
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Interpretable Design of Reservoir Computing
Networks Using Realization Theory

Wei Miao , Member, IEEE, Vignesh Narayanan , Member, IEEE, and Jr-Shin Li , Senior Member, IEEE

Abstract— The reservoir computing networks (RCNs) have
been successfully employed as a tool in learning and com-
plex decision-making tasks. Despite their efficiency and low
training cost, practical applications of RCNs rely heavily on
empirical design. In this article, we develop an algorithm to
design RCNs using the realization theory of linear dynamical
systems. In particular, we introduce the notion of α-stable
realization and provide an efficient approach to prune the size
of a linear RCN without deteriorating the training accuracy.
Furthermore, we derive a necessary and sufficient condition
on the irreducibility of the number of hidden nodes in linear
RCNs based on the concepts of controllability and observabil-
ity from systems theory. Leveraging the linear RCN design,
we provide a tractable procedure to realize RCNs with non-
linear activation functions. We present numerical experiments
on forecasting time-delay systems and chaotic systems to vali-
date the proposed RCN design methods and demonstrate their
efficacy.

Index Terms— Control systems, realization theory, recurrent
neural networks (RNNs), reservoir computing networks (RCNs),
time-series forecasting.

I. INTRODUCTION

THE reservoir computing network (RCN) is a bio-
mimetic computational tool that is increasingly used in

a variety of applications to solve complex decision-making
problems [1]–[3]. Essentially, the RCN is a class of recurrent
neural networks (RNNs), which is composed of one hidden
layer, typically with a large number of sparsely interconnected
neurons, and a linear output layer. In contrast to the classical
RNN, a distinct feature of the RCN is that all of its connections
in the hidden layer are randomly predetermined and fixed.
Hence, the training process of the RCN involves only learning
the weights of its linear output layer in a supervised learning
framework.

The existing supervised learning approach to training
an RCN was proposed in [1]. Subsequently, the RCN
was successfully employed for forecasting time series with

Manuscript received September 1, 2020; revised April 8, 2021 and
September 23, 2021; accepted December 9, 2021. This work was supported
in part by the National Science Foundation under Award CMMI-1933976 and
Award CMMI-1763070, and in part by the NIH Grant R01GM131403-01.
(Corresponding author: Jr-Shin Li.)

Wei Miao and Jr-Shin Li are with the Department of Electrical and Systems
Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
(e-mail: weimiao@wustl.edu; jsli@wustl.edu).

Vignesh Narayanan is with the AI Institute, University of South Carolina,
Columbia, SC 29208 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3136495.

Digital Object Identifier 10.1109/TNNLS.2021.3136495

applications in finance [4], [5], wireless communication [6],
speech recognition [7], and robot navigation [8]. Notwithstand-
ing its efficient training procedure, the major limitation of the
RCN lies in the fact that its practical application relies heavily
on the empirical design of the hyperparameters of the network,
including its size [9].

Recently, there has been a renewed interest in developing
tractable methods for designing neural networks that are
suitably deployed in diverse scenarios [10], [11]. In this
context, deriving rigorous and systematic techniques to design
neural networks, especially establishing principled strategies
for selecting their hyperparameters that yield the desired
performance, is compelling but challenging. In this article,
we propose a tractable approach to design RCNs that warrant
effective functioning for given datasets. In particular, we focus
on the application of RCNs to learn dynamic models of
dynamical systems from their time-series measurement data
and develop rigorous design principles to prune the number of
hidden-layer nodes in RCNs without deteriorating the training
performance. Leveraging the notions of controllability and
observability, we derive a necessary and sufficient condition
on irreducibility of RCNs with linear activation functions.
This in turn results in an interpretable RCN pruning algo-
rithm, where the controllability and observability matrices of
an RCN inform on its size and irreducibility Furthermore,
we illustrate that the developed irreducible linear realization
of the RCN not only sufficiently represents the underlying
dynamics inherited in the time-series data but also contributes
to a tractable design of general RCNs with nonlinear activation
functions.

This article is organized as follows. In Section II, we provide
a brief review of related works that motivate the need of
our developments. In Section III, through tailoring exist-
ing results on the learnability of RNNs, we motivate our
realization-theoretic RCN design principles by illustrating how
an RCN achieves τ -step ahead forecast of time series associ-
ated with a dynamical system. In Section IV, we introduce
realization-theoretic aspects from systems theory to facilitate
a comprehensive RCN design and then establish a necessary
and sufficient condition on the irreducibility of a linear RCN
that achieves the desired training accuracy. This result in turn
forms the basis for an educated design of RCNs with nonlinear
activation functions. In Section V, we present several results
using an RCN to forecast time series and learn chaotic systems
to demonstrate the applicability of the proposed RCN design
framework.

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3067-8288
https://orcid.org/0000-0002-9505-7143
https://orcid.org/0000-0001-6693-3979

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

II. RELATED WORKS AND MOTIVATION

In this section, we briefly review the existing works on
RCNs and point out the specific problems that we address
in this article.

The computational framework of an RCN and its training
procedure was first proposed in [1], where two conditions
were hypothesized as requirements for successful applications
of the RCNs—the echo state property (ESP) and a general
compactness assumption on the training signal. In addition,
a mathematical definition of the ESP was also provided in [12]
and [13]. Intuitively, the ESP implies that the state of the RCN
is uniquely determined by its input history rather than the
initial condition of the network.

Thereafter, several results explaining the principles of the
RCN, especially in evaluating some of its features, such as
the ESP [14], [15], the memory capacity [16]–[18], and the
stability [19], have been reported. In addition to investigating
the fundamental properties of the RCN, multiple attempts
addressing its design were also reported. The performance of
the RCN in relation to the complexity of its network topology
was analyzed in [20]. Using the interpretation of contracting
maps, a discussion on the architecture of the RCN was pre-
sented in [21]. Supported by heuristic analyses, it was shown
in [22] that the small-world network topology improved the
performance (e.g., forecasting accuracy or memory capacity)
of the RCN. Despite the prescribed results, existing appli-
cations using RCNs rely on randomly generated connection
matrices. Using the random matrix theory, an explanation on
why such a design of the RCN, in general, leads to acceptable
performance was presented [23].

Recently, there has been a rising tide of interest in analyzing
RCNs, especially RCNs with linear activation functions, using
control-theoretic approaches [24], [25]. For instance, the con-
nectivity patterns of RCNs were studied in [26] leveraging
the concept of controllability matrix. Furthermore, it was
proven in [27] that the memory capacity of a linear RCN
can be characterized by the rank of its controllability matrix.
Nevertheless, due to the inherited randomness and usage,
the design process of the RCNs is still based on empirical
strategies, and designing an RCN with minimum size to ensure
the desired performance is compelling but remains elusive.

In this work, we focus on establishing schematic design
principles to realize RCNs with linear and nonlinear activa-
tion functions, which achieves guaranteed training accuracy.
The main contributions of this article include: 1) estab-
lishing the notion of α-stable realization for designing the
weight/connection matrix in an RCN with desired training
accuracy for a given dataset; 2) devising an algorithm based
on realization theory to prune the size of linear RCNs with
quantifiable training accuracy; and 3) deriving tractable guide-
lines for configuring RCNs with nonlinear activation functions
through the linear RCNs obtained via irreducible realization.

Here, we adopt the definition of the ESP as introduced
in [1], that is, an RCN is said to have the ESP if the state
variables of the RCN are uniquely determined by the input
history, regardless of the initial condition. Throughout this
article, we denote u[a; b] as a sequence with index starting
from a to b, where a < b, i.e., u[a; b] := {u[a], . . . , u[b]}.

III. ROLE OF TAKENS EMBEDDING IN RCN FRAMEWORKS

In this section, we provide details of the RCN dynamics
and its training procedure. We tailor existing results on the
learnability of RNNs, in particular, the Takens embedding
theorem, to render a comprehensive analysis of how an RCN
learns the underlying dynamics of a time series. Based on
the analyses, we discuss the applications of RCNs for the
time-series forecasting problem, which motivates the design of
RCNs using linear realization theory in Section IV. We begin
with a brief introduction to the Takens theorem and discuss
its role in understanding RCNs.

A. Takens Theorem and Its Implication
on Time-Series Forecasting

We consider a time-dependent variable s(t), evolving on an
m-dimensional manifold M ⊂ Rp, following the dynamics
ṡ(t) = Fs(s(t)), where Fs : M → Rp is a smooth vector
field. Let v : M → R be an observation function, and in
practice, we measure a discrete sequence of observations, say
v[s(ti)], where ti for i = 0, 1, 2, . . . denoting the sampling
instants. We can then define the propagation map φ : M → M
describing the flow of s(t) at time ti by s(ti+1) = φ(s(ti)).
Now, let D(M) ⊂ C2(M) denote the collection of functions
such that, for any f ∈ D(M), f : M → M has an inverse
function f −1 ∈ C2(M), where C2(M) denotes the class
of functions over M for which the first- and second-order
derivatives are continuous. Then, for the dynamical system
describing the time evolution of s(t), we have φ ∈ D(M).
The Takens theorem can be stated as follows.

Theorem 1 (Takens Theorem [28]): Let M be a compact
manifold of dimension m. For pairs (φ, v) with φ ∈
D(M) and v ∈ C2(M, R), it is a generic property
that the map $φ,v,2m+1 : M → R2m+1, defined by
$φ,v,2m+1(s) = (v(s), v(φ(s)), . . . , v(φ2m(s))) is an embed-
ding, where “generic” means open and dense in the C1

topology.
From here on, we use $2m+1 as an abbreviation for

$φ,v,2m+1 and call 2m + 1 as the “length” of the time-delay
embedding $2m+1. Intuitively, the Takens theorem states that
for almost all pairs (φ, v) defined on a compact manifold M
of dimension m, there is an 1–1 correspondence from M to
R2m+1 that preserves the structure of M . If the Takens theorem
holds, then by the definition of an embedding, the inverse
function for the map $2m+1 is well-defined. Hence, we can
define a map ψ2m+1 := $2m+1 ◦φ◦$−1

2m+1, which describes the
same dynamical system as φ does, under a coordinate change
of $2m+1. The nontriviality of the construction of ψ2m+1

is that it forecasts a new observation when provided with
the time-delayed observations (v(s), v(φ(s)), . . . , v(φ2m(s))).
Namely, it holds that ψ2m+1(v(s), v(φ(s)), . . . , v(φ2m(s))) =
(v(φ(s)), v(φ2(s)), . . . , v(φ2m+1(s))), which implies that if
one learns the explicit representation of ψ2m+1, then the
new observation, i.e., v(φ2m+1(s)), can be predicted based on
the historical observations, (v(s), . . . , v(φ2m(s))). Specifically,
if v = Id , then ψ2m+1 essentially predicts how the dynamical
system defined by φ is evolving on M . For additional details
on Takens theorem, see [28], [29].

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIAO et al.: INTERPRETABLE DESIGN OF RESERVOIR COMPUTING NETWORKS USING REALIZATION THEORY 3

B. RCN Dynamics and Its Training Procedure

In this section, we introduce the dynamics of the RCN and a
sufficient condition for the RCN to possess the ESP. With the
guarantee of the ESP and using the Takens theorem, we show
that an RCN can “learn” to forecast the data generated by a
dynamical system on a compact manifold.

Consider the RCN described by

x[k + 1] = (1 − α)x[k] + ασ (Ax[k] + Bu[k]) (1)

y[k] = Cx[k] =
N∑

i=1

ci xi [k] (2)

where x[k] ∈ RN denotes the state of the RCN, N is the
number of nodes, u[k] ∈ Rp is the input to the RCN, y[k] ∈
Rq is the output of the RCN, A ∈ RN×N and B ∈ RN×p are
predetermined matrices denoting the connections in the RCN,
C ∈ Rq×N is the weight matrix in the output layer to be
trained, with ci , i = 1, . . . , N as its i th column, α ∈ (0, 1) is
called the “leakage rate,” and σ is an activation function that
is applied to a vector componentwise. A well-known result
(see [1], [30]) for the RCN in (1) to possess ESP is provided
as the following lemma.

Lemma 1: Consider the dynamics of the RCN in (1). If σ
is Lipschitz continuous with the Lipschitz constant L, then the
ESP holds if ‖A‖2 < (1/L), where ‖·‖2 denotes the matrix
2-norm.

Now, we illustrate the training process of the RCN. Given
a time series u[0; T − 1] for T > 1 and a reference sequence
ỹ[1; T], the RCN can be trained to predict the value of
{ỹ[k]} for k > T . The canonical way to do this is to first
select the size of the RCN (i.e., N) and randomly generate
the matrices A and B of appropriate dimensions. Then, the
sequence u[0; T − 1] is fed into the RCN dynamics (1) as an
input to generate a sequence of the RCN states x[1; T]. A fixed
positive integer w is selected as the “washout” length, and only
the sequence after the wth step, i.e., x[w; T], is collected.
Finally, the coefficient in the output layer, C , is trained to
minimize the error between the RCN output y[w; T] and the
reference sequence ỹ[w; T], i.e.,

C = argmin
C∈Rq×N

T∑

k=w

∥∥∥∥C
[

x[k]
u[k]

]
− ỹ[k]

∥∥∥∥
2

2
.

Following this supervised learning procedure, when the input
to the RCN is u[k] (for k > T), the RCN outputs a value
that approximates ỹ[k + 1]. In this sense, the training process
enables the RCN to learn the underlying dynamics of the
reference sequence ỹ[k].

In Section III-C, we explain in detail on how the RCN
encodes the underlying dynamics of the reference sequence
during the training process through the lens of Takens embed-
ding theorem.

C. Learning Dynamics Using an RCN

To begin with, we consider the task of one-step ahead
forecast of a given time series and explain how the training
process enables the RCN to perform this task. For ease of
exposition, we illustrate the idea with 1-D time series, i.e.,

u[k], y[k] ∈ R, and the framework is directly applicable to
the multidimensional cases since the Takens theorem holds
regardless of the dimension of the time series.

1) One-Step Ahead Forecast: Suppose that a time series
{u[k]} ⊂ R is generated by a dynamical system on a
compact manifold of dimension m. The sequence u[0; T]
is used as input to the RCN, and the one-step shifted
sequence u[1; T + 1] is provided as the training reference.
Denote the solution for the state equation in (1) as xi [k] =
ϕi(x[0], u[0], u[1], . . . , u[k − 1]), where xi [k] is the i th com-
ponent of the vector x[k], and then, by the uniqueness
of the solution of a dynamical system, we have xi [k] =
ϕi(x[0], u[0], u[1], . . . , u[k − 1]) = ϕi(x[j], u[j], u[j +
1], . . . , u[k − 1]) for any j = 0, 1, 2, . . . , k − 1.

As a result of Lemma 1, when ‖A‖2 < (1/L), the RCN
acquires the ESP. This implies that there exists k0 ∈ N such
that, after the RCN evolves for k0 steps, the effect of the
initial condition on the solution trajectory becomes negligible.
Therefore, for a fixed “washout” length w > k0, we can define
ξ(i,w) : Rw → RN such that

xi [w + j] = ϕi(x[j], u[j], . . . , u[w + j − 1])

:= ξ(i,w)(u[j], . . . , u[w + j − 1])

for all j = 0, . . . , T − w, where ξ(i,w) can be treated as ϕi

taking historical data of length w, with the effect of the initial
condition washed out. Recall that when training the RCN,
we minimize the error between y[w; T] and ỹ[w; T]. Hence,
training the RCN is equivalent to finding ci ’s such that

u[w + j] ≈ y[w + j] =
N∑

i=1

ci xi [w + j]

=
N∑

i=1

ciϕi(x[j], u[j], u[j + 1], . . . , u[w + j − 1])

=
N∑

i=1

ciξ(i,w)(u[j], u[j + 1], . . . , u[w + j − 1])

(3)

for j = 0, . . . , T − w.
We observe from (3) that when the RCN is endowed with

the ESP, the training procedure is equivalent to learning the
map between u[w + j] and the window of historical data
u[j ; w+ j −1]. The existence of such a map is guaranteed by
the Takens theorem. In particular, with w in (3) greater than
2m + 1, there exists a smooth map ψw : Rw → Rw such that
ψw(u[j ; w + j − 1]) = u[j + 1; w + j]. Therefore, training
an RCN can also be interpreted as approximating the map ψw

using nonlinear functions ξ(i,w) for i = 1, . . . , N .
2) Multistep Ahead Forecasting: Based on the idea of

one-step ahead forecast, we can extend the RCN to accomplish
τ -step ahead forecast. Specifically, if the training reference is
set to be ỹ[w; T] = u[w + τ − 1; T + τ − 1], then similar to
(3), training the RCN is equivalent to finding ci ’s such that
u[w + j + τ − 1] ≈ ∑N

i=1 ciξ(i,w)(u[j ; w + j − 1]) for j =
0, . . . , T −w. A similar argument to one-step ahead forecasting
holds for τ -step forecasting since the output of the RCN can
be configured to approximate ψτw = ψw ◦ · · · ◦ ψw (τ times)

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

such that ψτw(u[j ; w+ j−1]) = u[j+τ ; w+ j+τ−1]. Hence,
in this way, the RCN training can be viewed as approximating
the last component of ψτw by using

∑N
i=1 ciξ(i,w).

Remark 1: The above explanation on multistep ahead fore-
casting based on time-delay embedding provides a much
better understanding on why the RCN successfully forecasts a
chaotic system as reported in [31] and [32]. In particular, for
a chaotic system with an attractor, such as the Lorenz system,
the sequence {u[k]} will eventually lie in a compact manifold
of low dimension. Hence, the Takens theorem together with
the analysis presented above on time-delay embedding can be
directly applied.

3) Learning Dynamics of Observation Sequences: In addi-
tion to forecasting the input sequence u[k] for one-step/
multistep ahead, where ỹ[k] = u[k], we can also configure
RCN to forecast observation sequences that can be expressed
as functions of u[k]. In particular, if ỹ = h(u), where h is a
smooth function, then ỹ[k] can be represented solely by the
history of u[k], say ỹ[w+ j] = G(u[j ; w+ j−1]) since u[k] is
uniquely determined by a window of historical data. Therefore,
the training process of the RCN, in this case, can be interpreted
as using

∑N
i=1 ciξ(i,w) to approximate the nonlinear mapping

G [similar to (3)]. This illustrates the ability of the RCN to
forecast a wide variety of time series by simply changing the
training reference ỹ[k].

4) Choices of the Activation Function: When the activa-
tion function σ is Lipschitz continuous with the Lipschitz
constant L, the condition ‖A‖2 < (1/L) is sufficient to
ensure the ESP for (1) as a result of Lemma 1. For instance,
the commonly used hyperbolic tangent function, tanh, has a
Lipschitz constant L = 1 so that we need ‖A‖2 < 1 to ensure
the ESP for (1). Since the above explanation on how RCNs
learn dynamical systems does not post any restriction on the
activation function σ , we indeed have much freedom on the
choice of σ . In fact, the activation function can be as simple
as a linear function.

The tradeoff between the RCN performance and the choice
of activation function for the RCN is well-documented.
Although it is believed, in general, that nonlinear activation
functions perform better than linear ones, it is reported in the
literature (see [33]–[36]) that this conclusion is indeed based
on a case-by-case study. One major advantage of using linear
activation functions, as we shall see in Section IV, is that a
linear activation function enables a thorough analysis of the
RCN using system-theoretic tools and allows for an explicit
design of the RCN, which can eventually be used as a baseline
for designing an RCN with a nonlinear activation function,
e.g., tanh or sigmoid, as widely used in the literature.

IV. REALIZATION THEORY FOR THE RCN DESIGN

In this section, we present a realization-theoretic framework
for systematic design of RCNs. We illustrate the main idea and
conduct the analysis for RCNs with linear activation func-
tions. Specifically, we first show that for given input–output
sequences u[0; T −1] ⊂ Rp and ỹ[1; T] ⊂ Rq , there exists an
RCN that approximates the input–output relation in the data.
Then, we provide a systematic scheme to prune the size of
RCNs while maintaining the same training error. At the end

of this section, we illustrate how these results can be carried
over to the design of RCNs with general nonlinear activation.

A. Realization of RCNs With Linear Activation Function
We begin by introducing the notion of realization from

systems theory [37] and defining it in the context of the
RCN, which will form the basis of the proposed RCN design
framework.

Definition 1 (Realization of Linear Systems): Given
two sequences u[0; T − 1] ⊂ Rp and ỹ[1; T] ⊂ Rq ,
we say that the triplet, Ã ∈ RN×N , B̃ ∈ RN×p, and
C̃ ∈ Rq×N , is an N-dimensional ε-error realization of the
pair (u[0; T − 1], ỹ[1; T]) if the linear system

x[k + 1] = Ãx[k] + B̃u[k]

y[k] = C̃x[k] (4)

satisfies (
∑T

k=1 ‖y[k] − ỹ[k]‖2
2)

1/2 ≤ ε. Furthermore, if ε =
0, then such a realization is called an N-dimensional perfect
realization.

For simplicity, we will refer to an N-dimensional realization
using (Ã, B̃, C̃)N , and this will denote the linear dynami-
cal system in (4). To facilitate the delineation between two
realizations, we introduce Markov parameters, equivalent and
irreducible realizations as follows.

Definition 2 (Markov Parameter): The kth Markov para-
meter of a realization (Ã, B̃, C̃)N is a matrix of real numbers
γk ∈ Rq×p defined by γk = C̃ Ãk B̃.

Definition 3 (Equivalent Realizations): Two realizations
(A1, B1, C1)N1 and (A2, B2, C2)N2 are said to be equivalent
if γ (1)

k = γ (2)
k holds for all k = 0, 1, 2, . . . , where

γ (1)
k = C1 Ak

1 B1 and γ (2)
k = C2 Ak

2 B2.
Definition 4 (Irreducible Realization): A realization

(Ã, B̃, C̃)N is said to be irreducible if there exists no
equivalent realization (Â, B̂, Ĉ)N̄ with N̄ < N .

Remark 2: In the literature of control systems, Definition 4
is referred as the “minimal realization” if (Ã, B̃, C̃) is per-
fect [37]. Since, in this work, we consider the reduction of
ε-error realizations of RCNs, Definition 4 is named “irre-
ducible realization” to avoid ambiguity.

Next, we will describe the RCN training procedure through
the use of a realization (Ã, B̃, C̃)N and then establish the
realization framework tailored for the RCN that explicitly
accounts for the ESP, an important and necessary property
for the functioning of the RCN.

Consider the RCN as given in (1) with a linear activation
function, e.g., σ is the identity function, given by

x[k + 1] = [(1 − α)I + αA]x[k] + αBu[k]

where I is the identity matrix of appropriate dimension.
If Ã := (1 − α)I + αA ∈ RN×N and B̃ = αB ∈ RN×p,
then the RCN dynamics can be expressed as

x[k + 1] = Ãx[k] + B̃u[k]. (5)

Now, we introduce the connection between the RCN train-
ing procedure and the notion of realization theory. Specifically,
the first step of RCN training is to fix the dimension N , the
leakage rate α, and the randomly generate matrices Ã and B̃.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIAO et al.: INTERPRETABLE DESIGN OF RESERVOIR COMPUTING NETWORKS USING REALIZATION THEORY 5

Then, training the output layer of the RCN constructed using
Ã and B̃ is equivalent to finding C̃∗ such that

C̃∗ = argmin
C̃∈Rq×N

E
[(

Ã, B̃, C̃
)

N

]
(6)

where E[(Ã, B̃, C̃)N] := (
∑T

k=1 ‖ỹ[k] − C̃ Ãk B̃u[k]‖2
2)

1/2

denotes the training error of the realization (Ã, B̃, C̃)N .
Let us consider an N1-dimensional ε-error realization,

denoted (Ã1, B̃1, C̃1)N1 , and suppose that (Ã2, B̃2, C̃2)N2 is
the irreducible equivalent realization of (Ã1, B̃1, C̃1)N1 with
N2 ≤ N1. Then, it holds that

min
C̃∈Rq×N2

E
[(

Ã2, B̃2, C̃
)

N2

]
≤ E

[(
Ã2, B̃2, C̃2

)
N2

]

= E
[(

Ã1, B̃1, C̃1
)

N1

]
< ε

which implies that if we train the RCN constructed using the
N2-dimensional matrices Ã2 ∈ RN2×N2 and B̃2 ∈ RN2×p, the
training error will be bounded above by ε. Therefore, finding
the irreducible equivalent realization to a given RCN enables
quantifying a smaller size of the RCN that provides a desired
training accuracy.

To adopt this realization-theoretic idea for the RCN design,
an additional constraint has to be imposed on the matrix A in
order for the RCN to be equipped with the ESP. To achieve
this, we propose the notion of α-stable realization.

Definition 5 (α-Stable Realization): Given α ∈ (0, 1],
a realization (Ã, B̃, C̃)N is called an α-stable realization if
‖ Ã‖2 < α.

For instance, we know, by Lemma 1, that an RCN in (1)
using a linear activation function σ with the Lipschitz constant
L = 1 possesses the ESP when ‖A‖2 < 1. Therefore, in this
case, for any α ∈ ((1/2), 1), having ‖ Ã‖2 < 2α − 1 in (5) is
sufficient to guarantee the ESP. This is because

‖A‖2 =
∥∥∥∥

1
α

(
Ã − (1 − α)I

)∥∥∥∥
2

≤ 1
α

[∥∥ Ã
∥∥

2 + (1 − α)
]

<
1
α

[2α − 1 + 1 − α] = 1.

As a consequence, finding a (2α − 1)-stable realization
(Ã, B̃, C̃)N will ensure that the corresponding RCN possesses
the ESP.

Therefore, in the remainder of this section, we will consider
a fixed leakage rate α ∈ ((1/2), 1) so that 2α − 1 ∈
(0, 1). For simplicity, we use “stable realization” in place of
‘(2α − 1)-stable realization.’

B. Irreducible Stable Realization

Theoretically, if there exists one stable realization that
achieves the desired training error for a given input–output
sequence, one can construct many different realizations with
the same training error. A consequent question of paramount
practical importance to ask is how to prune the size of a
realization as much as possible while maintaining the training
error tolerance of the given stable realization. The answer
to this question is pertinent to the concept of fundamental
properties of a control system.

Definition 6 (Controllability and Observability Matrices):
For a linear time-invariant dynamical system (Ã, B̃, C̃)N

as modeled in (4), the controllability and the observability
matrices are defined by

WN =
[
B̃, ÃB̃, . . . , ÃN−1 B̃

]
and G N =





C̃
C̃ Ã
...

C̃ ÃN−1





respectively.
Controllability and observability properties then lead to the

characterization of an irreducible realization (see [38]).
Lemma 2: A realization (Ã, B̃, C̃)N is irreducible if and

only if the pair (Ã, B̃)N is controllable and the pair (Ã, C̃)N

is observable, i.e., rank (WN) = N and rank (G N) = N .
Note that Lemma 2 poses no constraints on the matrix norm

of the realization, and thus, an irreducible realization may be
unstable. As a result, modifications have to be made in order to
construct a stable irreducible realization resulting in an RCN
with ESP. In the following, we develop a systematic scheme to
construct an equivalent stable realization of RCN with reduced
size.

Lemma 3: Given an N-dimensional α-stable realization
(Ã, B̃, C̃)N , if rank WN = N̄ < N , then there exists an
N̄ -dimensional α-stable realization (Ā, B̄, C̄)N̄ that is equiv-
alent to (Ã, B̃, C̃)N .

Proof: Because rank WN = N̄ < N , let v1, . . . , v N̄
be an orthonormal basis of R(WN), the column space of
WN , and select v N̄+1, . . . , vN such that v1, . . . , vN forms an
orthonormal basis of RN . Also, we denote V1 = [v1, . . . , v N̄],
V2 = [v N̄+1, . . . , vN], and V = [V1, V2]. Note that by
construction, V is an orthonormal matrix so that V −1 = V ᵀ.
Therefore, we have

V −1 ÃV = V ᵀ ÃV =
[

V ᵀ
1 ÃV1 V ᵀ

1 ÃV2

V ᵀ
2 ÃV1 V ᵀ

2 ÃV2

]
.

Note that each column of ÃV1 lies in R(V1). Since columns
of V2 are in the orthogonal complement of R(V1) by con-
struction, it holds that V ᵀ

2 ÃV1 = 0. Therefore, V −1 ÃV can be
rewritten as

V −1 ÃV =
[

V ᵀ
1 ÃV1 V ᵀ

1 ÃV2

0 V ᵀ
2 ÃV2

]
:=

[
A11 A12

0 A22

]
. (7)

Moreover, since every column of B̃ lies in R(WN), we have
V ᵀ

2 B̃ = 0 by the construction of V2 so that

V −1 B̃ = V ᵀ B̃ =
[

V ᵀ
1 B̃
0

]
:=

[
B1

0

]
. (8)

Now, we denote C̃V = [C1, C2], where C1 consists of the first
N̄ columns of C̃V and C2 is formed by the remaining N − N̄
columns. Then, it can be observed that (V −1 ÃV , V −1 B̃, C̃V)N

is equivalent to (Ã, B̃, C̃)N since

C̃V
(
V −1 ÃV

)k
V −1 B̃ = C̃ Ãk B̃

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

holds for all k = 0, 1, . . . Furthermore, due to the structure
provided by (7) and (8), it can be verified that

C̃V
(
V −1 ÃV

)k
V −1 B̃

= [C1, C2]
([

A11 A12

0 A22

])k[B1

0

]

= [C1, C2]
[

Ak
11 ∗

0 Ak
22

][
B1

0

]
= C1 Ak

11 B1

which implies that (A11, B1, C1)N̄ is an N̄ -dimensional real-
ization that is equivalent to (Ã, B̃, C̃)N . Now, it remains to
show that (A11, B1, C1)N̄ is α-stable, given that (Ã, B̃, C̃)N is
α-stable. By the definition of matrix 2-norm, we have

‖A11‖2 = sup
x∈RN̄

‖x‖2=1

xᵀ A11x = sup
x∈RN̄

‖x‖2=1

xᵀV ᵀ
1 ÃV1x . (9)

If y = V1x , then y is a vector in RN satisfying

‖y‖2
2 = yᵀy = (x1v1 + · · · + xN̄v N̄)ᵀ(x1v1 + · · · + xN̄v N̄)

= x2
1 + · · · + x2

N̄ = ‖x‖2
2.

Hence, (9) can be bounded by ‖A11‖2 = sup
y∈RN

‖y‖2=1

yᵀ Ãy ≤

‖ Ã‖2 < α, which concludes the proof.
From a dual perspective, we also have the following lemma

regarding the observability matrix.
Lemma 4: Given an α-stable realization (Ã, B̃, C̃)N ,

if rank G N = N̄ < N , then there exists an N̄ -dimensional
α-stable realization (Ā, B̄, C̄)N̄ equivalent to (Ã, B̃, C̃)N .

The proof is omitted since it is similar to the proof of
Lemma 3. With the help of Lemmas 3 and 4, we develop
an explicit criterion on characterizing the irreducible stable
realization for the RCN given in (5).

Theorem 2: A stable realization (Ã, B̃, C̃)N is irreducible,
i.e., there exists no equivalent stable realization (Ā, B̄, C̄)N̄
with N̄ < N , if and only if rank WN G N = N .

Proof: We prove the theorem by proving the contra-
position, i.e., (Ã, B̃, C̃)N is not irreducible if and only if
rank WN G N < N .

On the one hand, if (Ã, B̃, C̃)N is not irreducible, then by
Lemma 2, either rank WN < N or rank G N < N . Therefore,

rank (WN G N) ≤ min(rank (WN), rank G N) < N.

On the other hand, if rank (WN G N) < N , then, by Sylvester’s
rank inequality, it holds that

rank (WN) + rank (G N)−N ≤ rank (WN G N) < N

which implies that rank WN + rank G N < 2N and that either
rank (WN) < N or rank (G N) < N . Hence, from Lemma 3
(or Lemma 4), it holds that (Ã, B̃, C̃)N is not irreducible.

As a consequence of Lemmas 3 and 4 and Theorem 2,
the procedure for finding the irreducible stable realization
that is equivalent to a given stable realization (Ã, B̃, C̃)N is
described in Algorithm 1, where Orth(A) returns an ortho-
normal basis of R(A) and dim Ã returns the dimension of the
matrix Ã.

Remark 3: It is worthwhile to mention that as proved
in [27], a linear RCN attains maximal memory capacity when
its weight matrices (A, B) constitutes a full-rank controllabil-
ity matrix. As a consequence, Algorithm 1 not only returns
an irreducible linear realization of RCN but also provides an
RCN that reaches maximum memory capacity.

Algorithm 1 Minimal Stable Realization

function MINIMAL STABLE REALIZATION(Ã, B̃, C̃)
Initialize: Compute WN , G N for (Ã, B̃, C̃)N

while rank (WN G N) < N do
if rank (WN) < N then

V1 = Orth (WN).
else

V1 = Orth (Gᵀ
N).

end if
Ã = V ᵀ

1 ÃV1, B̃ = V ᵀ
1 B̃, C̃ = C̃V1,

N = dim Ã.
Compute WN , G N for (Ã, B̃, C̃)N .

end while
return (Ã, B̃, C̃)N .

end function

Remark 4: Each iteration in Algorithm 1 consists of com-
puting the eigendecomposition of the controllability or the
observability matrix, which has a time complexity of O(N3).
In the worst case, Algorithm 1 may take N iterations to
terminate, which results in a total time complexity of O(N4).
Nevertheless, in all our numerical experiments, we observe
that the number of iterations for Algorithm 1 to terminate is
of order much smaller than N , i.e., around 10–20 iterations
for the cases when N = 500 and 1000 or even N = 2000 so
that we empirically expect that the average time complexity
of Algorithm 1 is O(N3). On the other hand, model selection
procedures for designing an initial learning model for the given
data typically involve evaluating the performance of models
with various hyperparameters and choosing the model that
yields the best result [20], [39]. One of the main features of
the proposed approach is that the results of Theorem 2 can be
used to evaluate the irreducibility of the RCN, and Algorithm 1
can be used to prune the RCN size, irrespective of how the
initial RCN model is selected.

C. Further Implications of Irreducible Stable Realizations

The development of irreducible realization in Section IV-B
has a lot to offer for designing linear and nonlinear RCNs,
as well as understanding the underlying dynamics in the
training dataset. We start by explaining how the size of the
irreducible realization is related to the Takens embedding,
which provides a criterion to characterize the complexity of the
underlying dynamics determined by u[0; T − 1] and ỹ[1; T].

From the theory of linear dynamical system (see [40]),
it is a known fact that for any N-dimensional realization
(Ã, B̃, C̃)N , there exists an invertible matrix P ∈ RN×N such
that (P−1 ÃP, P−1 B̃, C̃ P)N is in the observable canonical

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIAO et al.: INTERPRETABLE DESIGN OF RESERVOIR COMPUTING NETWORKS USING REALIZATION THEORY 7

form given by

P−1 ÃP =





0 Iq

0 0
. . .

...
...

. . .
. . .

0 0 · · · 0 Iq

−θ0 Iq −θ1 Iq · · · θN−2 Iq −θN−1 Iq





P−1 B̃ =




γ0
...

γN−1



, C̃ P =
(
Iq , 0, · · · , 0

)
(10)

where θ j , j = 0, 1, . . . , N − 1, are arbitrary constants and
γ j , j = 0, 1, . . . , N − 1, are the first N Markov parameters of
the realization (Ã, B̃, C̃)N . It is not hard to verify that for any
invertible matrix P ∈ RN×N , we have (P−1 ÃP, P−1 B̃, C̃ P)N

to be equivalent to (Ã, B̃, C̃)N . Therefore, without loss of
generality, we assume that (Ã, B̃, C̃)N is in the observable
canonical form as in (10). In this case, the dynamics of each
component of x[k] is given by

x[k + 1] =





x2[k] + γ0u[k]
...

xN [k] + γN−2u[k]
N−1∑

i=0

θi xi [k] + γN−1u[k]




, ỹ[k] = x1[k]

where xi [k] is the i th component of x[k]. Therefore, we have

ỹ[k + N] = x1[k + N] = x2[k + N − 1] + γ0u[k + N − 1]

= · · · = xN [k + 1] +
N−1∑

i=0

γi u[k + N − 1 − i].

(11)

When the RCN possesses the ESP, the effect of xN [k + 1]
on ỹ[k + N] is negligible, so that from (11), ỹ[k + N] is
determined by u[k], . . . , u[k + N − 1], which is the input data
history of size N . From the Takens theorem, the time evolution
on a compact manifold of dimension m can be represented
by any time-delay embedding longer than 2m + 1. Therefore,
if a linear realization describes the underlying dynamics deter-
mined by u[0; T − 1] and ỹ[1; T] perfectly, the dimension of
such realization satisfies N > 2m + 1 by the Takens theorem.
On the other hand, if a linear realization of size N attains a
training error of ε, then it implies that there exists a dynamical
system evolving on a manifold of dimension (1/2)(N − 1)
that approximately represents the underlying dynamics up to
ε-error. This analysis provides a bound on the size of an RCN
representing the dynamics of the underlying dynamical system
generating the given input–output data sequences.

In addition, it is worth mentioning that since we are using
linear dynamics to approximate the map ψ2m+1 in the Takens
embedding, the bound on m mentioned above can be improved
through the use of a nonlinear realization. It is intuitive to
argue that using a nonlinear realization (e.g., with tanh or
sigmoid as the activation function) to design an RCN may
result in better approximation compared to a linear realization
of the same dimension. However, the explicit solution of

Fig. 1. Results of designing RCNs to forecast a time-delay system. (a) Size
of irreducible 0.001-error realization versus length of time delay. (b) Training
and forecasting MSE of the irreducible 0.001-error realization versus length
of time delay.

RCN dynamics with a nonlinear activation function is in
general unavailable. In this case, the linear realization of the
RCN offers a guideline toward designing a nonlinear RCN
realization. A reasonable design approach for the RCN with
a nonlinear activation function is to first design a linear
realization, say (Ã, B̃, C̃)N , for the given input–output data
sequences; then, construct an RCN with nonlinear activation
function using the matrices A and B as in (1) through

A = 1
α

(
Ã − (1 − α)I

)
, B = 1

α
B̃

and train the readout layer again.

V. NUMERICAL EXPERIMENTS

In this section, we present several numerical examples to
illustrate the developed tractable realization-theoretic approach
with training error guarantees, for which the irreducible size of
RCNs with respect to desired training errors can be explicitly
quantified. Based on linear stable realizations, we further
design nonlinear RCNs with the canonical tanh or sigmoid
activation functions that achieve the desired training error
performance.

A. Irreducible Realization of Time-Delay Systems

In this example, we design an RCN using the proposed
approach for forecasting a time-delay system to elucidate the
intimate connection between the irreducible linear realization
and the Takens embedding.

We first introduce how the training data were generated
and how the RCN was trained. For a fixed time delay τ ,
we randomly picked u[0], . . . , u[τ − 1] under a uniform
distribution on [−1, 1]. Then, we completed the sequence
of u by setting u[k + τ] = u[k] for k = 0, . . . , T − 1. In this
way, the dynamical system governing the sequence u[0; T]
is a τ -step time-delay system. After generating the sequence
u[0; T], we used u[0; T − τ] as the input and u[τ, T] as
the reference output to train an RCN with linear activation
function.

In this experiment, we varied τ from 1 to 50. For each τ ,
we randomly generated an N0-dimensional 0.001-error real-
ization with N0 > τ and computed its irreducible realization
using Algorithm 1. Then, using the irreducible realization,

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. (a) Experiment setup for using RCN to predict the time series generated by the Rössler system for 30 steps ahead. (b) Forecasting the same time
series as (a) using the tangent hyperbolic function. (c) MSE between the forecast output and target, versus different time delays, using the same RCN as in
(b) with different leakage rates. (d) MSE between the forecast output and target versus different time delays using the same RCN as in (b) under various
activation functions. (e) Forecasting the same times series as (a), but changing the activation function into a linear function. (f) Forecasting the same time
series as (a) using the reduced RCN computed from (e) through Algorithm 1.

we forecast the sequence τ -step ahead for 2000 time steps.
When training RCNs, we fixed training length as T = 1000
and leakage rate as α = 0.9.

Fig. 1(a) shows the size of irreducible linear realization
Nmin with respect to τ with N0 selected as N0 = 4τ . Each
point in the figure is the average plus/minus the standard
deviation of 10 independent experiments under the same setup.
Fig. 1(a) shows that using Algorithm 1, we can trim a large
RCN (green dashed line) into much smaller size (blue solid
line) with the same performance. This result is consistent with
our analysis in Section IV-C that the minimum size of an
RCN realization can be used as a criterion to quantify the
length of time-delay embedding (red dashed line) associated
with the training dataset. Fig. 1(b) shows the average mean
squared errors (MSEs) of the irreducible linear realization with
respect to τ .

B. Time-Evolution Forecast for Chaotic Systems
In this example, we show the use of an RCN to learn the

temporal evolution of a chaotic system and analyze how the
network configuration affects the performance of the designed
RCN. Specifically, we consider the Rössler system, which is
given by

dx/dt = −y − z, dy/dt = x + ay, dz/dt = b + z(x − c)

where x, y, and z are state variables and a, b, and c are
constant parameters selected as a = 0.5, b = 2.0, and c = 4.0.
Initial conditions were selected as x(0) = 0, y(0) = 0,
and z(0) = 1.

The Rössler system was simulated for t ∈ [0, 1], with
8000 sampling points collected in this time window. The
first 5000 points were used as the training input, and the
sample points between 30 and 5030 were used as the reference
sequence to train the RCN for 30-step ahead forecasting. Then,
we recorded the output of the RCN for another 3000 steps as a
forecasting sequence. Fig. 2(a) shows a demonstration of fore-
casting the x-component of Rössler system for 30-steps ahead.

We first randomly generate two RCNs with all hyper-
parameters to be the same, but one with tanh activation
function and the other one with linear activation function. The
hyperparameters of the RCN were fixed as follows: number of
nodes N = 500, leakage rate α = 0.8, length of training data
tr = 5000, length of forecasting data ts = 3000, and washout
length w = 500. If not specifically mentioned, the matrix A
was generated under a uniform distribution on [0, 1] of sparsity
63.2% and then normalized to have a matrix 2-norm equals
to 0.9. The output layer was trained via ridge regression [41]
with λ = 10−8.

Fig. 2(b) presents the results of forecasting the time series
provided in Fig. 2(a) with an MSE of 1.49 × 10−3. Under the

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIAO et al.: INTERPRETABLE DESIGN OF RESERVOIR COMPUTING NETWORKS USING REALIZATION THEORY 9

TABLE I

RESULTS OF FORECASTING TIME-DELAY SYSTEM USING LINEAR AND NONLINEAR RCNS. IN EACH EXPERIMENT, WE CONSTRUCT A LINEAR RCN
AND TWO NONLINEAR RCNS (WITH tanh AND sigmoid ACTIVATION FUNCTIONS) OF SIZE N USING THE SAME HYPERPARAMETERS AND THE

SAME RANDOMLY GENERATED Ã AND B̃ . THE ERROR OF USING RCNS OF SIZE N TO FORECAST AN N -STEPS TIME-DELAY SYSTEM IS
PROVIDED IN THE TABLE, WHERE 2000 INDEPENDENT EXPERIMENTS ARE CONDUCTED FOR EACH N

TABLE II

RESULTS OF FORECASTING RÖSSLER SYSTEM USING LINEAR AND NONLINEAR RCNs. IN EACH EXPERIMENT, WE CONSTRUCT A LINEAR RCN AND
TWO NONLINEAR RCNs (WITH tanh AND sigmoid ACTIVATION FUNCTIONS) OF SIZE N USING THE SAME HYPERPARAMETERS AND THE SAME

RANDOMLY GENERATED Ã AND B̃ . THE ERROR OF USING RCN OF DIFFERENT SIZES TO FORECAST THE RÖSSLER SYSTEM IN
SECTION V-B FOR TEN STEPS AHEAD IS PROVIDED IN THE TABLE, WHERE 2000 INDEPENDENT

EXPERIMENTS ARE CONDUCTED FOR EACH N

same setup as in Fig. 2(b), we varied the leakage rate α and the
activation function of the RCN and present the corresponding
results of MSE versus time delay (τ) in Fig. 2(c) and (d),
respectively. From Fig. 2(c), we observed that α = 0.05
resulted in the best MSE across different cases (of τ), and from
Fig. 2(d), we observed that the RCN with linear activation
function achieved a similar performance as the RCNs with
a nonlinear activation function when the time delay τ was
small. Therefore, we used the same RCN as in Fig. 2(b)
but changed the leakage rate to α = 0.05 and the activation
function into linear function to forecast the same time series.
The corresponding results are presented in Fig. 2(e) with an
MSE of 2.97 × 10−2.

We further applied Algorithm 1 on the above RCN with
linear activation function, yielding an irreducible linear realiza-
tion of size 31 with an MSE of 2.54×10−2. Fig. 2(f) presents
the result of using the irreducible RCN to forecast the same
time series generated by the Rössler system for 30-steps ahead.
Based on our empirical analysis in Section IV-C, the results
in Fig. 2(f) implies that the underlying dynamics of the given
input–output sequences can be well-approximated by a linear
dynamics with a time delay of no longer than 31 steps, which
is evident by the experiment setups.

C. Analysis of Linear and Nonlinear Activation Functions
In this section, we further investigate the difference in

performance between linear and nonlinear RCNs. The results

in this section support our idea of using the linear realization
of the RCN to help design a nonlinear RCN with a guaranteed
training error, as mentioned in Section IV-C.

Table I presents the results of forecasting time-delay systems
using linear and nonlinear RCNs. We varied the size of the
RCN from 50 to 500. For each N , we generated a time-delay
system with N delay steps (as in Section V-A) and simulated
2000 independent experiments of forecasting (N − 1)-steps
ahead. The training length was fixed as tr = 5000 and the
forecast length was fixed as ts = 2000. To make a fair
comparison, in each experiment, we generated three RCNs
of size N , one with linear activation function, one with
tanh activation function, and another with sigmoid activation
function, using the same randomly generated matrices Ã and
B̃. Other hyperparameters of the three RCNs were set to be the
same as in Section V-A. The average and standard deviation
of training and forecast MSE are reported in Table I. As we
observe from the last column in Table I, the nonlinear RCNs
outperform the linear RCN in terms of the training MSE in
most cases.

Table II reports the results of forecasting the Rössler system
using RCNs with different activation functions. Using the same
dataset as the one in V-B, we compared the performance
of linear and nonlinear RCN at different scales. Similar to
the previous table, we varied the size of the RCN from
50 to 500 and conducted 2000 independent experiments to
forecast the Rössler system for ten-steps ahead. The training

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

length was fixed as tr = 5000 and the forecast length was
fixed as ts = 2000. In each experiment, we generated three
RCNs of size N , one with linear activation function, one with
tanh activation function, and another with sigmoid activation
function, using the same randomly generated matrices Ã and
B̃. Other hyperparameters of the three RCNs were set to be the
same as in Section V-B. The average and standard deviation
of training and forecast MSE are reported in Table II. As we
observe from the last column in Table II, in this experiment,
the training MSE of nonlinear RCNs was always smaller than
that of the linear RCNs.

VI. CONCLUSION

In this article, we provided a detailed analysis and a holistic
description of the training procedure and the operation of the
RCN. With the help of Takens embedding theorem, we derived
the delay embedding map, which an RCN potentially learns
during the training process from the given input–output data.
This provided insights into the role that the linear activation
function and other hyperparameters play in the design and
working of RCNs in applications such as forecasting a time
series. Furthermore, based on the notions of linear realization
theory, we provided a systematic approach to trim RCNs with
guaranteed training accuracy. In this context, we introduced
the idea of α-stable realizations for designing stable RCNs
that achieve the desired training objective with reduced size
and established a tractable design algorithm to synthesize
RCNs with nonlinear activation. The numerical experiments
on forecasting time-delay systems and the Rössler system
were used to substantiate our proposed design approach for
interpretable RCNs. We observed from the experiments that
the nonlinear RCNs with both reduced size and guaranteed
training accuracy can be attained based on the minimum
realization for linear RCNs. These results suggested that the
proposed approach offers an informed and interpretable design
methodology to devise nonlinear RCNs for a given dataset to
decode the underlying dynamics in the data.

REFERENCES

[1] H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent
neural networks-with an erratum note,” German Nat. Res. Center Inf.
Technol., Bonn, Germany, Tech. Rep. 148, 2001, no. 34, p. 13.

[2] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing
trends,” KI-Künstliche Intell., vol. 26, no. 4, pp. 365–371, Nov. 2012.

[3] G. Tanaka et al., “Recent advances in physical reservoir computing:
A review,” Neural Netw., vol. 115, pp. 100–123, Jul. 2019.

[4] X. Lin, Z. Yang, and Y. Song, “Short-term stock price prediction
based on echo state networks,” Expert Syst. Appl., vol. 36, no. 3,
pp. 7313–7317, Apr. 2009.

[5] L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega, “Stochastic
nonlinear time series forecasting using time-delay reservoir comput-
ers: Performance and universality,” Neural Netw., vol. 55, pp. 59–71,
Jul. 2014.

[6] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication,” Science, vol. 304,
no. 5667, pp. 78–80, Apr. 2004.

[7] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based on
perturbations,” Neural Comput., vol. 14, no. 11, pp. 2531–2560, 2002.

[8] E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Event detection and
localization for small mobile robots using reservoir computing,” Neural
Netw., vol. 21, no. 6, pp. 862–871, Aug. 2008.

[9] M. Lukoševičius, A Practical Guide to Applying Echo State Networks.
Berlin, Germany: Springer, 2012, pp. 659–686.

[10] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” 2017, arXiv:1702.08608.

[11] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16,
no. 3, pp. 31–57, 2018.

[12] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization
and applications of echo state networks with leaky-integrator neurons,”
Neural Netw., vol. 20, no. 3, pp. 335–352, Apr. 2007.

[13] L. Grigoryeva and J.-P. Ortega, “Universal discrete-time reservoir com-
puters with stochastic inputs and linear readouts using non-homogeneous
state-affine systems,” J. Mach. Learn. Res., vol. 19, no. 1, pp. 892–931,
Jan. 2018.

[14] M. Buehner and P. Young, “A tighter bound for the echo state property,”
IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 820–824, May 2006.

[15] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state
property,” Neural Netw., vol. 35, pp. 1–9, Nov. 2012.

[16] H. Jaeger, “Short term memory in echo state networks,” German Nat.
Res., Inst. Comput. Sci., GMD-Rep. 152.

[17] L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega, “Nonlinear
memory capacity of parallel time-delay reservoir computers in the
processing of multidimensional signals,” Neural Comput., vol. 28, no. 7,
pp. 1411–1451, Jul. 2016.

[18] S. Marzen, “Difference between memory and prediction in linear
recurrent networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 96, no. 3, Sep. 2017, Art. no. 032308.

[19] J. Boedecker, O. Obst, J. T. Lizier, N. M. Mayer, and M. Asada,
“Information processing in echo state networks at the edge of chaos,”
Theory Biosci., vol. 131, no. 3, pp. 205–213, 2012.

[20] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE
Trans. Neural Netw., vol. 22, no. 1, pp. 131–144, Jan. 2011.

[21] C. Gallicchio and A. Micheli, “Architectural and Markovian factors of
echo state networks,” Neural Netw., vol. 24, no. 5, pp. 440–456, 2011.

[22] Y. Kawai, J. Park, and M. Asada, “A small-world topology enhances
the echo state property and signal propagation in reservoir computing,”
Neural Netw., vol. 112, pp. 15–23, Apr. 2019.

[23] B. Zhang, D. J. Miller, and Y. Wang, “Nonlinear system modeling with
random matrices: Echo state networks revisited,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, no. 1, pp. 175–182, Jan. 2012.

[24] L. Grigoryeva and J.-P. Ortega, “Dimension reduction in recurrent
networks by canonicalization,” 2020, arXiv:2007.12141.

[25] E. Bollt, “On explaining the surprising success of reservoir computing
forecaster of chaos? The universal machine learning dynamical system
with contrast to VAR and DMD,” Chaos, Interdiscipl. J. Nonlinear Sci.,
vol. 31, no. 1, Jan. 2021, Art. no. 013108.

[26] P. Verzelli, C. Alippi, L. Livi, and P. Tino, “Input representation in
recurrent neural networks dynamics,” 2021, arXiv:2003.10585.

[27] L. Gonon, L. Grigoryeva, and J.-P. Ortega, “Memory and fore-
casting capacities of nonlinear recurrent networks,” Phys. D, Non-
linear Phenomena, vol. 414, Dec. 2020, Art. no. 132721, doi:
10.1016/j.physd.2020.132721.

[28] J. Huke, “Embedding nonlinear dynamical systems: A guide to takens’
theorem,” Manchester Inst. Math. Sci., Univ. Manchester, Manchester,
U.K., Tech. Rep. 84, 1993.

[29] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick 1980. Berlin, Germany: Springer,
1981, pp. 366–381.

[30] L. Grigoryeva and J.-P. Ortega, “Differentiable reservoir computing,”
J. Mach. Learn. Res., vol. 20, no. 179, pp. 1–62, 2019.

[31] P. Antonik, M. Gulina, J. Pauwels, and S. Massar, “Using a reservoir
computer to learn chaotic attractors, with applications to chaos synchro-
nization and cryptography,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 98, no. 1, Jul. 2018, Art. no. 012215.

[32] T. L. Carroll, “Using reservoir computers to distinguish chaotic signals,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 98,
no. 5, Nov. 2018, Art. no. 052209.

[33] D. Verstraeten, J. Dambre, X. Dutoit, and B. Schrauwen, “Memory
versus non-linearity in reservoirs,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2010, pp. 1–8.

[34] P. Verzelli, C. Alippi, and L. Livi, “Echo state networks with self-
normalizing activations on the hyper-sphere,” Sci. Rep., vol. 9, no. 1,
pp. 1–14, Dec. 2019.

[35] M. Inubushi and K. Yoshimura, “Reservoir computing beyond memory-
nonlinearity trade-off,” Sci. Rep., vol. 7, no. 1, p. 10199, Dec. 2017.

[36] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt,
“An experimental unification of reservoir computing methods,” Neural
Netw., vol. 20, no. 3, pp. 391–403, Apr. 2007.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1016/j.physd.2020.132721

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIAO et al.: INTERPRETABLE DESIGN OF RESERVOIR COMPUTING NETWORKS USING REALIZATION THEORY 11

[37] B. D. Schutter, “Minimal state-space realization in linear system theory:
An overview,” J. Comput. Appl. Math., vol. 121, nos. 1–2, pp. 331–354,
Sep. 2000.

[38] L. Silverman, “Realization of linear dynamical systems,” IEEE Trans.
Autom. Control, vol. AC-16, no. 6, pp. 554–567, Dec. 1971.

[39] S. Aras and D. Kocakoç, “A new model selection strategy in time series
forecasting with artificial neural networks: IHTS,” Neurocomputing,
vol. 174, pp. 974–987, Jan. 2016.

[40] R. W. Brockett, Finite Dimensional Linear Systems. Philadelphia, PA,
USA: SIAM, 2015.

[41] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

Wei Miao (Member, IEEE) received the B.Eng.
degree from the Department of Automation,
Tsinghua University, Beijing, China, in 2016, and
the Ph.D. degree in systems science and mathematics
from Washington University in St. Louis, St. Louis,
MO, USA, in 2021.

He was a member of the McDonnell International
Scholars Academy, Washington University in St.
Louis. His research lies in fundamental develop-
ments in systems and control theory and their data-
driven applications.

Vignesh Narayanan (Member, IEEE) received
the B.Tech. degree from SASTRA University,
Thanjavur, India, in 2012, the M.Tech. degree from
the National Institute of Technology, Kurukshetra,
India, in 2014, and the Ph.D. degree from the Mis-
souri University of Science and Technology, Rolla,
MO, USA, in 2017.

He was a Post-Doctoral Research Associate at
Washington University in St. Louis, St. Louis, MO,
USA. He is currently an Assistant Professor at the AI
Institute and the Department of Computer Science

and Engineering, University of South Carolina, Columbia, SC, USA. He is
also with the UofSC Autism and Neurodevelopmental Disorders Center of
Excellence. His research interests include dynamical systems and networks,
data science, learning, and computational neuroscience.

Jr-Shin Li (Senior Member, IEEE) received the B.S.
and M.S. degrees from National Taiwan University,
Taipei, Taiwan, in 1996 and 1998, respectively, and
the Ph.D. degree in applied mathematics from Har-
vard University, Cambridge, MA, USA, in 2006.

He is currently Sarah Louisa Glasgow and Newton
Wilson Professor in Electrical and Systems Engi-
neering with a joint appointment at the Division
of Biology and Biomedical Sciences, Washington
University in St. Louis, St. Louis, MO, USA. His
research interests are in the areas of control theory,

computational mathematics, optimization, learning, data science, and complex
networks. His current work involves developing model-based and data-driven
methods for dynamical systems and control of large-scale and ensemble
systems with applications from neuroscience and biology to quantum physics.

Dr. Li was a recipient of the NSF CAREER Award in 2008 and the AFOSR
Young Investigator Award in 2010.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2022 at 03:25:48 UTC from IEEE Xplore. Restrictions apply.

