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Abstract—In this paper, we consider the problem of differen-
tially private federated learning with statistical data heterogeneity.
More specifically, users collaborate with the parameter server
(PS) to jointly train a machine learning model using their local
datasets that are non-i.i.d. across users. The PS is assumed to
be honest-but-curious so that the data at users need to be kept
private from the PS. More specifically, interactions between the
PS and users must satisfy differential privacy (DP) for each user.
In this work, we propose a differentially private mechanism that
simultaneously deals with user-drift caused by non-i.i.d. data
and the randomized user participation in the training process.
Specifically, we study SCAFFOLD, a popular federated learning
algorithm, that has shown better performance on dealing with
non-i.i.d. data than previous federated averaging algorithms. We
study the convergence rate of SCAFFOLD under differential
privacy constraint. Our convergence results take into account
time-varying perturbation noises used by the users, and data
and user sampling. We propose two time-varying noise allocation
schemes in order to achieve better convergence rate and satisfy a
total DP privacy budget. We also conduct experiments to confirm
our theoretical findings on real world dataset.

Index Terms—Federated learning, Rényi Differential Privacy,
Sampling, Stochastic Gradient Descent.

I. INTRODUCTION

Federated learning (FL) [1] is a framework that enables
multiple users to jointly train a machine learning model with
the help of a parameter server (PS). In the training of FL, the
PS interacts with multiple users to train a ML model in an
iterative manner. Several variations of FL have been proposed,
depending on the information exchanged between the PS and
users. Specifically, there are two broad approaches to FL:
(a) federated stochastic gradient descent (FedSGD), and (b)
federated averaging (FedAvg) [1]. In FedSGD, users transmit
the gradients computed using global model and local datasets
back to the PS for gradient aggregation and global model
updates. In FedAvg, users perform model updates locally and
send the updated model back to the PS for model aggregation.

There are several motivating factors behind the surging
popularity of FL: (a) centralized approaches can be inefficient
in terms of storage/computation, and FL provides natural
parallelization for training, and can leverage increasing com-
putational power of devices and (b) local data at each user
is never shared, but only gradient computations from each
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user are collected. Despite the fact that in FL, local data
is never shared by a user, as shown in recent works [2]-
[4], even exchanging gradients or models in a raw form can
leak information. In addition, exchanging gradients or models
incurs significant communication overhead in terms of the
cost and latency, and it is often the bottleneck of the training
process. Therefore, it is crucial to design training protocols
that are both communication efficient and private. There are
key challenges in federated optimization: (1) straggler problem
where some users are slow in terms of their computation and
communication capabilities, (2) statistical data heterogeneity
across users. It has been shown that FedAvg performance
degrades severely under non-iid data distribution. Specifically,
the data heterogeneity introduces a drift in the local model
updates from the global model. In order to tackle the problem
of user drift, solutions such as FedProx [5] and SCAFFOLD [6]
were proposed. In FedProx, the local loss function is modified
by adding a penality term that penalizes the drift of the local
model from the global one. However, one main drawback of
this framework is that it fails to converge to a global optimum
solution in contrast to the recent FL algorithm, SCAFFOLD
[6]. In SCAFFOLD , the goal of the algorithm is to estimate the
update direction for the server model, and estimate the update
direction of each user. Furthermore, the difference between the
two estimates is used to correct the local updates at the users.

There is a large body of recent work focusing on the design
of differentially private FL (see a compherensive survery [7]
and references therein). Differential privacy (DP) [8] has been
adopted as a de facto standard notion for private data analysis
and aggregation. Within the context of FL, the notion of local
differential privacy (LDP) is more suitable in which a user can
locally perturb and disclose the data (gradients/local models)
to an untrusted data curator/aggregator. In the literature, there
have been several research efforts to design FL algorithms
satisfying LDP [9], [10], which require significant amount of
perturbation noise to ensure privacy guarantees. However, the
amount of noise can be reduced when employing user sampling
[11], where users are sampled by the PS to participate in
the training in each iteration. More specifically, users have
the choice to decide whether or not to participate in the
training process, and when to participate during the training
process. It is worth noting there is a lack of understanding
of the utility-priacy tradeff in FL under the non-iid setting.
Recently, the authors of [12] have proposed DP FedProx under
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Fig. 1.
PS to jointly train an ML model. In order to ensure some level of privacy,
each user £ adds a random noise ngi to perturb the local model update w,(:g
at each local iteration. ’

Ilustration of the private FL framework: Users collaborate with the

statistical data heterogeneity (i.e., non-iid) assumption, and
analyzed the convergence rate of the FL algorithm under DP
constraints. However, as we mentioned earlier the drawback of
this framework is not achieving global optimality even without
privacy constraints.

Main Contributions: The contribution of this paper is
summarized as follows. We study the problem of differen-
tially private federated learning with non-iid assumption. More
specifically, we propose differentially private mechanisms for
SCAFFOLD !, a popular FL algorithm that performs rea-
sonably well compared to FedAvg and its recent variation
FedProx under data heterogenity scenarios. In our mechanism,
we perform dynamic privacy budget allocation, where we
reduce the amount of perturbation noise across communication
rounds. We also take into account the impact of randomized
users participation and data sampling on the central privacy and
the convergence rate of the federated learning algorithm. We
also present experimental results to show the advantage of our
proposed mechanisms compared to conventional mechanisms
which use fixed amount of noise.

II. SYSTEM MODEL & PROBLEM STATEMENT

In a federated learning system, there are K users who jointly
train a machine learning model w € R? by minimizing the
global loss function F(w), i.e., w* = argminy F(w) £
K . B Zk 1 Dy fr,(w), where, instead of direct minimiza-
fion of F(w), each user k minimizes its local loss func-
tion fr(w) = (1/Dk)ZZ.D & (W u(k),vfk)) using its local
dataset Dy, = {(ugk) (k))}Z ", |Dk| = Dy, and u( ) is the
i-th data point and vik is the corresponding label. Typically,
Dy,’s are drawn from unknown probability distributions, hence,
the data across users can potentially be non-i.i.d.

In practice, the minimization of F'(w) is done by using iter-
ative gradient-based algorithms such as distributed stochastic
gradient descent (SGD) algorithm. More specifically, in this
work, we focus on FedAvg with drift control, i.e., SCAF-
FOLD [6]. We describe the training algorithm next (also see
Algorithm 1). The algorithm consists of R (communication)
rounds, where each round is comprised of a total of 7 local
iterations. At the beginning of the training, the PS initializes the
global model w(® randomly, and initializes the global control

i

IConcurrently, the authors in [13] studied the problem of DP SCAFFOLD
where the amount of noise is the same for every user and fixed across the
training. In our work, our convergence results are general that take into account
the amount of noise per user at each local iteration.

variate ¢(*) randomly or sets it to 0. Each user k initializes its
local control variate to c,(co) similarly. In the r-th round, the PS
samples a subset of users S C [1: K], |S")| = S, where
we use p = S/K to denote the fraction of sampled users.
The PS then broadcasts the global parameter vector w("—1)
to participating users, who then set the initial model for that
round by W](::O = w1 &k € 8. Each user k € S
computes its local gradient using stochastic mini batch SGD for
T iterations, where the mini batch used is denoted by By, C Dy,
with size By, (i.e., |Bi| = By). For simplicity, we assume that
all D, = D and B, = B. Thus, the mini batch stochastic
gradient estimate of user k at local iteration ¢ within r-th round
is as follows,

ge W) = 5 3 Vhiwe s M), )

1€By

where the true gradient of user k € S8 is defined as,

r D r k k
Viw{) ) = (/D) S0, Viwi) s (o)) At
each local iteration ¢, the model is updated using the following
update rule,

(Tz _ Wz(;zq _ W(gk(w(rz D+ n(r) _ CE{T*U + C(T_l)),

Wk, :
where 7, denotes the local learning rate, and n( ) denotes
the perturbation added for ensuring privacy with Zero mean
and variance ]E[||n§f2|\2] = (a,(crz) The perturbed stochastic
mini-batch gradient of user k£ at r-th round and t-th local
iteration is denoted as gk(w,(f’zfl) gk(w,(fz 1)+n( ") Once
the participating user performs 7 mini-batch SGD, user k
updates its local control variate as follows,

(r) (r—1) () (r)

c,’=c Wi~ W o 2)

k k TW( E,0 E, )

_ C(Tfl) +

and sends AW,(C7 w’(fi - WI(CTO, and Ac(7 =c! (r) _ cgg'—l)

back to the PS. The PS aggregates the dlfferentlal model
and local control variate updates by computing Aw(") =
S(L”I Y kes Aw,(:) and Ac(”) = ﬁ D okes® Acg). Fi
nally, the PS updates the global model and global control vari-
ate w) = w0 4, Aw™ and ) = ¢ 4 IFTIACK),
where 7, is the global learning rate. The training process
continues until convergence or until a preset stopping criteria
is met (such as when the privacy budget is exhausted). In
this work, we assume that the local loss functions fj’s are
L-smooth (hence, the gradients are locally L-Lipschitz). We
also assume that the variance of the stochastic gradient of
one data point is bounded by o2, and that the variance
of mini- batch stochastic gradient is bounded by o02/B, i.e.,

Efllg (w(")) — Vfi(wi')_ I < 0?/B.

In this work, we assume that the PS is honest but curious,
where the PS follows the algorithm faithfully, but is interested
in learning about users’ data. We also assume that the final
model wf) will be released to untrustworthy third party
after the training is completed. Informally, an algorithm is
considered to be differentially private when the outputs of
the algorithm on two slightly different inputs (in terms of a
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pre-defined distance) are indistinguishable. Formally, the LDP
guarantee can be described as follows.

Definition 1. ((¢,5)-LDP [8]) Let Dy, be the local dataset of
user k. For user k, a randomized mechanism M, : D), —
R? is (€,6)-LDP if for any two neighboring datasets Dy, D),
that differ by at most one element, any any measurable subset
Oy C Range(Ky), we have

Pr(Mg(Dg) € O) < ef Pr(./\/lk('D;C) €O)+0. ()

However, the standard LDP defined above is known to have
a loose composition bound [8] when the data is accessed more
than once within the algorithm. Hence, a relaxed alternative
definition, Rényi differential privacy (RDP), that provides
tighter composition bound (on standard LDP) was proposed.

Definition 2. (Rényi Divergence) For two probability distribu-
tions P and @, the Rényi of divergence of o > 1 is

Da(PIIQ) £ 1~ logBeng [(SE§H |

Definition 3. ((«, €)-Rényi DP [14]) For user k, a random
mechanism My, : Dy, — R? is (a,€)-RDP if for any

neighboring datasets Dy, D}, any any measurable subset C
Range(Ky,), we have

Do (Pr(M(Dy) € Ok)|| Pr(Mp(Dy,) € Oy)) <e.

Since FL optimization is an iterative algorithm, the priy
guarantees degrades gracefully with the number of iterati
It is worth noting that the Rényi DP based composition ¢
T iterations gives a tighter bound for (¢’, ) DP guarantee.
next present the privacy guarantees of 7' sequential mex
nisms, each acting on the same dataset.

Definition 4. (Composition of RDP) For a given «,
composition of T mechanisms M;s, each satisfying (c,
RDP gives (a, Y., €)-RDP.

Definition 5. (Conversion from RDP to DP [14]) If a pri
mechanism M satisfies («, Z?:l €;)-RDP, it also satisfies

T o, 4
(Zi:1 € + : (ga(l—/n)) ) 5) -DF.

Definition 6. (Gaussian mechanism [14]) Suppose a 1
releases a function f(Dy) of a local dataset Dy subjec
(cv, €)-RDP. The Gaussian mechanism is defined as:

M. (Dx) £ f(Dx) +N(0,0°1).

If the sensitivity of the function is bounded by Af, ie.,
If(Dk) — fF(D)I < Af, VD, Dy, then for a given o,
the Gaussian mechanism satisfies («,€)-RDP, where ¢ =

a(Af)? /202

IIT. MAIN RESULTS & DISCUSSIONS

In this section, we present our results on DP SCAFFOLD.
We first present our proposed scheme and show how we
allocate perturbation noise across communication rounds. We
next analyze the privacy leakage of the proposed algorithm,
followed by convergence rates.

Algorithm 1 Differentially Private SCAFFOLD

1: Initialize w(®, and ¢(® = 0 at the PS;

2: Initialize c,(go) = 0 at all user k;

3: for round r =1,..., R do

4: sample users S C [K]
PS sends w("~1) and c¢("=1) to user k € S(");
for each user k € S(") in parallel do

5
6
7: initialize w,(f()) = w1
8
9

for local iteration t = 1,...,7 do
Compute gy, (WJ(CTZ_Q according to;

o " _ W (r)

Wit Wet—1 — W(gk(wl(:z—l) +t -
C’(:—l) +C(r71))
11: ent% for ) : :
12: cgf = c,(:_ ) _lr=1) + %(W,(:O — w,(fﬁ)
5 Send (Aw™,Acl) — (wl) — wi) o) -
r—1
e ")
14: end for
o Scheme 1 v Scheme 2

. 9
. 9

Constant noise Decaying noise Constant noise Decaying noise

a0

: : : : D . . .. o
I B Batl - R-1 R 1o BaRa+l - R—1 R
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(a) round (b)

Fig. 2. Illustration of noise decaying Gaussian mechanisms where the amount
of noise decays across communications rounds: (a) Scheme 1, time varying
noise across communication rounds but fixed noise across local iterations, and
(b) Scheme 2, time varying noise across local iterations.

Dynamic privacy budget allocation: Given a central privacy
target, our goal is to perform privacy budget allocation to
optimize the the model accuracy. Furthermore, we use the
composition property of Rényi DP to adaptively allocate
the amount of noise across communication rounds. We next
present the privacy analysis of the proposed scheme followed
by convergence rate analysis for convex functions.

At each round r, S sampled users participate each with
probability p in the training of the global model. Each user
k performs mini-batch SGD for 7 local iterations, where for
each local iteration ¢, B points of the local dataset are sampled
independently with probability q.

Scheme 1: In this scheme, users perturb their local gradients
with the same amount of noise across the local iterations and
across communication rounds till round Ry,. At the beginning
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of round Ry,+1, users reduces their amount of noise as follows:

(0,(7 ) _ 90, 1 <r < Ry, (6)
kot 67'_R‘h0’87 Rth <r S R7

where 8 € (0, 1]. Note that in this scheme, the same amount
of perturbation noise is added across local iterations.

Scheme 2: In this scheme, users perturb their local gradients
with the same amount of noise across the local iterations and
across communication rounds till round Ry,. At the beginning
of round Ry,+1, users reduces their amount of noise as follows:

(00))? = 7, L<r< R,
Tt Brir=Ra=DHi-152 1 <t <7, Ry <1 <R,

(N

where $ € (0,1]. The main difference here is that the amount
of perturbation noise is reduced across local iterations unlike
Scheme 1. We next present the total central privacy leakage of
DP SCAFFOLD. The intuition behind reducing noise is that
as the training process continues, we expect the gradients to
”shrink”™ (i.e., converge to zero) and thus it may be sufficient
to add lower amount of noise in the later part of the training.

A. Privacy Analysis

We use the composition property of RDP (Definition 4) to
analyze our proposed FL algorithms. At each communication
round r, each user k£ performs mini-batch SGD for 7 local
iterations. At each local iteration, the mini-batches are ran-
domly sampled (without replacement) from the local datasets,
which which in turn amplifies the privacy level [15]. It is worth
noting that the privacy amplification results by sub-sampling
were developed for the centralized setting. In order to use
these results, the data points must be sampled independently
at random with probability pq for the distributed setting. After
computing the local gradient gk-(W;(:,Z,l), each user injects a

random Gaussian noise n,(fz for privacy. For the scope of this
paper, we assume that the users perturbs their local gradients
with amount of noise at each local iteration ¢, i.e., 0,(:2 = at(r).
We summarize our proposed scheme in Algorithm 1. We next

analyze the privacy leakage of each scheme as follows.

Theorem 1. Scheme 1 satisfies («,€.)-RDP after R commu-

nication rounds, where
) 24p?>al?T
© = T BT

1 (/) futt 1}
1= (1/5) |

where B € [(5/02) " Fn T 1], 00 > /5, pg < 0.1, L is the
Lipschitz constant, and o < 3R~ Fug21og(1/pq).

X |:R[h +

Theorem 2. Scheme 2 satisfies («,¢€.)-RDP after R commu-
nication rounds, where

24p2q2al? 11— (1/8)7RRw
T O P W BV kit
B0 T 1-(1/8)

where B € [(5/02)Y/(T(B=E)=1) 1] 50 > /5 and pq < 0.1,
and o < FTEEN=15210g(1 /pq).

The proofs of these theorems are presented in Appendix A of
the full version of this paper [16]. From the above expressions
we can observe that the central privacy leakage recovers the
case when each user perturbs with the same amount of noise
across time, i.e., 03. For a given 03, we can observe that
Scheme 1 leaks less compared to Scheme 2, the reason is that
we in Scheme 2 we further keep reducing the amount of noise
across local iterations which results in privacy degradation
unlike Scheme 1 where the amount of noise is fixed across
local iterations.

B. Convergence Analysis

We next present the general convergence result for the case
when the local loss function f;’s are convex and L-smooth.
We then tailor the bound to specific noise allocation schemes,
and show the impact of noise decaying threshold R;j, starting
noise variance (0(0))2 and the noise decaying f

r0)s ying factor 3.

Theorem 3. Suppose the local loss functions, fy’s, are convex
and L-smooth, then for any S = pK, B = qD where p,q €
(0, 1], a number of communication round R and local iteration
7, and any effective learning rate 1 = 141, where ng > 1
and ny < ﬁ, we have,

167 « 2
Bl (W)~ f(w) < 2ot >3 (o)
I1:Impact of DP
bt T2 (1) T
2577257 R & oo T—-1) 4 kit —i
1:Impact of DP
+ %RIIW(O) |2 + % + :;Z <1 + %) %, (8)
2:Standard Convergence
where Co = (1/K)Y, El|E[C”] — Vfu(w*)|?] and
E[f(w®)] = (1/R) 3, E[f(w"= )]

The proof of Theorem 3 can be found in Appendix B of
[16]. Our proof is adapted from [6], where the key idea of the
proof in [6] is to keep track of various sources of error. In the
original SCAFFOLD, there are two main sources of error: a)
user-drift and b) control-lag. User-drift occurs due to non-i.i.d.
data used in the training across users, and the fact that local
loss functions are not the same function. Whereas, the control-
lag comes from the fact that not every user updates their local
control variate at every round by design. The main distinction
from our proof to the one in [6] is that the noise used for
privacy needs to be taken into account. Since the gradients are
perturbed, the control variates are also perturbed. Hence, the
noise not only shows up when we bound the user-drift, but
also appears when we bound the variance of the global and
local control variates.

The bound in (8) is consists of two parts. The first part comes
from the standard analysis of convergence rate. The second
part shows the impact of making the algorithm differentially
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private. At first glance, the right-hand side does not appear to
approach zero as R goes to infinity. However, one can carefully
choose effective learning rate 7) to ensure convergence. One can
readily check that if all noise variance (5,(:2)2 =0, Vk,t,r,
only the standard convergence part remains, and the bound of
original SCAFFOLD can be recovered with a small difference
in the constant coefficient by choosing appropriate learning
rates. By using Lagrange Multiplier method, we can obtain
the optimal effective learning rate, i.e.,

L w9 — w16 & ()2
i \/EW <TSRZZ<U’(“2)

r=1 k,t
t—1 7
1 1 ~(m \?
1 .
—1
11KCy 15 ™\ L\ %
— 1+ = 9
+—3g +TSB<+§>U) ©)

_ . 2|lw® —w*| / 16 Ll _()\2
B[/ (W] = f(w) < === (Tsz-z 2 b (%4)
1 R t—1 1 i - 9
T 2SR ;Z;) (1 + _1) ij (50-)

(10)

SR

11KCy 15
7SB

1
3
1+ 7_2> 02>
My

Now we tailor the result to specific noise allocation schemes.

Corollary 1. Under the same assumptions as in Theorem 3, for
the case when constant noise is a2dded across all rounds, local
iterations and users, i.e., (&,(3) = 03, the convergence rate

can be further upper bounded and simplified to the following,

w BN — Flw 2||vv(0>—w*(11Kc0
E[f(w")] - f(w") < NP o

1

15 T K 3 B
1+ —=)o?4+= (164 — )02 11
+TSB< +n§>a * S( +25’I72T>00) an

g

Corollary 2. Under the same assumptions as in Theorem 3,
by applying Scheme 1, where perturbation noise is allocated
according to (6), the convergence rate can be expressed as,

E[f(w!P)] - f(w*)

2| w® — w|| (111{00 15 < T > 5
< + 1+ =)o (12)
VR SR 7SB 2
K 1— BR—Rm-‘rl 3 ) 3
i [ 1 R
"SR (Rrﬁ 1-8 ) ( 6+2577§T) UO)

T
——Scheme 0
sl ~ = Scheme 1
107 Scheme 27

E[f(w)]

Bl

102,

0 100 200 300 400 500 600 700
r: Communication round

Fig. 3. Comparisons of convergence bounds for different schemes, where
02 = 8, Ry = 200, R = 700, |[w(® — w*|| =1, Co = 1, D = 2500,
B =500,1 =2, 7=200,8=8 K =40, L =2, (1) =0.998 and
B2 = 0.99998.

Corollary 3. Under the same assumptions as in Theorem 3,
by applying Scheme 2, where perturbation noise is allocated
according to (7), the convergence rate can be expressed as,

E[f(w!)] - f(w*)

2| w® —w*|| (11KCy 15 7\
< + 1+ o
VR SR 7SB 7)3

K 3 1—prB=Ra)\ 3
+ SR (16+ 25772> ( 1-5 o (13)

Clearly, all three bounds behave as O(1/+/R) asymptotically
and converge as R — oco. However, the effects of data
sampling, user sampling, perturbation noise and Ry, start to
show when R is finite. By selecting, Ry = R, both (12) and
(13) revert back to (11). Next, we can see that user sampling
(p = S/K) affects all the terms within (11), (12) and (13). To
achieve faster convergence, p should be as large as possible.
Intuitively, larger p means more information about local data
is provided for training, which naturally leads to larger privacy
leakage. Similarly, data sampling provides the same effect but
to only the term with the bound on the variance of gradient
o?. For fixed parameters, by directly comparing the rates in
(12) and (13), we can see that (13) has faster convergence. It
is also clear that both (12) and (13) converge the fastest when
selecting Ry, = 1 (and fixing all other parameters).

In Fig. 3, we numerically compare the proposed schemes in
terms of their convergence rate along with the baseline scheme
(Scheme 0 in Fig. 3) where the amount of perturbation of noise
is the same across users and time. All the schemes satisfy total
privacy budget (11.5147,107°)-DP. From the figure, we can
see the advantage of the noise decaying schemes in terms of
convergence. However, scheme 1 and 2 exhausted the privacy
budget at around R = 500 and 400, respectively. While
scheme 0 can potentially continue training before running out
of privacy budget, it may take significantly longer time for the
model to converge.
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Fig. 4. Comparison between the proposed noise allocation schemes, where all schemes satisfy (7.6769, 10~5)-DP. Scheme 2 is shown to have the best accuracy
with the least amount of communication round needed among all private schemes.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
DP SCAFFOLD schemes through experiments. We consider
image classification task on EMNIST-balanced dataset us-
ing logistic regression with negative log-likelihood loss. The
EMNIST-balanced dataset consists of 131,600 handwritten
digits and letters that can be classified into 47 classes. For
a dataset with (%-similarity, (% of the local dataset at each
user is filled with data drawn in i.i.d. fashion, and the rest of
the local dataset is filled using the sort-and-partition method
in [17]. This simulates a non-i.i.d. data distribution across
the users. We assume there are X' = 40 users, and set user
sampling probability as p = 0.2. A total of 2500 data points
are allocated to each users, and each mini-batch is of size 500,
hence, ¢ = 0.2. The rest of the data is used as testing data.
The training continues until the privacy budget is exhausted
by each scheme, therefore, the number of total rounds R
depends on the noise allocation scheme and the parameters
used. There are a total of 7 = 50 local iterations within each
round. We assume all three noise allocation schemes start with
o2 = 8, and B = 0.998 and 0.99992 for scheme 1 and 2,
respectively. Scheme 1 and 2 start decaying at Ry = 200.
The corresponding privacy leakage after R = 600 rounds
are (7.6769,107°)-DP for scheme 0. We then use this as the
privacy budget for scheme 1 and 2. As a result, scheme 1
and 2 exhausted the privacy budget at Round 497 and 428,
respectively. From Fig. 4, both scheme 1 and 2 at their stopping
round already outperform scheme 0 at Round 600 for all three
data similarity levels considered. Therefore, with the same
privacy budget, it is beneficial to reduce noise added, which
saves upto 28% of computation and communication.

V. CONCLUSION

In this paper, we proposed DP mechanism for SCAFFOLD
under statistical data heterogeneity scenario. Specifically, we
introduced the idea of using time-varying noise to SCAFFOLD
based on the fact that gradients become smaller as training
progresses. We derived convergence and privacy leakage re-
sults, and showed that the dynamic noise allocation schemes
achieve faster convergence. Through experiments, we showed
that, under the same privacy budget, the proposed schemes
require less computation and communication to achieve higher

testing accuracy. An interesting direction is to see what benefits
we can gain in the medium and low privacy regimes.
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