
Sampling-Based Nonlinear MPC of Neural Network Dynamics with

Application to Autonomous Vehicle Motion Planning

Iman Askari1, Babak Badnava1, Thomas Woodruff2, Shen Zeng3 and Huazhen Fang1

AbstractÐ Control of machine learning models has emerged
as an important paradigm for a broad range of robotics
applications. In this paper, we present a sampling-based
nonlinear model predictive control (NMPC) approach for
control of neural network dynamics. We show its design
in two parts: 1) formulating conventional optimization-based
NMPC as a Bayesian state estimation problem, and 2) using
particle filtering/smoothing to achieve the estimation. Through
a principled sampling-based implementation, this approach
can potentially make effective searches in the control action
space for optimal control and also facilitate computation toward
overcoming the challenges caused by neural network dynamics.
We apply the proposed NMPC approach to motion planning for
autonomous vehicles. The specific problem considers nonlinear
unknown vehicle dynamics modeled as neural networks as well
as dynamic on-road driving scenarios. The approach shows
significant effectiveness in successful motion planning in case
studies.

I. INTRODUCTION

Machine learning has risen as an important way for mod-

eling and control of complex dynamic systems to accelerate

challenging robotics applications [1]±[3]. This emerging field

has witnessed advances, especially based on two frameworks.

The first framework exploits reinforcement learning to train

robots such that they learn optimal control policies from

experiences to accomplish certain goals [4]. Despite successes

in tackling various tough problems, this framework in general

demands hefty amounts of training data and offers difficult

generalization to tasks different from specified goals [4]. By

contrast, the second framework seeks to integrate machine

learning-based modeling with optimal control [1]. Specifically,

it extracts data-driven models for robotic systems and then

synthesizes optimal control using such explicit models. The

corresponding robot control methods would arguably present

higher data efficiency and generalizability. Associated with

this, a still open question is how to enable control design that

well fits with machine learning models, which continually

calls for the development of constructive methods.

In this study, we consider the problem of controlling

neural network models for dynamic systems and investigate

nonlinear model predictive control (NMPC) for them. Neural

1I. Askari, B. Badnava and H. Fang are with the Department of Mechanical
Engineering, University of Kansas, Lawrence, KS 66045, USA (e-mail:
askari, babak.badnava, fang@ku.edu).

2T. Woodruff is with the Department of Electrical Engineering and
Computer Science, University of Kansas, Lawrence, KS 66045, USA (e-mail:
tjwoodruff@ku.edu).

3S. Zeng is with the Department of Electrical and System Engi-
neering, Washington University, St. Louis, MO 63130, USA (e-mail:
s.zeng@wustl.edu) and was supported by the NSF grant CMMI-
1933976.

networks have gained increasing use in modeling robots with

complicated dynamics. However, the application of NMPC

to them is non-trivial. Conventional NMPC entails online

constrained optimization, but numerical optimization of neural

network dynamics can be extremely burdensome due to a mix

of nonlinearity, nonconvexity, and heavy computation. This

is particularly true when a neural network has many hidden

layers and nodes. In addition, some robotics applications

involve cost functions that have zero gradients, precluding

the use of gradient-based optimization.

To address the challenge, we propose to leverage a

new NMPC approach, which was developed in our pre-

vious study [5] and named constraint-aware particle fil-

tering/smoothing NMPC (CAP-NMPC), to control neural

network dynamics. Departing from the optimization-based

view, the CAP-NMPC interprets NMPC through the lens

of Bayesian estimation and designs a constrained particle

filtering/smoothing method to achieve it. This approach, at its

core, uses sequential Monte Carlo sampling to estimate the

optimal control actions from a reference signal that is to be

followed by the neural network model over a receding horizon.

The sampling-based implementation is arguably advantageous

in several ways for control of neural network dynamics. It can

make sufficient search for the best control actions across a

large control space when using adequate numbers of particles.

The sampling-based computation also obviates the need for

iteratively computing gradients and is relatively easy and

efficient to achieve.

We further consider the problem of motion planning for

autonomous vehicles. We construct a neural network model to

capture the vehicle dynamics and then use the CAP-NMPC

to perform motion planning in dynamic driving scenarios

(e.g., lane changing and moving obstacles). The simulation

results demonstrate the effectiveness of the design.

II. RELATED WORK

Neural networks have proven useful for data-driven mod-

eling of many systems that resist analytical modeling or

suffer significant modeling uncertainty. A common approach

is using feedforward neural networks to approximate the state

dynamics functions. While simple network structures can be

enough for some systems [6]±[9], the recent development of

deep neural networks has allowed to capture more complex

dynamics [10], [11]. Further, recurrent neural networks can

effectively learn closed-loop or residual dynamics [12], [13].

Based on the prediction by a neural network model, NMPC

can be readily designed to predictively optimize a system’s

behavior, as is pursued in [6]±[13]. Yet, numerical optimiza-

tion in this setting is recognized as a thorny issue [9], [10],

as gradient-based methods often find themselves inadequate

and computationally expensive in the face of nonconvex

optimization of neural network dynamics. Gradient-free

NMPC is thus desired, and the sampling-based approach holds

significant promise. A simple random-sampling shooting

method is used in [11] to treat NMPC of a deep neural

network model, which generates control action sequences

randomly and chooses the sequence that leads to the highest

expected cumulative reward. The study in [9] formulates

information-theoretic NMPC for neural network models and

then synthesizes an algorithm based on iteratively weighting

sampled sequences of control actions. A direct estimation

approach to motion planning for autonomous vehicles is

presented in [14], where the planning requirements are

modeled as measurements and the trajectory of the vehicle

is inferred using a particle filter. The CAP-NMPC approach

differs from [9], [11], [14] on three aspects. First, it is

developed from the perspective of Bayesian estimation and

builds on particle filtering/smoothing to solve the NMPC

problem, which is different that the direct filtering approach

in [14]. This feature also allows for diverse realizations of

the CAP-NMPC since the literature includes a rich set of

particle filtering/smoothing techniques. Second, rather than

randomly creating all the control action samples at once and

then evaluating their competence (e.g., cumulative rewards or

weights), this approach generates samples sequentially based

on the neural network model and then weights and resamples

them. This principled manner has the potential to search the

control space more effectively. Third, by design, the CAP-

NMPC approach takes generic state and input constraints into

account, as needed for robotic systems subject to operating

constraints.

A critical function of autonomous driving, motion planning

has attracted enormous interest in the past decade. State of the

art has three main approaches: input space discretization with

collision checking, randomized planning, and NMPC [15]±

[17]. Among them, NMPC can optimize vehicle motion using

sophisticated vehicle models under practical constraints, thus

capable of planning and executing safety-critical, aggressive

(near-limit), or emergency maneuvers in complex environmen-

tal conditions [17]. NMPC-based motion planning has gained

a growing body of work recently, e.g., [9], [18]±[23], just

to highlight a few. However, almost all studies, except [9],

consider physics-based vehicle models to our knowledge,

even though modeling errors or biases are inevitable in the

real world. Neural network vehicle models have demonstrated

substantial achievements recently [24]. This paper will study

motion planning based on them, using the CAP-NMPC

approach as the enabling tool.

III. THE CAP-NMPC APPROACH

In this section, we provide an overview of the CAP-NMPC

approach. A more detailed description is available in [5].

A. NMPC through the Lens of Bayesian Estimation

Consider a nonlinear dynamic system of the form:

xk+1 = f(xk, uk), (1)

where xk ∈ R
nx is the system state, and uk ∈ R

nu is the

control input. The nonlinear mapping f : Rnx × R
nu →

R
nx characterizes the state transition. Here, it represents a

feedforward neural network model learned from data made

on the actual system, or a hybrid model combining physics

with neural networks. The system is subject to the following

inequality constraints:

gj(xk, uk) ≤ 0, ∀j = 1, . . . ,m, (2)

where m is the total number of constraints. We consider an

NMPC problem such that xk tracks a reference signal rk,

which is stated as follows:

min
uk:k+H

k+H
∑

t=k

u⊤t Qut + (xt − rt)
⊤R(xt − rt), (3a)

s.t. xt+1 = f(xt, ut), (3b)

gj(xt, ut) ≤ 0 ∀j = 1, . . . ,m, (3c)

t = k, . . . , k +H,

where H is the length of the upcoming horizon, uk:k+H =
{uk, uk+1, . . . , uk+H}, and Q and R are weighting matrices.

The above problem is solved through time in a receding-

horizon manner by computing the optimal control input

sequence u∗k:k+H . At every time, the first element, u∗k will

be applied to control the system, and the rest discarded. The

same optimization and control procedure will repeat itself

recursively at the future time instants.

While the NMPC problem in (3) is usually solved through

numerical optimization in the literature, it can be interpreted

as a Bayesian estimation problem and thus addressed. The

following theorem shows this connection [5], [25].

Theorem 1: For the horizon t = k, . . . , k + H , consider

the virtual system










xt+1 = f(xt, ut),

ut+1 = wt,

rt = xt + vt,

(4)

where wt ∼ N
(

0, Q−1
)

, vt ∼ N
(

0, R−1
)

, and the reference

rt serves as virtual measurements. The maximum likelihood

estimation of xt and ut via

max
xk:k+H ,uk:k+H

log p(xk:k+H , uk:k+H | rk:k+H), (5)

where xk:k+H = {xk, xk+1, . . . , xk+H} (similarly for

uk:k+H and rk:k+H), is equivalent to the NMPC problem

in (3) without the inequality constraints in (3c).

Theorem 1 indicates that the original NMPC problem can

be converted into the problem of estimating the optimal

control actions along with states given the specified reference.

This viewpoint then ushers a new way of treating NMPC

through estimation methods.

Before proceeding further, we explain how to incorporate

the inequality constraints into a Bayesian estimation proce-

dure, since they are an integral part of the NMPC formulation.

Here, we adopt the barrier function method to create virtual

measurements about the constraint satisfaction:

zt = ϕ (g(xt, ut)) + ηt, (6)

where z is the virtual measurement variable, g is the collection

of gj for j = 1, . . . ,m, η is an additive small noise, and ϕ
is a barrier function. Here, ϕ is chosen to be the softplus

function:

ϕ(s) =
1

α
ln (1 + exp(βs)) , (7)

which is parametrized by two tuning factors α and β.

Note that ϕ is fully continuous and through appropriate

parameterization, outputs almost zero at a point within the

constraint set and large values at points outside the set.

Hence, ϕ can be used to quantify the constraint satisfaction

or violation, and we let the virtual measurement zt be 0.

Further, we can include zt into (4) to allow estimation with

an awareness of constraints.

Now, consider (4) along with zt and rewrite it compactly

in an augmented form:
{

x̄t+1 = f̄(x̄t) + w̄t,

r̄t = h̄(x̄t) + v̄t,
(8)

for t = k, . . . , k + H , where x̄t =
[

x⊤t u⊤t
]⊤

, w̄t =
[

0⊤ w⊤
t

]⊤
, v̄t =

[

v⊤t η⊤t
]⊤

, f̄ stems from f , and h̄ results

from rt and zt. Based on the above, to address the original

NMPC problem in (3), we only need to perform state

estimation for the above augmented system via

max
x̄k:k+H

log p(x̄k:k+H | r̄k:k+H). (9)

This can be achieved by particle filtering/smoothing, which

is known as an effective means of state estimation for even

highly nonlinear systems.

B. Development of the CAP-NMPC Approach

The state estimation problem in (9) involves both filtering

and smoothing. We first look at the forward filtering by

considering p(x̄k:t | r̄k:t) for k ≤ t ≤ k + H . Because it

is practically impossible to obtain an analytical expression

of p(x̄k:t | r̄k:t) for nonlinear systems, we approximate it

by using a sample-based empirical distribution. A common

and useful approach is to do importance sampling. That is,

one draws samples from an alternative known distribution

q(x̄k:t | r̄k:t), which is called importance or proposal dis-

tribution, and then evaluate the weights of the samples in

relation to p(x̄k:t | r̄k:t). Suppose that N samples, x̄ik:t for

i = 1, . . . , N , are drawn from q(x̄k:t | r̄k:t). Their importance

weights are given by

W i
t =

p(x̄k:t | r̄k:t)

q(x̄k:t | r̄k:t)
, (10)

which are then normalized to be between 0 and 1. As such,

p(x̄k:t | r̄k:t) can be approximated as

p(x̄k:t | r̄k:t) ≈
N
∑

i=1

W i
kδ

(

x̄k:t − x̄ik:t
)

.

Note that (10) also implies a recurrence relation in the weight

update:

W i
t =

p(x̄k:t | r̄k:t)

q(x̄k:t | r̄k:t)
=
p(r̄t | x̄

i
t)p(x̄

i
t | x̄

i
t−1)

q(x̄it | x̄
i
t−1, r̄k:t)

W i
t−1.

One has different ways to implement the above procedure,

with the key lying in choosing the importance distribution

q. A straightforward choice is to let q(x̄t | x̄t−1, r̄k:t) =
p(x̄t | x̄t−1). Given this choice, we can draw samples x̄it ∼
p(x̄t | x̄

i
t−1) at time t and compute the associated normalized

weights via

W i
t =

p(r̄t | x̄
i
t)

∑N

j=1 p(r̄t | x̄
j
t)
. (11)

This implementation is called the bootstrap particle filter.

For a particle filtering run, a majority of the particles may

have zero or almost zero weights after a few time steps. This

is known as the issue of particle degeneracy, which lowers

the overall quality of the particles and reduces the estimation

performance. To resolve this issue, resampling can be used

to replace low-weight particles by those with high weights

[26].

The backward smoothing follows the forward filtering

as we only require p(x̄k | r̄k:k+H), which can lead to a

more accurate estimation of x̄k. There are different particle

smoothers, and the reweighting particle smoother will suffice

here. It reweights the samples in a recursive backward manner

via

W i
t|k+H =

N
∑

j=1

W i
t+1|k+H

W i
t p(x̄

j
t+1 | x̄

i
t)

∑N

l=1W
l
tp(x̄

j
t+1 | x̄

l
t)
, (12)

where W i
k+H|k+H

= W i
k+H . The resultant procedure is

called reweighted particle smoother. After the smoothing,

the empirical distribution for p(x̄k | r̄k:k+H) is given by

p(x̄k | r̄k:k+H) ≈
N
∑

i=1

W i
k|k+Hδ(x̄k − x̄ik).

Finally, the best estimate of x̄k from r̄k:k+H is

ˆ̄x∗k = E (x̄k | r̄k:k+H) =

N
∑

i=1

W i
k|k+H x̄

i
k, (13)

from which the optimal control input u∗k can be read.

Summarizing the above, the CAP-NMPC approach can be

outlined as in Algorithm 1. It presents a fully sampling-based

implementation of NMPC, which is promising for control

of neural network dynamics. It should also be noted that

this approach can well admit other realizations of particle

filtering/smoothing, depending on the needs for sophistication

and accuracy of estimation.

Algorithm 1 CAP-NMPC: NMPC via Constraint-Aware

Particle Filtering/Smoothing

1: Set up NMPC by specifying the dynamic system (1)

2: Recast NMPC as particle filtering/smoothing by setting

up the virtual system (8)

3: for k = 1, . . . , T do

Forward filtering

4: for t = k, . . . , k +H do

5: if t = k then

6: Draw samples x̄ik ∼ p(x̄k), i = 1, . . . , N
7: else

8: Draw samples x̄it ∼ p(x̄t | x̄
i
t−1), i =

1, . . . , N
9: Evaluate sample weights via (11)

10: Do resampling based on the weights

11: end if

12: end for

Backward smoothing

13: for t = k +H, . . . , k do

14: if t = k +H then

15: Assign W i
k+H|k+H

=W i
k+H , i = 1, . . . , N

16: else

17: Reweight the particles via (12)

18: end if

19: end for

20: Compute the optimal estimation of x̄k via (12)

21: Export u∗k from x̄∗k, and apply it to the system (1)

22: end for

IV. MOTION PLANNING USING NEURAL NETWORK

DYNAMICS via CAP-NMPC

In this section, we present the autonomous vehicle motion

planning problem.

A. Motion Planning Problem Formulation

We consider an autonomous vehicle whose goal is to arrive

at the desired goal state xg from an initial state x0 while

considering its own dynamics (1) and constraints imposed by

the surrounding [18]. The objective of planning is to find an

optimal trajectory without violating the constraints. To this

end, an NMPC problem can be formulated as

min
uk:k+H

k+H
∑

t=k

u⊤t Qut + (xt − xg)⊤R(xt − xg), (14a)

s.t. xt+1 = f(xt, ut), (14b)

gj(xt, ut) ≤ 0 ∀j = 1, . . . ,m, (14c)

t = k, . . . , k +H,

which follows (3) by assigning the goal state to be the

reference. The model in (14b) captures the vehicle dynamics,

and (14c) encompasses all the constraints due to vehicle

operation or planning scenarios.

A mission of motion planning is to make the autonomous

vehicle perform as well as or even better, than human

drivers in a wide array of conditions or situations, and a

key is using capable models. Despite the utility, physics-

based vehicle models have practical limitations, which may

contain errors or biases, or suit only certain specific conditions.

Meanwhile, the increasing abundance of data generated by

autonomous vehicles makes it possible to construct precise,

broadly applicable data-driven models. Among them, neural

networks have shown tremendous merits for model-based

control of vehicles [24]. Therefore, we will leverage a neural

network model for the considered motion planning problem,

with more details offered in IV-B. Further, a sampling-

based implementation of NMPC better suits control of

neural networks than numerical optimization, as argued in

Sections I-II. Recent studies also suggest sampling can be

more competitive than numerical optimization in dealing with

large-scale problems [27]. We hence will use the CAP-NMPC

approach to address the motion planning problem (14) with

neural network dynamics.

B. The Neural Network Model

A feedforward neural network is utilized to represent the

vehicle dynamics. We describe the neural-network-based

parameterization of the vehicle system and then explain the

data collection and training process.

1) Vehicle Dynamics Parameterization: There are different

approaches to parameterize the vehicle dynamics using neural

networks. A simple approach is to feed the state xk and

control uk to a neural network and make the network predict

the next state of the system xk+1. However, learning such

a function could be difficult due to the small sampling

time ∆t. This leads to xk and xk+1 being very similar

in making, causing the network to effectively learn an

identity transformation [11]. Hence, we instead focus on

parameterizing the state transition function, as it shows the

incremental changes in the state. The parametrization is then

given by

xk+1 = xk +∆tf̂(xk, uk; θ),

where f̂ represents the neural network to approximate the

vehicle dynamics, and θ collects the weights of the network.

2) Data collection and pre-processing: We generate and

collect the training data from the considered vehicles model.

This is attained by sampling a set of states from a uni-

form distribution xk ∼ Uni(Xk) and applying a random

control, which is also sampled from a uniform distribution

uk ∼ Uni(Uk). Here, X and U are the respective feasible

state and control constraint sets defined by the inequality

constraints (3c). Then, xk and uk are applied to the vehicle

model, and the next state xk+1 of the system is recorded. This

constructs the required transition {xk, uk, xk+1} for training.

The input to the neural network is the state and control pair

(xk, uk), and the corresponding output is incremental state

change ∆xk = xk+1 − xk. The input and output are also

normalized to ensure an almost equal contribution of each

element of the state and control to the loss function. The

obtained training dataset is D containing a million data points.

3) Neural Network Structure and Training: We use a

dense neural network with four hidden layers of size

0 10 20 30 40 50 60 70

0

5

10

15

1 3

2

Obstacles

Ego Car CAP-NMPC

Goal Point

Fig. 1: Planned trajectory for Scenario 1 using the CAP-NMPC
approach.

0 10 20 30 40 50 60

0

5

0 10 20 30 40 50 60

-4

-2

0

2

4

0 10 20 30 40 50 60

-20

0

20

Fig. 2: Velocity, acceleration and steering profiles for Scenario 1.

200, 300, 300, 100, respectively, with the rectified linear

function as the activation function. We then train the neural

network by minimizing the mean squared error

L(θ;D) =
1

M

M
∑

i=1

∥

∥

∥
∆x

(i)
k − f̂(x

(i)
k , u

(i)
k ; θ)

∥

∥

∥

2

, (15)

where M is the number of training samples in D. The training

is done using Adam optimizer [28]. We also use a different test

dataset Dtest to evaluate the prediction accuracy of the trained

neural network over data points not included in the training

set. Finally, we point out that such a dense network is used

in order to better validate the CAP-NMPC approach, even

though a less dense one could also sufficiently approximate

the vehicle dynamics.

V. NUMERICAL SIMULATION

Based on Section IV, we now illustrate the effectiveness

of the CAP-NMPC approach for motion planning.

A. Constraints

The planning vehicle, or ego car, has a state xk including

its 2D position (xpk, y
p
k), linear velocity νk, and heading angle

ψk, as in the considered single-track vehicle model [29]. Its

control input uk includes the acceleration ak and steering

angle δk. Three constraints are considered in the simulation

study: road boundaries, obstacle collision avoidance, and the

limits on the control actions.

0 10 20 30 40 50 60

0

10

20

30

40

50
Distance to Car 1

Distance to Car 2

Distance to Car 3

Collison Reference

Fig. 3: Minimum relative distances between the ego car and static
obstacles for Scenario 1.

1) Road Boundary Constraints: The ego car is constrained

to stay within the road boundaries. The maximum orthogonal

distance dB from the road boundary is

dB(xk) = max
j

{

∥xk −Bj∥2
}

,

where Bj denotes the orthogonal point on the j-th boundary

of the road from the ego car. We require dB(xk) ≤ L, where

L is the width of the road, such that the ego car lies inside

the road boundaries.

2) Obstacle Avoidance Constraint: The ego car can

encounter many other vehicles in its path and should keep a

safe distance from them. The distance between the ego car

and the closest obstacles is expressed as

dO(xk) = min
l

∥xk −Ol∥2 ,

where Ol is the l-th obstacle. To ensure safety, we enforce

dO(xk) ≥ 0.

3) Control Constraints: The maneuverability of the car

is limited in real world. Here, we represent these limits by

specifying the control bounds:

u ≤ uk ≤ u,

where u is the lower bound, and u is the upper bound.

B. Case Studies

We consider two scenarios to examine the performance of

the CAP-NMPC approach for motion planning. In Scenario 1,

the ego car is to travel on a straight road with static obstacles.

Scenario 2 involves three moving vehicles on a curved road

and requires the ego car to overtake them. The prediction

horizon length in the scenarios is H = 10. The number of

particles used in the CAP-NMPC is N = 300. All the cars’

lengths and widths are 4 m and 2 m, respectively. The road

width is 10 m, and the sampling period ∆t = 0.2 s.
Scenario 1: Straight road with static obstacles. We place

three stationary obstacles across the road. The ego car’s

trajectory is shown in Fig. 1, where the depth of the color

0 10 20 30 40 50 60 70
-15

-10

-5

0

5

10

15

Moving Vehicles

Ego Car CAP-NMPC

Goal Point

2

3

1

Fig. 4: Planned trajectory for Scenario 2 using the CAP-NMPC
approach.

0 10 20 30 40 50 60

4

5

6

7

0 10 20 30 40 50 60

-4

-2

0

2

4

0 10 20 30 40 50 60

-20

0

20

Fig. 5: Velocity, acceleration and steering profiles for Scenario 2.

from light to dark encodes the temporal information from

present to future. The solid black line represents the road

boundaries. We can observe that the ego vehicle is able to

smoothly maneuver, bypassing the obstacles and keeping a

safe distance at all times. Fig. 2 depicts the vehicles velocity

and control profiles. It is evident that the CAP-NMPC allows

the ego car to plan proficient maneuvers from zero velocity

until reaching the goal state while satisfying the specified

constraints and reference velocity (pink dotted line in Fig. 2).

It can be seen that the generated path with CAP-NMPC is

indeed feasible for the vehicle to execute. In addition, in

Fig. 3, we depict the minimum relative distance between the

ego car and the obstacles, which is kept above zero to ensure

collision avoidance.

Scenario 2: Curved road with other moving vehicles. In this

scenario, we consider a curved road with moving obstacles.

The initial speed of all vehicles is 5 m/s and the trajectories

of the obstacle vehicles are obtained by assigning a goal

position for each obstacle vehicle by CAP-NMPC algorithm.

The obstacle vehicles are set in motion only when the ego car

approaches them in order to ensure interaction with the ego

car. This scenario is significantly more challenging given the

dynamic environment, making collision avoidance a difficult

task. For instance, observe from Figs. 4-6 the instant where

0 10 20 30 40 50 60

0

10

20

30

40

50
Distance to Car 1

Distance to Car 2

Distance to Car 3

Collison Reference

Fig. 6: Minimum relative distances between the ego car and other
moving vehicles in Scenario 2.

the ego car is at x = 20 m. At this instant, the ego car has

two other cars adjacent to it, one in the left lane and the

other straight ahead. In addition, the road boundary is on the

right of the ego car. The ego car has to carefully maneuver

without leaving the road and colliding with the adjacent cars.

To this end, the CAP-NMPC could successfully predict the

upcoming situation and increase its velocity to smoothly pass

between the two vehicles at a safe distance, as shown in Fig. 6.

Eventually, the ego car formulates a trajectory allowing it

to overtake the other vehicles without collision to reach the

specified goal state.

With this, we demonstrated the effectiveness of using a

sample-based NMPC framework to solve the motion planning

problem of a vehicle while considering neural network

dynamics through the use of our proposed CAP-NMPC

algorithm for realistic driving scenarios.

VI. CONCLUSION

A growing convergence of machine learning and advanced

control is driving the frontiers of robotics and stimulates new

research problems. In this paper, we investigated the problem

of NMPC for neural network dynamics. The motivation lies

in that, even though NMPC has become an important method

for robotics applications, its popular implementation based on

numerical optimization can meet only limited success when

given neural network models. In a departure, we proposed

to use a sampling-based NMPC approach, which built upon

an Bayesian estimation perspective of NMPC and leveraged

particle filtering/smoothing to estimate the best control actions.

We then considered the motion planning problem for an

autonomous vehicle with neural network dynamics and

deployed the proposed approach to solve it under different

driving conditions. The results demonstrated the potency

of CAP-NMPC to handle constraints and compute feasible

trajectories effectively. Our future work will pursue integrating

the CAP-NMPC approach with other existing, very successful

sampling-based motion planning techniques such as rapidly-

exploring random trees or probabilistic roadmap methods,

toward further improving the computational efficiency and

feasibility in planning. The proposed approach can find

prospective use in a wide variety of other robot control

problems.

REFERENCES

[1] D. Nguyen-Tuong and J. Peters, ªModel learning for robot control: a
survey,º Cognitive Processing, vol. 12, no. 4, pp. 319±340, 2011.

[2] M. I. Jordan and T. M. Mitchell, ªMachine learning: Trends, per-
spectives, and prospects,º Science, vol. 349, no. 6245, pp. 255±260,
2015.

[3] H. A. Pierson and M. S. Gashler, ªDeep learning in robotics: a review
of recent research,º Advanced Robotics, vol. 31, no. 16, pp. 821±835,
2017.

[4] J. Kober, J. A. Bagnell, and J. Peters, ªReinforcement learning in
robotics: A survey,º The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238±1274, 2013.

[5] I. Askari, S. Zeng, and H. Fang, ªNonlinear model predictive con-
trol based on constraint-aware particle filtering/smoothing,º in 2021

American Control Conference (ACC), 2021, pp. 3532±3537.
[6] A. Draeger, S. Engell, and H. Ranke, ªModel predictive control using

neural networks,º IEEE Control Systems Magazine, vol. 15, no. 5, pp.
61±66, 1995.

[7] S. PichÂe, J. Keeler, G. Martin, G. Boe, D. Johnson, and M. Gerules,
ªNeural network based model predictive control,º in Proceedings of

the 12th International Conference on Neural Information Processing

Systems, 1999, p. 1029±1035.
[8] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,

and E. A. Theodorou, ªInformation theoretic MPC for model-based
reinforcement learning,º in Proceedings of the IEEE International

Conference on Robotics and Automation, 2017, pp. 1714±1721.
[9] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,

ªInformation-theoretic model predictive control: Theory and applications
to autonomous driving,º IEEE Transactions on Robotics, vol. 34, no. 6,
pp. 1603±1622, 2018.

[10] A. Broad, I. Abraham, T. Murphey, and B. Argall, ªStructured
neural network dynamics for model-based control,º ArXiv, vol.
abs/1808.01184, 2018.

[11] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, ªNeural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,º in Proceedings of the IEEE International Conference on

Robotics and Automation, 2018, pp. 7559±7566.
[12] G. Garimella and M. Sheckells, ªNonlinear model predictive control of

an aerial manipulator using a recurrent neural network model,º 2018.
[13] V. Rankovic, J. Radulovic, N. GrujoviÂc, and D. Divac, ªNeural network

model predictive control of nonlinear systems using genetic algorithms,º
International Journal of Computers, Communications and Control,
vol. 7, pp. 540±549, 2012.

[14] K. Berntorp, T. Hoang, and S. Di Cairano, ªMotion planning of
autonomous road vehicles by particle filtering,º IEEE Transactions on

Intelligent Vehicles, vol. 4, no. 2, pp. 197±210, 2019.
[15] W. Schwarting, J. Alonso-Mora, and D. Rus, ªPlanning and decision-

making for autonomous vehicles,º Annual Review of Control, Robotics,

and Autonomous Systems, vol. 1, no. 1, pp. 187±210, 2018.
[16] D. GonzÂalez, J. PÂerez, V. MilanÂes, and F. Nashashibi, ªA review of

motion planning techniques for automated vehicles,º IEEE Transactions

on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135±1145,
2016.

[17] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, ªA survey of
motion planning and control techniques for self-driving urban vehicles,º
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33±55,
2016.

[18] J. Chen, W. Zhan, and M. Tomizuka, ªAutonomous driving motion
planning with constrained iterative LQR,º IEEE Transactions on

Intelligent Vehicles, vol. 4, no. 2, pp. 244±254, 2019.
[19] M. Brunner, U. Rosolia, J. Gonzales, and F. Borrelli, ªRepetitive

learning model predictive control: An autonomous racing example,º in
Proceedings of the IEEE 56th Annual Conference on Decision and

Control, 2017, pp. 2545±2550.
[20] M. Nolte, M. Rose, T. Stolte, and M. Maurer, ªModel predictive control

based trajectory generation for autonomous vehicles Ð an architectural
approach,º in Proceedings of the IEEE Intelligent Vehicles Symposium,
2017, pp. 798±805.

[21] V. Cardoso, J. Oliveira, T. Teixeira, C. Badue, F. Mutz, T. Oliveira-
Santos, L. Veronese, and A. F. De Souza, ªA model-predictive motion
planner for the iara autonomous car,º in Proceedings of the IEEE

International Conference on Robotics and Automation, 2017, pp. 225±
230.

[22] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, ªPath planning for
autonomous vehicles using model predictive control,º in Proceedings

of the IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 174±179.
[23] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, ªPredictive control

of autonomous ground vehicles with obstacle avoidance on slippery
roads,º in Proceedings of the ASME Dynamic Systems and Control

Conference, 2010, pp. 265±272.
[24] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and

J. C. Gerdes, ªNeural network vehicle models for high-performance
automated driving,º Science Robotics, vol. 4, no. 28, 2019.

[25] D. Stahl and J. Hauth, ªPF-MPC: Particle filter-model predictive
control,º Systems & Control Letters, vol. 60, no. 8, pp. 632±643,
2011.

[26] S. SÈarkkÈa, Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[27] Y.-A. Ma, Y. Chen, C. Jin, N. Flammarion, and M. I. Jordan, ªSampling
can be faster than optimization,º Proceedings of the National Academy

of Sciences, vol. 116, no. 42, pp. 20 881±20 885, 2019.
[28] D. P. Kingma and J. Ba, ªAdam: A method for stochastic optimiza-

tion,º in Proceedings of the International Conference on Learning

Representations, 2015.
[29] R. Rajamani, Vehicle Dynamics and Control. Springer US, 2012.

