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SUMMARY

Antiquated and inefficient data-sharing practices represent one of the key obsta-
cles to advancing sustainability goals through green chemistry. To this end, we
need to robustly link data on chemical impacts with new chemical design strate-
gies, which requires the development of next-generation data-sharing platforms
to harmonize both data and efforts. These decentralized and interactive pro-
grams should be structured as live ecosystems for data generation and exchange,
inviting conversations about the reliability and relevance of information used to
make decisions regarding chemical performance and safety.

UNINTENDED CONSEQUENCES CREATING OUR SHARED ‘‘TOXIC DEBT’’

Over the course of the 20th century, we deliberately entangled our lives in chemistry on a previously

unimaginable scale (Ilgen, 1983). This was best manifested by ‘‘Better Living Thru Chemistry’’, DuPont’s

advertising slogan. While its economic and societal benefits are widely embraced and clearly undeniable,

chemistry has also done irreparable harm; DuPont’s production of per- and polyfluorinated substances

(PFAS), which surfaced in 1999, provides an exemplar, as these ‘‘forever chemicals’’ are both persistent

and toxic (Podder et al., 2021). Indeed, most chemicals on the market today were designed for their cost

and performance, without consideration of environment, health and safety. Fortunately, observations of

environmental damage spurred toxicological studies and subsequent development of environmental

policies and regulatory activities over the past century (Dogo and Jaganjac, 2007), including for chemical

classes such as PFAS (Brennan et al., 2021). However, attempts to manage risks to public health and the

environmental have focused on reducing exposure (rather than mitigating hazard at the design stage),

and so in this reactive approach, we have always played catch-up (Anastas and Warner, 1998), ignoring

the true cost of the chemical revolution. For many persistent chemicals, this cost has become a loan rapidly

accruing interest, which we (and our children) will have to pay off, a reality that is slowly dawning on society

(Landrigan et al., 2018). For example, some 10%–20% of detected pesticides are stable transformation

products, many originating from hazardous chemicals that were banned decades ago (Zhang, 2018). To

bring this current reality full circle, the Centers for Disease Control and Prevention (CDC) estimates that

most of us have PFAS in our blood,(CDC) and, while concentrations of the well-known actors (PFOS,

PFOA, etc.) might be declining (Olsen et al., 2017), this is likely due to the use of (not necessarily safer

but less-studied) alternatives (US EPA).

Revelations about the adverse health effects of lead, mercury, asbestos, PFAS, polychlorinated biphenyls

(PCBs), and dioxins have demonstrated the need to examine chemicals rigorously before they are commer-

cialized. Since 1950, over 140,000 new industrial chemicals have been synthesized, and of these, ca. 5,000

are high-volume substances with nearly universal human exposure (Landrigan et al., 2018). Furthermore, at

least 300,000 chemicals and chemical mixtures have been registered for commercial use around the world

(Wang et al., 2020). Yet, most of these chemicals have not been empirically tested for safety or toxicity, with

disproportionate impact on low-income countries and marginalized communities (Landrigan et al., 2018).

To engage this toxic debt, green chemistry emerged in the late 1990s (Anastas andWarner, 1998), promot-

ing health and safety at the design stage of chemicals over unsustainable ‘‘reactive’’ testing (Matus et al.,

2010). At the same time, toxicology has shifted its focus from animal studies to the ethically and econom-

ically favorable New Approach Methodologies (NAMs) to better support this new paradigm (Punt et al.,

2020; Brooks et al., 2020; Kostal and Voutchkova-Kostal, 2020). These methods have yielded a wealth of

mechanistic toxicological data, and, when paired together (e.g., alternative vertebrates and in vitro assays
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informing in silico modeling), NAMs have the potential to generate a wealth of knowledge that is

fundamental for safer chemical design. Our challenge now is to radically improve the way we share scien-

tific information to better integrate high-quality data into chemical design and avoid regrettable substitu-

tions when replacing hazardous chemicals on the market. Only in doing so can we advance toward our

shared goals of equitably distributed green and sustainable chemistry, where the development and use

of chemicals and materials is environmentally benign and stems from manufacturing processes that

conserve natural resources.
BARRIERS TO SHARING DATA

There are approximately 80,000 chemists and 9,000 toxicologists in the United States alone, a curious sta-

tistic indeed (United States Bureau of Labor Statistics, 2022). These number are large and, given that chem-

ists make chemicals and toxicologists determine their risk, clearly out of balance. Disciplinary priorities

aside, the first glaring obstacle in using someone else’s data is our unawareness that data exist for specific

needs, followed by differential data formats, archiving, accessibility, and quality reporting across disci-

plines (Brooks et al., 2021). These issues are magnified by the rapidly growing scientific community, as evi-

denced by recent increases in STEM graduates (Fry et al., 2021), and our collective productivity. Based on a

recent STM (International Association of Scientific, Technical andMedical Publishers) report, there are over

33,000 active scholarly peer-reviewed English-language journals and another ca. 9,000 non-English-lan-

guage journals, collectively publishing upward of 3 million articles each year (STM, 2018). In recent years,

these numbers have grown annually by ca. 4% for articles and over 5% for journals (STM, 2018). Conse-

quently, no person and no research entity can stay ‘‘up to date’’ with information generated globally,

even within their respective field(s) (Slavik, 2009). While critical and systematic reviews can help alleviate

informational overload, review articles are not free of personal biases. These can result in ‘‘cherry picking’’,

shaping what data are promoted vs. marginalized (or ignored completely), particularly when review

methods are not documented. Furthermore, review publications are constrained by rigid boundaries within

and between science fields, which were created by a system that rewards specialization and favors reduc-

tionist (vs. holistic) thinking (Bateman and Hess, 2015). Scientific ‘‘tunnel vision’’ decreases our awareness of

data/knowledge landscapes, which is problematic when we are required to look outside our niche, and

‘‘translate’’ information from further afield in interdisciplinary engagements (Stirling, 2014).

Informational unawareness aside, barriers to data sharing can be erected deliberately when data sharing

opposes personal interests and, as is often the case in industry, constraints imposed by the employer

(e.g., due to intellectual property rights). In Academia, scientists may be reluctant to share data (and meta-

data in particular) if it was hard to obtain as they compete to innovate, publish, and fund their research

(Walsh et al., 2007; Blumenthal et al., 2006; Miller, 2015). They may also be apprehensive of other investi-

gators manipulating or exploiting their data for personal gain (Miller, 2015), or concerned that wide data

accessibility invites a level of scrutiny that may not be desirable (Coudert, 2019). Here, we should note

that many academics do share data, as it is increasingly expected by funders and publishers. Unfortunately,

while their data are kept safe by university firewalls and complex authentication systems (Smith et al., 2005),

researchers often receive little formal training on data management and secure intentional sharing of data

(Tenopir et al., 2011). Funding agencies are attempting to remedy this issue (Tenopir et al., 2011); however,

it is difficult to envision that we can overcome barriers of our respective normative cultures without data-

sharing platforms. These systems can entice users with robust data standards and high levels of security

(i.e., doing much of the legwork that peer-to-peer sharing resists), thus reaching broader communities

faster.

Presently, at the platform level, current data sharing in the sciences relies on centralized databases, which

collect publicly available information. Academic journals are such repositories, as are standalone, subject-

dedicated databases; for toxicology and green chemistry applications, alttox.org provides a comprehen-

sive list of these public and private tools (http://alttox.org/resource-center/databases/). The former suffers

from the ‘‘tragedy of riches’’, with too much unstructured and non-standardized data in disparate catalogs

and documents (Slavik, 2009). In particular, we do not adequately enforce systematized inclusion of rele-

vant details in peer-reviewed publications, which is needed to vet data, and is critical to fields with new

emerging data streams (e.g., NAMs in toxicology). Characterization and quantification of underlying uncer-

tainties is key to the use of existing data (Kostal et al., 2020); yet, it is rarely done, in large part because

important metadata is missing from publications (Kostal and Voutchkova-Kostal, 2020). On the other

hand, the main concern with specialized databases is that their structure, content, and (intended) use is
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decided solely by the developer. Furthermore, as many of these projects are funded by grants, data repos-

itories run the risk of ‘‘evaporating’’ as these programs lose funding or are retired due to obsolescence

(Miller, 2015). A particularly relevant example is the Carcinogenic Potency Project, which developed the

Carcinogenic Potency Database between 1980 and 2005 (Fitzpatrick, 2008). While the data are still acces-

sible, it is no longer updated or curated, leaving its quality in doubt.

At its core, a data-sharing platform sources information from individual efforts, and at the individual

level, when we share data with others in laboratory meetings, national conferences, grant applications,

manuscripts etc., scientific value is traded for traditional rewards of personal gain, such as promotion,

reputation, and prestige (Murray, 2010). While the developer decides the scope and format of a data-

base, they are limited by the level of disclosure that the shared data provide. To this end, data sourced

indirectly (by scavenging the digital landscape) rarely include all relevant metadata and a detailed ‘‘user

guide’’ that would interpret data for a broader audience of potential end-users (Miller, 2015). To offer an

anecdote, in our past collaborative efforts in toxicology and green chemistry (Coish et al., 2018),

miscommunication due to lack of understanding was initially a barrier before we became more aware

of other disciplines and could ‘‘translate’’ our respective vernaculars. This represented a considerable

undertaking but bore unique fruit in a robust, interdisciplinary framework for safer chemical design

(Coish et al., 2018).
THE OPPORTUNITY COST OF DATA-SHARING BARRIERS

As hinted above, scientific progress and its resulting societal benefits increase when information is shared

(Shapin, 2008). We should resist scientific ‘‘tunnel vision’’ and reductionist tendencies because environ-

mental science and technology in general (Brooks et al., 2021), and chemical hazard and risk assessments

in particular, call for multidisciplinary efforts, where combining data and knowledge from several fields is

necessary (Kostal and Voutchkova-Kostal, 2020). By the same token, it is straightforward to make a case

for green and sustainable chemistry needing extensive interdisciplinary collaboration (Constable, 2021).

Crucially, interdisciplinary research, which hinges on mutual understanding, reciprocally beneficial cooper-

ation, and effective data sharing, can achieve superior funding performance, both in terms of volume and

long-term value (Sun et al., 2021).

Our recent collaboration with pharmaceutical chemists and toxicologists to improve predictive models for

peptide couplers, a unique class of dermal sensitizers, is a timely example of the value gained by over-

coming resistance to sharing prized data and information (Graham et al., 2022). In this case, mutual willing-

ness of pharmaceutical companies and model developers to collaborate, where proprietary structures and

expert knowledge were on the line, yielded better understanding of the underlying biochemistry;

improved predictive models; and provided clues for the design of more benign future analogs (Graham

et al., 2022). With intellectual property at stake, our collaboration was made possible by advances in

data-sharing technologies (Farrall et al., 2021), which facilitated safe and secure data transfers to protect

competitiveness and privacy of the involved parties. What this exercise showed was that while competitive-

ness may initially decrease the likelihood of scientific sharing, perceived conformity of the engaged parties

to open-science practices and reciprocity in addition to gains of new commercial capabilities and avenues

for business growth can increase sharing in practice (Haeussler, 2011).

The above example of effective peer-to-peer sharing does not circumvent the need for a data-sharing plat-

form. Indeed, the outcomes of our study were eventually shared with the broader scientific community in a

peer-reviewed publication (Graham et al., 2022). As noted previously, the lack of a universal standard for

(meta) data sharing in journals limits further usability of said data. Using the ToxRTool to assess study reli-

ability (Schneider et al., 2009), we recently carried out an exercise to scrutinize (published) experimental

data that have been used for decades to train predictive models for skin permeability, an important route

of exposure for many commercial chemicals. We found that ca. 20% of this set was misreported, and the

majority of data were of insufficient quality to be regarded as reliable in model development. Nonetheless,

tens of predictive models were developed and published using this data over the past 2–3 decades,

showing that without adequate data sharing, which would allow proper vetting of data, we are propagating

uncertainties and ‘‘building on sand’’. In toxicology and green chemistry, the problem can be exacerbated

by modern statistical tools (i.e., those using machine learning and artificial intelligence), where different

data types often need to be combined to generate large-enough training sets that cannot be curated

manually (Kostal and Voutchkova-Kostal, 2020; Cherkasov et al., 2014).
iScience 25, 105256, November 18, 2022 3
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SETTING UP THE GOALPOSTS

A solution to both incentivization of data sharing (in the modern vernacular) and a robust system to support

cross-disciplinary research efforts in green and sustainable chemistry can be found in next-generation data-

sharing platforms (DSPs). We envision these DSPs as decentralized ecosystems that support decision-mak-

ing of its users (vs. mere data collection). To this end, DSPs should enable live user interactions in data

exchange, generation, and analysis, and promote multi-tenant collaboration in a common core (i.e.,

‘‘gated’’ collaboration across organizations, where data security is paramount). Such framework wouldmiti-

gate issues related to different data-sharing requirements and restrictions across disciplines, which is

important to both hazard assessment and systems-based development of new chemicals and materials

(Constable, 2021), as briefly illustrated by our aforementioned case study on peptide couplers.

The cornerstone of a DSP ecosystem should be an integrated and searchable knowledge base that is

defensible and repeatable (i.e., fully transparent and of high-quality data). It should incorporate data

ranking tools that allow any user to store, develop, and use environmental fate and safety assessments

to foster the development of chemical alternatives safer for public health and the environment. DSPs

should be designed as flexible knowledgemanagement solutions that integrate both predicted and exper-

imental data sources, with the goal to leverage data sharing, collaboration, and customization so as to

address the diverse needs of the toxicology and green chemistry communities. As noted above, the knowl-

edge base would rely on a multi-tenant data structure with a shared application layer, which will allow ten-

ant flexibility with regards to scalability, cost, complexity, and customization, and attract users across

academia, industry, and government. Elements of such architecture exist, such as in Microsoft 365 for busi-

ness tenants.

Under the hood, DSPs would provide answers to user questions and support individualized operations by

transforming critical data into visual ‘‘story books’’, designed to illustrate the compelling relationships be-

tween data and specific user needs. These story books would facilitate a personalized access to workflows

in the system, giving users the ability to visualize information based on their roles (e.g., researcher, regu-

lator, consumer, or project administrator). For example, while some users will employ a DSP dashboard to

track and summarize chemical designs, manage starting materials, perform chemical read-across, or track

molecular substitutes, others may use the system to analyze risks, manage supply chain, generate opera-

tional impact trends, or follow chemical predictor performance. On the back of predictive algorithms, such

as AI or machine learning (ML), social media platforms have pioneered these functionalities to tailor user

content. Facebook wall is an example of how data are effectively turned into a customized storyline for

the user based on user characteristics and past behavior on the site.

Incentivizing ‘‘buy-in’’ to overcome data-sharing resistance, especially when data are sourced directly and

need to conform to a high standard/disclosure, can be achieved through data bartering. Here, access to

existing data can be offered in exchange for user’s own data or for services such as data generation, cura-

tion, or analytics within DSPs. To draw a parallel, consumers of Facebook or Google barter their personal

data for digital services, such as messaging systems or map tracking. ‘‘Crowdsourcing’’ data manipulation

activities on DSPs would further aid in data interpretation and in recognizing and alleviating data quality-

related pain points (Beck et al., 2022), mimicking benefits of this approach elsewhere (Zhen et al., 2021).

Data quality is an important consideration in the development of sustainability claims and in providing

feedback for research activities, production efficiency, and environmental-quality improvements within

the supply chain. In an effort to support the best decisions possible within DSPs, users would be tasked

to incorporate confidence/uncertainty metrics, which increase transparency and recognize the variable na-

ture of living systems that are being represented by the data. Provided sufficient metadata by the user,

these calculations could also be performed on the backend, using existing approaches (Kostal et al.,

2020; Rathman et al., 2018; Park et al., 2014; Yang et al., 2013).

The hurdle of data-format standardization, which is recognized as one of the key barriers to data sharing

(van Panhuis et al., 2014), can be minimized by integration of data analytics methods based on ML. While

these approaches may have differential mechanistic potential to robustly inform molecular initiation

events and adverse outcomes (Alves et al., 2019), and appear even less applicable to rational (and defen-

sible) design of safer chemicals (Kostal and Voutchkova-Kostal, 2020), their power in mining toxicological

data and facilitating both data systematization and categorization is evident (Cheng et al., 2021). ML can

provide other exciting features for future DSPs, such as tracking (and reconciling) user discord within the
4 iScience 25, 105256, November 18, 2022
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platform as an indirect metric of data uncertainty, in effect turning the platform into a ‘‘scientific town

square’’, akin to social media platforms (Watercutter, 2022). This level of monitoring and subsequent

data and user-behavior analytics would offer a more comprehensive report on the field’s status quo, re-

flecting the diversity of metadata and assessment practices. ML has been used successfully for similar

purposes by companies such as Facebook or Google to customize ranking for news feeds, speech recog-

nition, and translations; and track website visits, geographic data, and time spent on tools/features,

measuring their popularity (Song et al., 2018; Claussen et al., 2013). Data can be in turn leveraged to in-

crease user engagement within the platform; to make its content more relevant; and to expand the plat-

form structure in directions aligned with users’ needs and interests. In the end, knowing that data will be

part of a grander scheme may encourage scientists to focus more on the quality, usability, and integrity

of their data.
LOOKING AHEAD

It is difficult to envision that the proposed effort could be successfully tackled by a single lab or even by the

typical-sized collaborative. Buy-ins from key stakeholders in academia, industry, and the government are

essential to developing a pilot platform that would attract sufficiently large user base, and thus attain sus-

tained growth and the proposed data-sharing paradigm shift. Furthermore, these efforts cannot depend

on funding that may run out (Miller, 2015). Ideally, funding agencies such as the National Institutes of Health

and the National Science Foundation, which already require data management plans from its grantees,

could take up the proverbial baton. Scientific societies could also offer leadership, as they would undeni-

ably benefit from a combined, sharable, and robust database standard for their diverse activities. With

appropriate leadership from organizations that provide research funding and facilitate its outcomes,

research organizations and researchers themselves would follow suit. While the vision and blueprints could

be created ‘‘in house’’, i.e., by a panel of key toxicology and green chemistry stakeholders, in the end it is

the private (tech) sector that has the necessary knowhow and could develop and maintain a DSP of this

magnitude and complexity at the behest of the scientific community. This trajectory is in line with recent

initiatives that seek to improve the status quo in data sharing (Kozlov, 2022; Cao et al., 2016), increasing

commitment to robust data-sharing practices from scientific journals and funding agencies (Tenopir

et al., 2011; Miller, 2014), and calls for global changes in science policy to tackle chemical pollution (Brack

et al., 2022).

In the absence of leadership with the vision and ability to deliver on this charge, scientists are bound to

continue to struggle in inefficient relationships with their own data and with each other, particularly as we

aim to increase innovation through interdisciplinary research by embracing systems-based approaches

(Constable, 2021). We will continue to compete in a way that is counterproductive to our collective prog-

ress (Fang and Casadevall, 2015), and chemical development and management will continue to be a Sisy-

phean game of whac-a-mole, a reality that requires acceleration of safer chemicals and sustainable

chemistry. Many may find solace that though we are moving slowly on existential issues such as global

chemical pollution or climate change (Brack et al., 2022; Lim, 2021), we are moving in the right direction.

A few recognize that such sentiment is profoundly problematic—unless the rate of positive change out-

competes the rate of negative change, for which the wheels were set in motion a long time ago, we will

not succeed in protecting public health and the environment and achieving a sustainable and equitable

world. Now is the time to start pulling on the same rope and sharing data effectively, so that we can

realize a shared future for all life.
Limitations of the study

The present perspective is limited in its assessment of data-sharing practices by surveyed literature and

professional experiences of the authors. While all limits are self-imposed (Icarus), they are ultimately

unavoidable.
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R., Bose-O’Reilly, S., Boufford, J.I., et al. (2018).
The Lancet Commission on pollution and health.
Lancet 391, 462–512.

Lim, X.Z. (2021). Scientists call for IPCC-like group
on chemical pollution. Chem. Eng. News 99, 18.

Matus, K.J.M., Zimmerman, J.B., and Beach, E.
(2010). A proactive approach to toxic chemicals:
moving green chemistry beyond alternatives in
the "safe chemicals act of 2010". Environ. Sci.
Technol. 44, 6022–6023.

Miller, G.W. (2014). Improving reproducibility in
toxicology. Toxicol. Sci. 139, 1–3.

Miller, G.W. (2015). Data sharing in toxicology:
beyond show and tell. Toxicol. Sci. 143, 3–5.

Murray, F. (2010). The oncomouse that roared:
hybrid exchange strategies as a source of
distinction at the boundary of overlapping
institutions. Am. J. Sociol. 116, 341–388.

Olsen, G.W., Mair, D.C., Lange, C.C., Harrington,
L.M., Church, T.R., Goldberg, C.L., Herron, R.M.,
Hanna, H., Nobiletti, J.B., Rios, J.A., et al. (2017).
Per- and polyfluoroalkyl substances (PFAS) in
American Red Cross adult blood donors, 2000-
2015. Environ. Res. 157, 87–95.

Park, S.J., Ogunseitan, O.A., and Lejano, R.P.
(2014). Dempster-shafer theory applied to
regulatory decision process for selecting safer
alternatives to toxic chemicals in consumer
products. Integr. Environ. Assess. Manag. 10,
12–21.

Podder, A., Sadmani, A.H.M.A., Reinhart, D.,
Chang, N.B., and Goel, R. (2021). Per and

http://refhub.elsevier.com/S2589-0042(22)01528-0/sref1
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref1
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref1
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref1
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref1
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref1
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref2
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref2
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref2
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref3
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref3
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref3
https://www.atsdr.cdc.gov/pfas/health-effects/us-population.html
https://www.atsdr.cdc.gov/pfas/health-effects/us-population.html
https://www.atsdr.cdc.gov/pfas/health-effects/us-population.html
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref5
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref5
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref5
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref5
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref6
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref6
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref6
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref7
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref7
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref7
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref7
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref7
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref8
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref8
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref8
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref8
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref8
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref8
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref9
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref9
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref9
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref9
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref9
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref10
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref10
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref10
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref10
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref10
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref11
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref11
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref11
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref11
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref11
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref11
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref12
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref12
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref12
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref12
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref12
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref12
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref13
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref13
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref13
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref13
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref13
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref14
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref14
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref14
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref14
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref14
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref14
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref15
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref15
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref15
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref15
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref16
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref16
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref16
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref16
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref16
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref17
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref17
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref17
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref18
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref18
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref18
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref18
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref19
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref19
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref19
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref19
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref19
https://epi.dph.ncdhhs.gov/oee/pfas/GenXToxicityAssess-Factsheet-WEB-122221.pdf
https://epi.dph.ncdhhs.gov/oee/pfas/GenXToxicityAssess-Factsheet-WEB-122221.pdf
https://epi.dph.ncdhhs.gov/oee/pfas/GenXToxicityAssess-Factsheet-WEB-122221.pdf
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref21
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref21
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref21
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref22
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref22
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref22
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref23
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref23
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref23
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref24
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref24
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref24
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref24
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref25
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref25
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref25
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref25
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref25
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref25
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref26
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref26
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref26
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref27
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref27
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref27
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref28
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref28
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref28
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref29
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref29
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref29
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref29
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref29
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref30
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref30
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref31
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref31
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref31
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref31
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref31
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref32
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref32
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref33
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref33
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref33
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref33
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref33
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref34
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref34
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref35
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref35
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref36
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref36
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref36
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref36
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref37
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref37
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref37
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref37
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref37
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref37
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref38
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref38
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref38
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref38
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref38
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref38
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref39
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref39


ll
OPEN ACCESS

iScience
Perspective
poly-fluoroalkyl substances (PFAS) as a
contaminant of emerging concern in surface
water: a transboundary review of their
occurrences and toxicity effects. J. Hazard Mater.
419, 126361.

Punt, A., Bouwmeester, H., Blaauboer, B.J.,
Coecke, S., Hakkert, B., Hendriks, D.F.G.,
Jennings, P., Kramer, N.I., Neuhoff, S.,
Masereeuw, R., et al. (2020). New approach
methodologies (NAMs) for human-relevant
biokinetics predictions: meeting the paradigm
shift in toxicology towards an animal-free
chemical risk assessment. Altex-Altern Anim Ex
37, 607–622.

Rathman, J.F., Yang, C., and Zhou, H. (2018).
Dempster-Shafer theory for combining in silico
evidence and estimating uncertainty in chemical
risk assessment. Comput. Toxicol. 6, 16–31.

Schneider, K., Schwarz, M., Burkholder, I., Kopp-
Schneider, A., Edler, L., Kinsner-Ovaskainen, A.,
Hartung, T., and Hoffmann, S. (2009). ToxRTool",
a new tool to assess the reliability of toxicological
data. Toxicol. Lett. 189, 138–144.

Shapin, S. (2008). The Scientific Life: A Moral
History of a Late Modern Vocation (University of
Chicago Press), p. 488.

Slavik, R.S. (2009). Information overload: we need
to improve the signal-to-noise ratio. Can. J. Hosp.
Pharm. 62, 185–190.
Smith, A., Greenbaum, D., Douglas, S.M., Long,
M., and Gerstein, M. (2005). Network security and
data integrity in academia: an assessment and a
proposal for large-scale archiving. Genome Biol.
6, 119.

Song, M.J., Ward, J., Choi, F., Nikoo, M., Frank,
A., Shams, F., Tabi, K., Vigo, D., and Krausz, M.
(2018). A process evaluation of a web-based
mental health portal (WalkAlong) using Google
analytics. JMIR Ment. Health 5, e50.

Stirling, A. (2014). Disciplinary Dilemma: Working
across Research Silos Is Harder than it Looks (The
Guardian). https://www.theguardian.com/
science/political-science/2014/jun/11/science-
policy-research-silos-interdisciplinarity.

Sun, Y., Livan, G., Ma, A., and Latora, V. (2021).
Interdisciplinary researchers attain better long-
term funding performance. Commun. Phys. 4,
263.

Tenopir, C., Allard, S., Douglass, K., Aydinoglu,
A.U., Wu, L., Read, E., Manoff, M., and Frame, M.
(2011). Data sharing by scientists: practices and
perceptions. PLoS One 6, e21101.

United States Bureau of Labor Statistics,
Occupational Employment and Wage Statistics
(visited May 10, 2022).

van Panhuis, W.G., Paul, P., Emerson, C.,
Grefenstette, J., Wilder, R., Herbst, A.J.,
Heymann, D., and Burke, D.S. (2014). A systematic
review of barriers to data sharing in public health.
BMC Publ. Health 14, 1144.

Walsh, J.P., Cohen, W.M., and Cho, C. (2007).
Where excludability matters: material versus
intellectual property in academic biomedical
research. Res. Policy 36, 1184–1203.

Wang, Z., Walker, G.W., Muir, D.C.G., and
Nagatani-Yoshida, K. (2020). Toward a global
understanding of chemical pollution: a first
comprehensive analysis of national and regional
chemical inventories. Environ. Sci. Technol. 54,
2575–2584.

Watercutter, A. (2022). Twitter Isn’t a Town
Square—It’s a Whole City (Wired).

Yang, L., Neagu, D., Cronin, M.T.D., Hewitt, M.,
Enoch, S.J., Madden, J.C., and Przybylak, K.
(2013). Towards a fuzzy expert system on
toxicological data quality assessment. Mol.
Inform. 32, 65–78.

Zhang, W.J. (2018). Global pesticide use: profile,
trend, cost/benefit and more. Proceedings of the
International Academy of Ecology and
Environmental Sciences 8, 1–27.

Zhen, Y., Khan, A., Nazir, S., Huiqi, Z., Alharbi, A.,
and Khan, S. (2021). Crowdsourcing usage, task
assignment methods, and crowdsourcing
platforms: a systematic literature review. J. Softw.
Evol. Proc. 33, e2368.
iScience 25, 105256, November 18, 2022 7

http://refhub.elsevier.com/S2589-0042(22)01528-0/sref39
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref39
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref39
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref39
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref39
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref40
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref41
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref41
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref41
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref41
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref42
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref42
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref42
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref42
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref42
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref43
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref43
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref43
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref44
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref44
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref44
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref45
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref45
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref45
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref45
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref45
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref46
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref46
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref46
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref46
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref46
https://www.theguardian.com/science/political-science/2014/jun/11/science-policy-research-silos-interdisciplinarity
https://www.theguardian.com/science/political-science/2014/jun/11/science-policy-research-silos-interdisciplinarity
https://www.theguardian.com/science/political-science/2014/jun/11/science-policy-research-silos-interdisciplinarity
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref48
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref48
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref48
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref48
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref49
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref49
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref49
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref49
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref51
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref51
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref51
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref51
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref51
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref52
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref52
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref52
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref52
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref53
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref53
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref53
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref53
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref53
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref53
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref54
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref54
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref55
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref55
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref55
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref55
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref55
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref56
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref56
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref56
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref56
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref57
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref57
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref57
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref57
http://refhub.elsevier.com/S2589-0042(22)01528-0/sref57

	O data, where art thou? Revolutionizing data sharing to advance our sustainability goals through smart chemical innovation
	Unintended consequences creating our shared “toxic debt”
	Barriers to sharing data
	The opportunity cost of data-sharing barriers
	Setting up the goalposts
	Looking ahead
	Limitations of the study

	Acknowledgments
	Author contributions
	Declaration of interests
	References


