A Web-Based System for Contagion Simulations on
Networked Populations

Tanvir Ferdousi
Biocomplexity Institute and Initiative
University of Virginia
Charlottesville, VA 22904, USA
jerSwj@virginia.edu

Dustin Machi
Biocomplexity Institute and Initiative
University of Virginia
Charlottesville, VA 22904, USA
dm8qs@virginia.edu

Abstract—Motivated by a wide range of applications, research
on agent-based models of contagion propagation over networks
has attracted a lot of attention in the literature. Many of
the available software systems for simulating such agent-based
models require users to download software, build the executable,
and set up execution environments. Further, running the resulting
executable may require access to high performance computing
clusters. Our work describes an open access software system
(NetSimS) that works under the “Modeling and Simulation as a
Service” (MSaaS) paradigm. It enables users to run simulations
by selecting models and parameter values, initial conditions, and
networks through a web interface. The system supports a variety
of models and networks with millions of nodes and edges.

In addition to the simulator, the system includes components
that enable users to choose initial conditions for simulations
in a variety of ways, to analyze the data generated through
simulations, and to produce plots from the data. We describe the
components of NetSimS and carry out a performance evaluation
of the system. We also discuss two case studies carried out on
large networks using the system. NetSimS is a major component
within net.science, a cyberinfrastructure for network science.

Index Terms—Agent-Based Simulation, Contagion, Networks,
Modeling and Simulation as a Service, Cyberinfrastructure

I. INTRODUCTION
A. Background and Motivation

Many problems are studied by computing contagion dynam-
ics on networked populations. In these networks, nodes are en-
tities such as humans, companies, and institutions. Edges rep-
resent pairwise interactions between entities. Some examples
of research on contagion processes are: the transmission of
COVID-19 [1] and Ebola [2] viruses, diffusion of invasive bi-
ological species over multi-pathway spatial networks [3], sim-
ulation of individual movements among urban locations [4],
spread of information on social media platforms [5], analyzing
the dissemination of rumors in social networks [6], spread of
human behavior in social influence networks [7], propagation
of incivility among people [8], and shock-waves or economic
crises affecting financial institutions through their network of

Aparna Kishore
Biocomplexity Institute and Initiative
University of Virginia
Charlottesville, VA 22904, USA
ak8mj@virginia.edu

Chris J. Kuhlman
Biocomplexity Institute and Initiative
University of Virginia
Charlottesville, VA 22904, USA
cjk8gx @virginia.edu

Lucas Machi
Biocomplexity Institute and Initiative
University of Virginia
Charlottesville, VA 22904, USA
lhm4v @virginia.edu

S. S. Ravi
Biocomplexity Institute and Initiative
University of Virginia
Charlottesville, VA 22904, USA
ssronh@virginia.edu

obligations [9]. It is essential to develop computational tools
to study various aspects of contagions, as there is a wide range
of applications.

Because of this need, many agent-based simulation (ABS)
systems have been developed (see Section II). Many simulators
require software experience to configure a build environment,
compile software, and specify execution environments. Input
files must be constructed according to prescribed formats, and
output from simulations typically require post-processing (e.g.,
data analyses) to visualize results. Several of these simulation
systems are run from the command line. Most larger systems
require high performance clusters or other hardware to run
large-scale simulations and significant disk space for storing
data. These factors can limit a wide range of users, particularly
those not part of universities or companies with significant
computational resources. However, as described in this paper,
these limitations can largely be obviated by providing model-
ing and simulation as a service (MSaaS).

We and our teammates are currently developing a cyberin-
frastructure (CI) for network science called net.science [10].
“A cyberinfrastructure consists of computing systems, data
storage systems, advanced instruments, data repositories, and
visualization environments, all linked by high-speed networks
to facilitate scholarly innovation and discoveries not otherwise
possible” [11]. Further conceptual details regarding Cls are
given in [12], [13]. The net.science CI is operational, and
users can register for accounts and use the system free of
charge. One of its components is Network Simulation as a
Service (NetSimS). This component, which provides MSaaS,
is described in this work.

B. Contributions

1. Open access web-based system for performing con-
tagion dynamics simulations on networked populations.
The three major computational subsystems of NetSimS are
(7) simulation, (i4) data analysis, and (4i7) data visualization.

m

(1) Initial Conditions
Module
(2) Simulation

Y

Data Analysis

Ind

Visualization &
Plotting

Fig. 1: The major computational subsystems of NetSimS.

Note that these operations do not form a simple pipeline,
since for a given simulation, many data analyses and plots
maybe generated at user discretion. NetSimS is a major system
within net.science, which provides CI-wide functionality such
as data management and annotation (e.g., for provenance),
control flow, job submission and monitoring, data storage, and
file search, per the CI definition in Section I-A. In addition,
a web application (web app) has been built that provides
users with forms to input data and view outputs (data files,
tables, and visualizations). The web app provides an intuitive
interface even for users without programming experience. In
this paper, we confine our scope to the NetSimS system and
to those elements of net.science functionality that are specific
to NetSimS, such as the web app screens for configuring a
simulation, data analysis, and visualization parameters. See
Section III and Figure 2. Furthermore, NetSimS without the
web app is built according to the MSaaS paradigm because
all NetSimS functionalities are accessible through system
application programming interfaces (APIs). In fact, the web
app uses those APIs to submit service requests for simulations
and to retrieve files. These APIs and their direct usage will be
presented in an expanded version of the paper.

2. Software module for specifying simulation initial con-
ditions. The three computational subsystems of NetSimS are
shown in Figure 1. The simulation subsystem is the largest and
most complex. Its two major components are the simulation
engine and the module for specifying the initial conditions
of a simulation. The simulation engine Contagion Simulation
on NETworks (CSonNET) has been covered in [14]. Hence,
our contribution and focus here are on the new module for
specifying initial conditions for simulations. Most simulation
tools use simple seeding methods or put the burden on the
user to generate seeding (i.e., initial conditions) files.

Section III-A2 presents the system design, description of
operations, and an algorithm for the initial conditions module.
It is a generalized framework for initializing nodes to states
at the start of each simulation instance. Initially activated
nodes are called seeds or seed nodes. Eleven filtering pa-
rameters (metrics) are provided; currently, these are structural
parameters of networks (e.g., node degree, k-shell, clustering
coefficient), but can be expanded to include properties (e.g.,
labels) of nodes and edges. For each metric, a [min, max]
range can be specified from which candidate seed nodes are
filtered. Nodes can be prioritized in ascending or descending
order for each metric. For example, a user may want to
select nodes with high in-degree centrality and low clustering

coefficient. The module allows users to specify a combination
of metrics through a configuration file, where each metric may
also have an associated weight. A weighted sum of normalized
metric values is used for final node selection and sampling.
This final step can be configured to sample nodes uniformly
at random or using the probability distribution derived from
the weighted sum of metrics. There are also options for de-
terministic selection. All of these inputs are specified through
web app forms, and backend files are generated automatically.
See Section III-A for details.

3. Performance evaluation. We present performance data
for the simulation subsystem, and in particular, for the CSon-
NET simulation engine and the initial conditions module. The
simulation system scales to networks with 3.5 million nodes on
our Rivanna high performance computing (HPC) cluster with
Intel 40-core compute nodes. These are denoted herein as large
networks. Specifically, we provide strong scaling results for the
simulation engine and timing data for the initial conditions
module. For the latter, the metric computation times for all
nodes may be significantly greater than or significantly less
than the time to filter nodes for seeding. See Section IV.
Performance results are hardware dependent (so even larger
networks can be analyzed with suitable hardware); our sub-
systems will run on several operating systems since our codes
are Python-based.

4. Case studies. Two case studies are performed: one on a

2.65 million node social contact network of Seattle, Washing-
ton, and another on a synthetic 120 thousand node preferential
attachment network. These simulations and results evaluate
the effects of seeding methods, filtering parameter values for
seeding, numbers of seeds, and model parameters. Results
change significantly with seeding parameters, justifying the
construction of a robust simulation seeding module. These
studies, presented in Section V, demonstrate the value of
NetSimS to identify input parameters and quantify parameter
regimes where results change most rapidly.
A note on contagion models: In subsequent sections, we
consider several well-known models of contagion propagation
in networks. Here, for space reasons, we limit ourselves to
brief accounts of these models. In the threshold model [15],
each node v has a threshold 6(v), a non-negative integer. Node
v changes to the activated state when at least 6(v) of its
neighbors are also in the activated state. In the susceptible-
infected-recovered (SIR) model, each node is in one of the
states from {S,I,R}, and each edge e has a transmission
probability p(e). Details regarding the stochastic process that
governs how a node in state S is infected by a neighbor in
state I and how nodes change from I to R are presented in
many standard references (e.g., [16]). A variant of the SIR
model is the SEIR model, where there is an additional state
E (for “exposed”) between S and I states, and the transitions
between the states are also stochastic [16].

II. RELATED WORK

A variety of software tools are available for ABS on
networks. Some are command line tools, while others have

graphical user interfaces. Many of these can operate as ser-
vices. We address several of these categories.

A. Simulation Systems

These systems are typically run from the command line,
using HPC hardware. Some use distributed computing, while
others use multithreading. Examples of high performance
simulation frameworks include RePast HPC [17], Swarm [18],
MASON [19], Flame [20], NDIib [21], Rensselaer’s Optimistic
Simulation System (ROSS) [22], and AnyLogic [23]. A data-
intensive simulation framework is discussed in [24]. Reviews
of ABS can be found in [25], [26].

B. Simulations with IDEs

At the other end of the spectrum are NetLogo [27] and
Repast Symphony [28]. Although these are not necessarily
geared for HPC and large populations, they are powerful
and provide intuitive modeling environments with integrated
development environments (IDEs), high-level abstractions for
model building, and displays. Among their distinguishing
features are ease of use and ease of learning. Like the other
simulators mentioned thus far, these are locally built and run
on user-provided resources.

C. Modeling and Simulation as a Service

Advantages of MSaaS were identified in Section I-A. More
comprehensive discussion on MSaaS including architectural
aspects, state of the art, and comparative analyses can be
found in [29]-[31]. A client-side web app and a crowd
movement simulation (e.g., a crowd exiting a building) system
are described in [32]. Simulations that use the usik ker-
nel [33] in conjunction with cloud computing are discussed
in [34]. Another cloud-based simulation service [35] has been
proposed to make large-scale urban simulations available to
the general public. An early work [36] focuses on taking
advantage of concurrent processing in the cloud. A service-
oriented architecture suitable for military and defense applica-
tions is discussed in [37]. Taylor et al. [38] discuss a cloud-
based simulation platform that can host a variety of industrial
simulation applications. A large-scale multi-agent system sim-
ulation service is described in [39]. MSaaS has also been used
for high school STEM education [40] to demonstrate traffic
simulations. Our system, which is focused on carrying out
contagion simulations on an underlying network, can run in
both cloud and cluster environments.

D. Seeding Methods in Other Simulators

NDIib [21] handles initial conditions (i.e., seeding) in one
of two ways: () a number of nodes that are initially activated
can be specified, and these nodes are selected by choosing
them uniformly at random, or (4¢) an initial conditions file is
user-generated, where the initial state of each node is listed.
Other simulators also follow these two common approaches.
NetLogo [27] supports uniform random sampling of agents
to allocate states. Flame [20] requires users to provide initial
states in an XML file. Agent-based simulation tools like

Front-end SaaS

User Interface API Scheduler Backend
Web app forms HPC
" o)
Q Execution]
Submit Form CEE. —
:
-
CSonNET Slurm Script, App Code
<>
q o — Data 1/0 .4
Submit Form o—
= Singularity
Data Analysis Slurm Script/ Job List Containers
9 @
Submit Form
Storage
- -
Plotting Slurm Script

Common Services

N

Visualization ~ File Explorer

File /O

Fig. 2: The operational architecture of NetSimS system compo-
nents: CSonNET, Data Analysis, and Plotting within the net.science
CI. The underlying framework of net.science provides features to
enable job submission, file I/O, execution of containerized code, data
management, and storage.

MASON [19] provide methods to define and initialize agents,
leaving it up to the user to configure initial conditions.

III. NETSIMS SOFTWARE SYSTEM

Figure 2 depicts the structure of the NetSimS system
within the net.science CI. The diagram identifies several key
subsystems, components, and services. The front-end contains
components that a user interacts with through web page
forms, data tables, and visualizations. Jobs are constructed
from user inputs and submitted to a Slurm scheduler that
controls the job execution environment. Currently, all jobs
run on an HPC cluster of multicore compute nodes, but other
hardware can be supported (e.g., GPUs, cloud services). The
system extracts from storage the relevant files, including input
data and containerized code, and runs jobs from temporary
workspaces allocated for those jobs. For NetSimS, container-
ized software includes the simulation, data analysis, and vi-
sualization subsystems—these three subsystems are addressed
below. Results of various types are moved into storage upon
job completion and data management operations are performed
(e.g., database table updates for file searching and provenance).

Within the front end, there are many other forms such
as those for displaying contents of data files, file metadata,
visualizations of graphs, and job history with links to input
and output files. But many of these capabilities are part of
net.science system-wide functionality that many components
(not just NetSimS) use. Here, our focus is on NetSimS.

A. Simulation Subsystem

This subsystem consists of the following components.

1) Web App: The graphical interface of the web app in
net.science is shown in Figure 3. It contains sections to specify
a network, select a contagion model and enter contagion
model parameters, initial conditions, simulation parameters,
and output filename. A graph file (e.g., edge list) is specified
as an input. One of several contagion model classes can be
selected (e.g., SIR, SEIR, SIS, and threshold models), along

dev

% Net.Science '**

Input
Input may either be a Graph or a previous simulation.

input_file *- ' SELECT FILE /home/cjk8gx/18-feb-2022-big-graph/snap-n-1e7-m-5e7-v04

Dynamics Model

Behaviour Model*

SEIR Y ®
Sub Model*
stochastic exposed fixed infectious (0
Edge probability * ®
Exposed transition probability * @
Infectious duration * @

@ Home B2 About O Files [B My Jobs Chris

Stochasticity
Seed *
° ®
Composition Of Simulation
Simulation Timing
Iterations * @
Time Steps * @
Initial Conditions(Seeding)
Seeding Method*
Custom -
Number Nodes * State* O

Node Selection Method* v +
Property []
Degree v Ordering v
Min Max Weight
Property []
Clustering Coefficient v Ordering v
Min Max Weight

Initial Conditions (default)

Fig. 3: The web interface of net.science depicting the input form in NetSimS for specifying simulation input parameters. A few parameters

are not shown owing to space limits.

with submodels from each model class. Model parameters
vary depending on the model. Input fields for properties
of one SEIR model variant are shown in Figure 3. The
number of iterations (i.e., simulation instances) to run and
the duration (time steps) of each iteration are specified as a
part of the simulation parameter set. Initial condition files are
generated by adding metric-based configurations to filter and
prioritize nodes. Figure 3 shows filtering based on node degree
and clustering coefficient, as one example. These nodes are
eventually sampled and assigned a particular activated state
(e.g.,) alongside their default states (e.g., S).

We now discuss the two primary modules that compute
initial conditions and execute simulations, and hence perform
the operations specified by a user in Figure 3.

2) Initial Conditions Module: The graph-seeding compo-
nent is responsible for generating initial conditions. In CSon-
NET, the initial condition is a complete list of nodes with
their assigned states for each iteration prior to simulation
runs. An operational diagram of the graph seeding module
is shown in Figure 4. The Seed Set Generator executable, run

at the backend of Figure 2, takes three categories of inputs:
(i) required and optional parameters in the form of command
line arguments (CLA), (i) a configuration file that defines
metrics and filtering, and (i7¢) a graph file used to compute
metrics and generate seed node sets. For this discussion, let
V and E denote the sets of nodes and edges in the graph
G(V,E), and n = |V| denote the total number of nodes. The
CLAs specify all input and output file paths, the number of
iterations, default and activated states, sampling method, etc.
The configuration file is used to specify graph metrics (e.g.,
degree, betweenness centrality, authority/hub scores, clustering
coefficient, eigenvector centrality, pagerank) and their upper
and lower limits to filter nodes. For a metric with index m,
the m*" entry (line) in the configuration file specifies its upper
(kpper) and lower (kjp,,.,.) limits, sorting order, and metric
weight, w,,. An arbitrary number of metrics can be specified
by adding entries to the configuration file to incorporate those
measures in seed node selection.

We now formally describe the methodology that uses these
metrics to select the seed sets. Let M be the total number of

Inputs Standard Libraries Outputs
SNAP Pandas
Command Line NetworkX || Numpy Initial Conditions
Arguments (CLA) File

Configuration File Seed Set Generator Filter Log File

Graph Seed Log File

Fig. 4: Operational diagram of the graph-seeding module that
generates initial conditions for contagion simulation on networks. The
module uses either SNAP [41] or NetworkX [42] libraries to compute
graph properties, depending on the metrics given in the configuration
file. The command line arguments provide paths to all input and
output files and other parameters.

metrics specified in the configuration file. Let £}’ denote the
value of metric m for node v; € V. For each metric m, the
seed generator uses the appropriate graph analysis function
and computes the values for all nodes. Once the £ values
are computed for all v; € V and m € {1,2,..., M}, nodes
are filtered as follows. Let

VT ={vilv; € V and kjpe,. < kpt < Eppper . (1)

Here, V™ is the set of remaining nodes after filtering based on
the m!" metric. After completing M filtering steps, the final
node set is given by

M
U= [)v". 2)
m=1
For each metric, the values are normalized to be in the
range [0, 1] across all nodes to ensure fair participation of
that measure in final node selection. The normalization is
performed as follows:

m _ m m m
ke = max(k Kkt k)
m _ : m m m
min = min(kyy ko k), and 3)
S
qm _ v; min
vi T L.m _ J.m
‘ kmaa: kmin

Here, ;! is the normalized quality score of node v; for metric
m. Metrics are usually specified to be used in descending order
of normalized scores (e.g., prioritizing high-degree nodes). If
a user wants nodes to be prioritized in an ascending order for
a metric (e.g., pick nodes with low clustering coefficients), the
quality scores for that metric are complemented for all nodes
v, €V

ar=1-qr.)

Once quality scores for all the required metrics have been
computed for all the nodes, a weighted sum determines the
combined score @, for each node v; € V:

M
Qu, = Y wig)! .)
m=1

The filtered subset of nodes U, computed in Equation (2),
is now available for sampling. A probability distribution is
computed from the combined scores as follows:

plus) = > Qu,

u; €U Quj

(6)

The final set of seed nodes, for each simulation instance (i.e.,
iteration) within a group of simulation instances, is obtained
by randomly sampling U using this probability distribution.
A pseudocode description of our method of generating initial
conditions is given in Algorithm 1.

Algorithm 1: Initial Condition Generation

1 Inputs (1) A graph G = (V, E), (2) Configuration file with
M entries (i.e., metrics), and (3) Parameters related to file
paths, input graph type, sampling method, iterations, etc.

2 Output Initial condition file

3 Steps:
A. Read command line argument parameters. Let R be the
number of iterations and let n4 be the number of nodes to

be activated in each iteration.
B. Read the graph into program memory.
C. Read the configuration file. Let M be the no. of entries.
D. if M # 0 then

1. for m =1 to M do:

i. Compute metric values ky; specified by entry m.
ii. Generate filtered node subsets V"™ using
Equation (1).
iii. Compute normalized node score g,; using
Equations (3) and/or (4).
2. Compute the combined node quality metric .,
using Equation (5).
3. Obtain node set U for sampling using Equation (2).
4. Compute the probability distribution p(u;) from
Equation (6).
5. for r =1 to R do:
i. Initialize each node in V' to the default state.
ii. Sample n4 nodes using distribution p(u;) and
assign the activated state to those nodes.
iii. Append node list and their states to the
output file for iteration 7.
E. else
1. for r =1 to R do:
i. Initialize each node in V' to the default state.
ii. Sample n4 nodes uniformly randomly from V'
and assign the activated state to those nodes.
iii. Append node list and their states to the
output file for iteration 7.

3) Computational Simulation Engine: The simulation en-
gine is an ABS framework, meaning that it is explicitly
designed to enable quick, surgical insertion and validation of
new contagion models. File input/output (I/0), data structures,
a general API for adding new models, simulation control flow,
concurrency, and optimizations for controlling simulations are
part of the framework, and switches in a simulation configu-
ration file enable customization of a simulation. The Python
implementation is a discrete-time simulation framework that
provides concurrency by forking processes: one simulation
instance of a collection of instances is assigned to one forked

process. (A simulation typically consists of multiple instances,
where each instance starts at time ¢ = 0 and steps through time
up to a maximum time, whereupon the instance is completed.
Multiple instances are typically required, e.g., they can in-
corporate different seed node sets (i.e., initial conditions), or
the same seed set if the contagion model is stochastic.) At this
time, 15 contagion models have been exposed to users through
the web app; more will follow. Owing to space reasons, we
refer the reader to [14] for more details on the simulation
system.

B. Data Analysis Subsystem

The data analysis subsystem performs computations on
simulation output and produces data files whose contents can
be directly visualized. Currently, the module takes as input
a raw simulation output file, a specified state of a contagion
model, and analysis type and produces time history data for
the specified state for all the nodes and simulation instances
(i.e., iterations). Three analysis types can be specified, namely
(7) new, (i) cumulative, and (¢i¢) current. These three types
compute respectively the number of new, cumulative, and
current nodes in the specified state at each time step. Often,
this code is run multiple times for one simulation since the
code is executed once for each analysis type.

C. Visualization Subsystem

The goal of the visualization subsystem is to produce
customized, publication-quality plots of simulation results.
The input to the plotting module is the output from the data
analysis module. A user can customize x- and y-axis labels,
tick labels, the ranges on each axis, type of axis (i.e., linear or
logarithmic), and font sizes. One can also specify the text for
curves in the legend along with the color and opacity for each
curve. The user can select any/all of the plot types: (¢) error
bar plot (where error bars are displayed on data), (iz) line plot
(curves only; no data points), (i) scatter plot (data only, no
curves), and (¢v) bar chart. The plotting module can produce
output files in .pdf, .ps, .png, .eps, or .svg formats.

Figure 5 shows a portion of the web app form for plotting.
Plot types are shown on the left, and an expandable set
of legend text (one for each curve) is shown at the upper
right. X-axis configurations are shown at the bottom right;
commensurate inputs for the y-axis are not shown for space
reasons.

IV. PERFORMANCE EVALUATION
A. Networks Used in Studies

Details regarding the networks used in our studies are
provided in Table 1. These vary over five orders of magnitude
in the number of nodes and edges. The Jazz network is a
graph of musicians [43]. The Wiki and Slashdot are taken
from [44]. The PA-120k and PA-500k networks are synthetic
preferential attachment (PA) networks [45] and were gener-
ated in net.science. The Seattle networks are social contact
networks, where each node is a person, and each edge means
that the two nodes are in contact (i.e., are co-located) at

overlapping times. These networks are generated according
to the procedures in [46]. The suffix (18-75) means that only
people between the ages of 18 and 75, inclusive, are part of the
network; the network without the suffix contains all persons.

TABLE I: Networks used for analysis. There are mined (M),
synthetic (S), or constructed (C) networks. The net.science cyber-
infrastructure [10] was used to construct the two synthetic graphs
and to generate all network properties.

Structural Properties
Network Num. Num. Avg. Max. Largest
Nodes Edges Degree | Degree k-core
Jazz, M 198 2,742 27.7 100 29
Wiki, M 7,066 100,736 28.51 1,065 53
Slashdot, M 77,360 469,180 12.13 2,539 54
PA-120k, S 120,000 24 M 39.99 2,686 20
PA-500k, S 500,000 | 9.99 M 39.99 5,405 20
Seattle (18-75), C | 2.56 M | 4034 M 31.49 664 42
Seattle, C 352M | 66.51 M 37.82 879 43

B. Initial Conditions Computation

The seeding module that computes the initial conditions for
a simulation (i.e., assigns initial states to nodes) is evaluated
over the networks listed in Table I. Networks are evaluated
under three distinct scenarios, listed in Table II. The most
basic scenario, called Uniform, does not use any metrics or
filtering. In this case, all nodes are available for generating
the initial condition file. The nodes are sampled uniformly at
random. The second scenario, Deg-Clust uses a combination
of two metrics: node degree and node clustering coefficient.
For each metric, nodes whose values are outside the range
[min, max]| (specified in the configuration file) are filtered out.
The remaining nodes are available for sampling, which is done
using a node probability distribution derived from the node
score (as discussed in Section III-A2). The third scenario, Deg-
Betw is similar to the second scenario, except that it uses node
betweenness centrality as the second metric.

TABLE II: Graph seeding scenarios for initial condition (IC) file
generation. Under “Filter Method,” nodes that have metric values
within the range [min, max]| are kept as candidate nodes for seeding.
Values for min and max are network-dependent and are not specified
here for lack of space.

Scenario Metrics Filter Method | Sampling

Uniform None None Uniform Random

Deg-Clust Node Degree min, max Node Probability
Clustering Coeff. min, max

Deg-Betw Node Degree min, max Node Probability
Betweenness Cent. min, max

The performance analysis results are shown in Figure 6. The
bars indicate the total time for generating initial condition files
for simulations. The total time is the sum of the times required
for metric computations, node filtering, node sampling, and
writing the output file. The breakdown of the time values for
a few selected networks under three different scenarios are
shown in Table III. For large networks, some of the analysis
results for Deg-Betw scenarios are missing in Figure 6. This is
due to the fact that the computations of betweenness centrality

% Net.Science %3 % ® Home @1 About O3 Files (B MyJobs Chris

) Tex.t ;edior;

Network
Legend section
R . legend_fontsize *
csonnet_data_analysis *- = SELECT FILE No file chosen
25 @
Plot types
legend_name
errorbar_plot * E ® i
O Tue O False ®
alpha_values *
data_color* v 1 +
line_plot * ® @
O True O False ®
Title section
scatter_plot* title_fontsize *
15
O True O False @ ®
bar_plot * title_text @
O True O False ®
Output X-axis section
x_axis_fontsize *
35|
Output Name * @
x_axis_text ®
output_container *- | SELECT PATH No folder speciﬁedG)
x_scale* MEO)
set_x_limits *
O True O False (D
set_x_increment *
O Tree O False ®

Fig. 5: The web interface of net.science depicting the input form in NetSimS for specifying inputs for simulation results plots. Some inputs
on the form continue at the bottom of this snapshot.

could not be finished within reasonable times for such large C. Agent-Based Simulations
graphs. This is typical for large networks and betweenness
centrality, since the running time for this centrality measure

is O(|V[|E]) [47]. Another use of these computations beyond Tpe transmission (edge) probability of a susceptible node v;

providing the specified running times is to identify combina- being infected at time (¢ + 1) by an infected neighbor v; is
tions of parameters that are particularly onerous to compute. Pr(sit! =1|st =1, st = S) = 0.004. A node is infectious
7 J () . .

Figure 7 contains strong scaling timing results for simu-
lations on five networks. All simulations use an SIR model.

(i.e., in state I) for four days; it then transitions to state R.
TABLE III: Seeding performance analysis on selected networks. Results are the total time to run 100 iterations of 100 time
Here, NA denotes “not applicable.” (Uniform sampling scenarios do gieps (je., days) on the specified networks. Each data point
not require metric computation or filtering.) . . i

is the average of ten measured values. Initial conditions are
that 300 nodes are initially in state I (those nodes with the

Network Scenario Computation Times (seconds) o .
Metric | Filtering | Sampling | Total greatest degree) and the remaining nodes are in state S. For
gltl I;Jnifg]fm (I)\I?S (I)‘Iﬁ 82(1) (1)553(3) these conditions, roughly 0.50 to 1.0 fraction of nodes across
1k1 eg-Clust

Wiki Deg-Betw | 81.58 034 0.80 8373 the networks get infected in the .s1mllllat10ns. The linear nature
PA-120k | Uniform NA NA 14.15 14.15 of the data, on the log-log plot in Figure 7, demonstrates that
PA-120k | Deg-Clust 8.10 87.76 12.13 107.99 CSonNET exhibits strong Sca]ing.

PA-120k | Deg-Betw | 64,260 86.25 11.87 64,358
Seattle Uniform NA NA 407.44 407.44 V. CASE STUDIES
Seattle Deg-Clust | 202.76 84,783 399.52 85,385 ’

Two case studies are performed using NetSimS. The first
case study uses the threshold model and explores the effects

. jazz EEm PA-120k N Seattle (18-75)
106 e Wiki s PA-500k Seattle
B Slashdot
w
el
e
S 104
[}
2
[}
£
F 10?
c
=
x
E o0
e 10
1072 :
Uniform Deg-Clust Deg-Betw

Graph Seeding Scenarios

Fig. 6: A comparison of computational times for generating initial
condition files across networks listed in Table I under the three
seeding scenarios listed in Table II. The total run time consists of
the times to compute metrics, filter nodes, sample seed nodes, and
write output files. Each bar is the average of five runs, where initial
conditions are computed for one iteration in each run. A few of these
cases are elaborated in Table III. For the scenario Deg-Betw, some
data are missing for very large networks. This is due to the long
computation times required by the betweenness centrality metric.

_Uo‘) 1e+07 e m Wik 3
S @ Slashdot]
S 1408 . L
& 1e4+05- e g . o Seattle 7
° ® oo

£ 10000F+ —_— 1
_ 1000- T

5 100% T ° A
5] R S]
g<) 10k | | L | 1 \.. 3
L 16 32 64

1 2 4 8
Number of Worker Processes

Fig. 7: Strong scaling results for CSonNET for five networks. The
approximately straight lines in the plot indicate that the simulation
code exhibits strong scaling on graphs up to millions of nodes.

of seeding method, number of seed nodes, and threshold
values on the spread of a social contagion, such as a protest
event [48], or joining an online platform [49]. The second case
study uses an SIR model [50] to assess the effect of seed node
selection methods and seed set sizes, in spreading a virus.

A. Case Study 1: Simulation of Social Protests

The spread of a contagion that represents participating
in a protest is simulated on the Seattle (18-75) network of
Table I, where individuals (graph nodes) are those people
between 18 and 75 years, and edges represent social (face-
to-face) contacts. The contagion spread is modeled with the
Granovetter threshold model [15]. All nodes are assigned
the same threshold € and values range from one (simple
contagion) to eight (complex contagion) [51]. Initial conditions
for simulations are that 50 to 50,000 nodes (in powers of

10) are chosen in two distinct ways: i) sampled uniformly
at random from all nodes and ii) filtered nodes with clustering
coefficient in the range [0.05, 1.0] (this range avoids degree-
1 nodes) followed by random sampling using the probability
distribution derived from the node clustering coefficient. These
nodes are assigned the activated state (state 1), which indicates
that a node (person) is participating in a protest. The remaining
nodes are initially assigned the inactive or non-participating
state 0. A node changes from state O to state 1 when at least
0 of its neighbors are already in state 1. Over 40 simulations
were performed by systematically varying the numbers of seed
nodes, the compositions of seed node sets, and node thresh-
olds. Each simulation consisted of 50 simulation instances
(i.e., iterations), and the duration of each instance was 30 time
steps (days).

Figures 8a and 8b show results generated with NetSimS.
Figure 8a shows time history data of the cumulative number
of activated nodes for a simulation with n, = 50 randomly
selected seed nodes. The error bars represent + one standard
deviation from the mean curve generated from 50 iterations.
If we take the final average value from Figure 8a for those
input conditions, and repeat this process for different seeding
methods and values of ns and 6, then the plot of Figure 8b
can be generated. The results show a precipitous reduction in
the final percentage of activated nodes with small increases
in threshold, except for very large seed set sizes. Generally,
for a given set of conditions, the percentage of activated
nodes is greater for seed nodes chosen randomly from all
nodes [denoted “(U)”in the legend] than for random seeding
of nodes whose clustering coefficient is in the aforementioned
range [denoted “(C)” in the legend]. Systems like NetSimS
are valuable because they can identify and quantify these
sensitivities of results to inputs.

B. Case Study 2: Simulation of Virus Transmission

An SIR model in NetSimS is used to compute the attack
size (i.e., numbers and fractions of infected nodes) in the PA-
120k network of Table I. The probability of transmission from
an infected node v; to a susceptible node v;, along undirected
edge {v;,v;}, is given by Pr(I|S) = 0.002. The infectious
duration for each infected node is 4 days (time steps). Fifty
simulation instances were computed in single-day increments,
each from time ¢t = 0 through 30 days.

Seed nodes, i.e., nodes initially in the infected state I, are
chosen based on node degree in two steps. First, a subset
of nodes is selected (filtered) based on a [min, mazx] range
specified in the configuration file. Next, nodes are sampled
randomly based on probabilities derived from node scores
computed from degrees. We run different schemes of node
filtering. The first scheme (A) filters nodes with degree values
in the range [20, 30]. The second scheme (B) filters nodes with
degree values in the range [80,250]. The number n, of seed
nodes is varied across simulations, using eight values of ng,
from 50 to 5,000 nodes. Nodes in the graph that are not seed
nodes are assigned the susceptible state S.

N
=)

—f— Threshold=2

=
un

o
U

o
o

Number of Nodes (millions)
-
o

0 5 10 15 20 25
Time

(a)

©

o

8100 T

5 .

g 80r N A
o K oo ns=50 (U)
- 60- Y =1 ns=500 (U)[|
L] \ e-ons=5k (U)
e} L ’ a4 ns=50k (U) ||
o 40 \\ m-mns=50 (C)
Z "\ |m-ans=500 (C)
O 20+ m-mns=5k (C) |4
-9 ' \ |m-mns=50k (C)
g 5 [—

g5 0 4 6

< Threshold

(b)

Fig. 8: (a) Visualization using plotting module of NetSimS. Cumu-
lative activation curve for the Seattle (18-75) graph, for a simulation
using a deterministic threshold model (# = 2) with n, = 50
randomly activated seed nodes per iteration. Simulation duration is
30 days. Error bars represent one standard deviation from the average
curve over 50 iterations. (b) Final fraction of agents (i.e., nodes in
the Seattle (18-75) graph) participating in a protest as functions of
seeding method, numbers of seeds, and thresholds of agents. In the
legend, results with seed nodes sampled from all nodes are denoted
“(U)” while those with randomly chosen seed nodes from those with
clustering coefficient in the range [0.05, 1.0] are denoted “(C)”.

Figure 9a displays the cumulative number of infected nodes
as a function of time in days, averaged over all 50 iterations,
with a + one standard deviation error bar at each day. All
curves show the classic nonlinear increase in attack size with
time. Data at t = 30 days for these conditions and others are
used to produce the following result.

Figure 9b shows how the final fraction of infected agents
(at t = 30 days) increases with the number of seed nodes for
both seeding schemes. The second scheme (B) shows a greater
percentage of infected agents compared to the first scheme (A)
for all seeding configurations (50 to 5,000 seed nodes). This
is expected since nodes with greater degrees are selected in
the second scheme (B). The growth rate of the final fraction
of infected nodes with respect to the number of seeds is non-
linear; final infected fractions grow most rapidly for smaller
numbers of seeds. Again, we demonstrate the use of tools like
NetSimS to identify and quantify interesting input parameter
spaces and trends in simulation output.

VI. SUMMARY

The simulation system NetSimS models the spread of conta-
gions on populations represented as networks. It provides mod-

—f— 100 seeds
—f— 1000 seeds
—f— 3000 seeds

20000
15000
10000

5000

Y e

Number of Nodes

0 5 10 15 20 25 30
Time

(a)
©
(o))
Q40 T T T
C |w=PA-120k, deg. [20, 30]
8 |eePA-120k, deg. [80, 250]] - ---*
S 30 e 7
a | o
$207 /’///’ ."”.—”,- i
° | . -
[e] b _-r
Z10’,/ /r” 7
e) ¢ =7
QL i,
[$) 0’ L L I I I
ﬂC_’ 0 1000 2000 3000 4000 5000

Number of Seeds

(b)

Fig. 9: (a) Cumulative infection curves for an SIR model run on
the PA-120k network for three values of n, per the legend. All seed
nodes were selected from the nodes with degrees in the range [20,
30]. The duration of the simulations is 30 days (time steps). Each
curve presents the average over 50 iterations, with error bars as =+ one
standard deviation. (b) Final fraction of nodes in the PA-120k graph
infected after 30 days from the spread of a virus using an SIR model
in agent-based simulations performed with NetSimS. The number of
seed nodes and the method used to select seed nodes were varied
across a set of simulations.

eling and simulation as a service (MSaaS). Our contributions
are listed in Section I-B. Our focus is on the use of the system
through a web app, but the web app uses the same API as third
party codes that make computationally demanding service
requests (e.g., large problems, large numbers of simulation
requests). The system is accessible through the freely available
cyberinfrastructure (CI) called net.science [10]. One limitation
of the system is that contagion models have to be explicitly
added to both frontend and backend. Also, the sizes of
networks used in simulations are limited by available memory
and computational power. We continue to extend the system by
adding new features. Directions for extension include adding
more contagion models to the simulation framework, seeding
methods to the initial conditions module, data analyses, and
visualizations. We are investigating the parallelization of the
Initial Conditions Module, e.g., by using NetworKit [52].

Acknowledgments: We thank the reviewers for providing
helpful comments, and Research Computing at UVA for
providing computational resources and technical support. This
research is supported by University of Virginia Strategic
Investment Fund award number SIF160, VDH grant VDH-21-
501- 0135-1, and NSF Grants OAC-1916805 (CINES), CCF-

1918656 (Expeditions) and CMMI-1916670 (CRISP 2.0).

[1]

[3]

[4]

[5]

[6]

[7]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

B. Prasse, M. A. Achterberg, L. Ma, and P. Van Mieghem, “Network-
inference-based prediction of the COVID-19 epidemic outbreak in the
Chinese province Hubei,” Applied Network Science, vol. 5, no. 1, pp.
1-11, 2020.

A. Rizzo, B. Pedalino, and M. Porfiri, “A network model for Ebola
spreading,” Journal of theoretical biology, vol. 394, pp. 212-222, 2016.
A. Adiga, N. Palmer, Y. Y. Baek, H. Mortveit, and S. Ravi, “Network
models and simulation analytics for multi-scale dynamics of biological
invasions,” Frontiers in Big Data, vol. 5, 2022.

G. Chowell, J. M. Hyman, S. Eubank, and C. Castillo-Chavez, “Scaling
laws for the movement of people between locations in a large city,”
Phys. Rev. E, vol. 68, p. 066102, Dec 2003.

M. Cinelli, W. Quattrociocchi, A. Galeazzi, C. M. Valensise, E. Brugnoli,
A. L. Schmidt, P. Zola, F. Zollo, and A. Scala, “The COVID-19 social
media infodemic,” Scientific Reports, vol. 10, no. 1, pp. 1-10, 2020.
B. Doerr, M. Fouz, and T. Friedrich, “Why rumors spread so quickly
in social networks,” Communications of the ACM, vol. 55, no. 6, pp.
70-75, 2012.

N. A. Christakis and J. H. Fowler, “Social contagion theory: examining
dynamic social networks and human behavior,” Statistics in medicine,
vol. 32, no. 4, pp. 556-577, 2013.

C. Porath and C. Pearson, “The price of incivility,” Harvard business
review, vol. 91, no. 1-2, pp. 114-121, 2013.

P. Glasserman and H. P. Young, “Contagion in financial networks,”
Journal of Economic Literature, vol. 54, no. 3, pp. 779-831, 2016.

N. K. Ahmed et al., “net.science: A Cyberinfrastructure for Sustained
Innovation in Network Science and Engineering,” in Gateway Confer-
ence, 2020, pp. 71-74.

C. A. Stewart, S. Simms, B. Plale et al., “What is cyberinfrastructure,”
in Proceedings of the 38th Annual ACM SIGUCCS Fall Conference:
Navigation and Discovery, 2010, p. 37-44.

N. S. F. C. Council, “Cyberinfrastructure vision for 21st century discov-
ery,” 2007, TR.

M. Welshons (Ed.), “Our cultural commonwealth: The report of the
american council of learned societies commission on cyberinfrastructure
for the humanities and social sciences,” American Council of Learned
Societies, Tech. Rep., 2006.

J. Priest, A. Kishore, L. Machi et al., “CSonNet: An agent-based
modeling software system for discrete time simulation,” in Winter
Simulation Conference (WSC), 2021, pp. 1003-1014.

M. Granovetter, “Threshold models of collective behavior,” The Ameri-
can Journal of Sociology, vol. 83, no. 6, pp. 1420-1443, 1978.

D. Easley and J. Kleinberg, Networks, Crowds and Markets: Reasoning
About a Highly Connected World. Cambridge University Press, 2010.
N. Collier and M. North, “Parallel agent-based simulation with repast
for high performance computing,” SIMULATION, vol. 89, no. 10, pp.
1215-1235, 2013.

N. Minar, R. Burkhart, C. Langton, and M. Askenazi, “The Swarm
simulation system: A toolkit for building multi-agent simulations,” Santa
Fe Institute, Tech. Rep. 96-06-042, 1996.

S. Luke, C. Cioffi-Revilla, L. Panait et al., “MASON: A Multi-Agent
Simulation Environment,” Simulation: Transactions of the Society for
Modeling and Simulation International, vol. 82, pp. 517-527, 2005.
M. Kiran, P. Richmond, M. Holcombe, L. S. Chin, D. Worth, and
C. Greenough, “FLAME: Simulating Large Populations of Agents on
Parallel Hardware Architectures,” in AAMAS, 2010, pp. 1633-1636.

G. Rossetti, L. Milli et al., “NDlib: a Python library to model and ana-
lyze diffusion processes over complex networks,” International Journal
of Data Science and Analytics, vol. 5, no. 1, pp. 61-79, 2018.

D. W. Bauer Jr., C. D. Carothers, and A. Holder, “Scalable time warp
on blue gene supercomputers,” in Workshop on Principles of Advanced
and Distributed Simulation, 2009, pp. 35-44.

J. Huang, L. Liu, and L. Shi, “Auction Policy Analysis: An Agent-Based
Simulation Optimization Model of Grain Market,” in Winter Simulation
Conference (WSC), 2016, pp. 3417-3428.

P. Bhattacharya, S. Ekanayake, C. J. Kuhlman et al., “The matrix:
An agent-based modeling framework for data intensive simulations,”
in AAMAS, 2019, p. 1635-1643.

R. J. Allan, Survey of Agent Based Modelling and Simulation Tools.
Science & Technology Facilities Council New York, 2010.

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]
[50]
(51]

[52]

K. Kravari and N. Bassiliades, “A Survey of Agent Platforms,” Journal
of Artificial Societies and Social Simulation, pp. 1-18, 2015.

S. Railsback, D. Ayllén, U. Berger et al., “Improving execution speed
of models implemented in netlogo,” Journal of Artificial Societies and
Social Simulation, vol. 20, no. 1, 2017.

M. J. North, N. T. Collier, J. Ozik et al., “Complex adaptive systems
modeling with repast simphony,” Complex adaptive systems modeling,
vol. 1, no. 1, pp. 1-26, 2013.

M. Shahin, M. A. Babar, and M. A. Chauhan, “Architectural design
space for modelling and simulation as a service: a review,” Journal of
Systems and Software, vol. 170, p. 110752, 2020.

E. Cayirci, “Modeling and simulation as a cloud service: a survey,” in
2013 Winter Simulations Conference (WSC). IEEE, 2013, pp. 389-400.
J. E. Hannay, T. van den Berg, S. Gallant, and K. Gupton, “Modeling
and simulation as a service infrastructure capabilities for discovery,
composition and execution of simulation services,” The Journal of
Defense Modeling and Simulation, vol. 18, no. 1, pp. 5-28, 2021.

S. Wang and G. Wainer, “A simulation as a service methodology
with application for crowd modeling, simulation and visualization,”
Simulation, vol. 91, no. 1, pp. 71-95, 2015.

K. S. Perumalla, “psik—a micro-kernel for parallel/ distributed simulation
systems,” in PADS, 2005.

S. B. Yoginath and K. S. Perumalla, “Efficient parallel discrete event
simulation on cloud/virtual machine platforms,” ACM TOMACS, 2015.
D. Zehe, A. Knoll, W. Cai, and H. Aydt, “SEMSim Cloud Service:
Large-scale urban systems simulation in the cloud,” Simulation Mod-
elling Practice and Theory, vol. 58, pp. 157-171, 2015.

M. Rak, A. Cuomo, and U. Villano, “Mjades: Concurrent simulation
in the cloud,” in 2012 Sixth International Conference on Complex,
Intelligent, and Software Intensive Systems. IEEE, 2012, pp. 853-860.
D. Prochdzka and J. Hodicky, “Modelling and simulation as a service
and concept development and experimentation,” in International Con-
ference on Military Technologies (ICMT). 1EEE, 2017, pp. 721-727.
S. J. Taylor, T. Kiss, A. Anagnostou, G. Terstyanszky, P. Kacsuk,
J. Costes, and N. Fantini, “The cloudsme simulation platform and its
applications: A generic multi-cloud platform for developing and execut-
ing commercial cloud-based simulations,” Future Generation Computer
Systems, vol. 88, pp. 524-539, 2018.

C. Hiining, M. Adebahr, T. Thiel-Clemen, J. Dalski, U. Lenfers, and
L. Grundmann, “Modeling & simulation as a service with the massive
multi-agent system mars,” in Proceedings of the Agent-Directed Simu-
lation Symposium, 2016, pp. 1-8.

F. Caglar, S. Shekhar, A. Gokhale et al., “Cloud-hosted simulation-as-a-
service for high school stem education,” Simulation Modelling Practice
and Theory, vol. 58, pp. 255-273, 2015.

J. Leskovec and R. Sosi¢, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 8, no. 1, p. 1, 2016.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference (SciPy2008), 2008, pp. 11-15.
P. M. Gleiser and L. Danon, “Community structure in Jazz,” Advances
in Complex Systems, vol. 6, no. 4, pp. 565-573, 2003.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, pp. 509-512, 1999.

C. L. Barrett, R. J. Beckman, M. Khan et al., “Generation and anal-
ysis of large synthetic social contact networks,” in Winter Simulation
Conference (WSC), 2009, pp. 1003-1014.

U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, pp. 163-177, 2001.

S. Gonzalez-Bailon, J. Borge-Holthoefer, A. Rivero, and Y. Moreno,
“The dynamics of protest recruitment through an online network,”
Scientific Reports, vol. 1, p. 7, 2011.

D. Centola, “The spread of behavior in an online social network
experiment,” Science, vol. 329, pp. 1194-1197, 2010.

H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Review,
vol. 42, pp. 599-653, 2000.

D. Centola and M. Macy, “Complex contagions and the weakness of long
ties,” American J. of Sociology, vol. 113, no. 3, pp. 702-734, 2007.

C. Staudt, A. Sazonovs, and H. Meyerhenke, “NetworKit: A tool suite
for large-scale complex network analysis,” Network Science, vol. 4, pp.
508-530, 2016.

