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Abstract—The topological interference management (TIM)
problem refers to the study of the K-user partially connected
interference networks with no channel state information at the
transmitters (CSIT), except for the knowledge of network topol-
ogy. In this paper, we study the TIM problem with confidential
messages (TIM-CM), where message confidentiality must be
satisfied in addition to reliability constraints. In particular, each
transmitted message must be decodable at its intended receiver
and remain confidential at the remaining (K — 1) receivers. Our
main contribution is to present a comprehensive set of results
for the TIM-CM problem by studying the symmetric secure
degrees of freedom (SDoF). To this end, we first characterize
necessary and sufficient conditions for feasibility of positive
symmetric SDoF for any arbitrary topology. We next present
two achievable schemes for the TIM-CM problem: For the first
scheme, we use the concept of secure partition and, for the second
one, we use the concept of secure independent sets. We also present
outer bounds on symmetric SDoF for any arbitrary network
topology. Using these bounds, we characterize the optimal sym-
metric SDoF of all K = 2-user and K = 3-user network
topologies.

Index Terms— Topological interference management, confi-
dential messages, channel state information uncertainty at
transmitters, network topology, multi-user interference net-
works, partially connected networks, secure degrees of
freedom.

I. INTRODUCTION

HYSICAL layer security (PHY-SEC) exploits the inherent

randomness of the wireless channel such as fading or
noise in order to establish secure communication between the
legitimate network users. It was introduced by Wyner in his
seminal work on the degraded wiretap channel [55]. Wyner’s
model was extended to the nondegraded wiretap channel
in [9], and then to the Gaussian wiretap channel in [20].
Numerous extensions to other multi-terminal problems ensued,
including secrecy constrained broadcast channels (BC), mul-
tiple access channels (MAC), multiple-input multiple-output
(MIMO) channels, and multi-user interference channels (IC),
e.g., references [4], [10]-[12], [18], [21]-[24], [35], [37], [38],
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[41], [48], [56], [57]. For an overview of PHY-SEC research
progress and potential applications in next generation wireless
systems, we refer the reader to comprehensive surveys [34],
[44], [54], [58].

A large body of works in PHY-SEC have been achieved
under the assumption that channel state information at the
transmitters (CSIT) is available —be it instantaneous [18],
[24], [41], delayed [19], [31], [46], [52], or alternating [35],
[51]. Moreover, a major portion of prior works on multi-user
interference networks (with or without secrecy constraints)
have assumed that the network is fully connected, i.e., that
each transmitter in a given network is connected to every
receiver in the same network and vice versa, e.g., [10], [31],
[56]. For instance, in [56] the authors studied the K -user fully
connected interference channel with confidential messages
(IC-CM) and showed that when CSIT is perfectly available,
then the sum secure degrees of freedom (sum SDoF) scales
linearly with K. Additionally, it is known that, for the fully
connected interference networks, SDoF is zero when CSIT is
not available. This is due to the fact that, under such settings,
all receivers are statistically equivalent from each transmitter’s
perspective which puts decodability and secrecy constraints in
direct conflict.

As indicated in [34], [44], [54], [58], a considerable portion
of works on PHY-SEC have also studied secrecy constrained
wireless channels in the absence of CSIT. For instance, in [57]
the authors characterized sum SDoF for the MIMO wiretap
channel with no CSI anywhere for T' > 2 min(n¢, n,), where
parameters n;, n,, and T' respectively represent the number
of antennas at the transmitter, number of antennas at the
receiver, and coherence time. In [10] the authors showed
that positive sum SDoF is achievable for the K-user fully
connected IC-CM with no CSIT by leveraging the intersymbol
interference (ISI) heterogeneity which is inherently present
within the subclass of channels with memory. Therein, it was
shown that the achievable sum SDoF scales linearly with K
under some ISI heterogeneity conditions. Note that, in reality,
the signals propagating over the wireless medium face several
physical obstacles in addition to signal energy dissipation
over traveled distance [15], [53]. Particularly, in multi-user
interference networks, the above physical phenomena lead to
the presence of weak channels, i.e., channels whose signal
strength is at noise floor levels or below a preset minimum
power threshold for reliable signal detection at the receivers.
It is thus reasonable to model multi-user wireless networks by
discarding the weak channels, a setting referred to as that of
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partially connected networks, i.e., where each transmitter is
only connected to a subset of receivers and vice versa.

Motivated by the above reasons, research considerations
from the other extreme in terms of CSIT availability and
network connectivity have recently gained traction under the
framework of topological interference management (TIM) [1],
[14], [17], [28], [32], [36], [47], [59]-[61]. In particular,
the TIM problem studies partially connected multi-user inter-
ference networks with no CSIT, except for the knowledge
of network topology and channel statistics. In other words,
research on the TIM problem seeks to exploit the inherent
heterogeneity due to the partial connectivity in order to ensure
network reliability in the absence of CSIT. We note here that
the TIM problem is closely related to the index coding (ICOD)
problem [2], [3], [5], [6], [16], a framework under which the
messages from all transmitters pass through a single common
node (or equivalently, a server) which encodes them into a
common function, that it then broadcasts to all receivers.
Each receiver then applies its side information (also known
as antidotes) to the broadcast function in order to decode its
intended message. The authors in [17] and [32] have shown
that the TIM problem can be reformulated into the ICOD
problem and vice versa. Moreover, due to the fact that the
common node has access to all messages and the presence
of antidotes at the receivers, the channel capacity for a given
ICOD problem is an upper bound on the capacity of its TIM
network counterpart. Note that the general ICOD and the
general TIM are both still open problems. We refer the reader
to [3] and references therein for an overview of fundamentals
of ICOD. A variant of the ICOD problem called pliable
index coding (PICOD) was recently proposed [7], [27], [49],
[50]. PICOD is a slightly more relaxed problem where each
receiver is satisfied by decoding any one arbitrary message
(not belonging to its side information set) from the broadcast
function.

In this paper, we study the TIM problem with an additional
secrecy constraint, a framework that we refer to as TIM
with confidential messages (TIM-CM). Here, each transmitted
message must be decodable at its intended receiver and remain
confidential at the remaining (K — 1) receivers. The Besides
a small number of recent results, e.g., [4], [12], the TIM-CM
problem has largely remained unexplored. The work in [4]
derived a lower and an upper bound on sum SDoF for the
regular TIM-CM problem. This is the secrecy constrained
version of the well understood regular TIM problem, where
each user is assumed to receive signals from a constant number
of transmitters [60], and whose sum degrees of freedom (DoF)
has been derived in [60] through interference avoidance based
on fractional graph coloring. The work in [12] derived a
lower bound on sum SDoF for the half-rate-feasible TIM-
CM problem. This is the secrecy constrained version of the
well understood half-rate-feasible TIM problem whose upper
bound on symmetric DoF has been shown in [17], [32] to be
1/2 per user, hence the name “half-rate-feasible.”

Just as there is a direct relationship between the general
TIM problem and the general ICOD problem, one can also
reformulate the TIM-CM problem of the current paper into
an ICOD problem with confidential messages (private-ICOD)
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and vice versa. The main difference between TIM-CM and
private-ICOD is that, unlike in TIM-CM, each receiver in
private-ICOD has an arbitrary subset of transmitted messages
and jamming signals as side information, i.e., requiring that
each receiver be only able to decode its intended message
and nothing more beyond its side information set. Under
the private-ICOD settings, all messages and jamming signals
(from the transmitters) are assumed to be available to the
common node which encodes them into a common function
to broadcast to all receivers. Each receiver can use its side
information to decode its indented message. As a consequence
of the possible reformulation, we also consider the literature on
secrecy constrained index coding, e.g., [13], [25], [26], [29],
[301, [33], [39], [40], [42], [43], [45], to get a comprehensive
picture of works related to TIM-CM.

The majority of results on secrecy constrained ICOD
problems can be broadly placed in two major categories:
(¢) ICOD problems with secrecy constraints against external
eavesdroppers, i.e., requiring secrecy against any illegitimate
network users that may eavesdrop on the broadcast function.
This is a problem also referred to as secure index cod-
ing (secure-ICOD), e.g., [30], [33], [42], [43]. (i) ICOD
problems with secrecy constraints against other legitimate
users within the same network. This second category can
be further subdivided into two problem subclasses, namely,
private-ICOD (also defined above) and private pliable index
coding (private-PICOD), which focuses on a slightly more
relaxed setting where each receiver is satisfied by decoding
any one arbitrary message from the transmitted messages and
nothing more beyond its side information set. For example,
in recent work [30], the authors studied the K -user secure-
ICOD problem and characterized the optimal capacity region
for K < 4. On the other hand, in a recent paper [39]
and its long version [40], the authors studied the K-user
private-ICOD problem and settled the capacity region for
K < 3. In order to obtain this result, there is an additional
assumption made in [39]: a key sharing mechanism enables the
common node to share secret keys with arbitrarily subsets of
receivers in addition to the broadcast of the common function.
Moreover, it is proved in [39] that, due to the presumption of
existence of this secret key sharing mechanism, the achievable
secrecy rate matches that of the nonsecrecy constrained ICOD
problem, i.e., there is no rate penalty for secrecy. In the
absence of the secrect key sharing mechanism between the
server and receivers, the authors [39] also studied a resulting
weak secrecy private-ICOD (WS-ICOD) model and provided
necessary conditions for the feasibility of positive secrecy
rate. For this model, no achievable schemes were proposed
and capacity region was not derived for any value of K.
A direct reformulation of the TIM-CM problem of the current
paper would lead to a WS-ICOD model because WS-ICOD
precludes the assumption of the secret key sharing mechanism
beyond the broadcast function. Moreover, there is a rate
penalty for secrecy under TIM-CM settings. In regards to the
private-PICOD problem, recent works derived lower bounds
on secrecy rate [25], [26], [45].

Motivated by the above discussion, in this paper, we focus
on the following question: What are the bounds on symmetric
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SDoF for the K -user partially connected interference networks
with confidential messages in the absence of CSIT, except for
the knowledge of network topology and channel statistics? In
other words, our aim is to explore how much this topology
knowledge alone can be exploited in order to manage interfer-
ence and establish limits on symmetric SDoF for the TIM-CM
problem.

Contributions: We summarize our main contributions as
follows:

(i) (Necessary and Sufficient Conditions for Symmetric
SDoF Feasibility): We characterize necessary and suf-
ficient conditions under which non-zero SDoF is fea-
sible for any topology. These feasibility conditions for
TIM-CM are related to conditions of its WS-ICOD coun-
terpart [40, Lemma 8] since its graph is a complementary
of the network coding graph of WS-ICOD.

(i) (Inner Bounds on Symmetric SDoF): We propose achiev-
able symmetric SDoF schemes for the general TIM-CM
problem by introducing two transmission schemes,
namely, secure partition for the first lower bound and
secure independent sets for the second one.

(iii) (Outer Bounds on Symmetric SDoF): We also obtain
upper bounds on symmetric SDoF for the general TIM-
CM problem. To this end, we first show how to obtain
a nontrivial upper bound on symmetric SDoF through
a careful analysis of the received signal structures at all
K receivers and their respective interference components
with regard to the underlying topology. We next present
a second upper bound which we show to be tighter for
some examples. The main difference between this upper
bound and the first one is that here we leverage the
potential presence of fractional signal generators within
the network, a concept that was introduced in [36], [60]
for the nonsecrecy constrained TIM problem. This is a
paradigm where the interference signal component of the
received signal at some receiver can generate either a
statistically equivalent version of the received signal at
some other receiver or its cleaner version (i.e., with less
interference).

(iv) (Optimal Symmetric SDoF for All K-User TIM-CM
Topologies With K < 3): Finally, we apply the proposed
upper and lower bounds to characterize the optimal
symmetric SDoF for all K -user TIM-CM topologies with
K <3.

II. SYSTEM MODEL

We consider the K-user partially connected single-input
single-output (SISO) interference network with confidential
messages as depicted in Fig. 1. We use 7j to denote the
index set of all transmitters that are connected to receiver
Rxy, for k € {1,2,...,K}. Similarly, we use Ry to
denote the index set of all receivers that are connected
to transmitter TXxg, for k& € {1,2,...,K}. Therefore,
the network can be fully described by its topology G =
(71,72, ..., Tk, R1, Ra, . .., Rk ). Additionally, we use Zj, to
represent the index set of all transmitters that cause interfer-
ence at RXy. In turn, this implies that 7, = {k} U Z. For a
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given topology G, the signal received at RXy; at time ¢ is given
by

Vi) = i Xi(t) + > hiaXa(t) + Zi(t), (1)
i€y,

where hy; represents the channel coefficient between Trans-
mitter 7 and Receiver k, assumed be time invariant and i.i.d.
across users. Zi(t) is the zero-mean unit-variance complex
Gaussian channel noise. We next provide the adjacency matrix
definition which will be useful later.

Definition 1 (Adjacency Matrix): For a network topology
G, we define an adjacency matrix B as:

1, hiy 20
B = { !

0, otherwise,

where the matrix B is of size K x K. Here, hj; # 0 (hj; =
0) indicates whether there is a connection (no connection)
between Transmitter ¢ and Receiver j [17], [60].

CSIT/CSIR Assumptions: Under the TIM-CM framework,
there is no CSIT, except that the transmitters have the statistics
of the channel coefficients and full access to the network
topology G. For coherent signal detection, in addition to having
access to G, we assume that there is global CSI at the receivers
(CSIR). That is, each receiver Rxy, for k € {1,2,..., K}, has
casual access to the set of all non-zero channel coefficients
denoted by H = {hy; : ¢ € Tk}kK:l.

Each transmitter 7%y, for k& € {1,2,..., K}, uses the
knowledge of G to encode its message W}, into an n-length
vector X' = [Xj(1), Xk(2),..., Xk(n)]" via an encoding
function f,,.(W|G). The vector X; is subject to the follow-
ing power constraint:

1
~E([XE|%) < P, @

where P is the average transmit power. Each receiver RXy
receives a vector Y} = [Y;(1),Y%(2),...,Ys(n)]" and uses
the knowledge of both G and H to recover its intended
message W, via a decoding function f, . (Y;*|G,H). The
considered system model is subject to reliability and secrecy
constraints as we explain next.

Transmitter 7'X;, wants to securely send a message Wi,
which is uniformly distributed in Wy = {1,2,..., 2"}
to receiver RXy. Here, W), represents the index set of all
message at T'X;,. A secure rate of communication Ry (P,G) =
W is achievable, if there exists a sequence of encoding
and decoding functions f, (Wi|G), f,..(Y7|G,H) such
that, as n — oo, both the decodability and confidentiality
constraints are satisfied:

Decodability Constraint: Each receiver RX;, must be able
to decode its intended message W7,

Pr[Wy, # W] = o(n). 3)

Confidentiality Constraints: All messages seen as interference
at receiver RX; must remain confidential,

1
EI(WI,C;Y]:’|W]€,H)ZO(’I’L), Vke{l,2,...,K}. (4
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Here, Wz, = {W, : i € Zj,i # k} is the set of all messages
seen as interference at I2X;, and Y}" is the signal received at
RX;, over the n-length transmission block.

Definition 2 (Secure Degrees of Freedom (SDoF) Tuple):
Consider a network topology G and the defined above
average signal transmission power parameter P. We say that

an SDoF K-tuple (SDoF(l),SDoF(Q),...,SDoF(K))

is  achievable, if there exist achievable rates
(R1(P,G),R2(P,G),...,Rx(P,G)), for each P, such
that
. Ri(P,G)
DoF® = lim =22 ke{1,2,....K 5
S P1—I>noo 10g(P) ’ 6{ Pl ’ }a ( )

where SDoF™™ is the achievable SDoF for user k.

In this paper, we focus on the symmetric SDoF which we
define next.

Definition 3 (Symmetric SDoF): The
SDoF®™ is defined as follows:

SDOFY™
—sup{D: (SDoF<1>, SDoF® ..., SDoF(K))
= (D,...,D) is achievable.}

symmetric SDoF,

(6)

III. MAIN RESULTS AND DISCUSSION

In this Section, we present our main results and an
accompanying discussion together with illustrative examples.
In Section III-A, we present necessary and sufficient con-
ditions for the feasibility of positive symmetric SDoF for
the general TIM-CM problem, the first inner bound on
symmetric SDoF based on secure partition, and the second
inner bound based on secure independent sets, respectively in

- re

Wik
{Wl,.,.,Wk,...}(g)

TIM-CM problem where each user IRXj should only decode its intended message W) and the remaining (interfering) messages must remain

Theorems 1, 2, and 3. In Section III-B, we present our first
and second upper bounds on symmetric SDoF, respectively in
Theorems 4 and 5. Finally, in Section III-C, we present two
case studies where we respectively characterize the optimal
symmetric SDoF for all 2-user and 3-user TIM-CM topologies.

A. Feasibility of Positive Symmetric SDoF and Inner Bounds

Consider the K-user TIM-CM model defined by equation
(1). The following Theorem, which is proved in Appendix IV,
answers the question: When is symmetric SDoF zero for a
given TIM-CM network?

Theorem 1: For a network topology G, the symmetric SDoF
is zero if and only if there exists a pair 4,j € {1,2,..., K},
for ¢ # j, such that

(1) i €Z;

() jeZ;
(iii) Z; \ {i} CZi \ {j} or Z; \ {j} € Z; \ {i}.

Consequently, as also detailed in Appendix IV, for any
TIM-CM network that does not satisfy the conditions of The-
orem 1, positive symmetric SDoF is feasible. In the Appendix,
we present a simple scheme satisfying positive symmetric
SDoF through secure time division multiple access (secure
TDMA), which leads to the smallest achievable symmetric
SDoF of % per user. We use Examples 1 and 2 to highlight
the principles behind Theorem 1.

Example 1 (5-User TIM-CM Network: Zero Symmet-
ric SDoF): Consider the network topology in Fig. 2 (a).
At receiver RX;, we have Z; = {2,3,4} and 7; = {1} U
I, = {1,2,3,4}. At receiver RXy, we have Z, = {1,3}
and 7, = {2} UZy, = {1,2,3}. Consider the user pair
(i,j5) = (1,2). Therefore, for this pair, the conditions of
Theorem 1 are satisfied because (i) 1 € Zo, (i) 2 € Z;, and
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Fig. 2. 5-user TIM-CM networks depicting: (a) When symmetric SDoF is zero versus (b) When it is nonzero.

(#i7) Zo \ {1} € 77 \ {2}. Since the conditions of Theorem 1
are satisfied, then symmetric SDoF is zero for this network.

The intuition behind the infeasibility of positive symmetric
SDoF for this topology is as follows: Suppose transmitter
T'x; wants to send its message during a given time slot. Then,
transmitters 7'Xo, T'X3, and T'X4, which are all seen at its
intended receiver RX; have to remain silent in order to avoid
causing interference and thus preventing it from decoding the
message sent by 7'X;. Moreover, any message sent by 7X;
will be seen as interference at RXs. Therefore, a separate
transmitter that is seen at KXy but not seen at Xy is needed
to protect the message from 7'X; by jamming RXy. However,
there is no such transmitter within the network topology of
Fig. 2 (a), thereby leading to zero secure communication
rate for the transmit receive pair 7X; — RX;. The proof of
Theorem 1 essentially formalizes the above logical arguments.

Example 2 (5-User TIM-CM Network: Nonzero Symmetric
SDoF): Consider the network topology in Fig. 2 (b). It can
easily be verified that for all user pairs i,j € {1,2,...,5}, for
i # j, the conditions of Theorem 1 are not satisfied. Therefore,
we can achieve a positive symmetric SDoF of at least % = %
over five time slots as we show next.

The proposed transmission works over 7' = 5 sub-blocks,
where each sub-block is of length np. This leads to the
transmission block of length n = npT. Moreover, we assume
that np is large enough to satisfy the decodability and
confidentiality constraints in (3)-(4). From here onward in
the achievable schemes of this paper, with a slight abuse of
notation, we refer to a sub-block of length np as a time
slot. Under the same convention, we will refer to 1" as the
transmission blocklength. Furthermore, we assume that the
transmitted signals are observed at discrete and synchronous
time slots at the receivers.

(i) In the first sub-block (time slot), transmitter 7'X; sends
its message signal using a wiretap code [55], whereas
T'X5 acts as a cooperative jammer by sending an artificial
noise signal. All the other transmitters remain silent.
Hence, the received signals at the first and second
receivers are respectively given by Y7 = h1; X1+ Z; and
Yo = ho1 X1 + hos X5 + Zs. The following secrecy rate
is achievable at Rx;: Ry = I(X1; Y1|H) — I(X1; Ya2|H).
In particular, by assuming that the transmitters use
Gaussian codebooks [21]-[23], [57], it can be readily
verified that the achievable SDoF at RX; is SDoFM) —
limp_, 0 logﬁ = 1. Transmission for the remaining
four users follows the same logic as the first one and
we summarize it next.

In time slot ¢t = 2, let T'Xo transmit its message and let
Tx4 jam RX;.

(ii)

(iii) In time slot ¢t = 3, let T'X3 transmit its message and let
T'x; simultaneously jam Rx; and RXs.
(iv) In time slot ¢ = 4, let T'X4 transmit its message and let

TXo jam RXj.

(v) In time slot ¢t = 5, let T'X5 transmit its message and
let T'xs and TX4 collectively jam RXs, RX3, and RX4.
Hence, each receiver gets its intended message over five
time slots, i.e., SDOF¥™ > %

We next present general transmission schemes beyond
the (greedy) secure TDMA approach. We show how to achieve
lower bounds on symmetric SDoF that are greater than or
equal to % under feasible topology conditions. Clearly, this
implies that, under such schemes, the transmission blocklength
may be less than the number of users in the whole network.
As we explain later, transmission is done through the process
of secure interference avoidance. Let us first define interfer-
ence avoidance.

Authorized licensed use limited to: The University of Arizona. Downloaded on December 12,2022 at 20:41:38 UTC from IEEE Xplore. Restrictions apply.



7238

Definition 4 (Interference Avoidance): In order to enable
decodability at its intended receiver, each transmitter 7'Xy,, for
k € {1,2,...,K}, uses time slot ¢, for t € {1,2,...,T},
to transmit an information message Wy, fork € {1,2,..., K},
if and only if both those users that it causes interference to
and those users that cause interference at its intended receiver
RXx;, are not using the same time slot ¢ to transmit any signals.
This principle is called interference avoidance.

The above transmission principle would suffice, if we were
only concerned with decodability, i.e., under the TIM model.
However, for the TIM-CM problem, we are additionally
required to preserve secrecy. Thus, more restrictions on trans-
mission have to be imposed beyond interference avoidance as
we explain next.

Definition 5 (Secure Interference Avoidance): In order to
enable both decodability and secrecy, T'X; can transmit its
message W) by following the defined above interference
avoidance plus a new requirement that there must exist a set
C of cooperative jamming transmitters (that do not interfere
at RXj) to protect Wy, at all receive nodes where it is seen as
interference by sending artificial noise.

The above described (secure) interference avoidance princi-
ples are closely related to the notion of (secure) independent
sets and secure partition as we explain next.

Definition 6 (Independent Set (I1S)): Consider a K-user
TIM-CM network. A set of users U;s C {1,2,..., K}, is an
independent set, if for all i # j € Ujg, B =By =0.
This implies that, for all ¢ # j € Urg, transmitter T'X; is
not connected to receiver RX; and transmitter 7'X; is not
connected to receiver RX;. This can simply be represented as
j¢Tandi¢ T,

Definition 7 (Secure Independent Set (SIS)): A set of users
Usrs C{1,2,..., K}, is a secure independent set, if Usyg is
an independent set, and there exists a set C C {1,2,...,K}\
Usrs, such that:

(i) UsisNRe =10
(i) Rus;s \Usrs € Re,

where Ry, and R¢ respectively represent the set of all
receivers that are connected to transmitters in Us7g and C.

In other words, condition (7) implies that the intended
receivers for the transmitters in Ugys do not see the coopera-
tive jamming signals from the transmitters in C; and condition
(i) implies that all unintended receivers that see signals from
the transmitters in Usys should be in the coverage of the
cooperative jamming set C.

The intuition behind the above definition is that each trans-
mitter in the secure independent set U/g;s will also be able to
achieve confidentiality, as it will be simultaneously protected
by artificial noise signal(s) that are sent by the cooperative
jamming transmitters in C.

Definition 8 (Secure Partition (SP)): A partition P =

{P1,P2,...,Pr}, where P, # @ for all t € {1,2,...,T},
P NP, # 0 forall m #ne{1,2,...,T}, and Uthlpt =
{1,2,...,K}, is a secure partition, if every subset P;, for
t=1,2,...,T, is a secure independent set.

The following Theorem states our first lower bound on the
symmetric SDoF.
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Theorem 2: The symmetric SDoF for the K-user TIM-CM
network is lower bounded as follows:

1
SDoF¥™ > max —

P[P
such that P = {Py,Pa,...,Pr}, for |P| =T,
is a secure partition of {1,2,..., K}. 7

Proof: To prove the above result, we need to argue
that for any secure partition P, a symmetric SDoF of 1/|P]
is achievable. The result then follows by maximizing over
all secure partitions. Since by Definition 8, each subset P;
is a secure independent set, we can schedule all users in
P; in a single time slot ¢, for ¢t € {1,2,...,7}, while
satisfying decodability (3) and secrecy (4). To this end, we also
simultaneously schedule all transmitters in a separate set Cy,
for t € {1,2,...,T}, to act as cooperative jammers by
transmitting artificial noise symbols during time slot ¢ in order
to protect all the information signals from the |P;| transmitters
at the receivers where they are seen as interference. Thus,
by separately scheduling |P| subsets over |P| slots, and the
fact a user only appears in a single subset, we achieve a lower
bound of 1/|P|. Clearly, under this transmission scheme, each
user is only assigned a single secure interference free channel
use per transmission blocklength |P| = T" and the achievable
SDoF is maximized when all receivers can be served with their
intended messages over the minimum cardinality of P. |

We use Examples 3.A and 4.A to highlight the principles
behind Theorem 2.

Example 3.A (6-User TIM-CM Network: Transmis-
sion via SP): Consider the network topology G =
(71,72,...,76,R1,Ra, ..., Rs) depicted in Fig. 3. From this
topology, we can directly deduce the following:

o (Independent Sets): Consider a set of transmitters ;g =
{1,5,6}. It can be verified that, for all i,5 € Ug,
the adjacency matrix of this network satisfies B(; ;) =
B(j’i) = 0. Therefore, by Definition 6, Transmitters 1,
5, and 6 form an independent set {1,5,6}. In other
words, 17Xy, T'Xs, and T'Xg are not connected to each
other’s desired destinations RX;, RXs;, and RXg. Simi-
larly, we can show that the sets {3}, {4,6}, and {2,5,6}
are also independent sets.

o (Secure Independent Sets): Consider a set of transmitters
Usrs = {5,6}. Clearly, for all i,j € Usrs, By j) =
B(;) = 0. Moreover, consider a set C = {4}. This is
a set of transmitter(s) such that, for a set of receivers
Re = {1,2,4} that can see signals from C and the
set of receivers Ry, = {4,5,6} that can see signals
from Usgyg, the following conditions are satisfied: (7)
Usrs NRe = 0 and (i4) Rys,s \Usrs € Re. Therefore,
by Definition 7, the set Us;s = {5,6} is a secure
independent set. Similarly, we can show that the sets {1},
{3}, {2,6}, and {4,6} are also secure independent sets.

o (Secure Partition): From the above secure independent
sets and Definition 8, we can create a secure partition
P = {Pl,PQ, . .,P5}, where P1 = {2,6}, PQ = {1},
Ps = {3}, Py = {4}, and P5 = {5}.
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As depicted in Fig. 3(a), we can schedule transmitters in secure
partition subsets Py, Pa, ..., Ps respectively over T = |P| =
5 time slots and have the following sets of transmitters serve as
their respective cooperative jamming sets: C; = (), Co = {3},
Cs = {2,5,6}, C4 = {1}, and C5 = {4}. Therefore, we are
able to separately schedule |P| = 5 subsets respectively over

|P| = 5 time slots, which leads to a symmetric SDoF of
1 _1
[P| — 5°
Example 4.A (5-User TIM-CM Network: Transmission via

SP): Consider the network depicted in Fig. 4(a). Following a
similar analogy as in Example 3.A, we can use its topology
G =(T,T5...,75,R1,Ra,...,R5) to obtain three secure
partition subsets that collectively contain all five users once.
For example, as also shown in Fig. 4(a), we can schedule
transmitters in P; = {2,3,5}, P» = {1}, and P3 = {4}
respectively over T’ = |P| = |{P1, P2, P3}| = 3 time slots and
have the following sets serve as their respective cooperative
jamming sets: C; = {1}, C2 = {4}, and C5 = (). Therefore,
this leads to a symmetric SDoF of ‘71,‘ = %

Depending on the underlying network topology, it may be
possible to achieve more symmetric SDoF than the secure
partition scheme of Theorem 2, which allows each user to have
only one secure interference free channel use per transmission
block. In particular, each user may be able to use more than
one secure interference free channel per transmission block.
We will clarify this fact later on using concrete examples.

The following Theorem states our second lower bound on
the symmetric SDoF.

Theorem 3: The symmetric SDoF for the K-user TIM-CM
network is lower bounded as follows:

SDoF®™
T
. 1(kelu
> sup max in Ma ®)
TENUsy Usy .. Usp EUSTS ke{1,2,.. K} T

where U515 = {Uy,,Us,, ..., Us, } is the set of all secure
independent sets for the network topology G. Here, 1(k €
A) £ 1, if k € A and 0 otherwise.

Proof: We can take T secure independent sets
U, Us,, ..., Us, € U and proceed with transmission,
while preserving decodability (3) and confidentiality

(4), as follows. Let all |Us,| transmitters in the set Us,
send information messages during the same time slot
te{1,2,...,T}. Since Us, is a secure independent set, there
exists a set Cy, t € {1,2,...,T}, of cooperative jammers so
that all transmitters in U/, can be simultaneously scheduled
while satisfying both the decodability and confidentiality
constraints. By doing this for all T" sets respectively over T’
time slots, this implies that each user k will get a total of
Zthl 1(k € U, ) secure interference free channels to use over
transmission block T'. This gives each user k € {1,2,..., K},
a total of M secure degrees of freedom. Since
we are interested in the achievable symmetric SDoF, the
largest SDoF that all users can simultaneously achieve for
a given choice of T and U, ,Us,,...,Us, 1s given by
M Therefore, by optimizing
T )
T and U, ,Us,,...,Us;,, we obtain

su ; S 1(kels,)
PrenyMaxXy, U, ... Us, MMNEe{1,2,.. K} T

Milge(1,2,... K}
the above over

)
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which is the symmetric SDoF lower bound in Theorem 3.
Clearly, under this transmission scheme, each user may be
assigned one or more secure interference free channel uses
per transmission blocklength 7T'. |

We use Examples 3.B and 4.B to highlight the principles
behind Theorem 3.

Example 3.B (6-User TIM-CM Network: Transmission via
SIS): Consider the network of Fig. 3. From the topology of
this network, we can readily infer the following:

e (Independent Sets): According to Definition 6, this topol-
ogy leads to independent sets {3}, {4,6}, {1,5,6}, and
{2,5,6}.

o (Secure Independent Sets): According to Definition 7,
this topology leads to secure independent sets {1}, {3},
{2,6}, {4,6}, and {5,6}.

Transmission works as follows: In the first time slot, we can
pick any of the three largest secure independent sets {2,6},
{4,6}, and {5,6} and schedule its users. Let us, for example,
schedule the users in the SIS set U, = {2,6}. Note that, as it
is also depicted in Fig. 3(b), signals sent by Transmitters 2 and
6 are only observed at their respectively intended Receivers
2 and 6 and not seen at any other receivers as interference.
Therefore, the messages from these two transmitter do not
need protection at any other receivers. In other words, there
is no need for any of the remaining four transmitters in the
same network to act as a cooperative jammer during the first
time slot. Thus, the cooperative jamming set in the first time
slot is the empty set denoted by C; = 0.

In total, following the same logic, we can obtain five (not
necessarily unique) secure independent sets that collectively
contain each of the five users at least once, namely Us, =
{256}’ Us, = {1}’ uss = {3}’ Us, = {456}’ and uss =
{5,6}. Accordingly, the following (not necessarily unique) sets
of transmitters can serve as cooperative jammers, respectively
over five time slots: C; = ), Co = {3}, C5 = {2,5,6}, C4 =
{1}, and C5 = {4}. As depicted in Fig. 3(b), by allowing
the transmitters in the secure independent sets (cooperative
jamming sets) to respectively send their messages (artificial
noise symbols) over 7' = 5 time slots, one set per time slot,
we can achieve a symmetric SDoF of % We note here that this
SDoF value is equivalent to the % that we achieved in Example
3.A for the same topology through the secure partition scheme
of Theorem 2.

Note that: (z) In Example 4.A, we transmit using the
SP scheme of Theorem 2 and, thus, only allow one secure
interference free channel use per user over the whole trans-
mission blocklength. (i) On the other hand (for the same
exact topology as in Example 4.A), in Example 4.B below,
we transmit using the SIS scheme of Theorem 3 which allows
more than one secure interference free channel uses per user.

Example 4.B (5-User TIM-CM Network: Transmission via
SIS): Consider the network in Fig. 4.

Following a similar analogy as in Example 3.B, we can
use its topology G = (71,72,...,75,R1,R2,...,R5) to
obtain five (not necessarily unique) secure independent sets
that collectively contain each of the five users at least once.
For example, as also shown in Fig. 4(b), we can schedule
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uses for each user over the transmission block 7', leading to a
symmetric SDoF of £ 2 We note here that this symmetric SDoF
value is greater than the 1 5 that we achieved in Example 4.A
for the same network through the secure partition scheme of
Theorem 2.

Remark 1: (Transmission without secrecy): For the topol-
ogy in Fig. 4, the TIM scheme of [36] achieves a DoF of
%. To achieve this, in the absence of secrecy constraints,
we can schedule the transmitters in the two independent sets
{1,2} and {3,4,5} to respectively transmit over 7' = 2 time
slots, one set per time slot, thereby achieving a (nonsecure)
symmetric DoF of % Moreover, we note here that, this DoF
matches the upper bound derived by [17] and [32].

B. Outer Bounds on Symmetric SDoF

In this Section, we present upper bounds on symmetric
SDoF for the TIM-CM problem. The Theorem below states
our first upper bound on the symmetric SDoF and its proof
is provided in Appendix IV-B. Here, we first provide a few
important definitions before stating the Theorem.

Let &1 and Sz be two arbitrary and disjoint subsets
of receivers, i.e., such that S NSy = ( and &;,S8; C
{1,2,...,K}. Suppose S; = {mi,ma,...,ms,} and
let U(S:) = {qu}!fjll be the collection of all index
sets of transmitters whose signals are respectively seen
at the receivers in S,. Furthermore, define 1(S1,S2) =
miny, (s,), v, (s,) [(U(S2) \ V2(82)) \ Vi(S1)]. Suppose Sy =
{m1,ma,...,m s, }, where Vo(S2) = {j1,42,...,]|s,|} is
an arbitrary set of indexes j, € Z,,, for my; € Sy and
Vi(S1) = {f1,0a,...,¢s,|} is an arbitrary set of indexes
b, € I, for r, € Si = {ri,r2,...,75,|}. Moreover, let
Ty, be the index set of all signals that are seen as interference
at receiver RXy, and 7y, = {k} U Zj.

Theorem 4: The symmetric SDoF for the K-user TIM-CM
network is upper bounded as follows:

SDoF™
< min |81| + M(Sla 82)
- S1,8, |Sl| + ELSZIJ l(Irp # @) + Z!;izl‘ I(Imq 7& (Z))

As detailed in Appendix IV-B, the upper bound in Theo-
rem 4 is based on the analysis of the received signal structures
at all K receivers and their respective interference compo-
nents. To prove the Theorem, we first show how to get a
nontrivial upper bound on secrecy rate by discarding all but
one interference components from the received signal. Next,
we show that the secrecy rate of the resulting signal can be
bounded in two different ways, using which we then deduce
the desired upper bound. We use Examples 3.C and 4.C to
highlight the principles behind Theorem 4.

Example 3.C (6-User TIM-CM Network: Upper Bound on
Symmetric SDoF): Let us revisit the 6-user TIM-CM network
in Fig. 3. Our aim is to show that we can obtain a symmetric
SDoF upper bound of % To this end, we can now proceed
as follows: Let us pick two disjoint subsets of receivers
S1 = {2,4,6} and S; = {1,3,5}. We note here that the
users in S; have interference sets Zy = {1, 3,4}, Zy = {3,5}
and Zg = {3}, whereas the users in Sy have interference sets

-
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T, = {4}, I3 = {1} and Z5 = {3}, respectively. Therefore,
St 1T, # 0) = ¥, csmpan) 1T, # 0) = 3 and

Ss|
Z‘ ? 1Zm, # 0) = qu582:{1,3,5} 1Zm, # 0) =
Moreover we can, for example, pick the multi-set /(S3) and
the two sets Va2(S2) and Vi (Sy) as follows:

o U(S2) {1,173, 75} {{1,4},{1,3},{3,5}}

{1,1,3,3,4,5).

o Vo(S2) ={4,1,3}, where 4 € 77, 1 € Z3, and 3 € Ts.

e Vi(S1) ={1,5,3}, where 1 € Zy, 5 € Z4, and 3 € Zs.
Thus, using its definition, we can calculate pu(S;,S2) as
follows:

(81, 82) = [(U(S2) \ Va(S2)) \ Vi(S1)]
=|({1,1,3,3,4,5}\ {4,1,3}) \ {1,5,3}| = 0.

Therefore, using the above, we obtain the following upper
bound on symmetric SDoF:

SDoF*™
SLS2 S [+ 3 2 U, #0) + 2.2 1 1(Zo, #0)
1

< —
3

Example 4.C (5-User TIM-CM Network: Upper Bound on
Symmetric SDoF): Let us revisit the 5-user TIM-CM network
in Fig. 4. Our aim is to show that we can obtain a symmetric
SDoF upper bound of £, which is thus close to the achievable
lower bound of % that we derived in Example 4.B for the same
topology (via secure independent sets). To this end, we can
now proceed as follows: Let us pick two disjoint subsets
of receivers S; = {1,4} and S; = {2,3}. We note here
that the users in S; have interference sets Z; = {3,5} and
Zs = {1,2}, whereas the users in S; have interference sets
Zo = 0 and Z3 = 0, respectively. Therefore, lel‘ 1(Z,, #
0) = Erpeslz{l,zi} (Z, # 0) = 2 and E\Szl 1(Zm, #
0) = >, es0=(2,3) 1(Zm, # 0) = 0. Moreover, we can, * for
example, pick the multi-set /(S2) and the two sets Va(S2)
and V;(S1) as follows:

« U(S) = {T T} = ({2}, 3}} = (2.3).

. VQ(SQ) = {3, 2}, where 3 € 77 and 2 € Z4.

e Vi(81) =0, because Zo = () and Z3 = 0.

Thus, using its definition, we can calculate p(S7,S2) as
follows:

(81, 82) = |(U(S2) \ Va(S2)) \ Vi (S1)]
=({2.3}\ {3.2}) \ 0| = 0.

Therefore, using the above, we obtain the following upper
bound on symmetric SDoF:

SDoF™

< |81| +M(81582)
-wwmm+z@ua #0) + S0 (T, #0)
<%

-2

We next present our second upper bound in Theorem 5,
which we later show to be tighter for some examples compared
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to the results of Theorem 4. The main difference between
this upper bound and the first one is that we now exploit
the potential presence of fractional signal generators within
the network, a concept that was introduced in [36], [60] for
the nonsecrecy constrained TIM problem. This is a paradigm
where the interference signal component of the received signal
at some receiver can generate either a statistically equivalent
version of the received signal at some other receiver or its
cleaner version, i.e., with less interference. To this end, let us
first define a fractional signal generator.

Definition 9 (Fractional Signal Generator): Let T, be the
index set of all signals that are seen as interference at receiver
Rxj, and 7}, = {k} UZ,. We say that a receiver RXy, is a
fractional signal generator of Gy, if G, C Zj and there exists
a permutation I1(*) = (IIy, 10y, .. . 1Ijg,|) of the set Gy such
that G, \ {Hl,Hg,...,Hi} QIHi’ for i = 1,2,...,|gk|.

Consider the 6-user network topology depicted in Fig. 3.
In this network, RXo receives signals from Transmitters 1,
2, 3, and 4. This fact can be equivalently denoted as 75 =
{2} UZ, = {1,2,3,4}. The main idea behind Definition 9 is
that, by following a not necessarily unique successive order,
RXo can generate the signal index set Go = {3,4} because
G2 C Iy = {1,3,4}. More specifically, we next demonstrate
why RXs is called a fractional signal generator for the signal
index set Ga:

o First, we show how RX> can generate the second element
of Go, i.e., 4. Because the order of signal generation
matters, we denote this fact by ({3,4} \ {4}) = {3} C

{3,5}. This indicates that by first generating
4, we only remain with {3} which is a subset of the
interference set Z, = {3,5} at RX4. As we will show
in the second step below, this order of signal generation
will enable the generation of the first element of Go, i.e.,
3. To this end, assume that the interference component
X7 seen from T'X; is provided by a genie to RXs.
In turn, this allows RXs to discard this interference signal
component from its composite interference component in
order to generate a signal 174" with components {3,4},
which is an enhanced version of the original signal Y,*,
whose components are 7y = {3,4,5}. In other words,
the newly generated signal }74” is the enhanced version
Y, because Y;* has only one interference term, i.e., sees
signals from 7'X3, whereas the original signal Y, has
two interference terms, i.e., sees signals from 7T'X3 and
T'x5. Therefore, if RX4 can decode its intended message
W4 from the original signal Y*, then its enhanced version
Rx4 can also decode W, from }74”.

e Second, we show how further processing of the signal
at RX can generate the first element of the Gs, i.e.,
3. We denote this by ({3} \ {3}) = 0 to indicate that
3 is the element of Gy which is generated the last. The
intuition behind this second step is as follows: From the
interference subset {3,4} at RXs (i.e., having already
removed the interference term from 7'X; in the above
step), one can next discard the (genie provided) inter-
ference component seen from 7X4 in order to generate
a signal Y§* with a single component {3}, which is
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the enhanced version of the original signal Y3*, whose
components are 73 = {1,3}. Therefore, if Rx3 can
decode its intended message W3 from the original signal
Yy, then Rx3 can also decode W3 from 3.

Therefore, successive decodability of W3 and W, from the
signals generated by the interference signal at RXo, follows
the sequence T1(®) = (4,3), which satisfies Definition 9.

The Theorem below states our second upper bound on the
symmetric SDoF and its proof is provided in Appendix I'V-
B. Here, we first provide a few important definitions before
stating the Theorem.

Let &1 and Sz be two arbitrary and disjoint subsets
of receivers, i.e., such that §§ NSy = 0 and S§1,S, C
{1,2,...,K}. Suppose Sy = {mi,ma,...,ms,} and let
U(S2) {qu}‘qs:zll be the collection of all index sets
of transmitters whose signals are respectively seen at the
receivers in Ss. Consider a collection of sets G2 =
{gﬁ,?f , ,(,%3, .. gm‘ 52‘} such that Receiver m, is a generator
of Giv) C T,

m, forall ¢ € {1,2,...,|Sz|}, with a permutation

) {Hgm“),Hém‘I) ...Hl(g@))} according to Defini-
tion 9. Then, let V(S,) = {H%’g)‘ Hf;’gQ , ‘(g.‘j?”‘}
) Ty Sy |
be an arbitrary set of indexes H‘( (gf‘ € Iy, for my €
So. Similarly, suppose S; {7’1,722,...7“‘31‘} and con-
sider a collection of sets G5 = {gﬁ?, ﬁ;),.. ﬁ‘lgl‘}

such that Receiver r, is a generator of gﬁ? C LP for

all p € {1,2,. £81|} with a permutation II(») =

{H(IT‘“),HéTp), . I( o, } according to Definition 9. Then, let
— qy(r) (v"z) (risy1)

$) = W Mg, Mg ')

of indexes T1" 7;1))‘ € I, for r, € Si. Define ji(S1,S:) £

[(U(S2) \ VQ(SQ)) \ V1(S1))| and let Zj, be the index set of
all signals that are seen as interference at receiver RX; and
T = {k} U Z.

Theorem 5: The symmetric SDoF for the K-user TIM-CM
network is upper bounded as follows:

Vi (

} be an arbitrary set

SDoF*Y™
|Sl| + ﬂ(81782)
S Qg omin 511D 521162
(51,82) (651.6%2) |81 | + 3071 G, | + 22021 Gy |
(10)

As detailed in Appendix IV-B, the upper bound in The-
orem 5 is also based on the analysis of the received signal
structures at all K receivers and their respective interference
components with regard to the underlying arbitrary topology.
To prove the Theorem, we first show how to get a nontrivial
bound on secrecy rate by discarding all the interference
components in the received signal, except for those that can be
sequentially generated from the interference signal according
to Definition 9. Next, we show that the secrecy rate of the
resulting signal can be bounded using two types of bounds
from which we are then able to deduce the desired upper
bound. We use Example 3.D to highlight the principles behind
Theorem 5.
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Example 3.D (6-User TIM-CM Network: Upper Bound on
Symmetric SDoF): Let us revisit the 6-user TIM-CM network
in Fig. 3. Our aim is to show that we can obtain a symmetric
SDoF upper bound of i which is a tighter bound compared
to the % obtained in Example 3.C. We note here that i is
close to the achievable lower bound of % that we derived in
Example 3.A (via secure partition) and 3.B (via secure sets)
for the same network topology.

We can now proceed as follows: Let us, for example, pick
two disjoint subsets receivers S; = {2} and S = {3}.
According to Definition 9 of fractional signal generators,
Receiver 2 € S; (which has the interference set Zp, =
{1,3,4}), can generate the following (not necessarily unique)
set gé” = {3,4}, with a permutation sequence IT?®) =
(4,3). Therefore, this leads to the multi-set G5t = gé” =
{3,4}, which is the collection of all signal sets generated
by receivers in S;. Following a similar analogy, Receiver
3 € Sy (which has the interference set Zs = {1}) can only
generate Q?EQ) = {1}. Therefore, G52 = Q?EQ) = {1}. This
implies that lell |g£”| =2 esi={2} |g£”| = 2, whereas
Z|321 G| = D om,eSa={3} G| = 1. Moreover, we can,
for example, pick the multi-set 2/(S,) and the two sets V(Sy)
and ])1 (S1) as follows:

Sy) = {Ts} {1,3}.

U(
V(Sy) = {II "2‘2?2‘)} {H(B) } = {1}, where 1 €
(2

1G5y | 1657
gl ) ¢
Vs - 08 ) = (12, ) = (3}, where 3 <
T\51\

G C To.
Thus, using its definition, we can calculate [i(S1,S2) as
follows:

(81, 82) = |(U(S2) \ Va(82)) \ V1(S1))]
= {13\ {1Hh\ {3} =0.

Therefore, using the above, we obtain the following upper
bound on symmetric SDoF:

SDoFY™

C i min S1] + (S1, S2)
(S1,82) (G51.,6%2) |8 | + Z‘Sll |g7“i)| + E|821 |g |
1

< —
4’

We now remark the following regarding the 5-user example
network topology of Fig. 4.

Remark 2: Since the topology of Fig. 4 that we used in
Example 4.C does not contain nontrivial fractional signal
generators (i.e., where some of the receivers can generate more
than one signal), applying the principles of Theorem 5 would
also lead to the symmetric SDoF upper bound of %

C. Case Studies: Settling Symmetric SDoF for 2-User and
3-User Topologies

In this Section, we present two case studies: In the first one,
we study the 2-user TIM-CM networks and, in the second
one, we study the 3-user TIM-CM networks. To this end,
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we enumerate all possible (non-isomorphic) topologies for the
2-user and 3-user TIM-CM networks as respectively depicted
in Fig. 5 and Fig. 6. We then apply the result of Theorem 1 to
eliminate all topologies where positive symmetric SDoF is not
feasible. To find the outer bounds for the remaining networks,
i.e., where positive symmetric SDoF is feasible, we apply the
upper bound results of Theorems 4 and 5. We then verify the
optimality of symmetric SDoF by showing that these upper
bounds match the lower bounds by applying the achievable
result of Theorem 2 or 3, thereby settling the K-user TIM-
CM problem for K < 3.

Our results can be readily applied to calculate the exact
symmetric SDoF for all (nonisomorphic) 2-user TIM-CM
topologies as respectively given in Fig. 5 (a)-(c). To avoid
repetitiveness, here, we only show how to find the exact
symmetric SDoF for all 3-user TIM-CM topologies. To this
end, we first consider all the 3-user TIM-CM networks for
which symmetric SDoF is zero, i.e., the topologies that satisfy
the conditions of Theorem 1. As indicated in Fig. 6, symmetric
SDoF is zero for networks in Fig. 6 (d), (g), (j), (k), (),
(m), (n), (0), and (p). As an illustrative example, we provide
calculation of the exact symmetric SDoF for the network of
Fig. 6 (0). The calculations for the other topologies (for which
symmetric SDoF is zero) follow a similar analogy and are thus
omitted here to avoid repetition.

Consider the network of Fig. 6 (0). At receiver RXs, we have
To ={1,3} and 75 = {2} UTZ, = {1, 2, 3}. At receiver RX,
we have Z3 = {1,2} and 73 = {3} UZ3 = {1,2,3}. We note
here that for the two transmit-receive pairs TXo — RXo and
Tx3 — RX3, the conditions of Theorem 1 are satisfied because
(1) 2 € I3, (19) 3 € Iy, and (i13) Z3\ {2} = Z2\ {3}. Since the
conditions of Theorem 1 are satisfied, then symmetric SDoF
is zero for this network.

Second, we consider all the 3-user TIM-CM networks for
which SDoF is nonzero, i.e., the topologies that do not satisfy
the conditions of Theorem 1. As indicated in Fig. 6, symmetric
SDoF is nonzero for networks in Fig. 6 (a), (b), (c), (e),
(f), (h), and (i). It can easily be verified that for each of
these topologies, except for the topology of Fig. 6 (h), the
lower bound achieved using the secure partition scheme of
Theorem 2 matches the upper bound obtained through the
result of Theorem 4, thereby leading to their exact symmetric
SDoF. For the network of Fig. 6 (h), we apply the result of
Theorem 2 to find the lower bound. However, we use the result
of Theorem 5 to find its matching upper bound instead of
Theorem 4 because the latter leads to a loose bound.

As illustrative examples, we provide calculations of exact
symmetric SDoF for the networks of Fig. 6 (e) and (h). The
calculations for the other topologies (for which symmetric
SDoF is nonzero) follow a similar analogy and are thus
omitted here to avoid repetition.

Consider the 3-user network of Fig. 6 (e). At receiver RX,
we have Z; = 0 and 7; = {1} UZ; = {1}. At RXo,
we have 7, = {1,3} and 75 = {2} UZ, = {1, 2, 3}. At Rxs,
we have Z3 = () and 73 = {3} UZ3; = {3}. Then, we can
apply the scheme of Theorem 2 by creating a secure partition

= {P1 = {1, 3}, P2 = {2}} and scheduling the transmitters
in 771 to send their respective messages over the first time
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Fig. 5. Case study A: Application of current results to all 2-user TIM-CM networks.
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Fig. 6. Case study B: Application of current results to all 3-user TIM-CM networks.
slot (while the second transmitter 7'Xs acts as a cooperative () = 0. Moreover, we can, for example, pick the multi-

jammer by sending an artificial noise symbol over the first time
slot, i.e., C; = {2}). We schedule the transmitter in Py to
send its message over the second time slot (while 7'x; and
T'X; remain silent over the second time slot, i.e., Co = 0).
Therefore, we achieve a symmetric SDoF of ﬁ = % per
user.

To find the upper bound on symmetric SDoF for the network
of Fig. 6 (e), we apply the result of Theorem 4 as shown next.
Let us pick two disjoint subsets of receivers S; = {2} and
Sy = {3}. We note here that the user in S; has interference
set Zo = {1, 3}, whereas the user in Sy has interference set

Z3 = . Therefore, lel‘ 1T, #0) = X0 csi=2) 1Tr, #
m—lmzwum¢m=zm&m< +

set U(S2) and the two sets Va(S2) and Vi (S1) as follows:
US2) = {T3} = {3}. Va(S2) = 0 because Zs = 0.
Vi(S1) = {3}, where 3 € Z, = {1,3}. Thus, using its
definition, we can calculate 1(Sy, S2) as follows: (81, S2) =
|(U(S2)\V2(S2))\Vi(S1)| = [({3}\0)\ {3}| = 0. Therefore,
using the above, we obtain the following upper bound on
symmetric SDoF:

SDoF*™

< min |S1] + 1(S1,S2)
SLS2 (81 + I 1T, £ 0) + X2 1(T,, #0)
1
2

<
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Thus, for this network, the upper bound matches the lower
bound. This implies that its exact symmetric SDoF is %

Consider the 3-user network of Fig. 6 (h). At receiver RXi,
we have Z; = () and 7; = {1} UZ; = {1}. At Rxo, we have

= {1} and 75 = {2} UZ; = {1,2}. At Rx3, we have
I3 = {1,3} and 73 = {3} UZ3 = {1,2,3}. Then, we can
apply the scheme of Theorem 2 by creating a secure partition
P = {P1 = {1}, P> = {2},P3 = {3}}. In turn, this implies
that we can schedule the transmitter in P; to send its message
over the first time slot (while 7T'X, acts as a cooperative jammer
by sending an artificial noise symbol and 7T'X3 remains silent
over the first time slot, i.e., C; = {2}) and schedule the
transmitter in Ps to send its message over the second time
slot (while T'x; remains silent and T'X3 acts as a cooperative
jammer by sending an artificial noise symbol over the second
time slot, i.e., Co = {3}). Over the third time slot, we schedule
the transmitter in P53 to send its message (while T'x; and
TXs remain silent, ie Cg = ()). Therefore, we achieve a
symmetric SDoF of \7’\ = per user.

Finding the upper bound on symmetric SDoF for the net-
work of Fig. 6 (h) by applying the result of Theorem 4 leads
to a symmetric SDoF of 1, which is greater than the achieved
above lower bound. Since this network contains fractional
signal generators (as in Definition 9), we can improve the
upper bound by applying the result of Theorem 5. As we show
next, this leads to an upper bound that matches the above lower
bound.

Let us, for example, pick two disjoint subsets of receivers
S = {3} and S2 = {1}. According to Definition 9 of
fractional signal generators, Receiver 3 € &1 (which has the
interference set 7o = {1,2}), can generate the set g§1> =
{1,2}, with a permutation sequence T1(3) = (2, 1). Therefore,
this leads to the multi-set G5 = gé” = {1,2}, which is
the collection of all signal sets generated by the receivers in
S1. Following a similar analogy, Receiver 1 € Sy (which
has the interference set Z; = () does not generate any
signals sets, i.e., gf’ = (). Therefore, G52 = gf) = 0.
This implies that 3211 |G| = 3, (5 _(y 1G5 = 2,
whereas Z‘Szl |g(2>| = D m,eSa={1} |Q§33| = 0. Moreover,
we can, for example, pick the multi-set I/ (S2) and the two

sets V(S;) and ])1(81)) as follows: I/{(Sg) ={n} = {1}.

V(Ss) = {n“’ﬁ‘;ﬂ } = 0 because G? = 0. V(S)) =
’”\52\
{H<;‘51‘>|} = {I <g(1>|} = {1}, where 1 € G\ = Z;. Thus,
Sl

using its definition, we can calculate i(S1,Sz2) as follows:
(81, 82) = [(U(S2) \Va(82)) \WV1i(81))| = (L) \ {1} =
0. Therefore, using the above, we obtain the following upper
bound on symmetric SDoF:

SDOFY™
. . |S1| + /1(81,82)
S Qo omim Sil () 521 122
(51.52) (6%1.6%) |8, | + SIS |giD)| 4 S1S] g2
1

< =,
3

Thus, for this network, the upper bound matches the lower

bound. This implies that its exact symmetric SDoF is %
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IV. CONCLUSION

In this paper, we studied the impact of network topology
on symmetric SDoF for the K -user partially connected inter-
ference networks with confidential messages in the absence
of CSIT, except for the knowledge of network topology and
channel statistics, a setting we named the general TIM-CM
problem. We first presented necessary and sufficient condi-
tions for the feasibility of positive symmetric SDoF for any
topology. We then presented inner bounds on symmetric SDoF
for the TIM-CM problem. For the first lower bound, we intro-
duced and demonstrated how to utilize the concept of secure
partition. For the second one, we introduced and showed how
to utilize the concept of secure independent sets. We also
presented outer bounds on symmetric SDoF. First, we showed
how to collectively manage the interference components of
the received signals at all receivers in order to obtain the first
nontrivial upper bound. Then, through our second outer bound,
we demonstrated that the first one can be made tighter in
the presence of fractional signal generators. We also provided
several examples to further clarify the principles behind each
of our proposed results and their application in calculating
symmetric SDoF. In the end, we presented case studies through
which we characterized the optimal symmetric SDoF for all
K-user TIM-CM topologies with K < 3. To the best of our
knowledge, this is the first work to do a comprehensive study
of the general TIM-CM problem.

This work opens up several avenues for future research
directions. The main one is that of finding the exact symmetric
SDoF for the general TIM-CM problem. Another avenue is
to investigate the topology conditions under which the secure
partition based transmission scheme is better than the secure
independent sets scheme in terms of spectral efficiency or vice
versa.

APPENDIX A
PROOF OF THEOREM 1

In this Section, we present the proof of Theorem 1: Its con-
verse is provided in Appendix IV-A, whereas the achievability
is provided in Appendix I'V-B.

A. Converse Proof

Consider the K-user TIM-CM network and suppose there
exists a pair of users 4,5 € {1,2,..., K}, for i # j, such
that (i) ¢ € Z;, (i1) j € I;, and (4i1) Z; \ {j} < Z; \ {i},
i.e., satisfying the conditions of Theorem 1. The signals seen
at receivers RRX; and RX; at time ¢ can then be written as
follows:

Yi(t) = hiXi(t) + Y himXm(t) + Zi(1), (11)
mel;

Y;(t) = + D X8+ Z5(0). (12)
meZ;

We next show that since the considered user pair ¢, j satisfies
the conditions of Theorem 1, then positive symmetric SDoF
is not feasible, i.e, it is zero. To this end, we now create a
virtual receiver Rx; which is a genie-enhanced version of the
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original receiver RX;. Note that Z; = (Z; \ {i}) U {i}, and by
condition (23i) Z;\{j} C Z;\{i}. Therefore, (Z;\{j})U{i} C
(Z; \ {i}) U{i} = TZ;. Since (Z; \ {j}) U {¢} is a subset of
7;, we can let receiver Rx; be as shown next. Consider the
received signal at RX; and let a genie provide the interfering
signals set X}l \Z; (i.e., corresponding to the interference index
set Z; \ Z;) to receiver RX;. This leads to an enhanced receiver
ij w1th the following output at time ¢:

Yj(t) = hj X;(t) + Pjm X (t) + Z;5(1)-
me(Z\{jHufi}

(13)
We note here that, if receiver RX; can decode so can receiver
Rx; because (Z; \ {j}) U {i} is a subset of Z;. The above
enhancement leads to a statistically equivalent receive pair
(Rx;, Rx;) that can be represented by a 2-user symmetric
interference network defined by:

= > him X (t) + Zi(t) (14)
meT;
= Y himXm(t) + Z;(t), (15)
mET

where 7, = {j} U (Z; \ {j}) U {i} = T;. To complete the
proof, we use the remaining steps to show that the SDoF at
the original receiver I2X; is upper bounded by the SDoF at the
enhanced receiver ij, which is zero. To this end, we start
by upperbounding the secrecy rate I%; at IRX; as follows:

nR; = H(W;H) (16)
—I(W],Y}n|7'l)+H(Wj|Y}n,H) 17
= I(W;; Y] [H) 4 no(n), (13)

< I(WjYJ', X7,\7,IH) + no(n) (19)

= (W5 X3 [H) + LWy Y7 XR 5 ) + no(n) (20)

= I(W;; Y} | X7 \7,, H) + no(n) (2D

= I(Wy; Y]”|H) +no(n) (22)

= I(W;;Y"|H) + no(n) (23)

= no(n), (24)

where (18) is due to the decodability constraint in (3), (19) is
due to the enhancement by a genie providing the interfering
signals set X}l 7, to receiver I?X;, and (20) follows from the
chain rule of mutual information. Equation (21) is due to the
independence of W; from X IJ\L-’ whereas (22) follows from
the fact that f/j" is the enhanced version of Y. Equation (23)
is due to the fact that the joint distribution of (W}, }7’]”) is the
same as the joint distribution of (W;,Y;"), whereas (24) is
due to the secrecy constraint in (4). Taking the limit of (24)
as n — 0o, we get I}; = 0. This implies that the symmetric
secrecy rate is zero. Therefore, by Definition 3, symmetric
SDoF is also zero. |

B. Achievability Proof

Our aim is to show that symmetric SDoF is nonzero, if the
conditions of Theorem 1 are not met. Consider the K-user
TIM-CM network and suppose there is no single pair of
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users 4,5 € {1,2,...,K}, for i # j, within the network
that satisfies the conditions of Theorem 1. We next provide
a simple secure TDMA algorithm that achieves SDoF of %
The proposed secure transmission works as follows: Let C;
be the index set of transmitters that have to act as cooperative
jammers (by sending artificial noise symbols) during the tth
time slot. The following steps show how each transmitter 7'Xg,
for k € {1,2,..., K}, can securely transmit its message Wj
during time slot ¢ € {1,2,...,T}:
(i) Let Tx;, send W}, over the tth time slot.
(ii) Let all transmitters in {{T%;} £, 2t @ € Ce} send artificial
noise symbols during time slot ¢.

(iii) Let all transmitters {{TXi}f;ki i ¢ C;} remain silent
during time slot ¢.

(iv) Repeat steps (i) — (iit) for a total of T'= K times.
We are thus able to separately serve the K users over a
transmission block of length T = K time slots, which leads
to a symmetric SDoF of - per user. Note that % is the
least symmetric SDoF that can be achieved for any TIM-CM
topology that is symmetric SDoF feasible. |

APPENDIX B
PROOF OF THEOREM 4

Consider the signal Y;* received at RX;, over transmission
blocklength n. For simplicity of notation, we denote H}}, =
hy;I,, as the channel matrix between transmitter 7'X; and
receiver RX;, over a block of length n, where hy; is the
time-invariant channel coefficient and I,, is the n x n identity
matrix. We invoke decodability and confidentiality constraints
to upper bound the secrecy rate Ry, at RXj as follows:

nRy, = HWi|H) (25)
I(Wi; Yi'[H) + H(Wi| Yy, H) (26)
= I(Wg; Y H) + no(n) (27)
I(Wi; Yi'H) = I(Wz,; Y{'[H)
+ IWrz,; Y H) + no(n) (28)
= h(Yy' Wz, H) — h(Y}! Wy, 'H)
+ IWr,; Y H) + no(n) (29)
= h(Y;*|Wz,, H)
— WY Wi, H) + no(n) (30
< WYP Wz, H)
= h(Y, Wi, X2, H) + no(n) 31
= h(Y;* Wz, H)
— WYX H) + no(n) (32)
= h(Y' Wz, , H)
—h <Z Hy, X!+ Z0 | X]! H) + no(n) (33)
€Ty,
= h(Y}|Wz,, H)
—h (Z H X!+ 7 ) + no(n) (34)
€Ty

h(Yy! Wz, H)
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(T

€Ly
= h(Yy' Wz, H) — h(Hi; X[ + Zi'[H) + no(n),

(36)

for all « € Zj. Here, (27) is due to Fano’s inequality, (29)
comes from the identity I(X;Y) — I(X;Z) = h(X|Z) —
h(X|Y), (30) is due to the secrecy constraint in (4), (31) is
due to the fact that conditioning reduces entropy, (32) follows
from the Markov chain W), — X' — Y}, and (35) is due to
the fact that conditioning reduces entropy. Starting with (36),
we can then proceed as follows.

nRy, < h(Yy'|Wr,, h(H; X3 + Zi[H) + no(n)

H) —

= WY Wq,, H) — h(Y*|H) + no(n) (37)
= h(Y Wz, H) — (W5 Y| H)

— h(Y"|W;, H) + no(n) (38)
= h(Y* Wz, H) — H(W;|H) + H(W;|Y", H)

— h(Y*|Wi, H) + no(n) (39)
= WY | Wz, , H) — nR; + H(W;|Y", H)

— h(Y*|Wi, H) + no(n) (40)

= h(Y*|Wz,, H) — nR; — h(Y*|Wi, H) + no(n),
(41)

for all ¢ € Z;, and where (37) follows from substitution f/;” =
Hp, X" + Z}'. Here, (41) is due to the fact that Y;* is the
enhanced version of the signal Y;" seen at receiver RX;, and
therefore due to the decodability constraint, H (W;|Y;", H) =
o(n).

We now bound (41) in two different ways. We start with
the first type of bound as follows:

n(Ri + R) < h(Yi[Wr,, H) — h(Y]"|Wi, H) + no(n)

(42)
< WY [H) — h(Y" Wi, H) +no(n)  (43)
< nlog(P) — h(Y;"|W;, )

+ no(n) + no(log(P)), (44)

for all 7 € Zj,. Here, (42) follows from rearranging the terms in
(41), (43) is due to the fact that conditioning reduces entropy,
and (44) follows from the fact that Gaussian distribution
maximizes entropy [8]. We note here that, for any receiver
Rx;. with interference set Z;, = (), we would get the following
bound instead of (44): nRy < nlog(P) + no(log(P)).

We next derive the second type of bound. We start by
bounding (42) as follows:

n(R; + Ry.) < h(Y*|Wx,, H) — h(Y;*|W;, H) + no(n)
<nRp+ Y (Y)W, H) — h(Y]"[Wi, H)
JETK

+ no(log(P)) 4+ no(n), (45)

for all ¢ € 7j, and where 7}, = {k} U Z},. Here, (45) follows
from bounding h(Y;*|W<,,H) using Lemma 1 below whose
proof is in Appendix IV-B.
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Lemma 1: Let Y* = H}, X"+ Z7", for all i € T, = {k}U
Ty, then we have the following:

WY Wz, H) <nRx+ > h(Y]'|W;, H)
JETK
+ no(log(P)). (46)

By simplifying (45), we then obtain the desired second type
of bound:

nli; < Z h(%nle,r}_o - h(f@"|WmH)
JET
+ no(log(P)) + no(n). 47)
Similarly, we note that for any RX; with Z, = 0,
we would get the following bound instead of (47): 0 <
Zje']’k h(}/;n|W]7H) - h(ykn|Wka H).

For the purpose of the current paper, we are interested in
symmetric SDoF. Therefore, we can now drop the indexing
and instead use the notation R; = R¥Y™ Vi € {1,2,...,K},
which represents the symmetric secrecy rate at any receiver.
Moreover, as shown by (44) and (47), we get two types of
bounds on RSY™. Consider the receiver RX;. Then, from (44),
we directly obtain the following first type of bound:

2nRY™ < nlog(P) — h(Y"|W;i, H)

+ no(n) + no(log(P)), (48)
for all + € Z),. We again note here that, for any receiver RXj
with Zp, = (), we would get nR¥Y™ < nlog(P) + no(log(P))
instead of (48). The second type of bound follows from (47)
and is given by:

nRY™ <N AV W, H) = h(Y]" Wi, H)
JET
+ no(log(P)) + no(n), (49)
for all ¢ € Zj and where 7, = {k} U Zj. Similarly,
we note that, for any Rx, with Z, = (), we would get
0< 3 eq WY W, H) = h(Y"|Wi, H) instead of (49).

We now remark the following fact which is heavily used in
the subsequent steps of this proof.

Remark 3: Due to the absence of CSI at the transmitters,
i.e., no CSIT under the TIM-CM framework, and the fact that
the channel coefficients are i.i.d., the enhanced signal f/z” =
Hy, X"+ 77 s statistically equivalent to the enhanced signal
Y;"=H}X+ 277, forall k #j€{1,2,...,K}.

We can now proceed as follows: Pick any two arbitrary
and disjoint subsets of receivers S; and So, i.e., such that
S NSy =0 and 8,8 C {1,2,...,K}. For all receivers
in S1, we can apply the first type of bound (48), and for
all receivers in So, we apply the second type of bound (49).
Then, we can add up the resulting |S1| + |S2| equations and
see the resulting cancellation possible as a function of the set
choices (S1,S2). Moreover, suppose Sy = {71,72,...,7(s,|}
and Sy = {my,ma,...,ms,}. Thus, by adding up all the
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equations and rearranging terms, we obtain the following:
|S1]

nRY™ |81 + > 1(Z,, #0)
p=1

|S2|

+ nRY™ Z (Zm, # 0)

< |31|n10g( )+n0(10g( )) + no(n)

+ D> WY WL H)

mgESs iEZ,Lq

U(S2)
- > AW, H)

Jq€LmgmqES2

V2(S2)
> WY Wi, H). (50)
Ly EI,,.p TpESY
V1(S1)

Starting with the last three terms in (50), it is clear that the
aim should be to choose the indexes for signal components
corresponding to the set choices &1 and S; in a way that
allows the maximum cancellation of the entropy terms, while
taking advantage of the signal distribution properties stated
in Remark 3. Depending upon the network topology G, this
cancellation will then result in zero or more positive entropy
terms. We calculate the number of these remaining positive
entropy terms as shown next.

To calculate the number of (positive) entropy terms result-
ing from >° s > ier, h(Y*|W;i, H), we can use the
cardinality of the collection of all index sets of transmit-
ters whose signals are respectively seen at the receivers
in So = {my,ma,...,ms, }. We denote this multi-set
of transmitter indexes as U(Sz) = {qu}‘szl To calcu-
late the number of (negative) entropy terms resulting from
quezmq-mqesz h(Yf“qu ,’H), we use the cardinality of the
set denoted by V2(S2) = {ji,j2,..,J|s,}> Which is an
arbitrary set of indexes j, € Z,, for my € S. Similarly,
to calculate the number of (negative) entropy terms resulting
from ZepeIrp:rpesl h(f’engp,H), we use the cardinality
of the set denoted by Vi(S1) = {l1,42,...,{s, }, which
is an arbitrary set of indexes ¢, € Z, for r, € & =
{7“1, T2, ... ,7“‘31‘}.

From the defined above three sets, we can then calculate
the resulting number of (positive) entropy terms as follows:

)= min

PSS = | min [U(S2) \Va(S2) \ Vi8] 5D

As indicated in (2), each signal is transmitted with an
average power constraint P. Thus, each of the u(Sy,S2)
entropy terms can be upper bounded by nlog(P). Therefore,
using (50) and (51), we can upper bound the secrecy rate as
follows:

nRsym
|S1|nlog(P) + p1(S1, S2)n log(P)
TS+ (T, £ 0) + 21T, #0)
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N no(log(P)) 4+ no(n) .
(Si|+ I 1T, £ 0)+ S22 1T, £ 0)

Then, by dividing both sides of (52) by nlog(P), minimizing
over all choices of (Si, S2), and taking the limit as n — oo and
P — oo, we obtain the following upper bound on symmetric
SDoF:

(52)

SDoF™™
< min [S1l+ 151, S2)
LS |81+ o UT, £ 0) + 2 (T, #0)
(53)
which completes the proof of Theorem 4. |

APPENDIX C
PROOF OF THEOREM 5

We now present the proof of Theorem 5. As it will be
demonstrated by the steps below, the main difference between
Theorem 4 and Theorem 5 lies in the way, for a given
receiver RXy, we lower bound the entropy of the interfer-
ing signals’ component h (ZiEIk H} X" + Z}|H) from (34)
when receiver RXy, is fractional signal generator as given by
Definition 9.

Consider the signal Y;* received at RX; over transmission
blocklength n. Starting with (34), we can upper bound the

1€Ty

symmetric secrecy rate R¥Y™ as follows:
) + no(n)
< WY Wz, , H) — n|Gk|RY™

- h(Yl—TIL‘gk‘ |Wn\gk\ ) H) + TZO(TZ),

nRY™ < h(Y" Wz, , H)

—h <Z H X!+ 2]

(54)

where ngkl € Gr C 7y and (54) follows from Lemma 2
below whose proof is in Appendix IV-B.

Lemma 2: Let Y* = H}, X+ 77, forall i € Ty, = {k} U
T, and consider any set G, C Z;, and a permutation sequence
k) = (IIy,1Io, .. . 1Ijg,|) of the elements of G satisfying
Definition 9, then

h (Z HY, X!+ 77

€Ly,

) > n|Gy| R¥™

+ (Y7, H‘g W, |, H) +no(n).

We now bound (54) in two different ways. We start with
the first type of bound as follows:

nRYM < h(Y Wz, , H) — n|G| RS™
— Y, (Wi, H) + no(n)
< BV [H) = nlGi O

(55)

— h(YﬁL‘gk‘ (Wi, »H) +no(n)  (56)
< nlog(P) — n|Gy|R¥™

BT Wi, )

+ no(n) + no(log(P)), (57)
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where Iljg,| € Gr C Ty, (56) is due to the fact that condi-
tioning reduces entropy, and (57) follows from the fact that
Gaussian distribution maximizes entropy [8]. By rearranging
the terms in (57), we then obtain the desired first type of
bound:

nRY™(1 4+ |Gi|) < nlog(P)

_ h(f/g‘gk‘ [Wiig, |» H) + no(n), (58)
where Ilig, | € Gr C Zy. We next derive the second type of
bound. To this end, we start with (54) as follows:

nRY™ < h(Y{|Wz,, H) — n|Gy| Y™

<nRI™ 4 3 WV Wi, H) + no(log(P))
1€Ty,
— nlGi [ RO — WY, [Wing, /M) +no(n),  (59)
where IIjg, | € G C Zj; and (59) follows from upperbounding
h(Y;|Wz,, H) using Lemma 1. By simplifying and rearrang-
ing the terms in (59), we then obtain the desired second type
of bound:

nRYMG| < Y h(Y] Wi, H)
€Ty,

—h(Yf, Wi, 1. H) +no(log(P)) + no(n),  (60)

where H|gk| € G C Iy.

We can now proceed as follows: Pick any two arbi-
trary and disjoint subsets of receivers &1 and So, i.e., such
that S NSy = 0 and S1,82 C {1,2,...,K}. Suppose

S = {7“1,7“2,. .7|5,|}- Consider a collection of sets G =
{g,n1 , ,nz ,.. 5“15 '} such that Receiver 7, is a genera-
tor of gr C Z,, for all p € {1,2,...,[S1|}, with a
permutation I10») = {H(T‘“) H(T‘“) Hl(gzl))l} according to
Definition 9. Similarly, suppose Sy = {mi,ma,...m s, }.
Consider a collection of sets G52 = {g,(,?f, 53;, . 53‘)52‘}

such that Receiver m, is a generator of g,(,%g g T,
for all ¢ € {1,2,...,|S2|}, with a permutation IT(™¢) =
{H(mQ) H(m“) ("’(; } according to Definition 9. Then,

Gm q

for all receivers in 81, we can apply the first type of bound
(58), and for all receivers in So, we apply the second type
of bound (60). Then, we add up the resulting |S;1| + |S2]
equations, and see the resulting cancellation possible as a
function of the choice of (S;, S, G, G52). Thus, by adding
up all the equations and rearranging terms, we obtain the
following:

[S1] |S2|
nRYM S|+ ) (GO | +nRY™Y "GP
p=1 q=1

< |S1|nlog(P) + no(log(P)) + no(n)

+ > > (YW, H)

MgES2 €T,

U(S2)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

— E h H(,,Lq) W (mq) ,H
1me) 1682 \9<2> !
o eImq:mquQ
G|
V2(S2)
- > h Vi [Wyen H ©61)
) BT
" (1>‘€I pE€SL
V1 (S1)

Starting with the last three terms in (61), we follow the
same logic as in the proof of Theorem 4. Clearly, the aim
here should be to choose the indexes for signal components
corresponding to the set choices &7 and S; in a way that
allows the maximum cancellation of the entropy terms, while
taking advantage of the signal distribution properties stated
in Remark 3. Depending upon the network topology G, this
cancellation will then result in zero or more positive entropy
terms. We calculate the number of these remaining positive
entropy terms as shown next.

To calculate the number of (positive) entropy terms
resulting from que& Ziequ h(Y;*|W;, H), we can use
the cardinality of the collection of all index sets of
transmitters whose signals are respectively seen at the
receivers in So = {mi,ma,...,ms, }. We denote this

multi-set of transmitter indexes as U(Sz) {Tm, }LS:ZI‘

To calculate the number of (negative) entropy terms

resulting from »° () B h(Y may [Whima)  H),
lglay e \g(3>\ \953;\

we use the cardinality of the set denoted by Vi(Sy) =

m m (mysy))

{H|(g<;>)\ Hl(gé)) 'H‘g<2>2 I} which is an arbitrary set
m T syl

of indexes Hl(;g? € Ip, for my € Sp. Similarly,

to calculate the number of (negative) entropy terms result-
ing from 3_ () €z, ryes, h(YH(,p> W s H), we use

\95”\ 16D \95”\
the cardinality of the set denoted by Vi(S;)) =
{H(“(z) H(sz) ...H(T‘(f)“ }, which is an arbitrary set of
1952177165517 195,
indexes Hl(g‘“f)l € 1., for r, € Si. From the defined

above three sets, we can then calculate the resulting number
of (positive) entropy terms as follows:

(81, 82) = |(U(S2) \ V2(S2)) \ Vi(S1))]-

As indicated in (2), each signal is transmitted with an
average power constraint P. Thus, each of the [i(S;,S2)
entropy terms can be upper bounded by nlog(P). Therefore,
using (61) and (62), we can upper bound the secrecy rate as
follows:

(62)

|S1|n log(P )+ﬁ(51752)n10g(P)
[S1]+ S 165 + Sl 1gn)]
no(log(P)) + no(n)
SIS ED Wt

Then, by dividing both sides of (63) by nlog(P), minimizing
over all choices of (S, Sa, Gst, QS2), and taking the limit as

nRY™ <

(63)

Authorized licensed use limited to: The University of Arizona. Downloaded on December 12,2022 at 20:41:38 UTC from IEEE Xplore. Restrictions apply.



MUTANGANA AND TANDON: TOPOLOGICAL INTERFERENCE MANAGEMENT WITH CONFIDENTIAL MESSAGES

n — oo and P — oo, we obtain the following upper bound
on symmetric SDoF:

SDoFY™
< : |S1| + /(S1, 52)
= (S1isy) (64168 [Si 60 [S2] (g
(81:82) (651.9%2) |8y [+ 32021 Gry | + 22021 19 |
(64)
which completes the proof of Theorem 5. |

APPENDIX D
PROOF OF LEMMA 1

Let Y* = HY, X'+ Z}!, for i € T, = {k} UZ},. To prove
Lemma 1, we proceed as follows:

h(Y Wz, H) = I(Wi; Vi Wz, , H)

+ h(YkﬂW{k}UIk,H) (65)
< I(Wi; Yy, Y7 [Wr, , H)
—+ h(Ykn|W{k}UIk,H) (66)
= [(Wi; Y [Wa,, H) + T(Wi, Y2 [V, Wr, , H)
+ h(YE' Wiz, H) (67)

= H(Wy|Wz,, H) — H(Wy|Y;", Wz, , H)
+ I(Wye, Y2 |3, Wr, H) + RV Wik oz, H)
= H(Wi|H) — HW,|Y;", H)
+ I(Wie, Y2 |3, Wr, H) + RV Wik oz, H)
= nRi + no(n) + I(Wi, Y7 |V, W, , H)
+ h(Y Wiz, » H)
= nRi + no(n) + h(YL |V, Wz, , H)
— Y2 Y, Wioz, s M) + AV Wiaoz, H)
nRy + no(n) + h(f/ﬂ Wz, H)
— h(YZ [V, Winyorz,, H) + B Wikyuz, , H)
< nRy +no(n) + h(Y7 Wz, H)
— h(YZ Y Wiz, X2, H)
+h(YE' Wiz, M)
= nRi + no(n) + h(Y7 Wz, , H)
— h(YP |, X2 Wi H) + WY Wikyoz, . H)
= nRi + no(n) + h(Y7 Wz, , H)

(68)

(69)

(70)

(71)

IN

(72)

(73)

(74)

= WZ7, 1Y Wi, H) + (Y W ikyuz, . H) (75)
< nRy + no(n) + h(}}ﬁc Wz, , H)

= hZz,) + h(Y Wikyuz,, H) (76)
= nRy + no(n) + h(}}ﬁc Wz, , H)

+ no(log(P)) + h(Y' Wikyuz,, H) (77)
< nRy + no(n) + h(ffﬁ Wz, , H)

+ no(log(P)) + h(Y' Wi, H) (78)
=nRy, +no(n) + > _ h(Y]'|W;, H)

JE€Tk
+ no(log(P)) + h(Y' Wk, H) (79)

=Ry, + Y W(Y]'|W;, H) + no(log(P)) + no(n), (80)
JET,
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where (67) is due to the chain rule of mutual information, (69)
follows from the independence of the message W) from the
interfering message set Wz,, (70) is due to the decodability
constraint in (3), (72) and (73) follow from the fact that
conditioning reduces entropy, (74) is due to the Markov chain
Wz, — X7 — f/ﬁ , (76) and (78) follow from the fact that
conditioning reduces entropy, (79) is due to the independence
of W; from the message set Wz, \ 15}, and (80) follows because
T = {k} UL, |

APPENDIX E
PROOF OF LEMMA 2
Let Y* = HL, X! + Z, for all i € T, = {k} UT,
and consider any set G C 7 and a permutation sequence
k) = (IIy,1Io, .. . 1Ijg,|) of the elements of G satisfying
Definition 9. We proceed with the proof of Lemma 2 as

follows:
H)

h (Z H X! + 2]

€T
> h (Z Hy, X7+ Z?‘Xmgk,H) 81
1€y
=h ( > Hin Xf, +Zf H) (82)
11, €6k
=1 (Wnl; > Hpn, X, + Z¢ H)
II,€Gk
th ( > Hig Xt +7Z) Wnl,H> (83)
;€0
= H(Wn, [H)
—H <WH1 > Hp X+ Z,:,H)
11, €6
th ( > Hin Xij, + Z,?‘Wnl,H> (84)
;€0
— nRYM _ [ (WH1 Z HZH,-X& + Zﬁ’}—[)
;€0
+h < Y Hin Xi, +2¢ Wnl,H) (85)
I1; €6k
= nR¥™ + no(n)
;€0
> nR¥Y™ + no(n)
+h < Y Hin X, +2¢ Wnl,an,H> (87)
I1; €6k
= nR¥™ 4 no(n)
+h ( > Hin Xfi, + Z¢ an,H> (88)
;€0

=nR¥™ + no(n)
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+h| Y Hp Xk + Zp|H (89)
I1;,€Gy \ 111
> n|Gy|RY™ + h(Yr’f‘gk‘ Wi, » H) + no(n), (90)

where H\Gk\ € Gr C I (81) follows from the fact that
conditioning reduces entropy, (86) is due to Definition 9’s

fractional signal generator condition Gy, \ {II;, s, ..

SIL} C

In,, for i = 1,2,...,|Gk|, and the decodability constraint in

3,

(87) is due to the fact that conditioning reduces entropy,

(88) is due to the Markov chain Wy, — Xﬁl — Yl-’fl, whereas
(90) is obtained by repeatedly applying steps (82)-(89) for a
total of |G| times. [ |
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