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We review the progress in the development and application of immersed boundary methods
to thermofluids problems, achieved in the last three decades. The implementation of different
heat transfer boundary conditions, ranging from Dirichlet, Neumann and Robin, to conjugate
heat transfer are discussed for continuous as well as discrete forcing immersed boundary
methods. We review several key studies that developed and employed IB methods with
stationary boundaries for a variety of heat transfer scenarios such as forced convection,
natural or mixed convection, radiation, and combustion. The computational challenges
associated with and approaches employed for thermofluid problems with moving boundaries
are discussed in detail. These include problems with rigid bodies that move under the
influence of fluid dynamic forces, as well as flow-induced deformation of compliant bodies.
We conclude the article by discussing briefly the implementation of immersed boundary
methods in two emerging areas: bioheat transfer and very high-speed compressible flows.
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1. INTRODUCTION

The transfer of heat from a fluid or a structure to its surroundings in most situations in-
volves boundaries that are topologically complex. Examples include heat sinks1, heat ex-
changers2, high density electronics3, metal foams1, internal combustion engines4 and hy-
personic vehicles5 (Fig. 1, left column). In many applications, the boundary might also be
moving and/or deforming, such as in heat-exchangers that exploit fluid-structure interac-
tion6,7 or active materials8,9. Heat exchange with moving boundaries is also encountered
in materials processing10, high-velocity impact problems11, and in multiphase flows12.
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2 ANNUAL REVIEW OF HEAT TRANSFER

FIG. 1: A multitude of applications involving thermofluids problems in engineering, bio-
logical and biomedical systems. (a1) Radial aluminum heat sink for enhancing heat dissi-
pation of an electronic chip13. (a2) Copper foam-based heat sink1. (a3) Isotherms on the
surface of Orion spacecraft and Mach number contours on the symmetry plane5. (b1) In-
frared thermograph of left ear of an African elephant, observed indoors at a mean ambient
temperature of 19.5◦C14. (b2) Infrared thermograph of two emperor penguins, showing
temperature variation on head and flippers in an ambient temperature of -21.8◦C15. (b3)
Variation of temperature on a leaf of bean plant after giving a heat pulse, with wind speed
of zero (left) and 0.4 m/s (right). (b3) A schematic of tissue with an inserted cryoprobe
during cryosurgery16. All figures have been reproduced with permissions from respective
copyright holders.

Examples of fluid-structure-thermal interaction also abound in biology, and usually in-
volve thermoregulation in animals, birds, marine animals, insects and plants (Fig. 1, right



IMMERSED BOUNDARY METHODS FOR THERMOFLUIDS PROBLEMS 3

column). For example, elephants thermoregulate their bodies via the flapping of their large
ears14. Bees achieve thermoregulation of their nest by coordinated wing flapping inside
their hive17. Plant leaves exchange heat and mass with their surroundings in a complex
manner that involves ambient wind currents18. In biomedical engineering, radio frequency
ablation or cryosurgery involves heat transfer in the complex vascular system of the human
body and diseased tissue16.

Over the last 50 years, computational thermofluid modeling (CTFM) has emerged as
a powerful modality not just for the analysis of such thermofluid problems, but also for
the design, testing and optimization of associated devices/systems. While, earlier efforts
in CTFM were limited to relatively simple configurations with stationary boundaries, the
state-of-the-art in this arena is rapidly moving towards configurations such as those de-
scribed above that involve more complex physical as well as thermal interactions between
the fluid and the structure. The fluid flow and heat transfer in these problems are inherently
unsteady and strongly coupled with the structure (or the moving boundary), which itself
might exhibit geometric and material non-linearities. Accurate and stable CTFD simula-
tions of these problems can pose a significant challenge.

Immersed boundary (referred to as IB, hereafter) methods, where simulations are con-
ducted on stationary, boundary-non-conforming Cartesian grids, are well-suited to han-
dle the problems/configurations described above. The use of Cartesian makes it easy to
solve problems with topologically complex boundaries. For instance, generation of a body-
conformal grid for solving conjugate heat transfer in a metal foam is quite tedious but
the problem can be tackled quite easily using a Cartesian grid based immersed boundary
method19. For problems with moving boundaries, the use of IB method also eliminates
the added complexity associated with remeshing, which usually accompanies other body-
conformal grid methods (e.g. Arbitrary Lagrangian-Eulerian method (ALE) method20). In
the past two decades, there has been a rapid growth in the development as well as the use
of IB methods in thermofluids problems and the current article focuses on reviewing this
progress, as well describing some future trends.

1.1 Scope of the present review

Several previous reviews in the last two decades have covered a variety of aspects of
these methods; these include reviews by Peskin21, Mittal and Iaccarino22, Iaccarino and
Verzicco23, which focused on describing different formulations of the IB methods and as-
sociated applications. IB methods have also been successfully developed and applied in
biomedical and biological flows which often involve fluid-structure interaction (FSI) and
large-scale flow-induced deformation (FID). The FSI and FID aspects of IB methods have
been reviewed by Sotiropoulos and Yang24, and Griffith and Patankar25 in greater details.
Some recent reviews26–28 have also described the progress in this arena. In this current re-
view we focus on new developments and applications of the IB methods with a particular
focus on thermofluids problems.

In this article, we first review IB methods for a variety of heat transfer scenarios in
thermofluids problems where the boundary is stationary. The implementation strategies



4 ANNUAL REVIEW OF HEAT TRANSFER

within the IB framework for different heat transfer boundary conditions, including those
for conjugate heat transfer, are discussed. Following this, the application of IB methods
to thermofluids problems that exhibit large-scale flow-induced boundary/structure defor-
mation, are reviewed. We conclude this article by reviewing the IB applications in two
emerging areas in thermofluids: bioheat transfer and high-speed flows. This review does
not cover IB treatment of the following situations: moving fluid-fluid interface (i.e., multi-
phase flows), mass transfer across fluid-fluid interface and phase change across fluid-fluid
or fluid-solid interface. Some of the IB implementations in these topics have been reviewed
by Xiao et al.29.

1.2 Overview and classification of IB methods

The term “immersed boundary method” was used first in the context of the methods de-
veloped by Peskin nearly four decades ago30–33. In this original implementation of the IB
methods, the fluid flow was computed on a fixed Cartesian grid, and the solid boundary
was modeled using a dense mesh of massless elastic fibers. The fibers were assumed to
move with the local flow and exert a localized force on the fluid. This two-way interaction
was modeled by a set of localized forces and this force distribution was “regularized” for
implementation on a discrete mesh. Since the proposition of Peskin’s method, there has
been tremendous growth, evolution and diversification in IB methods. A key contribution
in this arena was the feedback control based forcing that was introduced by Goldstein et.
al.34 to apply the IB method to solid walls.

As suggested by Mittal and Iaccarino22, IB methods may be classified in to two broad
categories: continuous forcing32,32,34–41 and discrete forcing methods. The former approach
introduces a localized source term in the continuous form of the momentum equations
to model the interaction between the fluid and the immersed boundary. Subsequent dis-
cretization of this augmented momentum equation requires the regularization of this lo-
calized source term resulting in a “diffuse” interface. In the latter approach, the governing
equations are first discretized on a Cartesian grid without accounting for the IB. Subse-
quently, the discretization is adjusted near the IB to incorporate the boundary conditions
on the IB22. The discrete forcing approach allows for a “sharp” representation of the IB
such as in studies by Ye et al.42, Udaykumar et al.43 and Mittal et al.44 and others. While
the continuous-forcing approach is easy-to-implement and computationally inexpensive
as compared to discrete forcing, the diffuse interface treatment in the continuous-forcing
approach can limit their application to relatively low Reynolds numbers. The discrete forc-
ing has been further divided into sub-categories, namely, indirect boundary condition im-
position45–47 and direct boundary condition imposition42–44,48–54. IB methods have been
implemented most commonly in conjunction with finite-difference methods but also with
finite-volume42,43,45,49 as well as finite-element formulations37,41. One issue with all IB
approaches is that the grid size generally grows faster with Reynolds number than for
body-conformal grid methods22 and this can be only be addressed by employing local-
grid refinement techniques55–58.
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1.3 Early developments of IB methods for thermofluids problems

One of the earliest implementations of IB methods to thermofluids problem was by Udayku-
mar and co-workers49,50. In these studies, a mixed Eulerian-Lagrangian technique (ELAFINT:
Eulerian-Lagrangian algorithm for interface tracking) finite-volume based solver was pro-
posed for topologically complex boundaries and moving fluid-fluid interface. In addition,
this algorithm for phase change at the fluid-fluid interface modeled via Stefan condition.
The flow computations were performed on a fixed Cartesian grid while the fluid-fluid in-
terface was tracked using Lagrangian marker particles49. The boundary condition at the
IB was imposed within the finite-volume framework using a cut-cell technique (Fig. 2
(a)). With the cut-cell technique, the shape of the cells near the IB is modified locally
to conform to the boundary (Fig. 2(a)) and this allows for a strictly conservative discrete
formulation. The fidelity of the solver was demonstrated using several test cases includ-
ing natural convection in a closed cavity (Fig. 2 (b, c)) and the deformation of a viscous
droplet.

FIG. 2: One of the earliest implementation of cut-cell IB method in thermofluids50. (a) The
cells near to IB are reshaped such that they fit locally the IB, resulting in flux conservation.
A normal probe, as shown in the figure, was used to compute the gradients at the interface.
(b, c) Simulated natural convection in a cavity. Pr = 1, Ra =106 on a 121×121 grid, showing
computed isotherms (b) and velocity vectors (c) (reprinted with permission from Elsevier,
copyright 199650).

One of the issues in cut-cell methods is that the volume of a cut-cell could become very
small, leading to numerical stability issues. Ye et al.42 proposed a systematic cell-merging
approach to alleviate this problem. While cut-cell type methods provide high accuracy
and discrete conservation, they are quite complex to implement for three-dimensional
problems since cut-cells of a wide variety of topologies can appear59,60. The treatment
of freshly cleared cells, which are inside the solid at a given time-step and appear in to the
fluid domain at the next time-step is an issue that appears in many discrete forcing meth-
ods and this issue was addressed for cut-cell type methods by Ye. et al42 and Udayku-
mar et al.43. The implementation of fluid-fluid interface undergoing phase change was
also reported51,61,62. A finite-difference based formulation was further developed using the
sharp-interface treatment of solid boundary63 and was applied to diffusion, convection–
diffusion, and solidification problems. Some of these developments were summarized in
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a review paper by Shyy et al.64. Later, Francois and Shyy65,66 employed the IB method
to compute the droplet dynamics on a solid substrate, including heat transfer between the
droplet and the substrate.

2. STATIONARY BOUNDARY PROBLEMS

2.1 Governing equations and boundary conditions

The governing equations for flow and heat transfer in an unsteady, viscous flow are:

∂ρ

∂t
+

∂ (ρuj)

∂xj
= 0 (1)

∂ (ρui)

∂t
+

∂ (ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
µ
∂ui

∂xj

)
(2)

∂ (ρCpT )

∂t
+

∂ (ρCpujT )

∂xj
=

∂

∂xj

(
k
∂T

∂xj

)
(3)

for i, j=1,2,3, where u, x, ρ, T , t, p, denote velocity, spatial coordinate, density, tem-
perature, time and pressure, respectively. Furthermore, µ, Cp and k are the dynamic vis-
cosity, specific heat and thermal conductivity [Wm−1K−1] of the fluid, respectively, and
these fluid properties may, in general, be dependent on the temperature. The Boussinesq
approximation is often used to model natural convection (buoyancy-driven flows) in situa-
tions where the density differences are small67. Within this model, the flow is modeled as
an incompressible fluid with constant density but with a buoyancy force term gβ(T −T∞)
added to the vertical momentum equation67, where g, β and T∞ are gravitational accel-
eration, volume expansion coefficient of the fluid at constant pressure and ambient fluid
temperature, respectively.

The key element in IB methods is the application of the boundary condition and it is
therefore useful to enumerate the typical boundary conditions that appear for the temper-
ature field in thermofluids problems. These extend from the simplest isothermal boundary
condition (Eq. 4) to heat flux and radiative conditions67,68, described below:

T = Tw on the wall (4)

where Tw denotes the wall temperature. A prescribed heat flux q̇w [Wm−2] is expressed
as a Neumann type boundary condition as follows,

−k
(
n̂.~∇T

)
= q̇w on the wall (5)

where n̂ is unit normal vector on the boundary. For an insulated or adiabatic surface,
q̇w = 0. The heat convection boundary condition is expressed as a Robin type boundary
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condition as follows:
−k
(
n̂.~∇T

)
= h (T − T∞) (6)

where h and T∞ are heat transfer coefficient [Wm−2K−1] and ambient fluid temperature,
respectively. A radiative boundary condition is a non-linear condition that is expressed as
follows68:

−k
(
n̂.~∇T

)
= εσ

(
T 4 − T 4

∞
)

(7)

where ε and σ are surface emissivity and Stefan-Boltzmann constant (5.670 × 10−8

Wm−2K−4), respectively.
In applications involving conjugate heat transfer, the heat transfer within the solid/structure

has to be modeled simultaneously via the solution of an appropriate heat conduction equa-
tion and the boundary conditions at the fluid-solid interface adjusted to account for this
coupling. For the case of perfect thermal contact at the solid boundary, the temperature as
well as the heat flux are continuous across the fluid-solid boundary and these conditions
are expressed simply as follows,

T |fluid = T |solid (8)

and
−k
(
n̂.~∇T

)
|fluid = −k

(
n̂.~∇T

)
|solid (9)

2.2 IB Implementations of Thermal Boundary Conditions

Both continuous-forcing and discrete-forcing IB formulation have been employed to apply
the boundary conditions described in Sec. 2.1. These developments are briefly summarized
below.

2.2.1 Continuous forcing

In Peskin’s method, massless points connected by elastic fibers represent IB and these
points move with local fluid velocity and are tracked in Lagrangian framework. A forcing
term is added in the momentum equation to impose the velocity boundary condition on the
surface. This idea is extended to the impose a temperature boundary condition by adding
a heat source/sink q(~x, t) [Wm−3] to the energy equation29,69–75,

∂ (ρCpT )

∂t
+

∂ (ρCpujT )

∂xj
=

∂

∂xj

(
k
∂T

∂xj

)
+ q (10)

The heat source term is considered to be localized at the immersed boundary surface using
a Delta function as follows:

q(~x, t) =

∫
Γ

Q( ~X, t)δ(~x− ~X)ds (11)
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where Γ represents IB, ~x is Eulerian coordinate, ~X is Lagrangian coordinate on the IB, Q
is heat flux [Wm−2] on the IB and δ is Dirac delta function. Following the original idea of
Peskin, the discrete form of the localized source term Eq. 11 is expressed as follows,

q(~xi,j , t) =
N∑
k=1

Qk(t)δh(~xi,j − ~Xk)∆sk (12)

where (i, j) represent Eulerian grid point indices, k = 1, N are the indices of the La-
grangian points on the IB and δh is a discrete Delta function. Xk is the coordinate of
kth Lagrangian point, ∆sk is the distance between two adjacent Lagrangian points. The
temperature at the Lagrangian points is also interpolated using the temperature field at the
surrounding Eulerain grid points, by the following expression:

Tk =
∑
i

∑
j

Ti,jδh(~xi,j − ~Xk)h2 (13)

where h is the grid spacing of the Eulerian grid. δh serves as a kernel in transferring data
between Lagrangian and Eulerian points29 and is a smoother distribution function (Fig.
3(a)). As proposed by Peskin and co-workers21,76, in 2D coordinates, δh is defined as
follows:

δh =
1
h2φ(

x

h
)φ(

y

h
), (14)

and a 4-point delta function φ is defined as follows21:

φ =


1
8(3− 2|r|+

√
1 + 4|r| − 4r2) if 0 ≤ |r| ≤ 1

1
8(5− 2|r|+

√
−7 + 12|r| − 4r2) if 1 ≤ |r| ≤ 2
0 otherwise

(15)

The discrete delta function (Eq. 14 - 15) was employed by several previous studies69–72,77,78

in the development of continuous forcing IB methods. Earlier studies also used other forms
of distribution function. For example, Zhang et al.79 used bilinear interpolation, proposed
by Saiki and Biringen80 for their continuous forcing IB method developed for forced con-
vection. A comparison of different distribution functions used in several studies was shown
by Mittal and Iaccarino22.

The key to the IB method is to determine the heat source distribution q(~x, t) such that
it enables the satisfaction of a thermal boundary condition (fixed temperature or heat flux,
etc.) on the immersed surface. This is done as follows70–72: An intermediate temperature
field T ∗ is first computed by time-advancing Eq. 10 without consideration of the thermal
boundary condition on the immersed boundary70–72, i.e. without the heat source term q.
The corrector step employs the following time advancement that incorporates the heat
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source associated with the IB as follows:

ρ∗C∗p
Tn+1 − T ∗

∆t
= qn+1 (16)

where we assume here that ρ and Cp are unchanged during this corrector step. In the case
of a Dirichlet boundary condition for temperature, the temperature at the kth Lagrangian
point on the wall is expressed as follows,

Tn+1
k |wall =

∑
i

∑
j

Tn+1
i,j δh(~xi,j − ~Xk)h2 (17)

Substituting Tn+1
i,j from Eq. 16 into Eq. 17, the following expression for the wall temper-

ature is obtained:

Tn+1
k |wall =

∑
i

∑
j

T ∗i,jδh(~xi,j − ~Xk)h2 +
∑
i

∑
j

qn+1
i,j

∆t

ρ∗C∗p
δh(~xi,j − ~Xk)h2, (18)

Using the relationship in Eq. 12, the above expression for the temperature at the kth La-
grangian point can be rewritten as70–73,79:

Tn+1
k |wall =

∑
i

∑
j

T ∗i,jδh(~xi,j − ~Xk)h2

+
∑
i

∑
j

∑
m

Qn+1
m

∆t

ρ∗C∗p
δh(~xi,j − ~Xm)∆smδh(~xi,j − ~Xk)h2

(19)

where m spans all the Lagrangian points. Eq. 19 is written as a system of linear equa-
tions for all Lagrangian points and is solved for the unknown vector Qn+1. Next, qn+1 is
computed via the interpolation given in Eq. 12 and the corrected temperature field Tn+1

computed from Eq. 16. Thus, the heat source/sink is implicitly computed such that the La-
grangian temperature at the IB interpolated from the Eulerian temperature field (T (~x, t)),
equals to the prescribed IB temperature70,73.

In order to implement a Neumann-type boundary condition, an additional layer of
“virtual” points are defined at a distance of one grid spacing, h outside the IB72,79. The
number of virtual points are kept the same as the number of Lagrangian points and are
aligned in direction normal to the IB72,79. The prescribed heat flux on the IB is expressed
as follows,

q̇w = −k
dT

dn
= −k

Tk|VB − Tk|wall

h
(20)

where VB implies virtual boundary. Tk|VB is computed using interpolation in Eq. 13 and
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the wall temperature Tk|wall is given by,

Tn+1
k |wall =

q̇wh

k
+ Tn+1

k |VB (21)

Using Tn+1
k |wall in Eq. 19, the corrected temperature field Tn+1 can be obtained, as de-

scribed earlier for the case of Dirichlet boundary condition.

Several previous studies69–75,79,81,82 reported the implementation of heat transfer bound-
ary conditions in continuous forcing IB methods in Peskin’s method or its variants for
Dirichlet and/or Neumann temperature boundary conditions. For conjugate heat trans-
fer boundary conditions, Kumar and Natrajan83 developed a diffuse-interface IB method.
They solved energy equation in both fluid and solid domain, which corresponds to convective-
diffusive and diffusive equation, respectively, for different thermal diffusivities in both do-
mains. A similar implementation for the conjugate heat transfer boundary conditions was
reported by Favre et al.84

2.2.2 Discrete forcing

Fadlun et al.47 developed one of the early discrete forcing methods to impose a Dirichlet
boundary condition for a passive scalar. Kim and Choi85 proposed an extension of Fadlun’s
method for both Dirichlet and Neumann boundary condition for temperature. Several stud-
ies of thermofluids problems have developed and employed methods based on the sharp
interface ghost-cell method of Mittal et al.44 for enforcing the heat transfer boundary con-
ditions in their IB formulations86–89, and we describe this formulation in detail here for
Dirichlet, Neumann, Robin and conjugate heat transfer boundary conditions (Eqs. 4 - 9).

These thermal boundary conditions can be applied similar to the implementation of
boundary conditions for momentum and pressure, as described by Mittal et al.44. In this
scheme, the different cell types are identified in the computational domain, as shown in
Fig. 3(b). First, ghost cells (referred to as GC, hereafter) are identified which are inside the
solid domain and have at least one neighbor cell in the fluid domain. The value at the ghost-
cell (GC) is computed so that the boundary conditions are enforced at the solid boundary
or IB. A normal is defined from the GC which meets at the “boundary intercept” (BI)
point. The normal is extended beyond the BI to the “image point” (IP) in the fluid domain.
The IP is usually selected so that the BI at the midpoint of the line segment joining IP and
GC (Fig. 3(b)).



IMMERSED BOUNDARY METHODS FOR THERMOFLUIDS PROBLEMS 11

FIG. 3: (a) A force distribution function shown across a structure boundary in continuous
forcing IB method and shaded region shows the extent of the force (b) Ghost cell (GC)
methodology described by Mittal et al.44 in discrete forcing IB method (reprinted with
permission from Elsevier, copyright 200844).

The temperature T at the IP is expressed in three-dimensional problems by employing
a tri-linear interpolation44 of the form

T (x, y, z) = c1xyz + c2xy + c3yz + c4xz + c5x + c6y + c7z + c8 (22)

where the IP is surrounded by 8 nodes. For a 2D geometry, bilinear interpolation can be
used with 4 neighboring cells. There are eight unknown coefficients in the above equation,
and these are expressed in terms of the values of T at the 8 neighbouring nodes as follows:

TIP =
8∑

i=1

βiTi (23)

where βi are function of coefficients ci and location of the IP relative to the surrounding
nodes. A Dirichlet boundary condition for the temperature at the BI can be prescribed as
follows:

TBI =
1
2

(TIP + TGC) (24)

In an implicit time-discretization Eq. 24 is written as,

TGC +

8∑
i=1

βiTi = 2TBI (25)

and is solved in a coupled manner with the temperature at the surrounding nodes.
For Neumann boundary condition, the following central-difference scheme is used to
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express the heat flux on the boundary:

− q̇w
k

=

(
∂T

∂n

)
BI

=
TIP − TGC

∆l
(26)

where the heat flux q̇w [Wm−2] is known at the IB, ∆l is the distance between GC and
IP and ~n is normal direction unit vector to the IB. Thus, the Neumann boundary condition
using Eqs. 23 and 26 is expressed as follows,

TGC −
8∑

i=1

βiTi = 4l
q̇w
k

(27)

The Robin boundary condition, Eq. 6, can be discretized along similar lines and ex-
pressed as follows, (

k

4l
− h

2

)
TGC =

(
k

4l
+

h

2

) 8∑
i=1

βiTi − hT∞ (28)

A similar formulation can be carried out for Robin boundary condition for heat loss due to
radiation.

The implementation of Dirichlet and Neumann heat transfer boundary conditions using
the ghost cell method was carried out by Pan86,87 and Luo et al.88,89 for simple and complex
structures boundaries. Inspired by higher-order reconstruction of ghost cell method of Seo
and Mittal90, a third-order ghost cell based method was implemented by Xia et al.82,91

for enforcing the boundary conditions. Similar interpolation schemes were used in other
several studies (e.g. Ref.92) in this theme. Xia et al.82 compared results for the third-order
order ghost cell method with the continuous forcing method. They concluded that the
former requires only one-third of grid points as compared to the latter, to obtain the same
accuracy for forced convection problems.

The implementation of conjugate heat transfer boundary conditions (Eqs. 8 and 9) at
the IB have been attempted by previous studies using mirror GC and mirror IP points in the
solid domain (Fig. 4). Eq. 27 can be rewritten for the GC in the solid domain as follows,

T ∗GC =
8∑

i=1

β∗iT
∗
i + ∆l

q̇w
k∗

(29)

where subscripts ∗ corresponds to the properties/variables for the solid. Using Eqs. 9, 27
and 29, we obtain the following equation,

kTGC − k
8∑

i=1

βiTi = k∗T ∗GC − k∗
8∑

i=1

β∗iT
∗
i (30)

Using Eqs. 8 and 25, we write an expression, connecting temperature at GC in fluid and



IMMERSED BOUNDARY METHODS FOR THERMOFLUIDS PROBLEMS 13

solid domain, as follows,

TGC +

8∑
i=1

βiTi = T ∗GC +

8∑
i=1

β∗iT
∗
i (31)

Eliminating T ∗GC from Eqs. 30 and 31, we write the final expression of temperature at GC
in fluid domain as follows,

(k − k∗)TGC = (k + k∗)
8∑

i=1

βiTi − 2k∗
8∑

i=1

β∗iT
∗
i (32)

The above framework for the conjugate heat transfer boundary condition can be readily
implemented in a ghost cell method.

FIG. 4: Conjugate heat transfer boundary condition treatment at the structure boundary
by using mirror ghost nodes in the fluid domain and mirror probe points in solid domain,
as proposed by Nagendra et al.93. Ghost nodes are named as IB node in the figure. (a)
Location of nodes in solid and fluid region. (b) Interpolation nodes used in the solid and
fluid regions (reprinted with permission from Elsevier, copyright 201493).

The first implementation of conjugate heat transfer in a discrete-forcing IB method was
reported by Iaccarino and co-workers94,95. In their work, Eqs. 8 and 9 were asymmetrically
enforced at the solid and fluid domains. Eq. 8 was prescribed at the fluid domain boundary
while Eq. 9 was applied at the solid domain boundary. Authors noted a greater stability
of the Dirichlet boundary condition compared to the Neumann boundary condition and
a typically larger thermal conductivity of solid than that of fluid, as reasons to prescribe
Dirichlet boundary condition at the fluid domain boundary. A higher order interpolation
scheme was implemented by Tafti and co-workers93,96. In this scheme, two IP points in the
fluid domain and two IP points in the structure domain, along with mirror GC in the fluid
domain were considered (Fig. 4). Das et al.19 and Marinis et al.97 implemented a similar
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interpolations that employed two IP points and one IP point, respectively. The convergence
of these conjugate heat transfer solvers depends upon the problem parameters98.

2.3 Applications

In the last two decades, IB methods have been applied to a variety of heat transfer prob-
lems, namely, forced convection, natural/mixed convection, mixed convection, conjugate
heat transfer an radiation/combustion. The following sub-sections describes some of these
applications.

2.3.1 Forced convection

Several researchers have developed and employed continuous forcing based IB methods
for heat transfer69–75,79,81,82. Paul et al.72 reported a finite-difference based continuous-
forcing IB solver for laminar forced convective heat transfer from an elliptic cylinder. They
considered several cylinder axis-ratios, Reynolds numbers and angles-of-attack. Chand et
al.99 employed a diffuse IB method to simulate and quantify the effect of wall roughness
on turbulent Rayleigh–Bénard convection.

Regarding discrete forcing IB methods, Kim and Choi100 proposed an indirect bound-
ary condition imposition IB flow and heat transfer solver, based on a finite-volume dis-
cretization on a staggered-grid mesh. They utilized second-order linear and bilinear inter-
polations85 to implement Dirichlet and Neumann boundary conditions. The solver capa-
bility was demonstrated using canonical thermofluids problems such as forced convection
from a circular cylinder and mixed convection around two circular cylinders, mounted
side-by-side. Pacheco et al.101 reported an IB method based heat transfer solver based
on non-staggered grids. Their indirect boundary condition imposition discrete forcing IB
method was based on the algorithm proposed by Mohd-Yusof46. In a subsequent study
Pacheco et al.92 employed this solver for fluid flow and heat transfer processes with ei-
ther Dirichlet, Neumann or Robin boundary conditions in 2D as well as 3D geometries,
and demonstrated the second-order accuracy of the solver. Pan developed a ghost cell IB
method and compared convective fluid flow over a stationary cylinder at low Reynolds
number (O(10-100)) with existing data86,87. Xia et al.82 used a third-order ghost cell
method to compute forced convection around a cluster of stationary particles (Fig. 5), and
quantified drag coefficient and Nusselt number on the particles as a function of Reynolds
numbers.
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FIG. 5: Computation of flow and temperature field around a cluster of stationary parti-
cles82. (a) Contours of streamwise velocity in central plane along with iso-surface of T =
0.8. (b) Isotherms in central plane along with iso-surface of u = 0.1 at Re = 100 (reprinted
with permission from Elsevier, copyright 201482).

2.3.2 Natural and mixed convection

Shinn et al.102 used a ghost-cell based IB method to compute shear- and buoyancy-driven
flows in cavities of different shapes. Mark et al.103 demonstrated a discrete forcing IB
method for problems involving natural convection. Ashrafizadeh and Hosseinjani104 em-
ployed a discrete forcing IB method105 to compute convection from two rotating hot cylin-
ders in a cold cavity using a Boussinesq approximation. Recently, based on the ghost cell
method of Mittal et al.44, Garg et al.106 proposed and validated an IB method with natural
and mixed convection in cavity and past a square cylinder. The natural convection was
implemented using the Boussinesq approximation in all of these studies.

2.3.3 Conjugate heat transfer

A variety of discrete forcing IB methods have also been developed for problems involving
conjugate heat transfer. Iaccarino and co-workers94,95 developed an IB based solver for
high Re flows, which accounts for conjugate heat transfer and mixed convection. They
compared the Boussinesq approximation and variable density formulation in these works
and found that the latter is preferable in a transitional flow with mixed convection. Fig.
6(a) shows isotherms for flow over a cylinder at one time instance and it highlights the
quasi-periodic nature of thermal plumes in the spanwise direction and time95. Similarly,
Nagendra et al.93 developed a coupled 3D, conjugate heat transfer solver based on curvi-
linear grid. Marinis et al.97 proposed a discrete-forcing IB method for conjugate heat trans-
fer which solved for unsteady Reynolds-averaged Navier–Stokes equations. They applied
this method to compute compressible turbulent flow past a turbine vane. Deen and co-
workers19,107 proposed a discrete forcing IB method for convective and conjugate heat
transfer through complex porous structures, represented as surfaces with triangular ele-
ments on a Cartesian grid (Fig. 6(b, c)).
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FIG. 6: Instantaneous isotherms are shown in fluid and solid domain in range 284 to 320
K for conjugate heat transfer from a cylinder near a wall95. (b, c) Velocity and temperature
contours around a complex random solid foam obtained from a conjugate heat transfer sim-
ulation on a Cartesian grid19 (reprinted with permission from Elsevier, copyright 200995

and 201619).

2.3.4 Radiation and combustion

Favre et al.84 proposed a continuous forcing IB method that was extended to simulate
problems with conjugate heat transfer taking into account the radiative exchange between
surfaces. Lapka and Furmanski108 proposed a discrete forcing IB method for conjugated
radiative-conductive or radiative-convective heat transfer. They were able to model the
thermal radiation from highly curved, opaque, or transparent boundaries. Some studies
have also tackled combustion using the IB methods. For instance, Kedia et al.109 proposed
a second-order numerical method for computations of reacting flows around thermally
conductive solid bodies.The reacting species were modeled using species transport equa-
tion and conjugate heat transfer was accounted for with the reacting flow (Fig. 7). Nguyen
et al.4 presented large-eddy simulations (LES) of an internal combustion engine using an
IB method. The motion of the valves and the piston was modeled by Lagrangian particles
immersed in a stationary Cartesian grid. Measured and computed phase-averaged velocity
components were found to be in good agreement in this study.
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FIG. 7: Computation of stabilization of pre-mixed flame at equivalence ratio of 0.7 on a
rectangular cylinder in a channel with blockage ratio and Reynolds number of 0.2 and 1000,
respectively109. Isotherms, and iso-contours of mass-fraction of methane and intermediate
species OH are plotted along with streamlines in different panels. Overlaid fine grid patches
are shown in top two panels. (reprinted with permission from Elsevier, copyright 2014109).

3. FLUID-STRUCTURE-THERMAL INTERACTION

3.1 Utilizing FSI to augment convective heat transfer

Interaction of flexible or elastic structures with the flow can be exploited to enhance heat
transfer. Often, fluid-structure interaction results in dynamic motion of the structure and
this can lead to the shedding of vortices. The interaction of these vortices with the heated
wall results in the thinning of the thermal boundary layer and helps to augment the con-
vective heat transfer7,110,111. Recent reviews6,8 have summarized fluid-structure interaction
(FSI) studies that have employed flexible plates or piezoelectric fans for convective heat
transfer enhancement (Fig. 8). Examples of this abound in biology; for example elephants



18 ANNUAL REVIEW OF HEAT TRANSFER

flap their large ears to thermoregulate their body temperature112,113. These FSI techniques
can be categorized into passive and active strategies, which either harness flow energy
or utilize an external energy source to augment the heat transfer, respectively. In the for-
mer, oscillating bluff bodies inside the channel have been used, while the latter utilized
the flow-induced vibration or deformation to enhance heat transfer. For example, Kimber
and Garimella9 experimentally showed that the actuation of thin elastic beam bonded with
piezoelectric material enhances convective heat transfer of a hot surface.

FIG. 8: Piezoelectric fan as an example of a active convective heat transfer augmentation
technique9. (a) An experimental setup involving infrared thermography employed the fan
(b) Iso-contours of heat transfer coefficient on a heated sheet, cooled by a piezoelectric fan
(reprinted with permission from Elsevier, copyright 20099).

3.2 Computational challenges

The large deformation of the structure boundary in the fluid flow poses a modeling and
computational challenge. The displacement, velocity, and acceleration of a deforming
structure may vary strongly with space and time. For instance, a thin splitter plate attached
to a cylinder exhibits a non-monotonic displacement along the plate of the length of the
plate114. In addition, a deforming structure could exhibit material non-linearity or involve
complex material model (e.g., a non-linear viscoelastic tissue115,116). If the structure is thin
(e.g., a membrane or a plate), numerically resolving the stresses in the structure poses a
challenge.

Another associated computational challenge with moving boundary computations, es-
pecially with sharp-interface IB methods, is spurious pressure oscillations due to ”fresh”
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and ”dead” cells. The fresh (dead) cells are those fluid (solid) cells which were solid (fluid)
cells in the previous time-step. Seo and Mittal60 developed a “virtual” cut-cell method
to enforce regional mass conservation in their ghost-cell sharp interface method44 which
resulted in significant reduction in the pressure oscillations. Griffith and Leontini117 as-
sessed spurious force oscillations during the movement of the immersed boundary using
a sharp-interface IB method. They proposed a heuristic model and recommended that the
peak-to-peak distance of any oscillation should be resolved by at least 40 points in case of
significant oscillation velocity of the cylinder.

3.3 Governing equations and boundary conditions

The governing equation and boundary conditions for the fluid flow and heat transfer are
described in section 2.1. Here we discuss the governing equations for motion of the struc-
ture. If a rigid structure is elastically mounted on a spring, its motion is governed by a
spring–mass–damper system118. If the structure is compliant, the governing equations for
the structure, are the Navier equations, with appropriate constitutive material model119 . In
several previous studies, the structure is considered as a Saint Venant-Kirchhoff material
which considers geometric non-linearity for a linear elastic material. Regarding boundary
conditions, the continuity of velocity and traction are enforced at the structure boundary.
The mathematical expressions of the governing equations and boundary conditions can be
found in previous papers24,120.

3.4 Computational approaches

The methods to tackle such class of moving/deforming boundary problems can be broadly
classified in two categories, namely, Arbitrary-Lagrangian-Eulerian method (ALE) and IB
method. In both methods, the Lagrangian formulation of the Navier equation for structural
dynamics is coupled with an Eulerian formulation of the Navier-Stokes equations for the
fluid flow. In ALE method, the simulations are carried out on body conformal meshes,
which need to be mapped by suitable remeshing algorithm at each time step. This in-
troduced significant complexity121,122 and as well as additional sources of error and can
sometime lead to ill-conditioned discrete systems. On the other hand, a typical IB method,
employs a non-body conformal fixed Cartesian (or curvilinear) grid. The governing equa-
tions of fluid flow and heat transfer are solved on the fixed uniform/non-uniform Cartesian
grid (i.e. within a Eulerian framework), whereas the moving immersed structure boundary,
may be solved with a typical body-conformal, finite-element method114.

The coupling of the flow and structural solvers can be implemented via a, monolithic
or a partitioned (or segregated) approach119,123. In monolithic solvers, the governing equa-
tions for the flow and structure domains are discretized in a unified formulation and solved
simultaneously119,124. The formulation and numerical solution of such systems becomes
more involved for complex constitutive model for the structure. On the other hand, the
partitioned approach allows for the use of existing flow and structural dynamics solvers.
However, a challenge is to implement the data exchange between the two solvers in a
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computationally efficient manner. Furthermore, the stability requirements for the flow and
structural domains might impose very different restrictions on the time-step size, and this
might have implications for the computational cost of the solution procedure.

In the partitioned (or segregated) approach, two coupling methods are commonly used:
explicit/loose and implicit/strong coupling. Fig. 9 illustrates one viable algorithm to cou-
ple the solvers using the implicit approach which involves an iterative procedure until the
convergence is achieved between flow and structural solver in a given time-step7. The
convergence of the coupled system is achieved when the residual of a coupled variable
(say velocity of structure boundary) drops below a user-defined value. Different types of
coupling schemes were recently reviewed by Sotiropoulos and Yang24. While the explicit
loose coupling is computationally cheaper, it is subjected to constraint of numerical stabil-
ity. Implicit coupling usually has more relaxed numerical stability constraints but it may
be computationally more expensive per time-step. In general, this constraint depends on
structure-fluid density ratio and the implicit coupling is required at low values of den-
sity ratios27,125,126. Oftentimes, the under-relaxation scheme used in implicit partitioned
approach for convergence is computationally expensive. In order to address this issues,
several studies127–130 have successfully implemented and tested dynamic relaxation and
demonstrated significant speedup.

FIG. 9: Algorithm of a partitioned approach for FSI with heat transfer. Solutions of fluid
and structure domain are strong coupled and heat transfer is solved after achieving the FSI
convergence.

Regarding development of IB methods in this theme, Bhardwaj and Mittal114 coupled
an existing sharp-interface IB method-based flow solver44 to an open-source finite-element
structural solver, Tahoe131. This partitioned coupled IB solver was benchmarked against
the simulation results of Turek and Hron120 for flow past a cylinder in a channel with a
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flexible splitter plate. Tian et al.132 validated an IB-based three-dimensional FSI solver for
incompressible flows involving large-scale FID. Other immersed interface method-based
solvers that simulate large-scale FID have been reported in the last two decades41,133,134.

3.5 Application to heat transfer with moving boundaries

These problems might involve bodies moving with a prescribed motion or rigid bodies
moving under the influence of fluid dynamic forces, or flow-induced deformation of a
compliant structure. The first category, i.e. bodies with prescribed motion, are a relatively
simple extension of the IB method (see Kumar and Roy135 for an example) so we focus
here on the latter two categories of moving boundary problems..

3.5.1 Rigid bodies moving under the influence of fluid dynamic forces

Feng and Michaelides136 developed a continuous forcing based IB solver (Proteus) in
which forces on non-heated or heated particles, namely, gravity, buoyancy and particle
collision forces, could be accounted for. Using Proteus, Feng and Musong137 presented
3D simulations of forced and mixed convection of rigid spherical particles in particulate
flows with a prescribed fluidization velocity (Fig. 10). The particles movement by driven
by the equations of linear and angular motion. In a follow-up work, Musong et al.138

demonstrated a 3D continuous forcing IB method for natural convection encountered dur-
ing thermal interaction of several particles with fluid flow.

FIG. 10: Computed isotherms in mid vertical plane at different times, with fluidization
velocity of 0.05 m/s by Feng and Musong137 (reprinted with permission from Elsevier,
copyright 2014137).

Vortex shedding past an elastically-mounted rigid structure such as a bluff-body ini-
tiates flow-induced vibrations (FIV) and these vibrations are sustained by the oscillating
shear layers and vortices139. FIV of bluff structures involving heat transfer is of consider-
able interest in heat exchangers, chimneys carrying hot gases, hot and cold fluids mixing
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in heat transfer devices, and others. The FIV of an elastically mounted circular cylinder
has been investigated in detail in previous studies and the FIV can be broadly into vortex-
induced vibration (VIV), galloping and flutter140–142.

Several computational models based on IB methods have investigated VIV of the cylin-
der in the presence of the heat transfer. Garg et al.106 developed a sharp-interface immersed
boundary method for VIV and galloping of a cylinder in the presence of thermal buoyancy,
which employed the Boussinesq model. They showed that VIV of an elastically mounted
cylinder can be achieved at a very low Reynolds number by utilizing thermal buoyancy,
induced by hot and cold parallel plates oriented along the direction of the flow. Subse-
quent studies143–145 showed that the suppression or amplification of VIV can be achieved
by thermal buoyancy in different configurations (Fig. 11). Kumar et al.111 utilized a sharp-
interface IB method to simulate VIV and galloping of a D-section cylinder to improve
heat transfer in a heated laminar channel flow. They reported that owing to galloping, the
D-section cylinder oscillates over an extended range of reduced velocities and spreads
detached vortices over larger areas, which helps heat transfer.

FIG. 11: Mixed convective heat transfer during VIV of a cylinder144. Vorticity, temperature
fields, and streamlines plotted over a displacement cycle of the cylinder, at the maximum
(top row) and minimum (bottom row) cylinder displacement at Re = 150. The values of
reduced velocity and Richardson number were 10 and 4, respectively (reprinted with per-
mission from American Institute of Physics, copyright 2019144)

3.5.2 Flow-induced deformation (FID) of compliant structures

Numerical simulations involving FID of the soft structures with convective heat trans-
fer have been reported recently. Several studies showed the advantage of FID in im-
proving convective heat transfer using high-fidelity computational simulations involving
both diffuse-interface and sharp-interface IB methods. Shoele and Mittal7 used a diffuse-
interface IB method (the feedback control method of Goldstein et al.34) to simulate the
FID of a flexible reed in a confined channel. Soti et al.110 employed a sharp-interface



IMMERSED BOUNDARY METHODS FOR THERMOFLUIDS PROBLEMS 23

IB method (Ghost cell IB method44) and examined heat transfer enhancement via large-
scale FID of an elastic splitter plate mounted on the lee side of a cylinder, at Reynolds
number, Re = 100, and compared the thermal augmentation of configurations with and
without FID. In a series of papers, Sung and coworkers employed fluid-structure-thermal
interaction between flexible flag(s) and heated channel in different configurations, namely,
inverted flag146, vertically clamped flexible flag147 and asymmetrically clamped flexible
flags148. In these studies, they employed a diffuse-interface IB approach of Goldstein et
al.34. While much of the work in this arena has employed two-dimensional models, Rips
et al.149 carried out 3D fully coupled fluid–structure–thermal simulations using a diffuse-
interface IB based method (Fig. 12). Understanding non-isothermal mixing of miscible
fluids is another area in which FID could play an important role in improving the mixing
efficiency. While there are no reports on IB methods application to non-isothermal mixing,
recent studies have successfully invoked IB methods to show the improvement in mixing
using flow-induced flutter of a membrane150,151.

FIG. 12: 3D simulation of a flapping flag in a square duct, deployed for achieving thermal
augmentation149. (a) Superimposed shapes of flags at different time-instances for different
aspect ratio (AR) (b) Computed isotherms on channel walls and on cross-stream planes (c)
Vortex structures seen from the top view for the flags of different aspect-ratios (reprinted
with permission from American Institute of Physics, copyright 2020149).
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4. EMERGING TOPICS IN THERMOFLUIDS

4.1 Bioheat transfer

IB methods have been utilized successfully to compute biomedical flows and model prob-
lems related to bioheat transfer. In several cancer therapies, heat transfer in the vascular
system and its coupling with blood flow are important, and the modeling of these proce-
dures should account for this coupling. Examples of such interventions include cryosurgery152,
hyperthermia153 and radio frequency ablation154.

One of the earliest implementation of IB method for bioheat transfer was in the context
of cryo-preservation of biological material and was carried out by Mao et al62. The authors
simulated the response of a cell to freezing and the cell was modeled with a membrane and
was surrounded by an aqueous salt solution and ice (Fig. 13(a)). The concentration field of
the salt and temperature field in both ice and salt solution were computed in the presence
of mass transport through the cell membrane (Fig. 13(b)). Authors used sharp interface
IB method, reported earlier in their studies51,61,63, to simulate the dynamics of the phase
boundary.

FIG. 13: Schematic of the computational model for the ice–cell interaction problem, con-
sidered by Mao et al62. (a) The cell and ice–solution interface are placed on a uniform
Cartesian mesh and the interfaces are moved over the mesh. A finite volume discretization
of the governing equations is performed on the fixed mesh. (b) The computational model
for cell membrane (reprinted with permission from Elsevier, copyright 200362).

In the context of simulating tissue cryo-freezing, several studies solved Pennes’ bioheat
transfer equation155 in a tissue using IB method. This equation is a modified transient heat
conduction equation to account the effect of blood flow and metabolic heat generation rate
through the tissue (q̇m [Wm−3]) and the latter is accounted as a source term in the heat
equation, given as follows68,155:

ρtCt
∂T

∂t
=

∂

∂xj

(
kt

∂T

∂xj

)
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where subscripts t, b a, and m represent tissue, blood, arterial blood and metabolic,
respectively. C is specific heat and ω is perfusion rate (m3/s of volumetric blood flow per
m3 of tissue).

Ge et al.156 solved Pennes equation in two-dimensional coordinates using a finite-
difference based, continuous forcing IB method, in which temperature-dependent ther-
mophysical properties of the tissue were accounted for and heating effect due to blood
flow was imposed using boundary condition at IB. Using this IB based solver156, the au-
thors investigated the effects of injected nanoparticles and blood vessel structure during
cryosurgery. Further, they computed the temperature field during cryosurgery in a com-
plex blood vascular system for different tumor locations157. Ge et al.16 compared data
obtained by three-dimensional extension of their IB solver156 with in vitro experiments
and found a good agreement between the two (Fig. 14). In the arena of radio frequency
ablation, Shao et al.158 modeled thermal effects in branched networks of vascular system
and solved Pennes bioheat equation using a continuous forcing IB method, reported earlier
in their works70,156.

FIG. 14: Comparison of IB computations with in vitro experiments16 (a) Schematic show-
ing location of thermocouples (TC) and cryoprobe, with Y-shape blood vessel. (b) Com-
puted between measured and computed time-varying temperature by IB solver at TC1
(reprinted with permission from Elsevier, copyright 201716).

4.2 High-Speed Compressible Flows

Heat transfer naturally appears as an important component of all high-speed compressible
flows and transfer of heat between the fluid and the immersed structure/body is impor-
tant in many applications159,160. The progress in IB methods for compressible flows was
briefly summarized in a recent review28. The development of IB methods for supersonic
and hypersonic flows started with extension of discrete-forcing IB methods to subsonic
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compressible flows. In the context of subsonic compressible flows, Palma et al.161 devel-
oped a discrete-forcing method for solving the compressible Reynolds-averaged Navier-
Stokes equations and simulated subsonic flow past a heated cylinder as well as supersonic
flows past an airfoil and a circular cylinder. Ghias et al.54 proposed a second-order accurate
ghost cell method for viscous compressible flows for Cartesian or curvilinear grids. Using
a higher order ghost cell scheme of Seo and Mittal90, Bailoor et al.162 proposed a FSI
solver for subsonic compressible flows with large-scale FID of a thin structure. Similarly,
Wang et al.163 demonstrated IB method for large-scale FID with compressible multiphase
flows. Previous studies164,165 have employed a sharp-interface IB method for simulating
FID of the human eye subject to the loading from a blast-induced shock wave with a sub-
sonic Mach number.

For supersonic flows, Chaudhuri et al.166 described the methodology of a ghost cell
based IB method, in which authors used a quadratic interpolation scheme to find the value
of GC. The solver was validated against analytical solution of supersonic flow past trian-
gular prism and circular cylinder and previous experimental results. Shock-obstacle inter-
action were simulated at a Mach number of 3.5 in this study (Fig. 15). Kumar et al.167

implemented the ghost-cell method proposed by Mittal et al.44 in a central upwind scheme
and demonstrated second-order accuracy for their IB based solver. They applied the solver
to invisid supersonic flow at Mach number of 3.0 and viscous supersonic flows at Mach
number of 1.2 and 2.0. for canonical fluid flow problems such as flow around a circular
cylinder.

FIG. 15: Numerical schlieren picture for supersonic flow past circular cylinder for a Mach
number of 3.5166 (reprinted with permission from Elsevier, copyright 2011166.

In the context of the hypersonics flows, one main challenge in this arena is to treat
shock discontinuity near or in contact with the IB at high Mach numbers. Greene et
al.168,169 demonstrated a cut-cell IB method for computing flows involving hypersonic
boundary layers and used a fifth-order weighted essentially non-oscillatory scheme. In-
spired by their earlier work170, they ”dropped” grid points in the computation, which are
too close to the IB, relieving the constraint of the limiting time-step due to these grid
points. A classification of the grid points used in these works is reproduced in Fig. 16.
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FIG. 16: Classification of grid points for a 2D domain168 in both corrdinates (b, c).
IB(purple line), Regular points (green circles), irregular point (orange diamonds), boundary
points (purple hollow circles), dropped point in both directions (red circles) and dropped
point in specified direction (red hollow diamonds) are shown (reprinted with permission
from Elsevier, copyright 2016168).

To alleviate the shock discontinuity close to IB, Bridel-Bertomeu171 proposed a ENO-
like weighted least-square approach scheme in a ghost cell based IB method to handle the
interpolation in region with discontinuities. In this scheme, a smoother sub-stencil is ex-
tracted from the baseline interpolation stencil to construct a robust interpolation scheme.
This scheme is inspired from a revised ENO scheme of172, which uses a data-dependent
weighted least-squares reconstruction with a fixed stencil,in which weights are chosen to
render smooth data during the reconstruction. The solver allowed them to capture hyper-
sonic flows with strong discontinuities near or in contact with the IB and was demonstrated
by simulating canonical hypersonic flows (Fig. 17). Brahmachary et al.173 presented a
sharp interface IB method on an unstructured Cartesian mesh framework for viscous hy-
personic flows. They showed that solution reconstruction plays a more important role than
grid resolution while computing heat flux on the wall.
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FIG. 17: Computation of shock-shock interaction near to a surface in hypersonics171

(a) Problem definition with flow configuration (b) Computed density contours exhibiting
shock-shock interaction (c) Computed pressure contours (reprinted with permission from
Elsevier, copyright 2021171).

5. CLOSURE AND FUTURE OUTLOOK

We have reviewed the development and application of immersed boundary (IB) methods to
thermofluids problems. We provide a brief overview and classification of IB methods along
with a discussion of the advantages that these methods afford over other methods. Early
developments in the context of development of IB methods for thermofluids problems are
discussed. The governing equations and boundary conditions have been presented. We dis-
cuss implementation strategies for the common thermal boundary conditions of prescribed
temperature, prescribed heat flux, and convective and radiative loss from a solid boundary
in the context of continuous as well as discrete forcing IB methods. We have reviewed
several studies in which IB methods for thermofluids were implemented in different heat
transfer scenarios. Both stationary and moving boundary problems are discussed. In the
latter category, which is particularly suitable for the application of IB methods, we review
previous IB based studies in motion induced in rigid solids by fluid-dynamic forces as
well as flow-induced deformation of compliant structures. The computational challenges,
approaches and studies demonstrating convective heat transfer enhancement using flow-
induced deformation, were summarized in this review as well. Lastly, we have briefly re-
viewed developments related to IB methods in two emerging areas in thermofluids, namely,
bioheat transfer, and high-speed compressible flows.
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