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Abstract—We consider a new formulation of the decentralized
detection problem with parallel agent configuration. In particular,
each agent in the network exists in a set of pre-specified states
that affects the distribution of their observations as well as the
underlying hypothesis. As such, observations are conditionally
dependent. Following a person-by-person design methodology, it
is shown that the Bayes optimal detection rule for each agent is a
likelihood ratio test with a state dependent threshold. Moreover,
it is shown that even for statistically identical agents, the optimal
rules for the agents may not be the same. Motivated by this, we
turn our attention to large networks and find the error exponent,
and show that as the number of agents increases there is no
loss of asymptotic optimality if the agents use the same rule,
dramatically reducing the complexity of computing the decision
rules for each agent.

Index Terms—decentralized detection, multi-agent networks,
composite hypothesis testing, state-dependent networks, error
exponents

I. INTRODUCTION

Decentralized detection in wireless networks has been per-
sistently studied over the years [1], [2]. Despite its long
history, the problem remains of interest [3]–[5] as different
contexts are considered. In particular, this paper addressed the
generalization of decision making wherein each agent observes
signals due to a common, unknown hypothesis, but each agent
is affected by their individual state. This is a form of composite
hypothesis testing. The key challenge is that the introduction
of state results in observations being correlated through the
state process.

Two applications that fit within this general framework
are the presence of anomalous sensors in sensor networks
and collective decision making in microbial communities. In
the sensor network application, sensors may or may not be
functioning properly and this will affect the quality of the
observations. We note that our framework removes the need for
active anomaly detection [6]–[9] first. Coping with anomalies
remains a relevant challenge for modern Internet-of-Things
applications (see e.g. [10]).

A phenomenon of great interest in microbiology is quorum
sensing [11], [12]. In this scenario, bacteria synthesize key
molecules that are released into the environment and are
also sensed by the bacteria. When the concentration of the
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molecule exceeds a certain level, new genes are expressed
enabling novel collective behaviors such as bacterial infections
or the forming of biofilms. However, the entire colony does
not express new genes simultaneously and the signals they
can transmit and receive are affected by whether they have
expressed the gene or not. Thus, the state of each individual
bacterium affects the signaling. Quorum sensing has been
previously modeled as a decentralized decision making process
[13], [14].

Decentralized detection has been investigated under differ-
ent objective functions and different signal models [2], [15]–
[17]. In this paper, we focus on the Bayesian setting wherein
each hypothesis has a prior probability and the underlying
distributions under all hypothesis-state pairs are known. Under
certain assumptions, one can solve decentralized detection
problems efficiently. One such assumption is that observations
received by different agents are assumed to be conditionally
independent. This assumption helps reduce complexity and
simplifies analysis. Unfortunately, if one removes the condi-
tional independence assumption, as we do here, the problem
of optimal decentralized Bayesian detection becomes NP-hard
in general [1], [18]. Nevertheless, the problem of optimal
decentralized detection with dependent observations [17], [19]
has been previously examined. In particular, a hierarchical
conditional independence (HCI) model was introduced in
[17] for which analysis of the optimal decision making was
enabled. We generalize this notion herein.

The contributions of this paper are:
1) The state-dependent decentralized detection problem is

formulated.
2) The optimal Bayesian decision rule at each agent is

described for networks whose topology is similar to that
of Fig. 1, and conditioned on the strategy employed at
agent, the person-by-person optimal (PBPO) decision rule
for a fusion center is also provided.

3) It is shown that the optimal agent rule is state-dependent
and an example is provided to underscore that even for
networks of identical agents, common rules across all
agents are not optimal for the case of a small set of agents.

4) An asymptotic analysis, as the number of agents goes to
infinity, is conducted of the probability of detection error
at the fusion center under the assumption of statistically
independent states. It is shown that, asymptotically, a
common decision rule for each agent is in fact optimal.
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Fig. 1. State-dependent decentralized detection framework.

The new problem framework results in conditionally de-
pendent observations, necessitating new proof strategies
over the current state-of-the-art.

5) While finding the optimal set of rules is often intractable,
even for small networks, analysis of the asymptotics
shows that the optimal common rule can be found by
solving a single optimization for one agent.

6) Numerical results are provided to show that the asymp-
totically optimal decision rule is often quite tractable to
compute.

The rest of this paper is organized as follows. Section II
describes the problem in terms of general agent networks. In
Section III we explain our main results. We show that for our
problem the PBPO solution is a state-dependent likelihood
ratio test. Moreover, for large networks of identical agents,
it is asymptotically optimal for each agent to use the same
rule. Section IV goes over a specific example, and Section
V concludes the paper. Due to space constraints several key
derivations and proofs are omitted – this material can be found
in [20].

Notation: Random variables are written as capital letters X
and realizations as lower case letters x. Vectors are denoted
with bold face letters with random vectors denoted as capital
bold face letters V and their realizations as lower case v. V k

denotes the vector V \ Vk = [V1, V2, ..., Vk−1, Vk+1, ..., VN ],
i.e., the V vector with the kth term removed. p(x) denotes
either the probability mass function (pmf) of a discrete
random variable X or the probability density function (pdf)
of a continuous random variable X . p(x, y) and p(x|y) denote
respectively the joint and conditional pmf or pdf of random
variables X and Y .

II. STATE-DEPENDENT DECENTRALIZED DETECTION

In this section, we introduce the notion of state-dependent,
decentralized hypothesis testing. A fusion center is connected
to n agents via a star network topology as depicted in
Fig. 1. We assume that each agent is in one of l states:
Sk ∈ {0, 1, ..., l − 1}, k = 1, 2, ..., n. The state vector S
has a prior probability p(s). The goal of the fusion center

is to assess which of m possible hypotheses is true, where
H ∈ {0, 1, ...,m− 1} with conditional probability p(h|s). All
agents observe the same underlying hypothesis. Each agent
makes a local observation Yk ∈ Y , k = 1, ..., n and determines
a local decision, Uk = γk(Yk, Sk) ∈ U = {0, 1, ..., b − 1}.
These local decisions are then sent to the fusion center along
with the system state for the final decision. The fusion center
output is given by U0 = ψ(U ,S) ∈ {0, 1, ...,m− 1}.

Let the set Γ be the set of all decision rules and Ψ be the
set of all fusion rules. We call a collection of decision rules
γk ∈ Γ, k = 1, 2, ..., n, together with a fusion rule ψ ∈ Ψ a
strategy denoted by ψ ∈ Γn × Ψ, where Γn is the Cartesian
product of Γ with itself n times. We denote the conditional
pmf (pdf) of a random variable X conditioned on H = h,
h ∈ {0, 1, ...,m − 1}, as ph(x). Also, the pmf (pdf) of X
conditioned on Y = y and H = h is denoted as ph(x|y). Let
cu0,h be the Bayesian cost of deciding U0 = u0 when H = h
is true. We wish to find the strategy ψ that minimizes the
expected Bayesian cost J given by

J(ψ) =

m−1∑
u0=0

m−1∑
h=0

cu0,hp(u0, h). (1)

Note that each agent k, k = 1, 2, ..., n, receives the observation
(Yk, Sk), and that, in general, these observations are not
conditionally independent. Thus, the scope of the paper goes
beyond conditionally independent observations in contrast to
other works, [15], [21], [22]. We, however, make several
assumptions on the relationships between H , S, Y , U , and
U0.
• Conditioned on Sk and H , Yk is independent of Y k and
Sk, i.e., the joint pmf factors as follows,

p(y, s, h) = [

n∏
k=1

ph(yk|sk)]p(h|s)p(s). (2)

• U is a function only of Y and S, with Uk being a
function only of Yk and Sk, i.e., the joint conditional
pmf is given as

p(u|y, s) =

n∏
k=1

p(uk|yk, sk) (3)

• U0 is a function only of U and S. Note that this
assumptions says the fusion center has knowledge of the
state as depicted in Fig 1.

Furthermore, given the structure of our problem, we have
the following Markov chain relationships: S → (S, H) →
(Y ,S) → (U ,S) → U0. Similarly, we have the following
hierarchical conditional independence (HCI) model induced
by the following Markov chains: H → (S, H)→ (Y ,S) −→
(U,S) → U0. The HCI model coupled with the additional
structure of (2) will facilitate analysis in the sequel despite
the lack of conditional independence in our observations.

III. OPTIMAL AGENT RULES

We present our main results in this section. First, we present
the PBPO agent rules and fusion rule for any n. We show that



regardless of the rules the other agents are using, agent k,
k = 1, 2, ..., n, should use a state-dependent likelihood ratio
test (SDLRT). This implies that the optimal strategy is in fact
to have every agent use a state-dependent likelihood ratio test.
This state dependence challenges analysis. The thresholds for
these tests can be found by solving a set of nl non-linear
coupled equations. Clearly, the larger the number of agents,
the more computationally challenging the rule design.

Consistent with PBPO rules, satisfying the equations is
a necessary condition for global optimality for a set of
thresholds, but not sufficient. As the computation of individual
rules for each agent is challenging (we provide an example in
the sequel to show that the rules are, in general, not the same
for all agents), we examine behavior in the case of large n. To
this end, we derive the error exponent, and use the computed
exponent to show that under the assumption that agent states
are independent, it is optimal for all agents to employ the same
rule in the limit of large n. While our result has similarity to
that of [21] for conditionally independent observations, there
are key differences in the analysis highlighted in the sequel
and in [20]. Without loss of generality, and for clarity, we
focus on binary hypotheses.

A. Person-by-Person Optimal Agent Design for n agents

Let m = 2 and b = 2. The PBPO decision rule γk(yk, sk)
for agent k when Yk = yk and Sk = sk is given as
γk(yk, sk) = 1 if

p1(yk|sk)

p0(yk|sk)
>

[gf (sk, 1)− gf (sk, 0)]p(h = 0|sk)

[gd(sk, 1)− gd(sk, 0)]p(h = 1|sk)
(4)

and γk(Yk, Sk) = 0 otherwise, where

gf (sk, uk) = cfp0(U0 = 1|sk, uk) (5a)
gd(sk, uk) = cdp1(U0 = 1|sk, uk) (5b)

cf = c1,0 − c0,0 (6a)
cd = c0,1 − c1,1 (6b)

and
gd(sk, 1)− gd(sk, 0) > 0 (7)

is satisfied.
For the rest of the paper, we are concerned with mini-

mizing the probability of error, i.e, c1,0 = c0,1 = 1 and
c0,0 = c1,1 = 0. Note that the above rule is person-by-
person optimal, namely that if ψ∗ is a PBPO solution, then
any other strategy ψ that changes some, but not all, of the
agents rules must satisfy Jn(ψ∗) ≤ Jn(ψ). That is, in order
to achieve a better cost all of the γks must be varied together.
As stated before, this means that a PBPO strategy ψ∗ need
not be globally optimal.

One can show that the PBPO rule for the fusion center to
minimize the probability of error when the agents decide u
and the state is s is ψ(u, s) = 1 when

p(h = 1|u, s)
p(h = 0|u, s)

> 1, (8)

and ψ(u, s) = 0 otherwise. Equation (8) is simply just
the maximum a posteriori (MAP) rule. We observe that the
decision regions generated by the fusion center are dependent
on the rules used by the agents. To this end, we let γ be
the collection of the agents decision rules. For the rest of the
paper, given a specific collection of the agents decision rules
γ ∈ Γn, and fixed n, we denote the probability of error as
Jn(γ).

B. Error Exponent
As stated before, our goal is to minimize Jn(γ) over all

γ ∈ Γn. Letting A0 and A1 be the (disjoint) sets of pairs
(u, s), where the fusion center decides 0 and 1, respectively,
we can write Jn(γ) as,

Jn(γ) =
∑

s,u∈AC
0

p0(u|s)p(h = 0|s)p(s)+

∑
s,u∈AC

1

p1(u|s)p(h = 1|s)p(s).
(9)

It should be noted that for both summations in (9) we are
only summing over those (u, s) in ACh such that p(u, s, h) 6= 0
for both h = 0, 1. That is, we do not condition on events that
have measure zero. We define the following key sequence:

αn = mins,h∈{0,1}p(h|s), (10)

that is, αn is the smallest p(h|s), h = 0, 1, appearing in either
summation. Notice that since the fusion center is implementing
the maximum a posteriori (MAP) rule, we can rewrite (9) as

Jn(γ) =∑
s,u

min{p0(u|s)p(h = 0|s), p1(u|s)p(h = 1|s)}p(s) (11)

Since we are concerned with large n, we focus on the error
exponent defined as

lim
n→∞

1

n
log Jn(γ). (12)

Then, if we let rn(γ) = 1
n log Jn(γ) and Rn = infγ∈Γn rn(γ)

for all n, we analyze the limiing behavior of Rn. Similar
to [22], we would like to derive upper and lower bounds
on rn(γ). Unfortunately, we cannot use the bounds derived
in [22] and [21] since our observations are not conditionally
independent. Thus, we need the following which is proved in
[20].

Lemma 1. For any n and γ ∈ Γn, we have

logαn
n
− log 2

n
+

1

n
µ(γ, ε∗)−

√
2µ′′(γ, ε∗)

n

≤ rn(γ) ≤ 1

n
µ(γ, ε∗),

(13)

where for ε ∈ (0, 1) we define 1

µ(γ, ε) = log

[∑
s

∑
u

(p0(u|s))1−ε(p1(u|s))εp(s)

]
, (14)

1We also extend the definition to include the cases ε = 0 and ε = 1, with
µ(γ, 0) = limε→0+ µ(γ, ε); µ(γ, 1) = limε→1− µ(γ, ε).



αn is defined in (10), µ′′(γ, ε) is the second derivative of
µ(γ, ε) with respect to ε, and ε∗ = arg minε∈[0,1] µ(γ, ε).

The dependence on γ is captured in u, since different rules
used by the agents will change the statistics of u. A proof of
the upper bound on the exponent is provided in the Appendix.
The lower bound can be found by observing that

µ′(γ, ε) =
∑
u,s

Qε(u, s)L(u, s)

µ′′(γ, ε) =

{∑
u,s

Qε(u, s)(L(u, s))2

}
− (µ′(γ, ε))2,

where all derivatives are with respect to ε and L(u, s) is the
log likelihood ratio defined as

L(u, s) = log
p1(u|s)
p0(u|s)

.

For ε ∈ (0, 1), define

Qε(u, s) =
p0(u|s)1−εp1(u|s)εp(s)∑

u′,s′(p0(u′|s′))1−εp1(u′|s′)εp(s′)
.

We can interpret Qε(u, s) as a probability distribution on
L(u, s). Hence, µ′(γ, ε) and µ′′(γ, ε) are the mean and vari-
ance of L(u, s), respectively, according to Qε(u, s). More-
over, one can show

p0(u|s)p(s) = {exp[µ(γ, ε)− εL(u, s)]}Qε(u, s)
p1(u|s)p(s) = {exp[µ(γ, ε) + (1− ε)L(u, s)]}Qε(u, s).

The lower bound then follows by first noticing that

Jn(γ) ≥ αn
∑
s,u

min{p0(u|s), p1(u|s)}p(s),

and then considering only those (u, s) that are within two
standard deviations from the mean of L(u, s) according to
Qε(u, s). Note that if 1

n logαn and µ′′(γ, ε) are not properly
controlled, then the bounds given in (13) could be far apart
even for large n. To tighten the bounds for large n, we
introduce the following assumptions:

Assumption 1. For all n, γ ∈ Γn, and ε ∈ [0, 1]:
a) |µ(γ, ε)| <∞.
b) There exists a finite constant θ such that |µ′′(γ, ε)| ≤ nθ.
c) limn→∞(logαn)/n = 0.

Observe that µ(γ, ε) does not depend on the conditional
distribution for the hypotheses, i.e. p(h|s). Thus, the term
1
n logαn can be thought of as the “loss” accrued due to
removing the information the network state provides about the
true hypothesis. Hence, our assumptions is that this loss goes
to zero. In addition to technical reasons, there is an intuitive
reason we make this assumption. Recall that the fusion center
has perfect knowledge of the network state. If the network’s
state carries too much information about the hypothesis, the
fusion center could drive the probability of error to zero
exponentially fast just by looking at the state, regardless of
the rules used by the agents.

Under Assumption 1, the bounds given in (13) will be tight
for sufficiently large n, and so we define 2

Λn = inf
γ∈Γn

min
ε∈[0,1]

1

n
µ(γ, ε). (15)

Then, under Assumption 1, we have the following.

Theorem 1. Given the signal model defined by Equations (2)
and (3) and the cost function in Equation (9), the optimal
error exponent defined in Equation (12) is given by

Λ = lim
n→∞

inf
γ∈Γn

min
ε∈[0,1]

1

n
µ(γ, ε) (16)

if the limit exists.

A few remarks are in order. First, the exponent computation
makes no assumption on the correlation between the states.
Second, even though the state of the system, s, is correlated
with the hypotheses, this correlation has no affect on the
asymptotics (provided assumption (c) is satisfied).

To provide a further analysis, we consider the following
conditions: (1) Agent states are independent a priori and (2)
Both hypotheses are possible under all s. We can then write,

µ(γ, ε) = log

[∑
s

∑
u

(p0(u|s))1−ε(p1(u|s))εp(s)

]

= log

[∑
s

∑
u

n∏
k=1

(p0(uk|sk))1−ε(p
(
1uk|sk))εp(sk)

]

= log

[{ ∑
s1,u1

(p0(u1|s1))1−ε(p1(u1|s1))εp(s1)

}
...

...

{ ∑
sn,un

(p0(un|sn))1−ε(p1(un|sn))εp(sn)

}]

=

n∑
k=1

log

[ ∑
sk,uk

(p0(uk|sk))1−ε(p1(uk|sk))εp(sk)

]

=

n∑
k=1

µk(γk, ε).

(17)

Thus, µ(γ, ε) is decomposable, that is, it is the sum of the
µk(γk, ε)s, where agent k is using rule γk ∈ Γ, k = 1, 2, ..., n.
Notice that the exponent loses this property if one of the
previous assumptions is removed. It can be shown that µ(γ, ε)
is convex in ε and non-positive, and is zero for all ε except
in the uninteresting case where the fusion center is unable to
distinguish between the two hypotheses, i.e., under all states,
p0(u|s) = p1(u|s) for all u. The same result can be shown
for µ(γk, ε), k = 1, 2, .., n. Thus, µ(γ, ε) is non-increasing in
n.

There are several applications (sensor networks, microbial
systems) where each agent has common characteristics. We
thus characterize this “sameness” and further develop our
analysis.

2We take the minimum over all ε since for any γ ∈ Γn, µ(γ, ε) is
continuous in ε and defined over a compact set.



Definition 1. Given a collection of n agents, these agents
are identical if the following conditions hold:
• ph(Yk = y|Sk = s) = ph(Yj = y|Sj = s) for all k, j ∈
{1, 2, ..., n}, h = 0, 1.

• agent states are i.i.d a priori.
To motivate our asymptotic analysis of the optimizing

decision rules, we provide an example for small n which
results in distinct rules at each agent even if the agents are
identical according to Definition 1. Consider two hypotheses
(0, 1), binary messages (b = 2), two agents (n = 2), and
two states (0, 1). We assume that the agent states are i.i.d
with p(S = 1) = .25. The conditional distribution for the
hypothesis is

p(h0|s1, s2) = p(h0|s1)

{
.52 s1 = 0

.48 s1 = 1.

The observations y1 and y2 are independent, conditioned on
the hypothesis and state, take values in {0, 1, 2}, and have the
following common distribution: (p0(y = 0|s = 0), p0(y =
1|s = 0), p0(y = 2|s = 0)) = (.8, .2, 0), p1(y = i|s = 0) =
1
3 , and

ph(y = i|s = 1) =

{
1 i = h

0 i 6= h

for i = 0, 1, 2 and h = 0, 1. Notice that even though agent
1 is more correlated with the hypothesis, the two agents
are identical by our definition. In a given state, each agent
computes a likelihood ratio test. If we enumerate through all
of the cases for this discrete observations example, we see
that, in a given state each agent can choose from one of two
following rules:
A) ui = 1 if and only if yi = 0.
B) ui = 1 if and only if yi ∈ {0, 1}.

An optimal strategy is found by exhaustive enumeration. We
find that the optimal strategy is for agent one to use rule B
when in state 0 and rule A when in state 1, and for agent two
to use rule A regardless of its state. This strategy results in a
probability of error of .1185. Clearly, the optimal rule is not
the same for each agent.

Since the agents are identical, µk(γ, ε) only depends on γ ∈
Γ and ε ∈ [0, 1], since different agents using the same rules
will have the same µk(γ, ε)s. Thus, we drop the k subscript.
Let

Λr = min
γ∈Γ

min
ε∈[0,1]

µ(γ, ε). (18)

That is, Λr is the optimal exponent when we restrict ourselves
to the set of strategies where all agents use the same rule.

Theorem 2. Assume the agents are identical according to
Definition 1 and that both hypotheses are possible under all
states. Then, Λ exists and is equal to Λr.

Proof. See the Appendix.

Theorem 2 states that there is no loss of asymptotic opti-
mality if all agents use the same rule. Moreover, to find the
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Fig. 2. Error exponents for the two strategies described in Section IV

optimal rule, one only need to solve the optimization problem
in (18).

IV. NUMERICAL RESULTS

In this section, we present numerical results to show the
convergence of the error exponent of a sub-optimal identi-
cal strategy. Specifically, let the two hypotheses be equally
likely and independent of the network state. Assume the
network consists of n agents, with n ∈ {10, 20, ..., 150},
which can take one of two states, 0 or 1, indepen-
dently of the other agents with p(Sk = 1) = .05
for all k ∈ {1, 2, ..., n}. All agents have the following
common distribution: (p1,0, p1,0, p2,0) = (.9, .095, .005),
(p1,1, p1,1, p2,1) = (.005, .9, .095), (q1,0, q1,0, q2,0) =
(.1, .3, .6). and (q1,1, q1,1, q2,1) = (.875, .03, .095), where
py,s = p0(y|s) and qy,s = p1(y|s) for y ∈ {0, 1, 2}.

Moreover, we consider two strategies.
• Strategy 1:All agents use the same rule. When in state

0, agent k sends 0 when yk = 0 and 1 otherwise, and
when in state 1 sends 0 when yk ∈ {0, 1}, for all k ∈
{1, 2, ..., n}.

• Strategy 2: The first n− 1 agents use the rule described
in Strategy 1. The last agent n sends 0 when in state 0
and yn = 1 and 1 otherwise, and when in state 1 sends
0 when yn ∈ {0, 1}.

In Fig. 2 we plot the error exponent rn(γ) = log Jn(γ)
n

for both strategies. The dotted black line in Fig. 2 is the
optimal error exponent. Notice that even for relatively large
n, Strategy 1 never strictly outperforms Strategy 2, but rather
the performance of the two strategies start to converge to each
other. Moreover, as n grows larger, the exponents of the two
strategies will converge to the optimal exponent. Hence, it is
not necessarily true that for large n the optimal strategy is an
identical one, but that for large n the optimal strategy cannot
outperform the asymptotically optimal identical rule.

V. CONCLUSIONS

In this paper, we have formulated the problem of state-
dependent decentralized detection. The Bayes optimal tests
for each agent are shown to be likelihood ratio tests with
state dependent thresholds. Conditioned on this agent decision
rule, the optimal fusion center rule is the MAP rule. For
the most general case, computing the Bayes optimal tests



for each agent in the state-dependent case is NP-hard. The
overall probability of error for this system is analyzed. In
particular, it is shown that despite the presence of conditionally
dependent observations (in contrast to the state-free case
typically studied), one can compute the error exponent for
the probability of error; furthermore, the resulting asymptotic
decision rules for each agent (if they are statistically identical
as defined in the body of the paper) are in fact the same.
Thus, a significant complexity reduction is incurred for rule
computation for the large n case. Numerical results confirm
properties for a key special case.

VI. APPENDIX

A. Proof of Upper Bound

Proof. Assuming the fusion center is implementing the MAP
rule, we have

Jn(γ) =∑
s,u

min{p0(u|s)p(h = 0|s), p1(u|s)p(h = 1|s)}p(s)

(a)

≤
∑
s,u

(p0(u|s)p(h = 0|s))1−ε(p1(u|s)p(h = 1|s))εp(s)

≤
∑
s,u

p0(u|s)1−εp1(u|s)εp(s)

(19)
where (a) is due to the fact that for any two positive numbers
a and b,

min{a, b} ≤ aεb1−ε for all ε ∈ [0, 1]. (20)

Hence,

1

n
log Jn(γ) ≤ 1

n
log

[∑
s,u

(p0(u|s))1−ε(p1(u|s))εp(s)

]
.

(21)
Since this is true for all ε, simply take the minimum over
0 ≤ ε ≤ 1. Note that this is also true for all strategies so
long as the fusion center implements the MAP rule. Thus,
we restrict ourselves to strategies that have the fusion center
implement the MAP rule. This proves the upper bound.

B. Proof of Theorem 2

Proof. Since having each agent use the same rule is a valid
strategy, we have Λn ≤ Λr. Then, let (γ∗, ε∗) ∈ Γ × [0, 1]
be such that µ(γ∗, ε∗) ≤ µ(γ, ε) for all (γ∗, ε∗) ∈ Γ × [0, 1]
(assuming such a pair exists). For any set of rules γ ∈ Γn, we
have

min
ε∈[0,1]

1

n

n∑
k=1

µ(γk, ε) ≥ µ(γ∗, ε∗) = Λr. (22)

Since this is true for all γ, taking the infimum over all γ ∈ Γn

gives us Λn ≥ Λr. Together with Λn ≤ Λr, we have that
Λn = Λr for all n. Hence, Λ = limn→∞ Λn = limn→∞ Λr =
Λr.
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