j , Gj(p) ∈ M∗

j . If for some j′ > j there is some
g ∈ G∗

j′ such that Gj′(Gj(p)) = g and Gj(p) is removed from M∗
j′ then since Gj′(Gj(p)) = Gj′(p) and

Gj′(p) = g is included in M∗
j′ proceeding inductively it follows that Gk(p) ∈M for some k ∈ {j, . . . , l}.

To see that this value of k is unique suppose to the contrary that Gk1
(p) and Gk2

(p) both lie in
M∗

l . Assume without loss of generality that k1 < k2. Then since Gk2(Gk1(p)) = Gk2(p) we see that
Gk1(p) ̸∈M∗

k2
and therefore Gk1(p) ̸∈M∗

l .

2. We see that by construction in every loop |M∗
l | ≤

⃓⃓
M∗

l−1

⃓⃓
+NG. The bound follows directly.

In order to proceed with the cost analysis, we derive bounds on the estimation error for the point
histograms PHl and point sum oracles PSOl. We will avoid substituting for these error terms until we have
reached the end of this analysis but it will be useful to keep in mind that, as the lemma shows, they are
roughly O( 1ϵ

√
n log n). These bounds are essentially corollaries of the Bitstogram and HeavySumsOracle error

bounds.

Lemma 3.6 (Private estimation error bounds). With probability 1 − β, for all l = 1, . . . , L, suppressing
terms logarithmic in 1/α, 1/β and log n, the following guarantees hold.

1. For every g ∈ Gl,
⃓⃓
PHi(g)−G−1

i (g)
⃓⃓
≤ PHE := Õ

(︂
1
ϵα

√︁
n log3 n

)︂
.

2. For every g ∈ PHl, PSOE ≤ Õ
(︂

cG
ϵ

√
d′n
)︂
.

Proof. 1. We simplify the Bitstogram guarantee and use PHM as a uniform upper bound for both PHE

and PHM . In other words, since PHM is larger than PHE , which we show below using the bound on
log(|Gl|), every heavy hitter in PH is already estimated within an error of PHM . If a value does not
occur in PH, it must be the case that its frequency is less than PHM , so we estimate the frequency of
any omitted element by 0 and use the upper bound for PHM as a uniform bound for the frequency
estimates of g ∈ Gl. Similarly, we bound PSOE by PSOM .

To derive the expression for the bound we need to bound from above the sizes of the grids Gl. The
domain B(0, 1) is contained inside the unit cube with side-length 2 units centered at the origin. The
length of each axis that lies within this unit cube is 2. For every g ∈ Gl, gj for every coordinate j

can take at most 2/tl = 2L−l
√
d/α many values. Since the number of dimension is Õ((log k)/α2), it

follows that |Gl| = (2L−l
√
d/α)Õ((log k)/α2) ⇒ log(|Gl| · 2L/β) < Õ(((log k)/α2) log(n/α))+ log(2L/β).

Substituting, for any l = 1, . . . , L,
⃓⃓⃓
PHl(g)−G−1

l (g)
⃓⃓⃓
≤ Õ

(︂
1
ϵ

√︁
n((log k)/α2) log(n) log(2L/β)

)︂
=

Õ
(︂

1
ϵα

√︁
n log3 n

)︂
with probability 1− β/2L.

2. We recall that the diameter of the data domain is O(1). Scaling the failure probability by 1/2L so that
we may apply the union bound and absorbing the resulting

√︁
log log n/β term in the Õ notation, the

HeavySumsOracle guarantee gives us that ∥PSOE∥ = Õ
(︂

cG
ϵ

√
d′n
)︂
.

The significance of the following lemma is that Count(g) is a good estimate of the number of previously
uncovered data points covered by a grid point g ∈ Gl for any l = 1, . . . , L within a distance of αrl.

Lemma 3.7. For l = 1, . . . , L and any g ∈ PHl,⃓⃓
Count(g)−

⃓⃓
{p ∈ D : Gi(p) = g}\

(︁
∪j∈[i]ai

)︁⃓⃓⃓⃓
≤ (l ·NG)PHE
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Proof. By construction of Count, we can write

Count(g) = PHl(g)−
∑︂

g′∈M∗
i−1

Gl(g)=g

PH(g′). (1)

Similarly, by definition we can write

al = {p ∈ D : Gl(p) = g}\
(︁
∪l−1
j=1aj

)︁
.

By lemma 3.5 we see that the sets {p ∈ D : Gj(p) = g′, j < l} for g′ ∈ M∗
l−1 form a partition of ∪l−1

j=1aj .
Similarly, the sets {p ∈ D : Gj(p) = g′ for some j} for g′ ∈ M∗

l such that Gl(g
′) = g form a partition of

{p ∈ D : Gl(p) = g} ∩
(︁
∪l−1
j=1ai

)︁
. This implies⃓⃓

{p ∈ D : Gl(p) = g} ∩
(︁
∪l−1
j=1aj

)︁⃓⃓
=

∑︂
g′∈M∗

l−1,

Gl(g
′)=g

|{p ∈ D : Gj(p) = g′ for some j}|

⇒
⃓⃓
{p ∈ D : Gl(p) = g}\

(︁
∪l−1
j=1ai

)︁⃓⃓
= |{p ∈ D : Gl(p) = g}| −

∑︂
g′∈M∗

l−1,

Gl(g
′)=g

|{p ∈ D : Gj(p) = g′ for some j}|. (2)

By the Bitstogram guarantee we have that for every g′ ∈ PHj ,
⃓⃓
PHj(g′)− |{p ∈ D : Gj(p) = g′}|

⃓⃓
≤ PHM .

Subtracting eq. (2) from eq. (1) and using the error bound derived from the Bitstogram guarantee (lemma 3.6)
we get

Count(g)−
⃓⃓
{p ∈ D : Gl(p) = g}\

(︁
∪l−1
j=1aj

)︁⃓⃓
≤ PHM +

∑︂
g′∈M∗

l−1,Gl(g)=g

PHM

≤ O
(︁⃓⃓
M∗

l−1

⃓⃓
PHM

)︁
≤ lNGPHM .

The following lemma is used only for the cluster center recovery in the original space but we state and
prove it here due to its similarity to lemma 3.7.

Lemma 3.8. For any g ∈ G∗
l , ⃦⃦⃦⃦

Sum(g)−
∑︂

Gl(Q(p))∈G−1
l (g)

Q(p)̸∈(∪l−1
j=1aj)

p

⃦⃦⃦⃦
≤ lNGPSOM .

Proof. The proof is essentially identical to that of lemma 3.7, but we reproduce the calculations for completeness.
In the level l we can write by construction that

Sum(g) = PSOi(g)−
∑︂

g′∈M∗
l−1,Gi(g′)=g

PSO(g′).

By lemma 3.5 we see that {p : Q(p) ∈ D : Gj(Q(p)) = g′, j < l} for g′ ∈M∗
l−1 is a partition of ∪l−1

j=1aj .
We can write these sets more succinctly as {p : Q(p) ∈ G−1(g′)} where we can drop the index of the
G−1 as it depends upon and can be inferred by the argument g′. Continuing, we also have that the sets
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{p : T (p) ∈ G−1(g′)} for g′ ∈M∗
i−1, Gl(g

′) = g form a partition of {p : T (p) ∈ G−1
l (g)} ∩

(︁
∪l−1
j=1aj

)︁
. This

implies ∑︂
Q(p)∈G−1

l (g)

∩(∪l−1
j=1aj)

p =
∑︂

g′∈M∗
l−1

Gl(g
′)=g

∑︂
Q(p)∈G−1(g′)

p

⇒
∑︂

Q(p)∈G−1(g)

\(∪l−1
j=1ai)

p =
∑︂

Q(p)∈G−1
l (g)

p−
∑︂

g′∈M∗
l−1

Gl(g
′)=g

∑︂
Q(p)∈G−1(g′)

p

By the HeavySumsOracle guarantee we have that
⃓⃓⃓
PSO(g′)−

∑︁
Q(p)∈G−1(g′) p

⃓⃓⃓
≤ PSOE ≤ PSOM . Subtracting

the second equation from the first and using the error bound derived from the HeavySumsOracle guarantee
(lemma 3.6) we get ⃦⃦⃦⃦

Sum(g)−
∑︂

Q(p)∈G−1(g)

\(∪l−1
j=1aj)

p

⃦⃦⃦⃦
≤ PSOM +

∑︂
g′∈M∗

l−1

Gl(g
′)=g

PSOM

≤ lNGPSOM .

Definition 3.9. We let Ol =
∑︁L

j=l|oj | and Al =
∑︁L

j=l|aj |. Note that with these definitions,

L∑︂
l=1

Al(rl − rl−1) =

L−1∑︂
l=1

(Al −Al+1)rl − r0A1

=

L∑︂
l=1

|al|rl. (3)

This relation will be useful to us in the cost analysis. Further, we observe that Al − Ol+1 = (n − Ol+1) −
(n − Al) =

∑︁l
j=1|oj | −

∑︁l−1
j=1|aj |. Since the oj are disjoint, it follows that Al − Ol−1 is a lower bound for⃓⃓

∪lj=1oj\ ∪
l−1
j=1 aj

⃓⃓
, the size of the set of points covered by SOPT within a distance of rl but still uncovered

at the beginning of the lth round, i.e. before al is picked.

Lemma 3.10. For l = 1, . . . , L and for err = 4lN2
GPHM ,

|al| ≥ (1− α)(Al −Ol+1)− err.

Proof. From lemma 3.3 we know that
⃓⃓
Gl(∪lj=1oj))

⃓⃓
≤ NG. For all g ∈ Gl, let Cover(g) = {p ∈ D : Gl(p) =

g}\ ∪l−1
j=1 aj , i.e. the set of yet uncovered data points that would be served by g if g were picked. We note

that the sets Cover(g) as defined are disjoint for distinct g ∈ Gl. Let G†
l = (g†1, . . . , g

†
NG

) be the NG many
grid points g with the greatest values of |Cover(g)| sorted in decreasing order. Then by the observations in
definition 3.9 it follows that ⃓⃓⃓

{p ∈ D : Gl(p) ∈ G†
l }\ ∪

l−1
j=1 aj

⃓⃓⃓
≥
⃓⃓
ol\ ∪l−1

j=1 aj
⃓⃓

⇒
∑︂
j∈NG

⃓⃓⃓
Cover(g†j )

⃓⃓⃓
≥ Al −Ol+1.

In algorithm 1, we pick grid points greedily via the privatized counts Count(g). By lemma 3.7 we know that
for all g ∈ PHl,

|Count(g)− |Cover(g)|| ≤ lNGPHM .
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It follows that if g∗j is our jth greedy pick maximizing Count(g) and the maximum value of |Cover(g)| over
all unpicked grid points is 4lNGPHM , then

⃓⃓
Cover(g∗j )

⃓⃓
≥ 4lNGPHM ≥ (1/2)maxg∈Gi

|Cover(g)|.
Let m be the largest index such that

⃓⃓
Cover(g†m)

⃓⃓
≥ 4lNGPHM . In the context of lemma D.2, we let

Z = {Cover(g†j ) : j ≤ m}, a family of sets guaranteed to cover U = ∪z∈Zz, and S the family of all possible
sets we can pick from {Cover(g) : g ∈ Gi}. Then, since in the jth round each greedy pick g∗j covers at
least half of the maximum that any pick could cover, we see that (2|NG| log(1/α) + 1) greedy picks cover
(1 − α)

⃓⃓
∪mj=1Cover(g∗j )

⃓⃓
≥ (1 − α)

(︂[︂∑︁
j∈NG

⃓⃓⃓
Cover(g†j )

⃓⃓⃓]︂
− 4lN2

GPHM

)︂
≥ (1 − α)|ol| − 4lN2

GPHM points,
which is what we wanted to show. We use err = 4lN2

GPHM as shorthand going forward.

Lemma 3.11. We can relate the optimal clustering cost OPT to the sizes of the sets al and ol via the
following bounds.

1.
∑︁L

l=0|ol|rl = O(OPT ) +O(1).

2.
∑︁L

l=1|al|rl ≤ (1 +O(α))
∑︁L

l=1|ol|rl +O(err).

3.
∑︁L

l=1|al|rl ≤ O(OPT ) +O(err).

Proof. 1. Since rl+1 = 2rl for l > 0, and r1 ≤ 1/n,

L∑︂
l=1

|ol|rl =
L∑︂

l=1

|ol|4rl−1 + |o0|r1

≤ 2

L∑︂
l=1

|ol|rl−1 + 1

≤ 2

L∑︂
l=1

∑︂
p∈ol

z(p, SOPT ) + 1

≤ 2fD(SOPT ) + 1.

2. By lemma 3.10,

|al| ≥ (1− α)(Al −Ol+1)− err

≥ (1− α)(|al|+Al+1 −Ol+1)− err

≥
(︃
1− α

α

)︃
(Al+1 −Ol+1)−

err

α

⇒ Al+1 ≤
α|al|
1− α

+Ol+1 +
err

1− α

= O(α)|al|+Ol+1 +O(err).

Continuing from eq. (3) and using the convention that a0 begin undefined is empty,

L∑︂
l=1

|al|rl =
L∑︂

l=1

Al(rl − rl−1)

≤
L∑︂

l=1

(O(α)al−1 +Ol +O(err)) (rl − rl−1)

≤
L∑︂

l=1

O(α)|al−1|(rl − rl−1) +

L∑︂
l=1

Ol(rl − rl−1) +O(err)(rL+1 − r0)
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≤ O(α)

L∑︂
l=1

|al−1|rl−1 +

L∑︂
l=1

|ol|rl +O(err)

⇒ (1−O(α))

L∑︂
l=1

|al|rl ≤
L∑︂

l=1

|ol|rl +O(err)

⇒
L∑︂

l=1

|al|rl ≤ (1 +O(α))

L∑︂
l=1

|ol|rl +O(err).

3. This is a direct consequence of the first and second results of this lemma.

Lemma 3.12. The k-means clustering functions for the dimension reduced dataset D and the proxy dataset
D∗ are close in ℓ1 norm. Concretely, for any finite set C,

fD∗(C) ≤ (1 +O(α))fD(C) +O(αOPT) +O(αerr) +O(L2N2
GPHM ),

fD(C) ≤ (1 +O(α))fD∗(C) +O(αOPT) +O(αerr) +O(L2N2
GPHM ).

Proof. We can write D∗ = ⊔Ll=1 ⊔g∈G∗
l
{g with multiplicity Count(g)}. Then it follows that

fD∗(C) =

L∑︂
l=1

∑︂
g∈G∗

l

Count(g)fg(C)

=

L∑︂
l=1

∑︂
g∈G∗

l

Count(g)z(g, C)

≤
L∑︂

l=1

∑︂
g∈G∗

l

(︁⃓⃓
al ∩G−1

l (g)
⃓⃓
+ lNGPHM

)︁
z(g, C)

≤

(︄
L∑︂

l=1

∑︂
p∈al

z(Gl(p), C)

)︄
+O(L2N2

GPHM )

≤

(︄
L∑︂

l=1

∑︂
p∈al

z(Gl(p), argmin
s∈C

z(p, s))

)︄
+O(L2N2

GPHM )

To bound z(Gl(p), argmins∈C z(p, s)), we use the AM-GM inequality in conjunction with the triangle
inequality for the ℓ2 norm as follows:

z(Gl(p), argmin
s∈C

z(p, s)) ≤ (
√︁

z(Gl(p), p) +
√︁
z(p, C))2

≤ α2r2l + 2αrl
√︁

z(p, C) + z(p, C)

≤ α2r2l + 2rl(
√
α ·
√︁

αz(p, C)) + z(p, C)

≤ α2r2l + αrl + αrlz(p, C) + z(p, C)

≤ O(αrl) + (1 +O(α))z(p, C)

Applying this bound for every point p ∈ al for all l = 1, . . . , L we get

fD′(C) = (1 +O(α))fD(C) +O(α)

L∑︂
l=1

|al|rl +O(L2N2
GPHM )

= (1 +O(α))fD(C) +O(αOPT) +O(αerr) +O(L2N2
GPHM ).
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Similarly,

fD(C) =
∑︂
p∈D

z(p, C)

=

L∑︂
l=1

∑︂
p∈al

z(p, argmin
s∈C

z(Gl(p), s))

=

L∑︂
l=1

∑︂
p∈al

(1 +O(α))z(p, C) +O(α)rl

≤

[︄
L∑︂

l=1

∑︂
p∈al

(1 +O(α))z(Gl(p), C)

]︄
+

[︄
L∑︂

l=1

O(α)|al|rl

]︄

≤

⎡⎣ L∑︂
l=1

∑︂
g∈G∗

l

(Count(g) + lNGPHM )(1 +O(α))z(Gl(p), C)

⎤⎦+O(αOPT) +O(αerr)

≤

⎡⎣ L∑︂
l=1

∑︂
g∈G∗

l

Count(g)z(Gl(p), C)

⎤⎦+O(L2N2
GPHM ) +O(αOPT) +O(αerr)

≤ fD′(C) +O(L2N2
GPHM ) +O(αOPT) +O(αerr).

Corollary 3.13. As a direct consequence of lemma 3.12, it follows that

fD(S∗) ≤ (1 +O(α))ηOPT +O(αerr) +O(L2N2
GPHM ),

where we absorb the η factor in the additive error terms in the big-Oh notation and an O(αOPT) term in
the first term.

We now want to recover the cluster centers of the clusters derived from the low-dimension space by using
the PSO derived from calls to HeavySumsOracle. Since we identify points by their images in level-wise grids,
we incur additional discretization error that must be accounted for. Concretely, the clustering we actually
derive is not p ↦→ argmins′∈S′ z(T (p), s′) but instead given by the following definition.

Definition 3.14. 1. Let G′
∗ : Rd′ →

(︁
∪Ll=1Gl

)︁
denote Gl ◦Q(p′) where l is the minimum index such that

Gl ◦Q(p′) ∈ G∗
l . We then define a clustering of D′ via the solution S∗ by letting D′(s∗i ) = {p′ ∈ D′ :

argmins∈S∗ z(s,G′
∗(p

′)) = s∗i }. Alternatively, we can first define G∗
l,i = {g ∈ G∗

l : argmins∈S∗ z(g, s) =
s∗i }, then let D′

l(s
∗
i ) = {p′ ∈ D′ : Gl ◦ Q ∈ G∗

l,i and Gj ◦ Q ̸∈ G∗
j for j < l} and then let D′(s∗i ) =

∪l∈[L]D
′
l(s

∗
i ); these two formulations are equivalent.

2. We see that with these definitions al = Q(⊔s∗i ∈S∗D′
l(s

∗
i )). Further, this also defines a clustering of D

by identifying each point in D′ with its dimension-reduced image in D, with clustering cost

L∑︂
l=1

∑︂
p∈al

z(Gl(p), S
∗) =

∑︂
p′∈D′

z(G′
∗(p

′), S∗).

Lemma 3.15. For the privately derived cluster centers S∗ in the dimension reduced space, we have the
following bound for the clustering of D as defined in definition 3.14.

L∑︂
l=1

∑︂
p∈al

z(Gl(p), S
∗) = η(1 +O(α))OPT +O(αerr) +O(N2

GPHM log2 n).
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As a direct corollary,∑︂
p′∈D′

z(G′
∗(p), S

∗) = η(1 +O(α))OPT +O(αerr) +O(N2
GPHM log2 n).

Proof. We want to understand the increase in clustering cost due to discretization.

L∑︂
l=1

∑︂
p∈al

z(Gl(p), S
∗)− z(p, S∗) ≤

L∑︂
l=1

∑︂
p∈al

z(Gl(p), argmin
s∈S∗

z(p, s))− z(p, S∗).

Here we use the same trick of applying the ℓ2-triangle inequality in conjunction with the A.M.-G.M.
inequality as in the proof of lemma 3.12 and bound z(Gl(p), argmins∈S∗ z(p, s)) from above by O(αri) +
(1 +O(α))z(p, S∗). Continuing,

L∑︂
l∈1

∑︂
p∈al

z(Gl(p), S
∗)− z(p, S∗) ≤

L∑︂
i=1

∑︂
p∈al

O(αrl) +

L∑︂
i=1

∑︂
p∈al

O(α)z(p, C∗)

≤ O(α)
L∑︂

l=1

|al|rl +
L∑︂

i=1

∑︂
p∈al

O(α)z(p, S∗)

≤ O(αOPT) +O(αerr) +O(α)fD(S∗).

Since we use a non-private clustering algorithm with multiplicative approximation factor η, we can substitute
for fD(S∗) by ηOPT , and rearranging terms we get the stated bound.

We now use the error bounds for the sum oracle and the succinct histogram to recover the cluster centers
of the cluster as defined in definition 3.14.

Lemma 3.16. For every cluster center s∗i ∈ S∗, we have the following estimation error bound for the cluster
centers of the clusters derived in the original space.⃦⃦⃦⃦

⃦⃦
∑︁L

l=1

∑︁
g∈G∗

l,i
Sum(g)∑︁L

l=1

∑︁
g∈G∗

l,i
Count(g)

−
∑︁

p′∈D′(s∗i )
p′

|D′(s∗i )|

⃦⃦⃦⃦
⃦⃦ ≤ 2L2N2

G

|D′(s∗i )|

(︄⃦⃦⃦⃦
⃦
∑︁

p′∈D′(s∗i )
p′

|D′(s∗i )|

⃦⃦⃦⃦
⃦PHM + PSOM

)︄
.

Proof. The proof of this result is essentially the same as that of lemma B.1, with the additional complication
that we must account for the error accrued when summing over queries for multiple heavy values.∑︁L

l=1

∑︁
g∈G∗

l,i
Sum(g)∑︁L

l=1

∑︁
g∈G∗

l,i
Count(g)

−
∑︁

p′∈D′(s∗i )
p′

|D′(s∗i )|

=

∑︁L
l=1

∑︁
g∈G∗

l,i
Sum(g)∑︁L

l=1

∑︁
g∈G∗

l,i
Count(g)

−
∑︁

p′∈D′(s∗i )
p′∑︁L

l=1

∑︁
g∈G∗

l,i
Count(g)

+

∑︁
p′∈D′(s∗i )

p′∑︁L
l=1

∑︁
g∈G∗

l,i
Count(g)

−
∑︁

p′∈D′(s∗i )
p′

|D′(s∗i )|

=

∑︁L
l=1

∑︁
g∈G∗

l,i
Sum(g)−

∑︁
p′∈D′(s∗i )

p′∑︁L
l=1

∑︁
g∈G∗

l,i
Count(g)

+

∑︁
p′∈D′(s∗i )

p′

|D′(s∗i )|

|D′(s∗i )| −
∑︁L

l=1

∑︁
g∈G∗

l,i
Count(g)∑︁L

l=1

∑︁
g∈G∗

l,i
Count(g)

⇒

⃦⃦⃦⃦
⃦⃦
∑︁L

l=1

∑︁
g∈G∗

l,i
Sum(g)∑︁L

l=1

∑︁
g∈G∗

l,i
Count(g)

−
∑︁

p′∈D′(s∗i )
p′

|D′(s∗i )|

⃦⃦⃦⃦
⃦⃦

≤ L ·NG · LNGPSOM

|D′(s∗i )| − L ·NG · LNGPHM
+

∑︁
p′∈D′(s∗i )

p′

|D′(s∗i )|
· L ·NG · LNGPHM

|D′(s∗i )| − L ·NG · LNGPHM
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So for all clusters D′(s∗i ) such that with at least 2L2N2
GPHM many points, we can bound the ℓ2 estimation

error by

2L2N2
GPSOM

|D′(s∗i )|
+

⃦⃦⃦⃦
⃦
∑︁

p′∈D′(s∗i )
p′

|D′(s∗i )|

⃦⃦⃦⃦
⃦ · 2L2N2

GPHM

|D′(s∗i )|

=
2L2N2

G

|D′(s∗i )|

(︄⃦⃦⃦⃦
⃦
∑︁

p′∈D′(s∗i )
p′

|D′(s∗i )|

⃦⃦⃦⃦
⃦PHM + PSOM

)︄
.

Now we can derive the cost bound for the private clustering solution derived in the original space.

Lemma 3.17.

fD′(S′) ≤ (1 +O(α))ηOPT ′ +O(α2err log n/β) +O(αL2N2
GPHM log n/β) +O(kL2N2

GPSOM ).

Proof. We are interested in bounding the clustering cost of D′ with respect to the clusters (D′(s∗1), . . . , D
′(s∗k)).

In lemma 3.15 we bounded the cost of the dimension reduced image of this clustering (D(s1), . . . , D(sk)) =
(Q(D′(s∗1)), . . . , Q(D′(s∗k))). From lemma 3.2 we recall that for any clustering (D′

1, . . . , D
′
k) of D we have

that

∑︂
i∈k

∑︂
p∈D′

i

s

(︄
p,

∑︁
q∈D′

i
q

|D′
i|

)︄
≃1+α (α log n/β)

∑︂
i∈k

∑︂
p∈Q(D′

i)

s

(︄
Q(p),

∑︁
q∈D′

i
M(q)

|D′
i|

)︄
.

If we let D′
i = D′(s∗i ), and denote the (unknown) true cluster centers of the clusters in the original space by

µi =

∑︁
p′∈D′(s∗

i
) p

′

|D′(s∗i )|
for i = 1, . . . , k then we get

fD′({µ1, . . . , µk}) ≃1+α (α log n/β)fD({s∗1, . . . , s∗k})
≃1+α α log n/β(1 +O(α))ηOPT +O(α2err log n/β) +O(αL2N2

GPHM log n/β).

Then, since OPT ′ ≃1+α α log n/βOPT , we can write

fD′({µ1, . . . , µk}) ≃1+O(α) (1 +O(α))ηOPT ′ +O(α2err log n/β) +O(αL2N2
GPHM log n/β).

We have estimates

µî =

∑︁L
l=1

∑︁
g∈G∗

i (s
∗
i )
Sum(g)∑︁L

l=1

∑︁
g∈G∗

i (s
∗
i )
Count(g)

for the true cluster centers µi for i = 1, . . . , k. From lemma D.3, in order to bound the additive error incurred
due to the estimation error, i.e. fD′(s∗i )

({µ̂i}) − fD′(s∗i )
({µi}), it will suffice to bound |D′(si)

∗|∥µi − µ̂i∥
2.

Lemma 3.16 bounds the estimation error ∥µ̂− µ∥. Putting everything together, we get

fD′(s∗i )
({µ̂1, . . . , µ̂k})− fD′(s∗i )

({µi}) ≤ |D′(s∗i )|

(︄
2L2N2

G

|D′(s∗i )|

(︄⃦⃦⃦⃦
⃦
∑︁

p′∈D′(s∗i )
p′

|D′(s∗i )|

⃦⃦⃦⃦
⃦PHM + PSOM

)︄)︄2

≤ 8L4N4
GPH

2
M

|D′(s∗i )|
+

8L4N4
GPSO

2
M

|D′(s∗i )|

≤ L4N4
G

|D′(s∗i )|
O(PSO2

M ).
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For each s∗i ∈ S∗, if D′(s∗i ) ≥ L2N2
GPSOM , then the first factor is O(L2N2

GPSOM ). On the other hand,
if D(s∗i ) < L2N2

GPSOM then the clustering cost for D′(s∗i ) i.e. fD′(si)({µ̂1, . . . , µ̂k}) is unconditionally less
than L2N2

GPSOM as the diameter of the data domain is O(1). It follows that the additive error over all k
clusters is at most O(kL2N2

GPSO). Since fD′(s∗i )
({µi}) = fD′(s∗i )

({µ̂1, . . . , µ̂k}), putting everything together
we get that

fD′({µ̂1, . . . , µ̂k}) ≤ fD′({µ1, . . . , µk}) +O(kL2N2
GPSOM )

≤ (1 +O(α))ηOPT ′ +O(α2err log n/β) +O(αL2N2
GPHM log n/β) +O(kL2N2

GPSOM ).

Theorem 1.1. Algorithm 1 is an (ϵ, δ)-locally differentially private algorithm that after one round of
interaction with a private distributed data set D′ ⊂ Rd′

of size n, outputs a set S′ of size k such that
for failure probability polynomially small in n,

fD′(S′) ≤ (1 +O(α))ηOPT ′ +
1

ϵ
kÕ(1/α2)

√︁
d′n log 1/δ poly log n.

Proof. We make 2L = 2 log n calls (in parallel) to Bitstogram and HeavySumsOracle. From their respective
privacy guarantees, we know that each call is (ϵ, δ)-differentially private. By simple composition of privacy,
it follows that the net privacy loss is (2(log n)ϵ, 2(log n)δ). To ensure net (ϵ, δ) privacy loss, we must scale the
respective privacy parameters by a factor of 1/(2 log n); with this scaling we have PHM = Õ

(︂
1
ϵα

√︁
n log5 n

)︂
and PSOM = Õ

(︂
cG
ϵ

√︁
d′n log2 n

)︂
. We recall that NG = kÕ(1/α2). Substituting all these bounds in the

guarantee of lemma 3.17 we get

fD′({µ̂1, . . . , µ̂k}) ≤ (1 +O(α))ηOPT ′ +O(α2err log n/β) +O(αL2N2
GPHM log n/β) +O(kL2N2

GPSOM )

≤ (1 +O(α))ηOPT ′ +
1

ϵ
kÕ(1/α2)

√︁
d′n log 1/δ poly log n.

To simplify the error term in the above expression we assume without loss that k ≥ 2, as k = 1 is a degenerate
case i.e. mean estimation of vectors in d′ dimensional space. We then absorb all constants in the Õ term in
the exponent of the k to state a simplified bound.

4 LDP k-means with low additive error
In this section we describe our second algorithm that, given a constant c >

√
2, can achieve a constant factor

multiplicative approximation and O(kO(1/(2c2−1))
√
nd′ poly log n) additive error. Our algorithm is described

in a modular fashion, and one may refer to the respective section for the pseudo-code and an informal walk-
through of how the algorithm proceeds. We begin with a technical discussion to help explain some of the
algorithmic choices made along the way.

4.1 Technical discussion
We recall from the introduction that any differentially private solution for k-means clustering in the local
setting has to somehow indirectly access the aggregate geometry of the data set because of the high magnitude
of the noise that is added to maintain privacy. We then discussed how discretizing the response function that
is sensitive to the location of each point allows us to do precisely this and understand the geometry of the
data set in sum. The one-round clustering algorithm uses a grid-based discretization of the domain to elicit
a discrete response. For our four-round algorithm, we will use a combination of a cell-based discretization
(which is similar in essence to the grid-based discretization used before) in combination with LSH functions.
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Notation Meaning
D′ ⊂ Rd′

Original data set
Q : Rd′ → Rd mapping from high-dim. to low-dim. space

D ⊂ Rd Q(D′), dimension reduced data set
L Number of cell grid levels
Cl Grid of cells in dimension reduced space for l ∈ [L]
tl Side-length of any cell in Cl (equals 2−l)
Cl(·) Mapping from Rd to unique containing cell Cl

Anc∗ : Cl → Cl−(3/2) lg d Mapping from cells to the set of their ancestors j with side-length d3/2tl
CHl Succinct histogram of number of points mapping to C ∈ Cl for “heavy" C
F Number of geometrically varying guesses for true optimal clusternig cost OPT

Hf
l Heavy cells identified CHl where guess for OPT = k

√
n · 2f , f ∈ [F ]

Lf
l Cells which are not heavy
Mf

l Light children of heavy cells
M Number of distance scales with which LSH functions applied

rl,1, . . . , rl,M Scales at which LSH functions are used to allocate cluster centers for points in Ml

R Number of repetitions of LSH subroutine to boost success probability
Λf
l Synthetic space of heavy cells in Anc∗ level

Λf
l (·) Mapping from Rd to synthetic space

Hl,m,r,f (·) (p(1), p(c), rl,m, crl,m)-sensitive hash function with domain Λf
l for points inMf

l

BHl,m,r,f Histogram of number of points per hash bucket
BSOl,m,r,f Vector sums of points in original space mapping to heavy buckets

b̂ Average vector mapping to bucket b ∈ BHl,m,r,f

Πl(b̂) projection of b̂ to Λf
l (∪C∈Hf

l
C)

Sl Candidate centers allocated in one level for some guess of OPT
SH Candidate centers allocated at the center of heavy cells for some guess of OPT
S k-means bi-criteria solution

Table 3: Summary of notation used in algorithm 4
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Dyadic hierarchy of cells: In Braverman et al. [2017], the authors describe a way of decomposing the
data domain in a way that helps identify regions of the domain where data accumulates. Given a rectangular
domain [0, 1)d, they construct a dyadic 2d-ary tree of cells, where each rectangular cell is sub-divided into 2d

child cells by bisecting the cell along each axis. The cell at the top of the hierarchy with side-length one unit
is simply the whole domain, and it has 2d children with side-length half units that collectively again cover
the whole domain. Each child cell is recursively divided in the same manner, and in level l the side length
of each cell is tl = 2−l units. The idea is that although each point in the domain is covered by each level of
cells, the further down the hierarchy one goes the finer is the resolution at which the domain is discretized
and the smaller is the diameter of the bounding box at a level. L = log n levels of the grid will suffice to
discretize the domain to a sufficiently fine degree so as to capture clusters at all relevant scales; the cost of
clustering cluster with radius smaller than O(1/n) will be dominated by the additive error terms that any
private k-means clustering algorithm must have. This entire construction can be done after an application
of the JL transform for dimension reduction which ensures that d = O(log n). We will see during the course
of our discussion why this is crucial for our cost analysis.

The authors of Braverman et al. [2017] then observe that if we randomly shift this hierarchy of cells, then
one can show that with probability 1− β, for any point in the domain there are at most O(1/β) many cells
with side-length tl within an ℓ2 distance of tl/d units of that point. Applying this on any choice of optimal
centers SOPT means that there are O(k/β) many cells close to SOPT at any level. How can we exploit this
to capture the aggregate geometry of the data set?

Guessing the optimal cost: Suppose that we knew what the optimal cost OPT were. If this were the
case, then we can bound the number of cells further than tl/d units away from any choice of optimal centers
SOPT that carry significantly many data points. Concretely, all data points in cells further than tl/d units
away from SOPT must have a clustering cost of at least t2l /d

2. On the other hand, their clustering cost with
respect to SOPT cannot exceed the total clustering cost OPT , which means there cannot be more than
OPT d2/t2l many such points. Tracing a similar argument with cells, we compute a threshold depending on
the level’s side length tl such that there cannot be more then O(kL/β) many cells that have more than the
number of points in the threshold and lie further than tl/d units away from SOPT . To see why the bound
has changed from O(k/β) to O(kL/β), note that we scale the failure probability by a factor of 1/L so that
it apply across all L levels with probability 1 − β. Coupled with the guarantee that there cannot be more
than O(kL/β) many cells closer than tl/d to SOPT we get that regardless of where they lie in the domain
there are at most O(kL/β) heavy cells in any level, i.e. cells that beat the threshold Tl for their level.

In the top cell, this threshold is lower than n, so the top cell is always marked heavy. In the bottom
level, this threshold exceeds n, so all bottom cells are marked light (i.e. not heavy). Between these two
extremes the threshold increases monotonically as tl decreases, which means that there is a unique level for
every point where the cell it belongs to transitions from being heavy to light. There is a small technicality
here that since we can only identify cell counts via noisy privatized responses we can inadvertently mark
heavy cells light and light cells heavy. In practice we will appeal to the locally private histogram construction
Bitstogram of Bassily et al. [2020] to estimate the data point counts of cells. The issue of incorrect labelling
of cells as heavy or light is readily resolved by requiring that heavy cells have only heavy ancestors, and
using the accuracy guarantees of Bitstogram to bound the consequences of such errors in our cost analysis.

In sum, under the promise that OPT is known, we have identified regions of the domain at different
scales where the data set accumulates beyond some thresholds. Since we are targeting an additive error of
Õ(k
√
n), we let OPT vary in factors of 2 from k

√
n to n and simply run the algorithm with varying values

of OPT at different scales to ensure that the promise holds for at least some run. This leads to an inflation
in our additive error on the order of log n as the number of candidate centers grows by this factor.

We recall that in the introduction we mentioned that when finding a bi-criteria solution, to get O(poly k
√
n

poly log n) error we would like to find O(poly k poly log n) many candidate centers with respect to which the
data set has a clustering cost within a constant factor multiplicative approximation to OPT and additive
error at most O(poly k

√
npoly log n). It is in fact the case that if we can limit the exponent of k in both the

number of centers allocated and the additive error incurred, then we will have at most that same exponent
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in the final error term. Keeping this in mind we observe that we have partitioned the data set across
O(k log2 n/β) many heavy cells. If we can allocate some O(poly log n) centers in each cell such that the
additive error with respect to these centers is O(k

√
n poly log n), then we would achieve O(k

√
n poly log n)

error in sum. Although we do not achieve exactly this term, the reason we are able to get arbitrarily close
to it is because of the relatively small number of cells within which we have partitioned the data set. We
turn to using LSH functions to allocate candidate centers in a cell-wise fashion.

The n1/2+a barrier: We recall that a (p, q, r, cr) LSH function has the property that if two points are
within a distance of r units, they must collide with probability at least p, and if two points are further than
cr units, then they cannot collide with probability more than q. By applying LSH functions on the data
domain and appealing to locally private succinct histograms, we can recover all heavy LSH buckets; the idea
then is that any sufficiently large cluster with radius less than r units must populate one of these heavy
buckets with a lot of points, possibly with some false positives. We estimate the point average over each
heavy bucket to get a point that is no more than cr units away from the cluster, and serves as a cluster
center with a constant factor approximation to the true radius.

We now describe why prior work taking this approach suffer an O(n1/2+a poly log n) dependence on n
in the additive error. When dealing with LSH functions one technicality that has to be dealt with is that
the LSH guarantee holds only in a pair-wise fashion, i.e. you only get bounds on the likelihood of points
colliding a pair of points at a time. Fixing some cluster C with radius r, this leads us to use some arbitrary
fixed point from C as a filter, using the LSH guarantee to argue that (1) “most" points which collide with
it under the LSH function with parameters (p, q, r, cr) must lie at a distance of at most cr units and (2) for
every cluster, at least a p fraction of points from that cluster must collide with it. What we would like to be
the case is that the average over all points colliding with our filter lie at a distance of O(cr) from the filter;
since the filter itself lies in the cluster, by the triangle inequality the average can then serve as a candidate
center for the cluster with an O(c) constant factor approximation to the radius.

Let ∆ be the diameter of the data domain. The distance of the weighted mean of all points colliding
with the filter under the LSH function, from that filter, can roughly be bounded from above by

cr · |{points from C colliding with filter}|+∆ · |{points further than cr units from filter}|

We are bounding the impact of points from outside the cluster by the diameter of the domain, and dealing
with the arbitrarily many points that lie between a distance of r and cr units by simply inflating the
distance considered “close" to cr units so they can be dropped from consideration without giving us an
unfair advantage (notice that they can only pull this average towards cr units). It is easy to see by linearity
of expectation that the expected number of points from the cluster that collide with the filter is at least
p|C|, and the number of points from further than cr units that collide with the filter is at most q|D| (again
using the worst case as an upper bound).

To get this weighted mean to be of the order of cr, we tune the LSH parameters to get the collision
probability ratios to fulfill

cr ≥ q|D|∆
p|C|

.

One can see this as a tug of war between false positives which in expectation increase with the side of the
data set and whose impact is exacerbated by the diameter of the data domain and “true" cluster points
whose impact can be as low as cr units and whose number scales with the size of the cluster C. Rearranging
terms gives us

p

q
≥ |D|
|C|

∆

cr
.

It follows that if one needs this procedure to work for clusters C with as few as
√
n many points, as well

as for cluster radii that are a poly(n) factor smaller than ∆, then since |D| = n, one would need the ratio
between the collision probabilities of near and far points to beat a poly(n) term.
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It is an intrinsic property of LSH functions that tuning parameters to increase the ratio between p and q
causes both p and q to fall individually. This is an issue because we also need sufficiently many points from
the cluster to accumulate in a bucket to ensure we can distinguish the heavy bucket from random noise;
in expectation the number of true points accumulating in a bucket number drops with p. It is in fact the
case that p scales with n−Θ(1/c) which leads us to try and boost the success probability with nΘ(1/c) many
independent runs. Since we cannot test which runs are successful and which are not, we are forced to include
all bucket averages generated along the way as candidate centers; this nΘ(1/c) factor in the number of centers
is what leads to the greater than 1/2 exponent of n that is incurred in previous work applying LSH functions
for clustering as discussed in the introduction. We can push this exponent arbitrarily close to 1/2 by letting
c→∞, but naturally this causes the multiplicative approximation guarantee to blow up.

Even if we were to somehow reduce the number of possible false positives (i.e. the size of the data set
D that lies in the LSH domain) from n to something that scales with the cluster size, there is still the issue
that ∆/cr could again be poly(n). We must find a way to both limit the sizes of the subset of the data that
participate in the LSH procedure as well as the diameter of the data domain within which that subset can
lie. We describe how we achieve exactly this in the sequel.

If we apply this LSH subroutine heavy cell by heavy cell, then the impact of any point from more than
O(cr) units can be at most the diameter of the cell, i.e. 2−l

√
d in the lth level, which resolves the n1/2+a

issue for all LSH scales which are

Ω

(︃
2−l

poly log n

)︃
.

However, there are still two issues to be resolved. We have yet to bound the size of the data subset lying in
the LSH domain, as we discussed is necessary. Further, if the lowest LSH scale is still 2−l/

√
n (for example),

then the ratio of collision probabilities still has a factor of n, which will lead to an exponent of n greater
than 1/2, as described above. In order to get a truly O(

√
npoly log n) term, we need to increase the smallest

cut-off distance for the set of LSH scale parameters.

Limiting the sequence of LSH scale parameters: We first take a small detour and describe how a
finite sequence of scale parameters is chosen for cluster radii when identifying a bi-criteria solution. The
analysis fixes some arbitrary optimal clustering solution SOPT and decomposes the data set using concentric
rings around SOPT at geometrically varying thresholds. More concretely, each partition of the data set
consists of points which lie between 2−l and 2−l+1 units for l = 1, 2, . . . . The goal then is to allocate cluster
centers so that for each partition we can derive the promise that most points are covered by some candidate
center at a distance of O(2−l). Since the optimal clustering distance was at least 2−l units per partition,
this would give us a bi-criteria solution with an O(OPT ) cost.

One typically tries to identify these partitions and allocate centers separately for each partition, but
doing so requires that there be a finite (and in fact small) set of distance thresholds and partitions. One way
of accomplishing this is to cut off the sequence of thresholds at log n and instead of promising a constant
multiplicative approximation to the optimal clustering distance for points which lie closer than 2− logn = 1/n
units to OPT , one observes that as long as there is a candidate center at a distance of O(1/n), the net
clustering cost for the at most n such points there could be is O(n · 1/n2) = o(1). The cost of clustering
such points is then treated as a small additive error term in the constant factor approximation guarantee.

When using LSH at a sequence of geometrically varying scales, one runs into a similar issue of needing
to identify a lower bound for the smallest distance at which we allocate candidate centers. If the smallest
such scale is t units, then as there could be as many as n points within this distance we will need t2n units
to be dominated by O(k

√
n), which would require t to scale with O(1/

√
n) in the case where k is small. As

discussed, we need to avoid a 1/ poly(n) scaling factor for the lowest threshold t so as to avoid an exponent
of n greater than 1/2; it follows that the only way to do this is to reduce the size of the data subset on which
LSH being applied. Essentially, this issue has been reduced to other condition which we needed to fulfill;
that of bounding the size of the data subset participating in the LSH subroutine.
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Bounding the subset of D participating in LSH subroutines: We see that simply using LSH on
heavy cells does not work as is since there could again be arbitrarily many points in a heavy cell; all we have
is a lower bound on the number of points it contains. To derive an upper bound we instead focus on the
light children of heavy cells. By virtue of being light, they have fewer points than the threshold mentioned
before; we will be able to show that in level l where the side length tl = 2−l the total number of points which
lie in such cells is O(d2 OPT /t2l ). From the previous discussion, this will allow us to set the lower LSH scale
parameter t = O(tl/(d

√
L)) and incur only O(OPT /L) additional error per level, leading to an additional

O(OPT ) cost across all levels. Observe that the lowest LSH scale parameter is essentially tl/poly log n,
which implies a poly log n ratio between the diameter of the cell to the scale parameter, which is exactly
what we wanted. The additional O(OPT ) additive error term is readily absorbed in our multiplicative
approximation factor (as opposed to a small additive error as is usually the case). Since the dimension d and
the number of levels in our cell hierarchy are both O(log n), this means that we have successfully avoided an
exponent greater than 1/2 on the factor of n in the additive error.

However, there is a different sort of issue in the dyadic hierarchy approach that we have not yet addressed;
for any level the collection of light children of heavy cells partitions the data in arbitrary ways. It need not
be the case that a cluster will lie entirely inside the domain of a single LSH function when making calls to
the LSH subroutine. How do we account for the division of clusters across data partitions and cells?

Clusters and cluster sections: Let us denote the partition of the data set D that lies in heavy cells in
level l − 1 but light cells in level l by Dl. With this notation it follows from our observations regarding the
existence of a unique level for each data point such that its containing cell is light for the first time when
going down levels that D0, . . . , DL−1 form a partition of D. For any fixed optimal clustering solution, we see
that each cluster too can be partitioned across all levels Dl. Based on the discussion above, we would ideally
like to use LSH functions on O(kL/β) many cells in level l − 1 and elicit a response only from Dl to ensure
that the diameter of the bounding box is not too high and the number of points participating in the LSH
subroutine is not too many. This implies that we only need to allocate cluster competitively with respect
to the sections of the optimal clusters that lie in heavy cells. However, this could lead to O(k2L/β) many
cluster sections per level, which would lead to a candidate center set of size at least Ω(k2 poly log n), leading
to Ω(k2

√
npoly log n) error down the line. In order to try and reduce the exponent of k in the number of

cluster centers allocated, we make three technical algorithmic choices.
Firstly, we allocate a candidate center at the center of every heavy cells (which would be at most O(kL2/β)

many more candidate centers). This gives us the guarantee that every point in the data set partition Dl

has a candidate center at a distance of 2−l
√
d. Secondly, we go up a few levels and apply LSH functions to

the ancestors of these heavy cells of interest which have side-length d3/22−l. The consequence of these two
modifications is that we only need to allocate cluster centers within a distance of 2−l

√
d units of any point

of Dl, and that since there are only O(L/β) many cells with side-length d3/22−l within a distance of 2−l
√
d

units of an optimal center, there are only O(kL/β) many cluster sections we must account for.
Thirdly, in order to avoid dealing with the worst case O(k) many cluster sections for every heavy cell

when calling the LSH subroutine heavy cell by heavy cell, we construct a synthetic space out of the union of
all heavy cells in a level and apply the LSH subroutine on this entire space. We will be able to extend the
ℓ2 metric in a natural way to work across cells, ensure that the cells are far enough apart in this distance
measure so that bucket averages that land up “between" cells end up in the correct cell after projection, and
that the diameter of this synthetic space is still small enough to keep the improvements we have derived so
far.

There is one final technical point which must be addressed; we need to identify a lower bound on the
cluster section size to ensure that the ratio of the participating subset of the data to the size of the cluster
section does not grow to poly(n), which would lose us the advances we have made. Since there are at most
O(kL/β) many such cluster sections in a level, we simply set the threshold to be OPT · β

kL ·
1
L ·

1
dt2l

. Why
does this work? We recall that we allocated a cluster center at the center of every heavy cell, that ensures
that any cluster section has a candidate center at a distance of

√
dtl, so for a cluster section below the

threshold the cluster cost can be at most OPT · β
kL ·

1
L . Then, since there are at most O(kL/β) many such
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cluster sections, the net clustering cost for any one level across all cluster sections is OPT · 1L . Summing this
up over all L levels leads to an additional OPT term which again we can absorb into our constant factor
approximation.

We can summarize this lower bound on the cluster section size as O( OPT
kt2l poly logn

). We recall that the size
of the participating data set Dl was at most O(OPT /t2l ), which implies a ratio of k poly log n. A dependence
on n in the ratio that the LSH collision probabilities have to beat has been replaced by a dependence on k,
leading to a O

(︂
k1+O(1/2c2−1)

√
npoly log n

)︂
bound on the number of candidate centers allocated.

Constructing the proxy data set and undoing dimension reduction: In the one-round algorithm,
we constructed a set of candidate centers and undid the dimension reduction in essentially one round of
interaction. However, doing everything in one round increases the exponent of k; this was not apparent in
that analysis unless studies it carefully since the big-Oh term in the power of k in the number of candidate
centers dominated any similar order increases (such as being squared) in the big-Oh notation. Since our goal
in this section is to keep the error as low as possible, we avoid reducing the round complexity and instead
use two rounds of interaction; one to construct the proxy data set, and one to recover the cluster centers in
the original space.

The construction of the proxy data set is relatively straightforward; we release the collection of candidate
centers found and invite agents to privately reveal which candidate center is closest to them. Again by an
appeal to Bitstogram, we estimate the number of data points a candidate center serves and construct a proxy
data set by repeating each candidate center with multiplicity equal to its respective estimate. We then apply
the non-private clustering algorithm of our choice on the privately generated proxy data set to get cluster
centers S∗ = {s∗1, . . . , s∗k} in the dimension reduced space.

In the final round of interaction we reveal the set S∗, and we ask agents to privately reveal a k-tuple
of d′-dimensional vector where the ith vector equals its true location if s∗i is its closest cluster center in
the dimension reduced space, and is otherwise the 0 vector. In the same round of interaction, we ask them
to reveal which is the center closest to them. We then simply compute the noisy sum for each of the k
coordinates and divide that by the noisy count of the number of points mapping to the center corresponding
to that coordinate; we will be able to show that this estimate for the cluster center in the original space
works well in its place for a k-means clustering solution.

Outline: We divide the description and technical analysis of this algorithm into 4 parts. In subsection 4.2
we formally describe the dyadic hierarchy of cells needed to construct the algorithm. In subsection 4.3, we
use the identification of heavy and light cells in the previous subsection to partition the data set level-by-
level. Fixing any level, we prove that for any fixed optimal clustering, with probability 1 − β we allocate
candidate centers for most points in the partition corresponding to that level at an ℓ22 distance at most O(c2)
times their distance from the optimal centers. In subsection 4.4 we use the guarantees of subsection 4.3 to
show that the sum-of-squares cost of clustering the dimension reduced dataset via the candidate centers is
O(OPT ) modulo some additive error. We go on to show by applications of the weak triangle inequality
that the clustering functions of the proxy dataset and the dimension reduced dataset are close in ℓ22 distance
up to an O(OPT ) additive error. Then we bound the cost of the original dataset with respect to cluster
centers derived via the dimension reduced clustering and account for the privacy loss to derive our net cost
guarantee.

4.2 The cell grids and their hierarchy
In this subsection we formally define the cell grid hierarchy used to allocate candidate centers in the next
section and describe an algorithm that uses succinct histogram of cell counts to tag cells as being either heavy
or light. Apart from the definitions made, the main results of this subsection are lemma 4.8 which guarantees
lower and upper bounds for the number of data points that can lie in heavy and light cells respectively; and
lemma 4.10, which shows how we can use the identification of heavy and light cells to partition the data set
D, one partition per level, to get the subsets Dl for l ∈ [L].
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Data: For every level l ∈ [L], a succinct histogram of heavy-hitter cells CHl with error bound CHl
E

and maximum frequency omitted CHl
M .

1 for l ∈ [L] do
2 Hl ← ∅
3 Ll ← ∅
4 end
5 H0 ← C0
6 for i = l ∈ {2, . . . , L− 1} do
7 for C ∈ CHl do
8 if CHl(C) ≥ βd2 OPT

t2l kLd
+ CHl

E and Anc1(Cj) ∈ Hl−1 then
9 Hl ← Hl ∪ {Cj}

10 else
11 Ll ← Ll ∪ {Cj}
12 end
13 Ll ← Ll ∪ Cl\Hl

14 end
15 LL−1 ← CL−1

16 for l ∈ [L] do
17 Ml ← {C ∈ Ll : Anc1(C) ∈ Hl−1}
18 end
19 return {Hl,Ll,Ml : l ∈ [L]}

Algorithm 2: Heavy cell marker

We work over the domain [0, 1)d. We start by dividing this domain recursively in a dyadic fashion, with
L = ⌈lg n⌉ levels in all.

Definition 4.1. We formalize the construction of the dyadic hierarchy of cells.

1. A cell is a dyadic cube in (0, 1]d. Explicitly, if we let the set of cells at level l be denoted Cl; then

Cl :=

{︄
d∏︂

e=1

[︃
je
2l
,
je + 1

2l

)︃
: j ∈ {0, 1, . . . , 2l − 1}d

}︄
.

We also define the notation C := ∪iCi.

2. We let tl = 2−l for l ∈ [L]; with this notation, every C ∈ Cl has side-length tl. Note that with these
definitions the minimum side-length tL ≤ 1

n .

3. For all l ∈ [L], Anci : 2
C → 2C and Chi : 2

C → 2C are defined by the following expressions:

for C′ ⊂ Cl, Anci(C′) = {C ∈ Cl−i : C
′ ⊂ C for some C ′ ∈ C′},

for C′ ⊂ Cl, Chi(C′) = {C ∈ Cl+i : C ⊂ C ′ for some C ′ ∈ C′}.

We set Ci = {[0, 1)d} for i < 0; with this definition seeking the ancestor at a level above 0 always
returns the entire domain. It will not be necessary to define cells below level L. We abuse notation
so that any singleton set of cells is identified with the element in it; with this notation we also have
Chl : C → 2C and Ancl : C → C.

4. Anc∗ := Anc1.5 lg d. Note that for C ∈ Cl, Anc∗(C) is the unique cell that contains C and has side
length d3/2tl.

We recall the following lemma from Braverman et al. [2017]:
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Lemma 4.2 (Lemma 2.2, Braverman et al. [2017]). Let S be a finite set of points and CR be a d-dimensional
rectangular grid of cells with unit length R shifted by a uniformly random displacement in [0, R] along each
dimension. With probability at least 1− β,

⃓⃓
{C ∈ CR : z(S,C) ≤ R2/d2}

⃓⃓
= O(|S|/β).

Proof. The number of cells with side-length R within an ℓ2 distance of x < R/2 from any s ∈ S can be
bounded from above by N1N2 . . . Nd where Ni is 1 if there is no cell wall within a distance of s along the ith
dimension and 2 otherwise. Since the random shifts along each dimension are independent, it follows that

E

[︄
d∏︂

i=1

Ni

]︄
=

d∏︂
i=1

E[Ni].

The probability of si lying within a distance of x units of one of the sides is (2x/R). It follows that

E[Ni] =

(︃
1− 2x

R

)︃
· 1 + 2x

R
· 2

= 1 +
2x

R
.

Substituting in the first display, we get

⇒ E

[︄
d∏︂

i=1

Ni

]︄
=

(︃
1 +

2x

R

)︃d

.

It follows that for x ≤ R
d , the expected number of cells within an ℓ2 distance of x from s is at most O(1).

By linearity of expectation, the expected number of cells within a distance of R/d of S is at most O(|S|).
By Markov’s inequality, with probability 1 − β, the number of cells within a ℓ2 distance of R/d from S is
≤ O(|S|/β). The result follows directly as by definition z(·, ·) is the ℓ22 distance.

Remark 4.3. We fix any arbitrary optimal k-means clustering solution SOPT with clustering cost ≤ OPT
and condition on the event that the number of cells in any level l within a distance of tl/d from SOPT is
at most O(kL/β). By scaling the failure probability in lemma 4.2 by a factor of 1

L and applying the union
bound over L such events (one for each level) we see that this event holds with probability 1 − β. We will
also assume that OPT ≥ k

√
n. Note that if OPT < k

√
n then for any choice of SOPT fD(SOPT ) ≤ k

√
n.

Once we obtain an O(1) multiplicative approximation to k
√
n, this term can be absorbed by the additive

error term, so the guarantee as stated will hold unconditionally.

We partition the Cl into collections of heavy and light cells at every level depending on the number of
data points within each cell. We perform this partitioning algorithmically via algorithm 2.

Definition 4.4. C ∈ C is called heavy if C ∈ Hl for some l ∈ [L] where Hl ⊂ Cl is defined by the output
of algorithm 2. Similarly, C ∈ Cl is called light if C ∈ Ll for some l ∈ [L] for Ll defined by the output of
algorithm 2. We summarize the notation of algorithm 2 for cells and collections of cells here:

1. We denote the set of heavy cells at level l by Hl, and the set of light cells by Ll.

2. We denote the collection of all heavy cells byH := ∪lHl and the collection of all light cells by L := ∪lLl.

3. The center of any cell C is denoted by o(C) (this may be thought of as the origin of C).

4. The cell at level l containing p ∈ D is denoted by Cl(p).

We summarize some basic properties of heavy and light cells in lemma 4.5 as a sanity check.

Lemma 4.5. The following statements hold:

1. ∀l ∈ [L], Cl = Hl ⊔ Ll.
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2. If C ∈ L, then Chl(C) ⊂ L ∀l ≥ 0.

3. H0 = C0 = {[0, 1)d}

4. LL−1 = CL−1.

Proof. 1. This statement follows from the algorithm description - for every level < L a cell recovered from
Bitstogram is marked either heavy or light, and all other cells in that level are marked light. For level
L all cells are marked light.

2. This statement holds because a cell is marked heavy only if its parent was marked heavy in the previous
iteration.

3. This statement holds by line 5 of algorithm 2.

4. This statement holds by line 15 of algorithm 2.

The definition of the succinct cell count histograms CHl occurs later in this section in algorithm 4. Its
properties follow entirely from the Bitstogram guarantee and the definition of the value mapping. Since it is
used in algorithm 2 and is necessary in the analysis of algorithm 2, we will state and prove them here.

Corollary 4.6. CHl
E = O

(︂
1
ϵCH

√︁
n log n/β

)︂
and CHl

M = O
(︂

1
ϵCH

√︁
npoly log n/β

)︂
.

Proof. Fix any l ∈ [L]. Looking ahead, we see that CHl is derived from a call to Bitstogram on line 9 of
algorithm 4 with mapping fl : p ↦→ Cl(p), privacy parameter ϵCH, and failure probability β/L. We note that
the size of the co-domain for the mapping fl is at most 2dL. Since d, L = O(log n), substituting we get the
stated bounds.

Note that since |V | = 2dL = Ω(n), we can bound CHl
E = O(CHl

M ).

Remark 4.7. We recall that the significance of corollary 4.6 is that the Bitstogram guarantee gives us that
with probability 1−β, for every C ∈ Cl such that |D ∩ C| ≥ CHl

M , C ∈ CHl and
⃓⃓⃓
CHl(C)− |D ∩ C|

⃓⃓⃓
≤ CHl

M .

In lemma 4.8 we characterize the accumulation of data in heavy and light cells across different levels.

Lemma 4.8. For all l ∈ [L], the following properties hold:

1. If C ∈ Hl, |D ∩ C| ≥ max
(︂
CHl

M , βOPT
t2l kLd

)︂
.

2. If C ∈ Ll, |D ∩ C| < min
(︂
CHl

M , βOPT
t2l kLd

+ 2CHl
M

)︂
= CHl

M .

3. |Hl| ≤ O
(︂

kL
β

)︂
.

Proof. 1. If a cell C ∈ Cl is marked heavy, then it must have occurred in the histogram CHl and so
|D ∩ C| ≥ CHl

M , or it is the solitary top cell. In the former case, since the count estimate crossed
the threshold to be considered heavy, |D ∩ C| ≥ βOPT

t2l kLd
+ CHl

E − CHl
E = βOPT

t2l kLd
. In the latter case,

substituting l = 0 we see that the desired lower bound is OPT
kLd . Since OPT can be at most n, and

|D ∩ C| = n, the bound holds.

2. If a cell C is marked light then either |D ∩ C| < CHl
M , Anc1(C) ∈ Ll−1, or it is a bottom level cell. In

the first three cases, by induction down the levels l, since |D ∩ C| ⊂ |D ∩Anc1(C)| and both βd2 OPT
t2l kLd

and CHl
M are monotonically increasing with l, the result follows by the induction hypothesis. Note that

since the top cell is always marked heavy, the base case is vacuously true. In the last case, we substitute
l = log n − 1 to get CHl

M ≥
βOPT
t2l kLd

≥ βn2k
√
n

kLd ≥ βn2.5/ log2 n, which is asymptotically impossible for
failure probability β ≥ 1

n2 and certainly for β = Θ(1).
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3. We fix any optimal k-means solution SOPT . By remark 4.3,
⃓⃓
{C ∈ Cl : z(C, SOPT ) ≤ 1/(4ld2)}

⃓⃓
=

O(kL/β). For any C ∈ Hl such that z(C, SOPT ) > 1/(4ld2), from statement 1 we have that |C ∩
D| = max

(︂
βOPT
t2l kLd

,CHl
M

)︂
≥ βd2 OPT

t2l kL
. It follows that fC∩D(SOPT ) >

t2l
d2 · βd

2 OPT
t2l kL

= βOPT
kL . Since∑︁

C∈Hl
fC∩D(SOPT ) < fD(SOPT ) ≤ OPT it follows that there cannot be more than kL

β many such

C. In sum, |Hl| ≤ O
(︂

kL
β

)︂
.

We now define a decomposition of the data set D using the definitions of the heavy and light cells.

Definition 4.9. For l ∈ [L], we define Dl = {p ∈ D : Cl−1(p) ∈ H, Cl(p) ∈ L}.

Lemma 4.10. The following statements hold.

1. D = ⊔l∈[L]Dl.

2. ∀l ∈ [L], |Dl| = O(d2 OPT /t2l ) +O
(︂

kLCHM

β

)︂
.

3.
∑︁

l∈[L]
1

4ld2L
|Dl| = O(OPT ) +O

(︂
kLCHM

β

)︂
.

Proof. 1. By lemma 4.5, we see that the solitary top cell [0, 1)d is heavy, and that CL ⊂ L. Further, for
every l ∈ [L], if C ∈ Ll then Chj(C) ∈ L. It follow that for any point p, in the sequence of cells
C0(p), C1(p), . . . , CL(p) there exists a unique index l∗ such that Cl∗−1(p) ∈ H and Cl∗(p) ∈ L. The
existence of such an index shows that the sets Dl cover D, and the uniqueness shows that this is in
fact a partition.

2. By definition, Dl is a subset of ∪C∈Ll
C, which means we can write Dl = ∪C∈Ll

D ∩C. This union can
in turn be written as a disjoint union of points in light cells at a distance ≤ tl/d from SOPT and points
in light cells > tl/d away from SOPT . From lemma 4.8, any light cell contains at most CHM many
points of D. Since there are at most O(kL/β) cells with side length tl within a distance of tl/d, it
follows that there are at most CHM ·O

(︂
kL
β

)︂
many points within a distance of tl/d from SOPT . Since

the total clustering cost for SOPT must equal OPT , there can be at most d2 OPT 2
l many points more

than tl/d away from SOPT . Therefore in sum |Dl| ≤ O(d2 OPT /t2l ) +O
(︂

kLCHM

β

)︂
.

3. The second bound follows directly from the first.

4.3 Candidate center allocation
We begin by giving a brief overview of the main steps in algorithm 4.

Step 1 - Initialization and first interaction: We start by setting up the dimension reduction, scaling
and projection map Q. We then have our first round of interaction with the agents where we make L calls to
Bitstogram in parallel to receive estimates of how many points lie in each cell. We then make geometrically
varying guesses for OPT k

√
n2f for f ∈ [F ] where F = log2

n√
nk

; note that with this definition our guesses

vary in powers of two from k
√
n to n. For each guess we generate a marking of cells {Hf

l ,L
f
l ,M

f
l } by calls to

algorithm 2, whereMf
l (think medium) is notation of convenience to denote light cells with heavy parents.

Note that Dl defined earlier is precisely the set of data points which happen to lie in cells inMf
l in level l.
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Data: Guess for OPT = k
√
n · 2f , Cell labels (Hl,Ml,Ll), Bucket histogram BHl,m,r, Bucket Sum

Oracle BSOl,m,r for l ∈ [L], m ∈ [M ], r ∈ [R],
1 Data drawn from global variables: number of levels L, number of LSH scales M , number of

repetitions R
2 SH ← {o(C) : ∃iC ∈ Hi}

3 Tl =
p(1)
2 ·max

(︃
βOPT
t2l kL

2d
, 4BHM

p(1) , O

(︃
cG
√

n poly logn/β

ϵBSO

)︃)︃
; /* Bucket threshold */

4 Sl ← ∅
5 for l ∈ [L], m ∈ [M ], r ∈ [R] do
6 for (b, n̂b) ∈ BHl,m,r such that n̂B ≥ Tl do
7 b̂← BSOl,m,r(b)

BHl,m,r(b)

8 Πl(b̂)← project b̂ to Λf
l (∪C∈Hf

l
C)

9 Sl ← Sl ∪ {b̂}
10 end
11 end
12 return SH ∪

⋃︁L
l=1 Sl

Algorithm 3: Candidate Center Allocation for k-Means in Dimension-Reduced Space given OPT

Step 2 - Candidate center allocation and second interaction We start by defining M , the number
of LSH scales, and R the number of independent repetitions of the hashing subroutine to boost the success
probability. We then define a mapping Λf

l : Rd → RHf
l × Rd where the co-domain is a synthetic space

mimicking the union of all heavy cells upon which we can define our LSH functions. Concretely, for points p
such that Anc∗(Cl(p)) is a heavy cell, the image is a 2-tuple of a |Hl−1.5 lg d| length indicator vector indicating
which heavy ancestor cell p lies in, and the p’s position with respect to the center of its ancestor cell. Finally
we construct the mapping Hl,m,r,f which computes the output of a (p(1), p(c), rl,m, crl,m) hash function if
the point p lies in Dl (which is true if and only if Cl(p) ∈ Ml) and a null bucket value otherwise (i.e. no
participation). The heavy buckets of these hash functions are privately recovered via calls to Bitstogram
and we also recover the sums of all vectors mapping to heavy buckets via a call to HeavySumsOracle, the
consequence succinct histogram and sum oracle are BHl,m,r,f and BSOl,m,r,f respectively.

For every guess for OPT we pass these histograms and oracles to algorithm 3, which allocates a candidate
center Πl(b̂) for every heavy bucket b whose count n̂b crosses a certain threshold Tl. The location at which it
allocates that actual center is found by querying the oracle for the sum of all points mapping to this bucket
to get a value BSOl,m,r,f (b) and dividing this vector sum by the histogram count BHl,m,r,f (b) = n̂b; this is
an estimate of the average over all points mapping to this bucket. We then project this average to the space
Λl to get the point Πl(b̂). Algorithm 3 also allocates a candidate center at the center of every heavy cell. It
then returns all centers found to the calling function algorithm 4 which stores the centers passed by the call
with the guess k

√
n · 2f for OPT in Sf . The net bi-criteria solution then is simply S = ∪f∈[F ]S

f which it
passes to the center recovery algorithm algorithm 5 along with the dimension reduction and random shift
mapping Q.

The main results of this section are lemma 4.21, which allows us to derive a guarantee and lemma 4.23,
which bounds the total number of candidate centers allocated.

Definition 4.11. We record some notation that will be convenient to use in the course of our analysis.

1. We denote the data set in the original space Rd′
by D′ and in the dimension reduced space Rd (after

scaling, projection, and translation) by D = M(D′).

2. We let the optimal clustering cost in the original space be denote OPT ′, and the dimension reduced
optimal clustering cost be denoted OPT .
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1 Setting: Distributed dataset D′ ⊂ Rd′
over n agents

/* Step 1: Initialization and first interaction */
2 γ ← uniformly random vector in [−1/2, 1/2]d

3 T : Rd′ → Rd dimension reduction for d = O(log(k/αβ)/α2)

4 S : Rd → Rd scaling by a factor 1
2(1+α)

5 P : Rd → B(0, 1/2) projection to B(0, 1/2) followed by translation by γ

6 Q = P ◦ S ◦ T : Rd′ → B(0, 1) ⊂ Rd

7 L = lg n
8 Do in parallel:
9 CHl ← Bitstogram(Cl ◦Q(·), ϵCH, β/L) ; /* Cell-wise Histogram of points */

10 end
11 F = log2

n√
nk

; /* Exponent of 2 in guess for OPT */
12 for f ∈ [F ] do
13 {Hf

i ,L
f
i ,M

f
i : i ∈ [L]} ← HeavyCellMarker({CHl : l ∈ [L]}, guess for OPT = k

√
n · 2f )

14 end
/* Step 2: Candidate center allocation and second interaction */

15 M = 1 + log2 d
3/2
√
L = O(log log n) ; /* Number of LSH scales */

16 rl,m = 2mtl
d
√
L

for m ∈ [M ] ; /* LSH scales */

17 R = O
(︂

log kL2/β
p(1)

)︂
; /* Number of repetitions for LSH */

18 λl = (14c+ 5)tl
√
d

19 Λf
l (·) := p ↦→

{︄
(λl1Anc∗(C(p)), p− o(Cl(p))) if p ∈ ∪C∈Anc∗(Hf )C

0 otherwise
; /* Mapping to LSH domain */

20

Hl,r,m,f (p) =

{︄
(p(1), p(c), rl,m, crl,m)-sensitive Hash function on the space Λf

l if Cl(p) ∈Ml

⊥ otherwise

Do in parallel for f ∈ [F ], l ∈ [L],m ∈ [M ], r ∈ [R]:
21 BHl,m,r,f ← Bitstogram(Hf

l,m,r, β, ϵBH) ; /* Bucket-wise Histogram of points */
22 BSOl,m,r,f ← HeavySumsOracle(Hl,m,r,f ,Λl, β, ϵBSO) ; /* Bucket Sum Oracle */
23 end
24 S ← ∅
25 for f ∈ [F ] do
26 Sf ← algorithm 3 (Guess for OPT = k

√
n · 2f , {Hf

i ,L
f
i ,M

f
i : i ∈ [L]},BHl,m,r,f ,BSOl,m,r,f )

S ← S ∪ Sf

27 end
28 return (algorithm 5(S,Q))

Algorithm 4: LDP k-means with low additive error
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3. We fix an arbitrary optimal solution SOPT in the dimension reduced space; we will show that our
allocation of candidate centers competes well with SOPT . Note that in particular fD(SOPT ) = OPT .

Lemma 4.12. With probability 1− β, we have that for every clustering (D′
1, . . . , D

′
k) of D′,

∑︂
i∈k

∑︂
p∈D′

i

s

(︄
p,

∑︁
q∈D′

i
q

|D′
i|

)︄
≃1+O(α)

∑︂
i∈k

∑︂
p∈M(D′

i)

s

(︄
Q(p),

∑︁
q∈D′

i
Q(q)

|D′
i|

)︄
.

Further, with this notation OPT = Θ(OPT ′) and D = M(D′) ⊂ [0, 1)d.

Proof. We write Q = P ◦ S ◦ T , where T is the dimension reduction to O(log(k/αβ)/α2), S is the scaling
by a factor of 1/2(1 + α), and P is projection to the unit ball. Given any clustering (D1, . . . , Dk) of D, by
theorem 2.7 we have that∑︂

i∈k

∑︂
p∈Di

s

(︃
p,

∑︁
q∈Di

q

|Di|

)︃
≃1+α

∑︂
i∈k

∑︂
p∈Di

s

(︃
T (p),

∑︁
q∈Di

T (q)

|Di|

)︃
.

The scaling map changes all ℓ2-distances by precisely the scaling factor, so we also have that

∑︂
i∈k

∑︂
p∈Di

s

(︃
T (p),

∑︁
q∈Di

T (q)

|Di|

)︃
=

1

(1 + α)2

∑︂
i∈k

∑︂
p∈S◦TDi

s

(︃
S ◦ T (p),

∑︁
q∈Di

S ◦ T (q)
|Di|

)︃
.

Since with probability 1− β all points lie in B(0, 1/2) after scaling by a factor of 1/2(1 + α), the projection
map does not move any point and hence the same clustering cost is preserved. Finally, translating all points
by the same offset γ makes no difference to the clustering cost. The fact that OPT = Θ(OPT ′) is a direct
consequence of the equality between clustering costs (up to small multiplicative approximation) derived
above.

Definition 4.13. Fixing any level l, we make some definitions to aid our cost analysis.

1. Let D†
l :=

{︁
p ∈ Dl : z(p, SOPT ) ≤ dt2l

}︁
. We make this definition because for every p ∈ Dl, o(Cl−1(p)) ∈

SH and z(p, o(Cl−1(p))) ≤ dt2l , so D†
l is the set of points that remains to be covered competitively with

SOPT by allocating candidate cluster centers via LSH.

2. For s ∈ SOPT , let D†
l (s) = {p ∈ D†

l : argmins′∈SOPT
z(p, s′) = s}.

3. From remark 4.3, we see that there are at most O(kL/β) non-empty intersections of cells C with
clusters D†

l (s). For every such cell C, we call D∗
l (s) ∩ C a cluster section.

4. Let sA be the optimal center for a cluster section A. We can partition A depending on what distance
any point in it lies from sA via geometrically increasing thresholds

{︂
tl

d
√
L
, 2tl
d
√
L
, 22tl
2ld

√
L
, . . . ,

√
dtl

}︂
. For

ease of notation we denote these thresholds rl,1, . . . , rl,M and set rl,0 = 0. By definition, there are M =

log2(d
3/2
√
L) = O(log log n) many such thresholds. With this notation we define the geometrically

thresholded partitions of A as Aj := {p ∈ A : ∥p− sA∥ ∈ [rl,j , rl,j+1)} for j = 0, . . .M . Further, let
Am

0 denote the partial union
⋃︁m

j=0 Aj for m = 0, . . . ,M .

Lemma 4.14. With probability 1− β, for all l ∈ [L] we have the following bound on the number of cluster
sections. ∑︂

s∈SOPT

⃓⃓⃓
{C ∈ Anc∗(Hl) : C ∩D†

l (s) ̸= ∅}
⃓⃓⃓
= O(kL/β)
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Proof. From lemma 4.2, we know that

E
[︂⃓⃓⃓
{C ∈ Anc∗(Hl) : C ∩D†

l (s) ̸= ∅}
⃓⃓⃓]︂

= O(1).

By linearity of expectation and Markov’s inequality (in that order), it follows that with probability 1−β/L,∑︂
s∈SOPT

⃓⃓⃓
{C ∈ Anc∗(Hl) : C ∩D†

l (s) ̸= ∅}
⃓⃓⃓
= O(kL/β).

To catch cluster sections which have some O
(︂

βOPT
t2l kL

2d

)︂
-many points, we use LSH functions applied on a

union of heavy cells, where we modify the norm so that the distance between two different cells is always
> 2c ·

√
d · (d3/2tl), i.e. 2c · Diam(C) units where C is any cell in the ancestor level. The diameter of this

entire space is still O(Diam(C)) and since the smallest distance at which we need to allocate cluster centers
to serve cluster sections is tl

d
√
L

, the ratio of the distance to the farthest false positive to the ratio of the
distance of the closest clustering distance is O(poly log n).

As discussed in the beginning of the section, this allows us to use LSH functions with reasonable
parameters and not end up allocating too many candidate centers. The average of heavy buckets corresponding
to sufficiently large cluster sections lie within a distance of c times the threshold at which we are competing
with SOPT . Then, by the triangle inequality it will follow that since any two cells are at a distance of strictly
greater than 2cDiam(C), this average will be closer to the cell in which the cluster section lies than to all
other cells. Since a cell is a convex set, we can project to this cell and be assured that the distance to the
cluster section the candidate center is meant to cover is not any greater and therefore that we have allocated
a candidate center at the desired distance.

Remark 4.15. For the rest of this subsection, we analyse the call to algorithm 3 with the “correct" value
of f , i.e. the call such that k

√
n2f−1 ≤ OPT < k

√
n2f . Since k

√
n2f = Θ(OPT ), we will simply refer

to k
√
n2f as OPT . We will need to scale all failure probabilities by F to ensure that the guarantees hold

simultaenously for all calls to algorithm 3 with probability 1− β.

Definition 4.16 (Synthetic space for LSH functions). 1. Let λl denote (14c+ 5)rl,M = (14c+ 5)tl
√
d.

2. Let Λl = RAnc∗(Hl) × Rd. We define a mapping Λl : [0, 1)
d → Λl as follows;

Λl(p) =

{︄
(λl1Anc∗(Cl(p)), p− o(Cl(p))) if p ∈ Dl

0 otherwise

We note that for p ∈ Dl, Λl(p) is a two-tuple consisting of scaled indicator vector and a copy of the
cell itself translated so that the center of the cell lies at the origin. In words, if p ∈ Dl then the
indicator vector indicates which cell in the ancestor level a point lies in. Since this space as defined
lies in RAnc∗(Hl) ×Rd, it inherits the ℓ2 norm in the canonical way which we denote ∥·∥Λ.

3. We have the projection maps to the factor spaces p1 : Λl → RAnc∗(Hl) and p2 : Λl → Rd. Since
Λl = RAnc∗(Hl) × Rd is the direct sum of the vector subspaces RAnc∗(Hl) and Rd we have that ∥·∥2Λl

=

∥p1(·)∥2 + ∥p2(·)∥2.

Lemma 4.17. The following statements hold.

1. For any p, q ∈ [0, 1)d if it is the case that Anc∗(Cl(p)) ̸= Anc∗(Cl(q)), then ∥p− q∥Λ > λl.

2. The diameter of the set of points Λl(Dl) is O(λl).

Proof. 1. By the properties of ∥·∥Λl
, we have that ∥p− q∥Λ ≥ ∥p1(p− q)∥. Since Anc∗(Cl(p)) ̸= Anc∗(Cl(q)),

∥p1(p− q)∥ ≥ λl

√
2 (∥p1(p− q)∥ being the difference of two different basis vectors in RAnc∗(Cl) scaled

by λl. The result follows directly.
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2. The bound follows by appealing to the properties of ∥·∥Λ.

∥p− q∥Λ =

√︂
∥p1(p− q)∥2 + ∥p2(p− 1)∥2

≤ ∥p1(p− q)∥+ ∥p2(p− q)∥

≤ λl

√
2 + d3/2tl

= O(λl).

Lemma 4.18. For c >
√
2, there is a choice of LSH parameters such that

p2(1)

p(c)
≥ k poly log n

ϵCHβ2

p(1) ≥ Ω̃
(︂
(k poly log n)−1/c′

)︂
,

logNB = Õ(poly log n/(ϵCHβ)),

where the Õ and Ω̃ notation suppress O(log log n) terms and c′ = c2/8− 1/4. It will be convenient to write
1/c′ = O(1/(2c2 − 1)).

Proof. This result is a direct corollary of lemma 2.15. We bound all occurrences of log k from above by
log n.

We state and prove the guarantees of the bucket histogram as derived from the Bitstogram guarantee.

Lemma 4.19. For every l ∈ [L], m ∈ [M ], r ∈ [R], and f ∈ [F ] with probability 1 − β/(LMRF ) in every
call to algorithm 3,

BHl,m,r,f
E = O

(︃
1

ϵBH

√︁
n log n/β

)︃
BHl,m,r,f

M = O

(︃
1

ϵBH

√︁
npoly log n/β

)︃
As these bounds are invariant in l, m, r, and f we will find it convenient to drop these indices without loss.
Since BHM = Ω(BHE), we will simply use a uniform bound of BHM for the estimation error of any frequency
query.

Proof. Fix any l ∈ [L], m ∈ [M ], r ∈ [R], and f ∈ [F ]. We see that BHl,m,r,f is derived from a call to
Bitstogram with the mapping hl,m,r = p ↦→ HAnc(Cl(p),m,r)(p) and failure probability β/(LMR). If the size
of the co-domain is the number of buckets NB for this LSH function, then from lemma 2.11 we have that

BHl,m,r,f
M = O

(︃
1

ϵBH

√︁
n log(NB · LMRF/β) log(LMRF/β)

)︃
.

From lemma 4.18 we have that logNB = Õ(poly log n/(ϵCHβ)). Note that since L,M,F = O(log n), R =

O
(︂

log(kL2/β)
p(1)

)︂
and p(1) = Ω̃

(︂
(k poly log n)−O(1/(2c2−1))

)︂
, it follows that log(LMRF/β) = O(log n/β).

Substituting, we get the stated bound. The expression for BHl,m,r,f
E follows similarly.

We see that BHl,m,r,f
E = O(BHl,m,r,f

M ), which we use throughout the remainder of the proof.

Remark 4.20. We observe that by the union bound, lemma 4.19 implies that with probability 1 − β, for
all levels l ∈ [L], thresholds m ∈ [M ], repetitions r ∈ [R], and OPT guess parameter f ∈ [F ], the frequency
query estimation error bound BHM holds.

40



Lemma 4.21. Let Am
0 be a partial union for some cluster section A ⊂ D†

l (s
∗) ∩ C such that |Am

0 | ≥

max

(︃
βOPT
t2l kL

2d
, 2BHM

p(1) , O

(︃
cG
√

n poly logn/β

ϵBSO

)︃)︃
. With probability 1 − β

kL2MF there is a point Πl(p̂m) ∈ Sl such

that for every point p ∈ Am
0 , ∥p− p̂m∥ = O(crl,m).

Proof. We observe that if r is the diameter of Am
0 in Λl then r ≤ rl,m+1 (as all points lie inside the

same ancestor cell, the distance between them does not increase in the space Λl). Lemma 2.16 gives us
that for any fixed arbitrary point pm ∈ Am

0 , if the average of all points that collide with pm under a
(p(1), p(c), 2rl,m+1, 2rl,m+1c)-sensitive hash function is denoted p̄m then with probability p(1)/4,

∥pm − p̄m∥Λl
≤ 2crl,m+1 +

8p(c)|Dl|
p2(1)|Am

0 |
∆′.

Since |Dl| = O(OPT d2/t2l ), ∆
′ is Diam(Λl) = O(ctl

√
d), and |Am

0 | ≥
βOPT
t2l kL

2d
, we get

∥pm − p̄m∥Λl
≤ 2crl,m+1 +

p(c)

p2(1)
·
(O(OPT d2/t2l ) +O( 1

ϵCHβ
k
√
npoly log n))t2l kL

2d

βOPT
· ctl
√
d

≤ 2crl,m+1 +
p(c)

p2(1)

(︄
O(OPT d2/t2l ) · t2l kL2d

βOPT
+

(O( 1
ϵCHβ

k
√
n poly log n))t2l kL

2d

βOPT
· ctl
√
d

)︄

≤ 2crl,m+1 +
p(c)

p2(1)

(︃
O(ctlk poly log n)

β
+

O(ctlk poly log n)

ϵCHβ2

)︃
where in the above we use that OPT ≥ k

√
n. Since rl,m+1 ≥ tl

d
√
L

if we choose the LSH parameter such
that

p(c)

p2(1)
≤ ϵCHβ

2

k poly log n

then ∥pm − p̄m∥Λl
≤ 3crl,m+1. Note that the bound on this ratio does not vary with threshold rl,m or level

l. This explains the uniform choice of LSH parameters used in algorithm 4. Lemma 4.18 bounds from below
the probability p(1) and from above the number of buckets NB for this choice of LSH parameter.

For any successful run, since ∥pm − p̄m∥Λl
≤ 3crl,m+1, by the triangle inequality, for any p ∈ Am

∥p− p̄m∥Λl
≤ ∥p− pm∥Λl

+ ∥pm − p̄m∥Λl

≤ rl,m+1 + 3crl,m+1

≤ (3c+ 1)(2rl,m).

Since the success probability p(1)/4 does not depend upon the level or threshold, a uniform number of
R = O(log(kL2F/β)/p(1)) = O((k logn

β )O(1/(2c2−1)) log n) many independent repetitions of this LSH scheme

boost the success probability from p(1)
4 to 1− β

kL2MF . Lemma 2.16 also guarantees that in the successful LSH
run at least p(1)

2 ·|A
m
0 |many points in Am

0 will collide with pm. If p(1)
2 ·|A

m
0 | ≥ BHM , then hl,m,r(pm) ∈ BHl,m,r

(lemma 4.19), where BHM = O
(︂

1
ϵBH

√︁
npoly log n/β

)︂
. For every Hl,m,r,f (pm) ∈ BHl,m,r,f , algorithm 4

computes an estimate for p̄m which we denote

p̂m :=
BSOl,m,r(pm)

BHl,m,r,f (pm)
.

By lemma B.1, if hl,m,r(pm) ∈ BHl,m,r,f , then the estimation error on querying BSO(hl,m,r(pm)) obeys the
bound⃦⃦⃦⃦
⃦
∑︁

p:Hl,m,r,f (p)=Hl,m,r,f (pm) p− o(C)

|{p : Hl,m,r,f (p) = Hl,m,r,f (pm)}|
− BSOl,m,r,f (pm)

BHl,m,r,f (pm)

⃦⃦⃦⃦
⃦
Λl

≤ 1

Ω(|Am
0 |)
·O
(︃
cG Diam(Λl)

ϵBSO

√︂
n log2 n/β

)︃
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≤ O

⎛⎝cGλl

√︂
n log2 n/β

|Am
0 |ϵBSO

⎞⎠ .

In the above we used that d = O(log n) to substitute for it in the estimation error. It follows that if |Am
0 | ≥

cGcBSO Diam(Λl)
√

n log2 n/β

crl,mϵBSO
for some universal constant cBSO derived from the HeavySumsOracle guarantee then

the additional estimation error in ∥·∥Λ norm incurred is crl,m. Substituting, we get that it would suffice to
have

|Am
0 | ≥ Ω

⎛⎝cGλl

√︂
n log2 n/β

crl,mϵBSO

⎞⎠
⇔ |Am

0 | ≥ Ω

⎛⎝cG · cd2tl ·
√︂

n log2 n/β

crl,mϵBSO

⎞⎠
⇐ |Am

0 | ≥ Ω

⎛⎝2cG

√︂
nd6L log2 n/β

ϵBSO

⎞⎠
where in the above we lower bound rl,m by rl,1.

So in sum, we have that for any cluster union Am
0 such that |Am

0 | ≥
cG
√

nd6L log2 n/β

ϵBSO
, for some fixed

arbitrary point pm ∈ Am
0 , with probability 1 − β/(kL2F ) there exists a hash function Hl,m,r,f for some

r ∈ [R] such that the estimate of the average p̂m over the bucket that pm maps to lies within a distance of
crl,m units of p̄m, the true average over the heavy bucket, which lies within a distance of (6c+ 2)rl,m of the
point pm, and by the triangle inequality ∥pm − p̂m∥ ≤ (7c+ 2)rl,m.

Now since the distance between any two different cells in the space Λl is strictly greater than (14c +
5)rl,m > 2∥pm − p̂m∥, it follows from the triangle inequality that Πl(p̂m) the projection of p̂m onto ∪C∈Hl

C
lies in the cell C. Indeed, it was to ensure this guarantee that we chose our value of λl. Since Πl(p̂m) is a
projection onto a convex set, ∥Πl(p̂m)− p̂m∥ ≤ ∥pm − p̂m∥. Now since the diameter of Am

0 is rl,m+1 = 2rl,m,
it follows that every point in Am

0 lies within a distance of O(crl,m) units of Πl(p̂m).

Lemma 4.22. We have the following bound on Sl, the number of candidate centers allocated per level in
algorithm 3.

|Sl| = O

(︃
k poly log n

β

)︃1+O(1/(2c2−1))

Proof. A candidate center is allocated for every b ∈ BHl,m,r such that BHl,m,r(b) ≥ Tl − BHM where

Tl =
p(1)

2
·max

(︄
βOPT

t2l kL
2d

,
4BHM

p(1)
, O

(︄
cG
√︁

npoly log n/β

ϵBSO

)︄)︄
.

The set of buckets which are identified as having these many points is at most the set of buckets which have
Tl − 2BHM many points in them. Therefore we want to bound from above the quantity |Dl|/(Tl − 2BHM ).
Since Tl ≥ 4BHM , we can write

|Dl|
Tl − 2BHM

≤ 2|Dl|
Tl

≤
O(d2 OPT /t2l ) +O

(︂
kLCHM

β

)︂
max

{︂
p(1)
2

βOPT
t2l kL

2d
, 2BHM

}︂
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≤ O(d2 OPT /t2l )
p(1)
2

βOPT
t2l kL

2d

+O

(︃
kLCHM

β
· 1

BHM

)︃

≤ O

(︃
2

p(1)
· kL

2d3

β

)︃
+O

(︃
kLCHM

βBHM

)︃
.

We use that OPT ≥ k
√
n, CHM = O

(︂
1
ϵCH

√︁
n poly log n/β

)︂
, BHM = 1

ϵBH

√
n poly log n and that

1

kO(1/(2c2−1)) poly log n
≤ ϵCH

ϵBH
≤ kO(1/(2c2−1)) poly log n

to get

|Dl|
Tl − 2BHM

≤ O

(︃
2

p(1)
· kL

2d3

β

)︃
+

kLCHM

βBHM

= O

(︃
k poly log n

β

)︃1+O(1/(2c2−1))

+
k poly log n

β

= O

(︃
k poly log n

β

)︃1+O(1/(2c2−1))

.

Taking the union over all possible values of (l,m, r) and absorbing the addition log factors in the poly log
term, we get the stated bound. The fact that the bounds on the ratio of ϵCH to ϵBH is adhered to can be
checked in the proof of the main theorem at the end of this section.

Lemma 4.23. In algorithm 4, the following bound holds for the total number of candidate centers allocated.

|S| =
(︃
k poly log n

β

)︃1+O(1/(2c2−1))

Proof. We observe that S in algorithm 4 equals ∪f∈O(logn)Sf is the union of F = O(log n) many sets of
candidate centers returned by calls to algorithm 3. It therefore suffices to bound the set of candidate centers⃓⃓⃓⃓

⃓⃓SH ∪
⋃︂
l∈[L]

Sl

⃓⃓⃓⃓
⃓⃓

returned by algorithm 3. From lemma 4.22, by adding the bounds for Sl over L levels, absorbing the factor
of L into the poly log n term and noting that the |SH| = O(kL2/β) ·L summand is asymptotically dominated
by |∪l∈LSl|, we get that

⃓⃓
Sf
⃓⃓
= O

(︃
k poly log n

β

)︃1+O(1/(2c2−1))

.

The stated bound now follows simply be absorbing an O(log n) factor in the poly log term.

Definition 4.24. Let f∗ denote the “correct" call to algorithm 3, i.e. the unique value of f ∈ [F ] such that
k
√
n2f−1 ≤ OPT < k

√
n2f

Lemma 4.25. Let A ⊂ D†
l (s) ∩ C be some cluster section. Then with probability 1− β/kL2 we have that

fA(S
f∗
) = O(fA(SOPT ) + max

(︄
βOPT

t2l kL
2d

,
4BHM

p(1)
, O

(︄
cG
√︁
n poly log n/β

ϵBSO

)︄)︄
· dt2l +

c2t2l
d2L

· |A|.
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Proof. Let m′ be the largest index such that |Am′

0 | < max

(︃
βOPT
t2l kL

2d
, 4BHM

p(1) , O

(︃
cG
√

n poly logn/β

ϵBSO

)︃)︃
. We can

write

fA(S
f∗
) ≤ fAm′

0
(Sf∗

) +

M∑︂
m=m′+1

fAm
(Sf∗

).

For every m > m′, by lemma 4.21 we know there is a candidate center Πl(p̂m) ∈ Sf∗
such that for every

point p ∈ Am
0 , ∥p−Πl(p̂m)∥ = O(crl,m). Since for all p ∈ Am ⊂ Am

0 , ∥p− s∥ ≥ rl,m, it follows that with
probability 1−β/kL2M , fAm(S) ≤ O(fAm(SOPT )+c2r2l,1. By the union bound, we have that this guarantee
holds for all thresholds with probability 1− β/kL2. Substituting this bound, we get

fA(S
f∗
) ≤ max

(︄
βOPT

t2l kL
2d

,
4BHm

p(1)
, O

(︄
cG
√︁

npoly log n/β

ϵBSO

)︄)︄
· dt2l +

M∑︂
m=m′+1

[︁
O(cfAm

(SOPT )) + c2r2l,1
]︁

≤ max

(︄
βOPT

t2l kL
2d

,
4BHM

p(1)
, O

(︄
cG
√︁
n poly log n/β

ϵBSO

)︄)︄
· dt2l +O(fA(SOPT ) +

c2t2l
d2L

· |A|.

Lemma 4.26. The following bound holds.

fDl
(Sf∗

) = O(fDl
(SOPT )) +O(OPT /L) +O(CHM/(d2β))

+O

(︃
cG

ϵBSOβ
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
Proof. Let A be the set of all cluster sections. We know that |A| = O(kL/β) and that D†

l = ⊔A∈AA. We
can write

fD†
l
(Sf∗

) =
∑︂
A∈A

fA(S
f∗
)

=
∑︂
A∈A

[︄
O(fA(SOPT ) +

c2t2l
d2L

· |A|+max

(︄
βOPT

t2l kL
2d

,
4BHM

p(1)
, O

(︄
cG
√︁

npoly log n/β

ϵBSO

)︄)︄
· dt2l

]︄

= O(fD†
l
(SOPT )) +

c2t2l
d2L

·
⃓⃓⃓
D†

l

⃓⃓⃓
+max

(︄
O

(︃
OPT

L

)︃
,
4BHM

p(1)
O

(︃
kLd

β

)︃
, O

(︄
cGk

√︁
n poly log n/β

ϵBSOβ

)︄)︄
where in the above we absorb a factor of d in the poly log n expression. To bound the second term, we recall
that |Dl| ≤ O(d2 OPT /t2l ) +O(kLCHM/β). Substituting, we get

c2t2l
d2L

·
⃓⃓⃓
D†

l

⃓⃓⃓
≤ c2t2l

d2L
· (O(d2 OPT /t2l ) +O(kLCHM/β))

≤ O(OPT /L) +O(kCHM/(d2β))

We now simplify the last term in the upper bound for fD†
l

by noting that for any call to algorithm 4, the
parameter c is a constant, that d, L = log n, and that since we can let ϵBSO = ϵBH (as they are called exactly
the same number of times). In sum

max

(︄
O

(︃
OPT

L

)︃
,
4BHM

p(1)
O

(︃
kLd

β

)︃
, O

(︄
cGk

√︁
n poly log n/β

ϵBSOβ

)︄)︄

≤ O

(︃
cG

ϵBSOβ
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
.
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We recall that D†
l = {p ∈ Dl : z(p, SOPT ) < dt2l }. It follows that if p ∈ Dl\D†

l then z(p, SOPT ) > dt2l ,
in which case z(p, SH) < z(p, SOPT ). In sum, fDl

(Sf∗
) ≤ fD†

l
(Sf∗

) + fDl
(SOPT ), from which the stated

bound follows directly.

Lemma 4.27. The following bound holds.

fD(S) = O(OPT ) +O

(︃(︃
cG

ϵBSOβ
+

1

ϵCH

)︃
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
.

Proof.

fD(Sf∗
) =

∑︂
l∈[L]

fDl
(Sf∗

)

=
∑︂
l∈[L]

[︃
O(fDl

(SOPT )) +O(OPT /L) +O(kCHM/(d2β))

+O

(︃
cG

ϵBSOβ
(k poly log n)1+O(1/(2c2−1))

√
n

)︃]︃
= O(OPT ) +O(kCHM/(d2β)) +O

(︃
cG

ϵBSOβ
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
where in the above we use that L = log n to absorb a factor of L in the poly log n expression. Now since
Sf∗ ⊂ S, we can write

O(OPT ) +O(kCHM/(d2β)) +O

(︃
cG

ϵBSOβ
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
We now simplify this expression by opening up the expression for CHM , and by absorbing the c2 term in the
big-Oh notation.

fD(S) = O(OPT ) +O

(︃(︃
cG

ϵBSOβ
+

1

ϵCH

)︃
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
.

4.4 Cost analysis
In this subsection we complete the cost analysis of this algorithm. In the previous section we showed that
the candidate centers allocated serve as a good bi-criteria solution for the k-means problem with respect
to the dimension reduced data set D. We will be able to use this in turn to show that proxy data set D∗

constructed in algorithm 5 has a similar k-means clustering function to that of D. This result implies that
the k cluster centers derived from non-private clustering of D∗ work well as cluster centers for D. Finally,
we conclude our cost analysis by bounding the cost incurred when clustering the original data set D′ with
the k centers in S′ returned after undoing the dimension reduction.

Definition 4.28 (Proxy dataset). 1. From algorithm 5 we see that

D∗ = {s ∈ S with multiplicity n̂s for all (s, n̂s) ∈ CCH}.

We call this the proxy data set for D.

2. We let D(s) = {p ∈ D : argmins1∈S z(p, s1) = s}.

Lemma 4.29. With probability 1− 2β we have that
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Data: Bicriteria k-means relaxation S for k-means clustering under dimension reducing
transformation M , the tranformation M : Rd′ → Rd

1 s(p) := p ↦→ argmins∈S∥p− s∥2
2 CCH = Bitstogram(s(·), β, ϵSH) ; /* Candidate center histogram */
3 D∗ ← {s ∈ S with multiplicity SH(s)}
4 S∗ = {s∗1, . . . , s∗k} ← Standard k −Means
5 s∗(p) := p ↦→ argmins∗∈S∗∥M(p)− s∗∥2
6 Do in parallel:
7 Agents reveal v̂(p) for p ∈ D′ where

v(p)s =

{︄
p if s = s∗(p)

0 otherwise

v̂(p) = v(p) +N

(︃
0,

c2G′ · 2
ϵ2G′

Id′k

)︃
8 SH = Bitstogram(s∗(·), β, ϵSH) ; /* Cluster centers histogram */
9 end

10 v̂ =
∑︁

p∈D′ v̂(p)

11 ŝ∗ =
∑︁

p∈D′ ŝ
∗(p)

12 for j = 1, . . . , k do
13 µ̂j =

v̂j

SH(s∗j )

14 end
15 return S′ = {µ̂1, . . . , µ̂k}

Algorithm 5: 2-Round Center Recovery
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1. For all s ∈ S we have ||{p ∈ D : s(p) = s}| − CCH(s)| ≤ O( 1
ϵCCH

log n/β).

2. For all s∗ ∈ S∗ we have that ||p ∈ D′ : s∗(M(p)) = s∗|| ≤ O( 1
ϵSH

log n/β)

Proof. The stated bounds follow from the Bitstogram guarantee. We use the values CCHM and SHM as
uniform error bounds. Note that the size of the co-domain for s(·) is |S| and log|S| = O(log n). Similarly
the size of the co-domain for s∗(·) is |S∗| = k, so the second bound follows directly as well.

Lemma 4.30. The k-means clustering functions of D and D∗ are similar. Concretely, for any finite set
S1, the following bounds hold.

fD∗(S1) ≤ 2fD(S) + 2fD(S1) +O

(︃
|S|
ϵCCH

√
n log n/β

)︃
,

fD(S1) ≤ 2fD(S) + 2fD∗(S1) +O

(︃
|S|
ϵCCH

√
n log n/β

)︃
.

As a direct corollary,

fD∗(SOPT ) ≤ O(OPT ) +O

(︃(︃
cG

ϵBSOβ
+

1

ϵCH

)︃
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
+O

(︃
|S|
ϵCCH

√
n log n/β

)︃
.

Proof. We can enumerate all points in D∗ by counting each candidate center in s ∈ S a total of n̂s many
times.

fD∗(S1) =
∑︂

p∗∈D∗

min
s∈S1

z(p∗, s)

=
∑︂
s∈S

n̂s min
s′∈S1

z(s, s′)

=
∑︂
s∈S

|D(s)| min
s′∈S1

z(s, s′) + n̂s − |D(s)|

≤
∑︂
p∈D

z(s(p), argmin
s′∈S1

z(s(p), s′)) +O

(︃
|S|
ϵCCH

√
n log n/β

)︃

≤
∑︂
p∈D

z(s(p), argmin
s′∈S1

z(p, s′)) +O

(︃
|S|
ϵCCH

√
n log n/β

)︃

≤
∑︂
p∈D

2z(s(p), p) + 2z(p, argmin
s′∈S1

z(p, s′)) +O

(︃
|S|
ϵCCH

√
n log n/β

)︃

≤ 2fD(S) + 2fD(S1) +O

(︃
|S|
ϵCCH

√
n log n/β

)︃
where we apply the weak triangle inequality for ℓ22 distance. Proceeding similarly,

fD(S1) =
∑︂
p∈D

min
s∈S1

z(p, s)

=
∑︂
s∈S

∑︂
p∈D(s)

min
s∈S1

z(p, s)

≤
∑︂
s∈S

∑︂
p∈D(s)

z(p, argmin
s1∈S1

z(s, s1))
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≤
∑︂
s∈S

∑︂
p∈D(s)

min
s∈S1

2z(p, s) + 2z(s, argmin
s1∈S1

z(s, s1))

≤ 2fD(S) +
∑︂
s∈S

|D(s)|2z(s, argmin
s1∈S1

z(s, s1))

≤ 2fD(S) +
∑︂
s∈S

(n̂s)2z(s, argmin
s1∈S1

z(s, s1)) + (|D(s)| − n̂S)

≤ 2fD(S) + 2fD∗(S1) +O

(︃
|S|
ϵCCH

√
n log n/β

)︃
The corollary follows by substituting our upper bound for fD(S) in its place.

Lemma 4.31. If the set S∗ is such that

fD∗(S∗) ≤ η min
S1:|S1|=k

fD∗(S1)

for some universal constant η (for instance the guarantee of the non-private clustering algorithm) then

fD∗(S∗) = O(OPT ) +O

(︃(︃
cG

ϵBSOβ
+

1

ϵCH

)︃
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
+O

(︃
|S|
ϵCCH

√
n log n/β

)︃
fD(S∗) = O(OPT ) +O

(︃(︃
cG

ϵBSOβ
+

1

ϵCH

)︃
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
+O

(︃
|S|
ϵCCH

√
n log n/β

)︃
.

Proof. The first bound follows from the lemma 4.30 by noting that fD∗(SOPT ) is an upper bound for
minS′:|S′|=k fD∗(S′), and by absorbing the universal constant η in the big-Oh notation. The second bound
follows from the first bound and lemma 4.30.

We have shown that the k-means solution found in the dimension reduced space for the proxy dataset
works well for the dimension reduced dataset. Now we use the cluster sets hence derived to privately estimate
cluster centers in the original space.

Given a clustering of D′ in the original space by identifying points with the clusters derived from S∗ in
the dimension reduced space, we know that the k-means cost of the clustering is of the same order as the
k-means cost in the dimension reduced space, as proved in lemma 4.12. We recover the cluster centers in
the original space via noisy averaging. In algorithm 5, each point holds a k-tuple of d′-dimensional vector
v(p) which we can naturally identify as a kd′ dimensional vector. If s∗i is closest to p in the low-dimensional
space (breaking ties arbitrarily), then the ith tuple value is p and all other tuples are the zero vector. To
preserve privacy, agents release this vector via the Gaussian mechanism.

Lemma 4.32.

fD′(S′) = O(OPT ) +O

(︃(︃
cG

ϵBSOβ
+

1

ϵCH

)︃
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
+O

(︃
|S|
ϵCCH

√
n log n/β

)︃
+O

(︃(︃
cG′

ϵG′
+

1

ϵSH

)︃
k
√
d′n log n/β

)︃
.

Proof. For s ∈ S∗ let D′(s) = {p ∈ D′ : M(p) ∈ D(s)}, where we recall that M was the composition of the
dimension reduction, scaling, projection and translation maps, and D(s) = {p ∈ D : argmins1∈S∗ z(p, s1) =
s}. Let µj =

∑︁
p∈D(sj)

p/|D(sj)|. From lemma 4.12 we have that

fD′({µ1, . . . , µk}) = O(fD(S∗)).

In lemma 4.31 we have derived the bound

fD(S∗) ≤ O(OPT ) +O

(︃(︃
cG

ϵBSOβ
+

1

ϵCH

)︃
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
+O

(︃
|S|
ϵCCH

√
n log n/β

)︃
.
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In algorithm 5 we construct estimates µĵ = v̂j/SH(s
∗
j ) for the µj . We now bound the addition error incurred

during this approximation step.
We see that v̂j =

∑︁
p∈D′(s∗j )

p +N
(︂
0,

2c2G
ϵ2G

Id′

)︂
. If we denote the random noise added by the agent with

data p by ηp, then we have

P

⎛⎝⃦⃦⃦⃦ ∑︂
p∈D′(s∗j )

ηp

⃦⃦⃦⃦
≥ t

⎞⎠ ≤ exp

(︃
−ϵ2Gt2

16d′nc2G

)︃
.

So there is a choice of

t = O

(︄
cG′
√︁
d′n log k/β

ϵG′

)︄
such that ∥v̂j −

∑︁
p∈D′(s∗j )

p∥ ≤ t with probability 1− β/k. From lemma 4.29, we have that

|SH(s∗j )−D(s∗j )| ≤ O

(︃
1

ϵSH

√
n log n/β

)︃
.

It follows that by the union bound that all these bounds hold simultaneously with probability 1 − 2β. For
all clusters D′(s∗j ) which have more than 2SHM data points we have that SH(s∗j ) = Θ(

⃓⃓
D′(s∗j )

⃓⃓
), and for all

smaller clusters since the diameter of the data domain is 1 unit, fD′(s∗j )
≤
⃓⃓
D′(s∗j )

⃓⃓
= O

(︂
|S|
ϵCCH

√
n log n/β

)︂
unconditionally. Assuming that the former case holds, we get that the error bounds for v̂s and SH(s∗j ) give
us

⃦⃦
µ̂j − µj

⃦⃦
=

⃦⃦⃦⃦
⃦ v̂j
SH(s∗j )

−

∑︁
p∈D′(s∗j )

p⃓⃓
D(s∗j )

⃓⃓ ⃦⃦⃦⃦
⃦

=

⃦⃦⃦⃦
⃦ v̂j
SH(s∗j )

−

∑︁
p∈D′(s∗j )

p

SH(s∗j )

⃦⃦⃦⃦
⃦+

⃦⃦⃦⃦
⃦
∑︁

p∈D′(s∗j )
p

SH(s∗j )
−

∑︁
p∈D′(s∗j )

p⃓⃓
D(s∗j )

⃓⃓ ⃦⃦⃦⃦
⃦

≤ O

(︄
cG′
√︁

d′n log k/β

ϵG′
⃓⃓
D′(s∗j )

⃓⃓ )︄
+O

(︄
1

ϵSH
⃓⃓
D′(s∗j )

⃓⃓√n log n/β

)︄
∥µj∥

We can bound ∥µj∥ from above by O(1) since the domain is of unit diameter. We can then state a simplified
bound of

⃦⃦
µ̂j − µj

⃦⃦
= O

(︄(︃
cG′

ϵG′
+

1

ϵSH

)︃ √
d′n log n/β⃓⃓
D′(s∗j )

⃓⃓ )︄
.

From lemma D.3, we can bound the cost of cluster D′(s∗j ) via S′ = {µ̂j : j = 1, . . . , k} by the following
relation

fD′(s∗j )
(S′) ≤ fD′(sj)({µ1, . . . , µk}) + |D′(sj)|

⃦⃦
µj − µ̂j

⃦⃦2
≤ O(fD(s∗j )

(S∗)) + |D′(sj)|O

(︄(︃
cG′

ϵG′
+

1

ϵSH

)︃2
d′n log2 n/β⃓⃓
D′(s∗j )

⃓⃓2
)︄

For each cluster D′(s∗j ), we see that if D′(s∗j ) ≥
(︂

cG′
ϵG′

+ 1
ϵSH

)︂√
d′n log n/β, then

fD′(s∗j )
(S′) ≤ O(fD(s∗j )

(S∗)) +O

(︄(︃
cG′

ϵG′
+

1

ϵSH

)︃ √
d′n log n/β⃓⃓
D′(s∗j )

⃓⃓ )︄
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On the other hand, if D′(s) <
(︂

cG′
ϵG′

+ 1
ϵSH

)︂√
d′n log n/β, then we have the same bound unconditionally since

the diameter of the data domain is O(1). Summing up over cluster over all size ranges, we get

fD′(S′) = O(fD(S∗)) +O

(︃
|S|
ϵCCH

k
√
n log n/β

)︃
+O

(︃(︃
cG′

ϵG′
+

1

ϵSH

)︃
k
√
d′n log n/β

)︃
= O(OPT ) +O

(︃(︃
cG

ϵBSOβ
+

1

ϵCH

)︃
(k poly log n)1+O(1/(2c2−1))

√
n

)︃
+O

(︃
|S|
ϵCCH

√
n log n/β

)︃
+O

(︃(︃
cG′

ϵG′
+

1

ϵSH

)︃
k
√
d′n log n/β

)︃
.

We can now derive the main result of this section.

Theorem 1.2. Algorithm 4 is an (ϵ, δ)-locally differentially private algorithm such that given c >
√
2, after

four rounds of interaction with a private distributed data set D′ ⊂ Rd′
of size n outputs a set S′ of size k

such that with probability 1− β,

fD′(S′) = O(OPT ′) +O

(︃
1

ϵ

√︁
d′n ln(n/δ)

)︃(︃
k poly log n

β

)︃1+O(1/(2c2−1))

.

Proof. To prove this theorem, we will account for all privacy loss and then scale the privacy parameters used
in each data access subroutine to ensure a net (ϵ, δ) privacy loss guarantee. We will then substitute these
parameters into lemma 4.32 to derive the bound on the cost incurred with this choice of parameters.

We see that data access occurs in 4 rounds through the following mechanisms:

1. L calls in parallel to Bitstogram to construct CHl for l ∈ [L] with privacy parameter ϵCH.

2. FLMR calls in parallel to Bitstogram and HeavySumsOracle to construct BHl,m,r,f and BSOl,m,r,f for
l ∈ [L],m ∈ [M ], r ∈ [R] and f ∈ [F ]. The two types of calls have respective privacy parameters ϵBH
and (ϵBSO, δBSO) (note that δBSO occurs in our cost guarantee inside the Gaussian mechanism parameter
cG). Recall that during the course of our analysis we required that ϵBH = ϵBSO with the observation
that they were called an equal number of times.

3. One call to Bitstogram to construct CCH with privacy parameter ϵCCH

4. Gaussian mechanism and one call to Bitstogram to construct SH in parallel when computing the noisy
averages over cluster sets derived from low-dimensional clustering. The respective privacy parameters
are (ϵG′ , δG′) and ϵSH (note that δG′ occurs in our cost guarantee inside the Gaussian mechanism
parameter c2G′).

We allocate private parameters of (ϵ/4, 0), (ϵ/4, δ/2), (ϵ/4, 0) and (ϵ/4, δ/2) to each of these four steps, and
sub-divide the privacy parameters within. Since

FLMR = O(log n) ·O(log n) ·O(log log n) ·O (k poly log n)
O(1/(2c2−1))

= kO(1/(2c2−1)) poly log n

we can write

ϵCH =
ϵ

4 log n

ϵBH = ϵBSO =
ϵ

8kO(1/(2c2−1)) poly log n

δBSO =
δ

2kO(1/(2c2−1)) poly log n
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⇒ cG < O(1/(2c2 − 1))
√︁
ln(n/δ)

ϵCCH =
ϵ

4

ϵG′ = ϵSH =
ϵ

8

δG′ =
δ

2
.

⇒ cG′ = O(
√︁

ln(1/δ)).

Substituting these terms along with the bound

|S| ≤ O

(︃
k poly log n

β

)︃1+O(1/(2c2−1))

in the cost guarantee of lemma 4.32, we get

fD′(S′) = O(OPT ) +O

(︄(︄√︁
ln(n/δ)

ϵβ
+

log n

ϵ

)︄
(k poly log n)1+O(1/(2c2−1))

√
n

)︄

+O

(︄
1

ϵ

√
n

(︃
k poly log n

β

)︃1+O(1/(2c2−1))
)︄

+O

(︄(︄√︁
ln(1/δ)

ϵ

)︄
k
√
d′n log n/β

)︄

≤ O(OPT ) +O

(︃
1

ϵ

√︁
d′n ln(n/δ)

)︃(︃
k poly log n

β

)︃1+O(1/(2c2−1))

.
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A Concentration bounds
We recall some basic concentrations bounds that we draw upon for our proofs.

Lemma A.1 (Hoeffding’s inequality). Given n i.i.d. Bernoulli random variables Xi that take values in
{0, 1} with mean p,

P

⎛⎝⃓⃓⃓⃓⃓⃓∑︂
i∈[n]

Xi − np

⃓⃓⃓⃓
⃓⃓ > t

⎞⎠ ≤ 2 exp(−2t2/n).

Lemma A.2 (Chernoff bound for Gaussian random variables). Given n i.i.d. Gaussian random variables
ηi ∼ N(0, σ2),

P

⎛⎝⃓⃓⃓⃓⃓⃓∑︂
i∈[n]

ηi

⃓⃓⃓⃓
⃓⃓ > t

⎞⎠ ≤ 2 exp

(︃
−t2

2nσ2

)︃
.

We will also need the following more involved concentration bound to bound the estimation error of the
HeavySumsOracle developed later as a tool which allows us to reduce the round complexity of our protocols.
We follow the formulation in §1.6.2 of Tropp [2015], who attributes it to Oliveira [2009] and Tropp [2012].

Lemma A.3 (Matrix Bernstein’s inequality). Let S1, . . . , Sn be independence centered random matrices with
common dimension d1 × d2 and assume that each one is uniformly bounded, i.e.

E[Sk] = 0,

∥Sk∥ ≤ L ∀k ∈ [n].

Let Z =
∑︁n

k=1 Sk and v(Z) denote the matrix variance statistic of Z i,e,

v(Z) = max{∥E(ZZ∗)∥, ∥EZ∗Z∥}

= max

{︄⃦⃦⃦⃦
⃦

n∑︂
k=1

ESkS
∗
k

⃦⃦⃦⃦
⃦,
⃦⃦⃦⃦
⃦

n∑︂
k=1

ES∗
kSk

⃦⃦⃦⃦
⃦
}︄
.

Then

P (∥Z∥ ≥ t) ≤ (d1 + d2) · exp
(︃

−t2/2
v(Z) + Lt/3

)︃
∀t ≥ 0.

Further,

E[∥Z∥] ≤
√︁
2v(Z) log(d1 + d2) +

1

3
L log(d1 + d2).
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B Bitstogram and the Heavy Sums Oracle
The contents of this subsection are used in the cost analysis for both clustering algorithms. In the sequel we
make extensive use of locally private frequency estimation. For private frequency estimation a lower bound
of Ωϵ(

√
n) is known [Chan et al., 2012]. A state of the art construction for this problem is the Bitstogram

algorithm Bassily et al. [2020], which is an ϵ-LDP algorithm for the heavy-hitters problem that achieves low
error.

Lemma 2.11 (Algorithm Bitstogram, Bassily et al. [2020]). Let V be a finite domain of values, let f : D′ →
V , and let n(v) denote the frequency with which v occurs in f(D′). Let ϵ ≤ 1. Algorithm Bitstogram(f, ϵ, β)
interacts with the set of n users in 1 round and satisfies ϵ-LDP. Further, it returns a list L = ((vi, ai))i of
value-frequency pairs with length Õ(

√
n) such that with probability 1− β the following statements hold:

1. For every (v, a) ∈ L, ∥a− f(v)∥ ≤ E where E = O
(︂

1
ϵ

√︁
n log(n/β)

)︂
.

2. For every v ∈ V such that f(v) ≥M , v ∈ L, where M = O
(︂

1
ϵ

√︁
n log |V |/β log(1/β)

)︂
.

We overload notation to treat the list returned by Bitstogram returns as either a set of (heavy-hitter, frequency)
pairs or a function which may be queried on a value to return either the corresponding frequency if it is a
heavy hitter or a value of 0 otherwise. A subscript of M will denote the upper bound on the maximum
frequency omitted. We see that whenever |V | = Ω(n), M = Ω(E) and Bitstogram promises a uniform error
bound of M when estimating the frequency of any element in the co-domain for an appropriate choice of
constants.

We introduce an extension of the Bitstogram algorithm called HeavySumsOracle that allows us to query the
sums of some vector valued function over the set of elements that map to a queried heavy-hitter value. For a
given value-mapping function f : X → V and a vector-valued function g : X → Rd the sum estimation oracle
privately returns for every heavy hitter v ∈ V the sum of all agents that map to x, i.e.

∑︁
p:f(p)=x p. We recall

that Bitstogram is a modular algorithm with two subroutines; a frequency oracle that privately estimates
the frequency of any value in the data universe, and a succinct histogram construction that constructs the
heavy hitters in a bit-wise manner by making relatively few calls to the frequency oracle. The construction
of HeavySumsOracle essentially mimics the frequency oracle construction called Hashtogram from Bassily
et al. [2020] and can be run in parallel with Bitstogram, allowing us to reduce the round complexity of our
protocols.

1 Public randomness: Uniformly random matrix Z ∈ {±1}|V|×n

2 Setting: Agent j ∈ [n] holds xj ∈ X , public functions f : X → V, g : X → [0, b]d, g has known
bounded sensitivity ∆g,2.

3 For j ∈ [n] let yj ← Z[f(xj), j] · g(xj) + ηj for ηj ∼ N
(︂
0,

4c2∆2
g,2

ϵ2

)︂
where c2 is according to

lemma 2.10
4 On input v ∈ V return S(v) =

∑︁
j∈[n] yj · Z[v, j] and wait for next query

Algorithm 6: HeavySumsOracle

Lemma 2.12 (HeavySumsOracle). Let f : X → V, g : X → B(0,∆/2) ⊂ Rd′
be some functions where g

has bounded sensitivity ∆g,2 and let D′ ⊂ X be a distributed dataset over n users. With probability at least
1− β, for every v ∈ V that occurs in f(D′), if S(v) is the value returned by Algorithm 6 then⃦⃦⃦⃦

⃦⃦S(v)− ∑︂
f(y)=v

g(y)

⃦⃦⃦⃦
⃦⃦ ≤ 2∆

√︄
2n log

d′ + 1

β
+

4cG∆g,2

ϵ

√︃
2d′n log

4

β
.
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Here cG is the constant derived from the Gaussian mechanism (lemma 2.10), and ∆g,2 is the ℓ2-sensitivity
of g. Note that since ∆g,2 ≤ ∆, this also implies (whenever ϵ < cG =

√︁
2 ln(1.25/δ))⃦⃦⃦⃦

⃦⃦S(v)− ∑︂
f(y)=v

g(y)

⃦⃦⃦⃦
⃦⃦ ≤ O

(︃
cG∆

ϵ

√︃
d′n log

1

β

)︃
.

Further, Algorithm 6 is (ϵ, δ)-LDP.

Proof. Let the data of the jth agent be denoted xj , and let yj denote the value sent by the jth agent, i.e.
Z[f(xj), j] · (g(xj) + ηj) where ηj ∼ N

(︂
0,

c2G∆2

ϵ2

)︂
.

S(v) =
∑︂
j∈[n]

yj · Z[v, j]

=
∑︂
j∈[n]

(Z[f(xj), j] · g(xj) + ηj) · Z[v, j]

⇒ E[S(v)] =
∑︂
j∈[n]

E[Z[f(xj), j] · Z[v, j] · (g(xj))] + E[ηj · Z[v, j]].

=
∑︂

j:f(xj)=v

E[g(xj)] +
∑︂

j:f(xj )̸=v

E[Z[f(vj), j]]E[Z[f(xj), j] · g(xj)] + 0

=
∑︂

j:f(xj)=v

g(xj) + 0.

This gives us that in expectation, S(v) =
∑︁

y∈Df(x)
g(y). Now we derive high probability bounds on the

estimation error. Let S denote the quantity of interest, i.e.
∑︁

j:f(xj)=v g(xj). We have

∥S(v)− S∥ =
⃦⃦⃦⃦ ∑︂

j∈[n]

(Z[f(xj), j] · g(xj) + ηj) · Z[v, j]− S

⃦⃦⃦⃦

≤
⃦⃦⃦⃦ ∑︂

j:f(xj )̸=v

bjg(xj) +
∑︂
j∈[n]

bjηj

⃦⃦⃦⃦

≤
⃦⃦⃦⃦ ∑︂

j:f(xj )̸=v

bjg(xj)

⃦⃦⃦⃦
+

⃦⃦⃦⃦ ∑︂
j∈[n]

bjηj

⃦⃦⃦⃦
,

where we let bj denote uniformly random {±1} bits. Note that the cancellations of the summands g(xj) in
S(v) (where j was such that f(xj) = v) with S were deterministic, but the Gaussian noise introduced to
retain privacy remains for all agents. To bound the first summand, we observe that bjg(xj) are at most n
independent vectors with ℓ2 norm at most ∆ such that E[bjg(xj)] = E[bj ]E[g(xj)] = 0 and matrix variance
max(E[∥⟨bjg(xj).bjg(xj)⟩∥,E[∥bjg(xj)⊗ bjg(xj)∥) = ∥g(xj)∥2 ≤ ∆2. Then, identifying bjg(xj) with Sj in
lemma A.3 and bounding the size of the set {j : f(xj) ̸= v} by n, we have that

P

(︃⃦⃦⃦⃦⃦⃦ n∑︂
j=1

Sj

⃦⃦⃦⃦
⃦⃦ ≥ t

)︃
≤ (d′ + 1) exp

(︃
−t2/2

∆2n+∆t/3

)︃
∀t ≥ 0.

For an error probability of at most β, we see that it would suffice to set t such that

(d′ + 1) exp

(︃
−t2/2

∆2n+∆t/3

)︃
≤ β
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⇐ ∆2n+∆t/3

t2/2
≤ 1

log(d′ + 1)/β

⇔ 2∆2n

t2
+

2∆

3t
≤ 1

log(d′ + 1)/β

We see that it suffices to let t > 2
√
2∆
√︁
n log(d′ + 1)/β. Next, we would like to bound the second summand⃦⃦⃦∑︁

j∈[n] bjηj

⃦⃦⃦
. We have that

⃦⃦⃦⃦ ∑︂
j∈[n]

bjηj

⃦⃦⃦⃦2
=

⟨︃ ∑︂
j∈[n]

bjηj ,
∑︂
j∈[n]

bjηj

⟩︃
=
∑︂
j∈[n]

∥ηj∥2 +
∑︂

j,k∈[n]

bjbk ⟨ηj , ηk⟩

≤
∑︂
j∈[n]

∑︂
d∈[d′]

η2j,d +
∑︂

j,k∈[n]

bjbk∥ηj∥∥ηk∥

≤
∑︂
j∈[n]

∑︂
d∈[d′]

η2j,d +
∑︂

j,k∈[n]

(∥ηj∥2 + ∥ηk∥2)

≤ 2
∑︂
j∈[n]

∑︂
d∈[d′]

η2j,d

Since the upper bound is a sum of d′n i.i.d. normal random variables with variance σ2 =
4c2G∆2

g,2

ϵ2 . We can
now apply lemma A.2 which gives us

P

⎛⎝⃦⃦⃦⃦ ∑︂
j∈[n]

bjηj

⃦⃦⃦⃦
> 2t2

⎞⎠ ≤ 2 exp

(︃
−t22

2d′nσ2

)︃
,

where σ2 =
4c2G∆2

g,2

ϵ2 . We again set the error probability to be β/2 to get

2 exp

(︃
−t22

8σ2d′n

)︃
≤ β

2

⇔ t2 ≥ σ

√︃
8d′n log

4

β
.

Substituting for σ we get the stated error bound. To see why this routine is (ϵ, δ)-differentially private, we
see that the sensitivity of the response Z[f(xj), j] · g(xj) is 2∆g,2. The privacy guarantee is hence a direct
consequence of lemma 2.10.

The objects returned by Bitstogram and HeavySumsOracle are often used in conjunction to estimate
the average vector value for collections of data points that accumulate under some value-mapping. The
consequent error bound in all these applications is formalized in the following lemma.

Lemma B.1. Given a function f : X → V, and g : X → B(0,∆/2) ⊂ Rd, if a succinct histogram HG : X →
R is returned by Bitstogram(f, β, ϵ) and a sum oracle SO : V → Rd is returned by HeavySumsOracle(f, g, β, ϵ),
then with total probability 1− 2β, for every heavy hitter if v ∈ HG Sv denotes the sum

∑︁
x∈X:f(x)=v g(x) and

nv denotes its frequency |{x ∈ X : f(x) = v}|, the following bound holds⃦⃦⃦⃦
SO(v)

HG(v)
− Sv

nv

⃦⃦⃦⃦
≤ 1

nv − HGE
·
(︃
SOE + HGE

⃦⃦⃦⃦
Sv

nv

⃦⃦⃦⃦)︃
.
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In the above, as per our convention, HGE refers to the error term in the estimation of HG, and SOE refers
to the error term in the estimation error of SO. Note that for every heavy hitter nv we can assume without
loss that nv ≥ 2HGE, that

⃦⃦⃦
Sv

nv

⃦⃦⃦
= O(∆), and that HGE = O((cG∆/ϵ)

√︁
dn log n/β), from which it follows

that ⃦⃦⃦⃦
SO(v)

HG(v)
− Sv

nv

⃦⃦⃦⃦
≤ O

(︄
cG∆

√︁
dn log n/β

ϵnv

)︄
.

Proof. The proof is a direct consequence of the triangle inequality and some algebra.⃦⃦⃦⃦
SO(v)

HG(v)
− Sv

nv

⃦⃦⃦⃦
=

⃦⃦⃦⃦
SO(v)

HG(v)
− Sv

HG(v)
+

Sv

HG(v)
− Sv

nv

⃦⃦⃦⃦
≤ ∥SO(v)− Sv∥

HG(v)
+
|nv − HG(v)|

HG(v)

⃦⃦⃦⃦
Sv

nv

⃦⃦⃦⃦
≤ 1

nv − HGE
·
(︃
SOE + HGE

⃦⃦⃦⃦
Sv

nv

⃦⃦⃦⃦)︃
.

C Locality Sensitive Hashing
The contents of this subsection are used only for the construction and analysis of the multi-round k-means
algorithm with low additive error. We start by recalling the definition of an LSH family.

Definition 2.13 (Locality sensitive hashing (LSH)). We say that a family of hash functions H : Rd → B
for a finite set of buckets B is locality-sensitive with parameters (p, q, r, cr) if for every x, y ∈ Rd for some
1 ≥ p > q ≥ 0, r > 0 and c > 1

P (H(x) = H(y))

{︄
≥ p if d(x, y) ≤ r

≤ q if d(x, y) ≥ cr.

In this work we use an LSH-family construction construction from Andoni and Indyk [2006].

Theorem 2.14. For every sufficiently large d and n there exists a family H of hash functions defined on
Rd such that for a dataset of size n,

1. A function from this family can be sampled, stored and computed in time tO(t) log n + O(dt), where t
is a free positive parameter of our choosing.

2. The collision probability for two points u, v ∈ Rd depends only on the ℓ2 distance between them, which
we henceforth denote by p(∥u− v∥).

3. The following inequalities hold:

p(1) ≥ A

2
√
t

1

(1 + ϵ+ 8ϵ2)t/2

∀c > 1, p(c) ≤ 2

(1 + c2ϵ)t/2

where A is an absolute constant < 1, and ϵ = Θ(t−1/2). One can choose ϵ = 1
4
√
t
.

4. The number of buckets NB an LSH function with parameter t uses is tO(t) log n.
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Note that by scaling the input to the LSH function this gives us constructions for (p, q, r, cr)-sensitive LSH
families for arbitrary values of r > 0. Due to the occurrence of terms like tO(t) in the collision probabilities
and the number of buckets, the performance of an LSH family is very sensitive to the choice of t. In the
following lemma we show how to choose a value of t for a desired ratio of p2(1) to p(c).

Lemma 2.15. Given a fixed c >
√
2, for any B > 1, there is a choice of t = O

(︁
log2 B

)︁
for the LSH function

described in theorem 2.14 such that

p2(1)

p(c)
= Ω(B),

p(1) ≥ Ω(B−1/c′/ logB),

logNB = O(log2 B log logB + log log n),

where c′ = (c2/8− 1/4). It will be convenient to note that 1/c′ = O(1/(2c2 − 1)).

Proof. We have that

p2(1)

p(c)
≥ A2

8t

(1 + c2/4
√
t)t/2

(1 + (1/4
√
t) + 1/2t)t

≥ A2

8t

exp
(︁
c2/4
√
t− c4/32t

)︁t/2
exp(1/4

√
t+ 1/2t)t

≥ A2

8t
exp((c2/8− 1/4)

√
t− c4/64 + 1/2)

= Ω
(︂
exp(c′

√
t)/t

)︂
.

where c′ = (c2/8− 1/4). It follows that for t = (logB + log logB)2/(c′)2,

p2(1)

p(c)
≥ (c′)2

B + logB

(logB + log logB)2

= Ω(B)

p(1) ≥ A

2
√
t
exp(−

√
t/8− 1/4)

= Ω(B−1/c′/ logB)

logNB = O(t log t+ log log n)

= O(log2 B log logB + log log n).

In the construction of the multi-round k-means algorithm with low additive error, we will need to estimate
the average of all points that map to a given heavy bucket. Due to the pair-wise nature of the LSH guarantee,
the analysis of this requires us to use an arbitrary point from the bucket as a filter to ensure that sufficiently
many points close to it and not too many points far from it map to that bucket. This result and its proof
follow the lines of a similar result by Nissim and Stemmer [2018], but are modified to allow for the possibility
of false positives and have been phrased differently.

Lemma 2.16. Let C ⊂ D be a set of points with diameter r and let the diameter of D be ∆. For any
x0 ∈ C, if x0̂ is the average over all points colliding with x0 under a (p(1), p(c), r, rc)-sensitive LSH function
H applied to D, then with probability p(1)/4,

∥x0 − x̂0∥ ≤ cr +
8p(c)|D|
p2(1)|C|

∆,

and the number of points of C that collide with x0 is at least p(1)C
2 .

58



Proof. Let x0 be an arbitrary fixed point in C. Let N ⊂ C be the set of points that lie near x0 and collide
with it under the LSH function, i.e. N = {y ∈ D : H(y) = H(x0), d(y, x0) ≤ r}. Since ∀y ∈ C, d(x0, y) < r,
E[|N |] ≥ p(1)|C|. We note that |N | is supported on {0, . . . , |C|} and let p := P (|N | ≥ p(1)

2 |C|). Then we
can write

E[|N |] =
|C|∑︂
i=0

P (|N | = i) · i

=

⌈ p(1)
2 |C|⌉−1∑︂
i=0

P (|N | = i) · i+
|C|∑︂

i=⌈ p(1)
2 |C|⌉

P (|N | = i) · i

≤ (1− p) · p(1)|C|
2

+ p · |C|

⇒ p(1)|C| ≤ p(1)|C|
2

+ p|C|(1− p(1)

2
)

⇒ p ≥ p(1)

2− p(1)
.

Let F ⊂ C be the set of all points which lie far from x0 and collide with it under H, i.e. {y ∈ D :
H(y) = H(x0), d(y, x0) ≥ cr}. It again follows from the LSH guarantee that E[|F |] ≤ p(c)|D| ⇔ E[|D\F |] ≥
(1− p(c))|D|. If q := P (|D\F | ≥ (1− 4p(c)

p(1) )|D|), then we can write

E[|D\F |] =
|D|∑︂
i=0

P (|D\F | = i)] · i

≤ (1− q) ·
(︃
1− 4p(c)

p(1)

)︃
|D|+ q · |D|

⇒ (1− p(c))|D| ≤ (1− q)

(︃
1− 4p(c)

p(1)

)︃
|D|+ q|D|

⇒ (1− p(c))|D| ≤
(︃
1− 4p(c)

p(1)

)︃
|D|+ q

4p(c)

p(1)
|D|

⇒
(︃

4

p(1)
− 1

)︃
p(c) ≤ q

4p(c)

p(1)

⇒ 1− p(1)

4
≤ q.

With probability at least 1 − p(1)/4, |F | < 4p(c)|D|/p(1), and with probability at least p(1)/2, |N | ≥
p(1)|C|/2. Applying the union bound on the negation of these events it follows that with probability at least
p(1)/4 both these events hold. Conditioning on their intersection, we want to bound the distance between the
average x̂0 of all points that collide with x0 and x0 itself. Let N ′ = {y ∈ D : H(y) = H(x0), d(y, x0) < cr},
with which definition we have |N ′| ≥ |N | ≥ p(1)|C|/2. Further, the set of all points that collide with x0 are
partitioned by N ′ and F . It follows that

∥x0 − x̂0| =
⃦⃦⃦⃦
x0 −

∑︁
y∈N ′ y +

∑︁
y∈F y

|N ′|+ |F |

⃓⃓⃓⃓
≤
∑︁

y∈N ′ ∥x0 − y∥+
∑︁

y∈F ∥x0 − y∥
|N ′|+ |F |

≤ cr|N ′|+∆|F |
|N ′|+ |F |
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≤ cr +
|F |
|N ′|

∆

≤ cr +
8p(c)|D|
p(1)2|C|

∆.

D Miscellaneous tools
In the course of our analysis, we will make extensive use of two weak triangle inequalities which hold for the
distance function d.

Lemma D.1 (Weak triangle inequalities). 1. Given points p, q and r ∈ Rd such that z(q, r) ≤ cα2z(p, q),
where c is some constant and α < 1,

z(p, r) ≤ (1 +O(α))z(p, q).

2. Given arbitrary points p, q and r ∈ Rd,

z(p, r) ≤ 2z(p, q) + 2z(q, r).

Proof. 1. The bound follows from an application of the triangle inequality for the ℓ2 norm.√︁
z(p, r) ≤

√︁
z(p, q) +

√︁
z(q, r)

⇒ z(p, r) ≤ z(p, q) + 2
√︁
z(p, q)z(q, r) + z(q, r)

≤ z(p, q) + 2α
√
cz(p, q) + cα2z(p, q)

≤ (1 +O(α))z(p, q).

2. The bound follows from an application of the triangle inequality for the ℓ2 norm and the A.M.-G.M.
inequality. √︁

z(p, r) ≤
√︁

z(p, q) +
√︁

z(q, r)

⇒ z(p, r) ≤ z(p, q) + 2
√︁
z(p, q)z(q, r) + z(q, r)

≤ 2z(p, q) + 2z(q, r).

Lemma D.2. Let there be a set U and a family of subsets S ⊂ 2U such that some subfamily Z ⊂ S covers
U , that is ⋃︂

z∈Z
z = U.

If we pick a collection of sets C = {c1, . . . , cY } ⊂ S where Y = ⌈2|Z| log(1/α)⌉ such that for each i ∈ [Y ]

Ui = U \
i−1⋃︂
j=1

cj

|ci ∩ Ui| ≥
maxc∈S |c ∩ Ui|

2

then |
⋃︁

i ∈ [Y ]ci| ≥ (1− α)|U |.

We refer the reader to Lemma 2.7, Chaturvedi et al. [2020] for a proof of lemma D.2.
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Lemma D.3. Given a k-means clustering D′
1, . . . , D

′
k of a data set D′ where

µj =

∑︁
p∈D′

j
p

|D′
k|

,

if µ̂j is an estimate for µj then the k-means clustering cost with respect to {µ̂j : j = 1, . . . , k} for any cluster
D′

j can be bounded by

fD′
j
({µ̂j : j = 1, . . . , k}) ≤ fD′

j
(µj) +

⃓⃓
D′

j

⃓⃓⃦⃦
µj − µ̂j

⃦⃦2
.

Proof. First we observe that fD′
j
({µ̂j : j = 1, . . . , k}) ≤ fD′

j
(µ̂j) by definition. To get the stated bound, we

perform a couple of algebraic manipulations.

fD′
j
(µ̂j) =

∑︂
p′∈D′

j

z(p′, µ̂j)

=
∑︂

p′∈D′
j

⃦⃦
p′ − µ̂j

⃦⃦2
=
∑︂

p′∈D′
j

⃦⃦
p′ − µj + µj − µ̂j

⃦⃦2
=
∑︂

p′∈D′
j

⟨p′ − µj + µj − µ̂j , p
′ − µj + µj − µ̂j⟩

=
∑︂

p′∈D′
j

∥p′ − µj∥
2
+ 2⟨p′ − µj , µj − µ̂j⟩+

⃦⃦
µj − µ̂j

⃦⃦2
= fD′({µj : j ∈ [k]}) +

⃓⃓
D′

j

⃓⃓⃦⃦
µj − µ̂j

⃦⃦2
.
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