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However, due to the scarcity of real outage data, there may
be missing or undiscovered component interactions. Therefore,
a method to mine the implicit information in the limited
outage data and the statistically estimated component inter-
actions is needed. Such challenges can be found in other
real-life problems, such as protein-protein interaction detection
[17], cellphone system prediction [18], and recommendation
systems [19]. Various techniques have been proposed [20],
such as non-negative matrix factorization (NNMF) [21] and
similarity-based algorithms [17]. However, these methods are
designed for undirected or other specific networks and may
not work well for the component failure interaction problem
that involves a weighted directed network [22].

Recently, a deep convolutional generative adversarial net-
work (DCGAN) has been proposed [23], which is further uti-
lized for learning the pattern features from images represented
by real-world networks [22]. These networks are processed as
binary images based on their adjacency matrices. However, the
element values are neglected. Since the element values contain
important information, the learning method in [22] needs to
be improved to keep that information.

In this paper, a cascading failure interaction learning method
based on DCGAN is proposed to reveal the cascading prop-
agation patterns by extracting implicit features. The main
contributions of this paper are summarized as follows.

1) We propose a DCGAN based learning method to extract
the implicit failure propagation features in the interaction
matrix estimated from real utility outage data. To im-
prove the learning performance, a Louvain community
detection based method is developed to reorganize the
interaction matrix before DCGAN training.

2) We develop a systematic method to evaluate the per-
formance of the learning method on missing interaction
recovery and new interaction discovery. The noisy new
interactions are filtered based on the degree features of
the benchmark interaction matrix.

The remainder of this paper is organized as follows. Section
II introduces the utility outage data and the failure interaction
matrix estimated from the data. Section III explains the pre-
processing of the interaction matrix based on community
detection. Section IV proposes a DCGAN based method for

Abstract—In this paper, a cascading failure interaction learn-
ing method is proposed for real utility outage data. For better 
revealing the structure, we reorganize the failure interaction ma-
trix based on Louvain community detection. A deep convolutional 
generative adversarial network (DCGAN) based method is then 
proposed to learn the implicit features for failure propagation in 
the interaction matrix. A systematic method is further developed 
to evaluate the performance of the learning method on missing 
interaction recovery and new interaction discovery. The effec-
tiveness of the proposed method is validated on the 14-year real 
utility outage data from Bonneville Power Administration.
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I. INTRODUCTION

Large-scale blackouts have led to many component failures, 
significant economic losses, and severe social impacts [1]. Tra-
ditionally cascading failure study heavily relies on simulation 
models, such as Manchester model [2], hidden failure model 
[3], and OPA model [4]. Recently efforts have been made on 
extracting failure propagation patterns from simulated data. 
This includes branching process (BP) model [5], [6] and multi-
type BP model [7] that extract high-level statistical information 
of outage propagation and the component interaction models 
such as influence graph [8], interaction network [9]–[11], and 
coupled interaction network [12] that enable an explicit study 
of the interactions between component outages.

Although there are many mechanisms in a cascading failure, 
the simulation models can only select a few of them and it is 
not clear how realistic the simulated cascades are. Therefore, 
recent efforts have been made to directly analyze real utility 
outage data. In [13] an influence graph is proposed to describe 
the statistics of cascading line outages for the 14-year real 
outage data from Bonneville Power Administration (BPA)
[14], [15]. Then in [16] the same data is analyzed based 
on a generation-dependent interaction network estimated from 
the expectation maximization (EM) algorithm, and the unique 
challenges for directly analyzing real data are addressed.
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failure interaction learning. Section V discusses a systematic
method for evaluating the performance of the learning method.
Section VI validates the effectiveness of the proposed method,
and finally, conclusions are drawn in Section VII.

II. CASCADING FAILURE INTERACTION ESTIMATION
USING REAL UTILITY OUTAGE DATA

In this paper, the 14-year real outage data from BPA in the
Transmission Availability Data System (TADS) since January
1999 is used for cascading failure analysis and prediction [14],
[15]. Since cascading is defined as the uncontrolled successive
loss of system elements by North American Electric Reliabil-
ity Corporation (NERC), only 10,942 automatic outages are
applied for analysis. The outage data is grouped into different
cascades and generations. One cascade corresponds to one
cascading failure sample while one generation corresponds to
one stage in a cascade. Each cascade starts with initial outages
in generation 0 followed by outages grouped into further
generations until the cascade stops. This can be done based
on the gaps in start time between successive outages [24]. Let
F (m)

g be the set of the failed components in generation g of
cascade m. Assume there are M cascades listed as:

generation 0 generation 1 generation 2 · · ·
cascade 1 F (1)

0 F (1)
1 F (1)

2 · · ·
cascade 2 F (2)

0 F (2)
1 F (2)

2 · · ·
...

...
...

...
...

cascade M F (M)
0 F (M)

1 F (M)
2 · · ·

There are n = 582 components (lines) and M = 6, 687
cascades with 10,779 automatic outages. Based on this data,
we can estimate the component interactions, which are or-
ganized into an interaction matrix. Due to obvious evolution
among generations and high heterogeneity among cascades,
an interaction matrix is estimated for any two consecutive
generations based on the EM algorithm developed in [16].
Since the largest generation number is 109, there are 108
interaction matrices (Bg ∈ Rn×n, g = 0, . . . , 107). The
elements of Bg are the empirical probabilities that component
j fails in generation g+1 following component i failure in gen-
eration g. Because the interaction matrix B0 = [bij ] ∈ Rn×n

(bij ∈ [0, 1]) between generation zero and generation one
involves the largest number of outages and failure interactions,
in this paper we only focus on B0. Note that the elements with
very small values (those with bij < 10−6) are set to be zero.

III. COMMUNITY DETECTION AND INTERACTION MATRIX
PRE-PROCESSING FOR BETTER STRUCTURE

The B0 matrix is treated as a single tunnel image I0,
where pixel values are the corresponding element values of
B0. To highlight its structure, in Fig. 1(a) we show I0 by
ignoring its element values. It is seen that I0 does not have a
clear structure which will make the interaction learning very
challenging since the learning performance depends on the
structure of the image. To address this problem we rearrange
B0 so that the corresponding image has a better structure.

Fig. 1. Images that only keep the structures for: (a) I0; (b) Ĩ; and (c) Ĩk ,
k = 1, . . . , 4.

We first assign the components to different communities
where the components in the same community have dense
connections while those from different communities have
sparse connections. The communities are obtained by the
Louvain community detection technique [25] for the weighted
directed interaction network G(V , E) obtained by treating B0

as the adjacency matrix, where V = {1, 2, · · · , n} is the set
of network nodes as components and E is the set of links.

Specifically, the Louvain community detection method op-
timizes a modularity measure Q that is defined as [26]:

Q =
1

2b

∑
i

∑
j

(
bij −

∑
j bij

∑
i bij

2b

)
δ (ci, cj) , (1)

where 2b =
∑

i

∑
j bij is the sum of the link weights in G, ci

and cj are the communities that nodes i and j are assigned to,
and δ is the Kronecker delta function. The highest Q value of
a network appears when the optimal community assignment is
achieved. After employing the Louvain method to G in Gephi,
C = 24 communities are detected and the node sets of the
communities are denoted by V1, · · · ,VC .

Then, to obtain an image with a good structure that the
connection density increases along the diagonal, the commu-
nities are sorted in ascending order. Components are further
reordered based on the community sequence and the inter-
actions between components are mapped based on the new
component order, maintaining the actual interactions between
components. By doing so the matrix B0 is converted to a
new interaction matrix B̃0 = [b̃ij ] ∈ Rn×n for which the
corresponding image Ĩ0 as in Fig. 1(b) has a better structure.

Without losing its structure, the reorganized matrix B̃0 is
partitioned into four sub-matrices B̃k

0 = [b̃kij ], k = 1, · · · , 4
with the same dimension to reduce computational memory
during training. The numbers of nonzero elements in B̃k

0 , k =
1, · · · , 4 are 276, 114, 124, and 674, respectively. Fig. 1(c)
shows the four sub-images Ĩk

0 , k = 1, · · · , 4 generated from
these sub-matrices and how B̃0 is partitioned.

IV. FAILURE INTERACTION LEARNING BY DCGAN

Here, a DCGAN-based method is developed to learn the
missing or undiscovered failure interactions. The interaction
features of the TADS real outage data are hidden in the
four structural sub-images obtained in Section III. Without
losing major features, a small portion of interactions are
changed in each sub-image by the proposed image generation
method to generate a series of perturbed images. To capture



the interaction features of these images, DCGAN uses an
adapted generative adversarial network (GAN), which has a
generator and a discriminator that confront each other in the
adversarial training [27]. We adjust the network settings for
specific image structures to obtain a better performance. At the
end of the training, the learned features are presented in the
predicted images, helping reveal the missing or undiscovered
interactions. The details of the perturbed image generation
method and the DCGAN training will be introduced below.

A. Perturbed Image Generation
For each sub-matrix B̃k

0 , k = 1, . . . , 4, the corresponding
matrix of the sub-image Ĩk

0 , we define an interaction set Ẽk =
{(i, j)|b̃kij ̸= 0} and a blank set H̃k = {(i, j)|b̃kij = 0}. The
set of interactions in B̃0 is Ẽ = Ẽ1 ∪ · · · ∪ Ẽ4. To evaluate the
learning performance in recovering the missing interactions,
some interactions are chosen as known missing interactions
and are deleted for DCGAN to recover. Specifically, the
interaction set is divided into two sets with Ẽk = Ẽk

o ∪ Ẽk
p and

Ẽk
o ∩Ẽk

p = ∅ where Ẽk
o is the observed set and Ẽk

p is the probe
set. Setting the elements in B̃k

0 corresponding to the probe set
to be zero, an observed matrix B̂k

0 is obtained for which the
corresponding image is Îk

0 . By learning the interaction features
from the observed interaction set in B̂k

0 , the learning method
will capture the major propagation patterns and recover the
missing interactions. In this paper, the probe set accounts for
10% of the interaction set.

Since only one image corresponding to the observed matrix
is not sufficient for training, each observed matrix B̂k

0 , k =
1, . . . , 4, is utilized as the sample base for generating similar
failure interaction images. To benefit the implicit interaction
learning, the perturbed images to be generated should share
similar features of the sub-images Îk

0 , k = 1, . . . , 4 and at the
same time have good sample diversity. To achieve this, small
changes to B̂k

0 by further interaction deleting and adding are
proposed to generate perturbed images. The interactions to
be deleted are selected randomly while the interactions to be
added need to be chosen carefully to avoid providing many
false and extra features for interaction learning.

Since the components in the same community have closer
bonds, implicit interactions within one community have a
higher existence likelihood. This type of interaction is added
to provide image diversity and assist the learning method to
find implicit interactions based on the component bonds.

Specifically, each perturbed matrix and its corresponding
image are generated from B̂k

0 through two steps.
1) For an observed matrix B̂k

0 , 5% of the interactions in
Ẽk are randomly selected and set to be 0.

2) Let
∣∣S∣∣ be the number of elements in a set S . 0.05

∣∣Ẽk
∣∣

number of new interactions are added with values as
0.068, which is the mean value of all interactions in
Ẽ . The components i and j of each interaction are
selected based on the community assignment obtained
in Section III. A component i ∈ Vl for ∀l = 1, · · · , C
is first randomly selected, and the components in the
same community as component i are assigned a larger

Fig. 2. DCGAN for cascading failure interaction learning.

weight than the other components. Then component j is
randomly decided by the assigned weights.

We repeat the above steps until 1,000 perturbed images for
each Îk

0 , k = 1, . . . , 4, are generated.

B. DCGAN for Failure Interaction Learning

The essential part of the proposed learning method is the
DCGAN training. By importing the perturbed images obtained
in Section IV-A, the DCGAN method is executed four times
to learn the hierarchy of each interaction sub-image and to
capture the propagation patterns. The DCGAN training process
for cascading failure interaction learning is shown in Fig. 2.
During training, the perturbed images that contain important
interaction features from the outage data are imported as “real”
images for the discriminator to learn the failure propagation
patterns through the updating of the generator and discrimina-
tor. The generator presents the learned interaction features in
the generated images in each epoch. Eventually, a predicted
image is provided by the generator after the entire training.

1) Generator: A generator generates S fake interaction im-
ages similar to the perturbed matrices. A uniform distribution
is the input of the generator, and with the fractional-strided
convolutions, the generator converts the distribution into fake
images, imitating the interaction features that actual perturbed
images share. After receiving recognition feedback from the
well-trained discriminator about the fake interaction patterns,
the parameters of the generator are updated to generate more
convincing images that have closer propagation patterns. At
the end of DCGAN training, the final generated image whose
matrix has the average values of the elements of the matrices
corresponding to the S generated images in every epoch.

The final interaction features are obtained from the genera-
tor in the last L epochs. The L generated images are collected
and the elements of the final predicted matrix B

k

0 = [b̄kij ]
are the average element values of the corresponding matrices
of the L images (the elements less than 10−6 are removed).
According to the results in Section VI, the averaging does not
cause serious information loss. Stacking four B

k

0 in the way
shown in Fig. 1(c), the entire predicted matrix B0 = [b̄ij ]
and its image I0 are obtained. Also, we define a predicted
interaction set E = {(i, j)|b̄ij ̸= 0}.

2) Discriminator: A discriminator decides whether the in-
put images are perturbed images with real interaction features
or fake images produced by the generator. It uses strided



convolutions to extract more details of the real interaction
features for better detecting fake images. In the last convo-
lution, the output of the discriminator is flattened and put into
a single Sigmoid output, and the discriminator provides the
classification results about the received interaction images.

By adversarial training and the well-trained generator, the
implicit interaction features embodied in the specific data
distributions of the perturbed images are obtained by DCGAN.
Hence, DCGAN can capture the propagation patterns and
reveal the interactions that match the major patterns.

3) Implementation details for cascading failure interaction
learning: For each failure interaction sub-matrix, we set S =
500 and L = 20 for the DCGAN learning model. Due to
the different structures presented in the four interaction sub-
images, the settings of the filter and the hyper-parameters of
DCGAN are different. Based on our numerical experiments,
larger convolution filters work better for more sparse images.
Therefore, for Î2

0 that has the least nonzero elements, the third
and fourth convolutional filters of its generator are set as 6×6
and 7× 7, and the first and second filters of the discriminator
are set as 7×7 and 6×6. The corresponding filters for the other
sparse image Î3

0 are set as 6×6 and 5×5, while for Î1
0 and Î4

0 ,
they are 5 × 5. Moreover, we set different hyper-parameters
for different sub-images. For Î2

0 , the learning rate and the
batch size are, respectively, chosen as 0.00015, 128 for better
performance. Differently, for Î1

0 , Î3
0 , and Î4

0 , the learning rate
is 0.0002, the batch size is 64. The epoch numbers for each
sub-image are 100, 120, 120, and 120.

V. PERFORMANCE EVALUATION

The purpose of interaction learning is to reveal the intrinsic
propagation pattern and the implicit component failure interac-
tions that are missing or undiscovered. Therefore, whether the
learning method can effectively recover missing interactions
or discover new interactions are crucial for evaluation.

Missing interactions refer to the existing interactions that
are intentionally removed. The evaluation of the recovery of
these interactions is easier since their original locations and
values are known. Some of the estimated interactions can be
deleted and after training their predicted values can indicate
the recovery ability of the learning method.

In contrast, the undiscovered interactions refer to those that
do not exist in the estimated interaction matrix due to the
scarcity of real outage data. Their number and likelihood scale
are difficult to decide based on the scarce data. Hence, a
benchmark interaction matrix generated based on much more
cascades than those in the real outage data is needed to help
verify the discovered new interactions.

Due to distinct characteristics of the two different types
of interactions, the recovery and discovery abilities of the
proposed learning method are evaluated separately below.

A. Recovery of Missing Interactions

Good recovery ability is demonstrated when removed inter-
actions in the probe set are recovered with predicted values that
match well with the known interaction values. Furthermore,

the probe set in the predicted matrices should have higher
values than the blank set in general, avoiding a disordered
learning method that predicts many improbable interactions.

1) Recovery rate of the probe set: From B
k

0 , k = 1, . . . , 4,

the predicted interaction set is decided as Ek
= {(i, j)|b̄kij ̸=

0}, based on which we define a recovery rate R1 as:

R1 =
|Ek ∩ Ẽk

p |
|Ẽk

p |
. (2)

The higher the recovery rate is, the better the recovery ability
of the proposed learning method.

2) Metrics comparing probe and blank sets: Instead of only
focusing on the probe set, the overall value level of the probe
set interactions compared with those of the blank set needs to
be evaluated. Two scale-independent metrics, the area under
the receiver operating characteristic curve (AUC) [28] and the
probe set rank (PSR) inspired by the metrics in [29] are used
to compare the overall values of the probe and blank sets.

• AUC depends on the results of z independent com-
parisons: for each comparison, two predicted values
b̄ki1j1 where (i1, j1) ∈ Ẽk

p and b̄ki2j2 where (i2, j2) ∈
H̃k are randomly selected for comparison. There are
three outcomes: i) b̄ki1j1 > b̄ki2j2 , ii) b̄ki1j1 = b̄ki2j2 or∣∣b̄ki1j2 − b̄ki2j2

∣∣ ≤ 10−3, and iii) b̄ki1j1 < b̄ki2j2 . Let z1 and
z2 respectively be the number of the first and second
outcomes in z comparisons, and AUC is calculated as:

AUC =
z1 + z2

z
, (3)

where z is set to be 2,000 to ensure that most interactions
in the probe set are included in comparisons.

• PSR indicates the overall value ranking of the elements
of B

k

0 in the probe set among those in both the probe and
blank sets. After sorting the predicted values b̄kij in both
the probe and blank sets in an ascending order, a series
of ranks rki , i = 1, 2, . . . , |Ẽk

p |+ |H̃k| are obtained. Let P
be a set of the i’s that correspond to a probe set element.
Then, focusing on the ranks of the probe set elements,
PSR is calculated as:

PSR =
1

|Ẽk
p |

∑
i∈P

rki
|Ẽk

p |+ |H̃k|
. (4)

Higher values of AUC and PSR indicate that the learning
method tends to assign higher values of b̄kij for the probe set
than the blank set, thus being able to recover the probe set
while not producing many new interactions in the blank set.

B. Discovery of New Interactions

The proposed DCGAN method can discover new interac-
tions from the learned failure propagation patterns. To examine
these newly generated interactions, a benchmark interaction
matrix is estimated from a large number of cascades. Although
the real outage data is limited, the generation-dependent
interaction model proposed in [16] can generate as many
cascades as needed to better capture and further extend what



has been observed in real outage data. This model is used
to generate Mmax ≫ M cascades based on B0. From these
Mmax cascades a new interaction matrix B̌0 is estimated
using the EM algorithm to capture the interactions between
generation zero outages and generation one outages. Note that
the elements less than 10−6 are removed.

After pre-processing B̌0 in the same way as in Section III,
a benchmark matrix B̀0 = [b̀ij ] and its corresponding images
Ì0 are obtained. Define a benchmark interaction set È =
{(i, j)|b̀ij ̸= 0} and a benchmark blank set H̀ = {(i, j)|b̀ij =
0}. Compared with B̃0, the set of new interactions revealed
in B̀0 is called the benchmark new interaction set Èn = È\Ẽ .

Further, a benchmark interaction network G̀(V, È) is gener-
ated by treating B̀0 as the adjacency matrix. The sets of the
components that appear as the source and destination nodes in
Èn are respectively denoted by V s

n and Vd
n . The 10th percentile

of the out-degree (in-degree) of the components in V s
n (Vd

n) is
denoted by p+10 (p−10). Since p+10 and p−10 provide important
information about the features of the new interactions, they
are used as references to filter the noises. Specifically, for
a predicted new interaction in E\Ẽ , if the out-degree of
the source component is not greater than p+10 or if the in-
degree of the destination component is not greater than p−10,
it is removed. The remaining predicted new interactions are
denoted by En, which can be classified into two different types
below.

• If the new interaction in En also appears in Èn, it is
called a verifiable new interaction. To indicate if the new
interactions in the benchmark matrix can be discovered
by the learning method, we define a discovery rate as:

R2 =
|En ∩ Èn|

|Èn|
. (5)

The higher R2 is, the better the discovery ability the
learning method has.

• If the new interaction in En does not appears in Èn, it
is called a unverifiable new interaction. We define noise
rate R3 as the ratio between the number of unverifiable
new interactions and |H̀|:

R3 =
|En\Èn|
|H̀|

. (6)

The smaller R3 is, the better the noise suppression of the
learning method is when discovering new interactions.
Although these unverifiable new interactions cannot be
verified by the benchmark matrix, they may provide
useful information about failure propagation which could
be further verified with an improved benchmark method-
ology.

VI. RESULTS

All computations are performed on a computer with Intel
Core (TM) i7-11700 CPU. DCGAN is implemented in Python
3.6.13 based on Tensorflow-cpu 2.3.0. A traditional NNMF
method [21] is performed on MATLAB R2020b with function

TABLE I
RECOVERY RATE OF THE PROBE SET

k
∣∣Ẽk

p

∣∣ ∣∣Ek ∩ Ẽk
p
∣∣ R1

1 28 28 1
2 11 11 1
3 12 11 0.92
4 67 67 1

Fig. 3. AUC and PSR for DCGAN and NNMF.

Fig. 4. Predicted images from DCGAN and NNMF.

nnmf for comparison. We take the average metric values of
the last L epochs as the metric results of DCGAN and take
the average metric values over 200 runs as the results of
NNMF. The elements less than 10−6 are removed from NNMF
predicted matrices. The learning performance is evaluated
following the evaluation method proposed in Section V.

A. Recovery Ability

The details about the recovery of the probe set are listed
in Table I. The recovery rates for B

1

0, k = 1, . . . , 4 are all
close to one, and only one missing interaction in B

3

0 is not
recovered, indicating good learning performance.

The AUC and PSR of the proposed DCGAN method com-
pared with NNMF are shown in Fig. 3. The recovery ability
of DCGAN outperforms NNMF in all four sub-matrices. The
highest AUC and PSR of DCGAN are close to 0.9 for the
first sub-matrix. For the most sparse images when k = 2, 3,
the AUC and PSR of DCGAN are still higher than 0.7.

Fig. 4 shows the final predicted images of DCGAN and
NNMF. To show the major structure in the images, only
interactions greater than 0.043, which is the 10th percentile of
all interactions in B0, are displayed. It is seen that the DCGAN
predicted image matches very well with the reorganized image
Ĩ0, while the predicted image from NNMF has a lot of noise.

B. Discovery Ability Comparison

The Mmax in Section V-B is decided as 130M under which
the number of interactions in the benchmark matrix saturates.
The p+10 and p−10 in Section V-B are 2 and 3, respectively. With
noise filtering for both DCGAN and NNMF, their R2 and R3



TABLE II
DISCOVERY ABILITY COMPARISON

Metric DCGAN NNMF
R2 0.7329 0.2715
R3 0.0980 0.0598

Fig. 5. G̀ with highlighted verifiable new interactions.

values are listed in Table II. With R2 = 0.73 and R3 = 0.10,
the proposed DCGAN method has a good discovery ability
without producing too much noise, and a total of 332 verifiable
new interactions are obtained. By contrast, although NNMF
has a lower noise rate, it has a much lower R2 value and thus
cannot discover as many new interactions.

The benchmark interaction network G̀ is shown in Fig. 5.
The size of the node is positively related to the sum of the
out-degree and in-degree of the node. The red arrows denote
the verifiable new interactions and the blue arrows denote the
new interactions in the benchmark interaction network that
cannot be discovered by the proposed method. Most verifiable
new interactions are between the components with a relatively
large number of interactions, indicating the necessity of failure
prevention for those components with dense interactions.

VII. CONCLUSION

In this paper, a DCGAN based cascading failure interaction
learning method is proposed to recover the missing interactions
and discover new interactions based on limited real utility
outage data. The proposed method is evaluated on 14-year real
utility outage data from BPA based on the proposed systematic
evaluation method. The results show that the proposed learning
method can well capture the failure interaction patterns and
outperform the traditional NNMF method, successfully recov-
ering the missing interactions and discovering new interactions
without producing a lot of noise.
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