
ORIGINAL ARTICLE

Data-driven wind turbine wake modeling via probabilistic machine
learning

S. Ashwin Renganathan1 • Romit Maulik2 • Stefano Letizia3 • Giacomo Valerio Iungo3

Received: 25 August 2021 / Accepted: 25 November 2021 / Published online: 11 January 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Wind farm design primarily depends on the variability of the wind turbine wake flows to the atmospheric wind conditions

and the interaction between wakes. Physics-based models that capture the wake flow field with high-fidelity are compu-

tationally very expensive to perform layout optimization of wind farms, and, thus, data-driven reduced-order models can

represent an efficient alternative for simulating wind farms. In this work, we use real-world light detection and ranging

(LiDAR) measurements of wind-turbine wakes to construct predictive surrogate models using machine learning. Specif-

ically, we first demonstrate the use of deep autoencoders to find a low-dimensional latent space that gives a computa-

tionally tractable approximation of the wake LiDAR measurements. Then, we learn the mapping between the parameter

space and the (latent space) wake flow fields using a deep neural network. Additionally, we also demonstrate the use of a

probabilistic machine learning technique, namely, Gaussian process modeling, to learn the parameter-space-latent-space

mapping in addition to the epistemic and aleatoric uncertainty in the data. Finally, to cope with training large datasets, we

demonstrate the use of variational Gaussian process models that provide a tractable alternative to the conventional

Gaussian process models for large datasets. Furthermore, we introduce the use of active learning to adaptively build and

improve a conventional Gaussian process model predictive capability. Overall, we find that our approach provides accurate

approximations of the wind-turbine wake flow field that can be queried at an orders-of-magnitude cheaper cost than those

generated with high-fidelity physics-based simulations.

Keywords Machine Learning � Gaussian process � Deep neural networks � Wind energy

1 Introduction

Understanding and modeling wind farm flows still repre-

sent major challenges for wind farm designers and opera-

tors. Important aspects, such as the interaction of the

atmospheric boundary layer with wind turbines [41, 46]

and prediction of the wake morphology and their super-

position [30], are far from being fully understood, in spite

of having been the object of numerous insightful scientific

studies.

The term turbine wake refers to the low momentum and

highly turbulent region located downstream of an operating

wind turbine, which is a direct consequence of the

extraction of kinetic energy from the incoming wind field.

Significant power losses [2, 13, 42] and enhanced fatigue

loads [7, 10] were documented for turbines impinged by

upstream wakes. The study of turbine wakes through

numerical simulations is encumbered with difficulties due

to the high Reynolds number flow (which entails a great

span of length and time scales involved) [30], the

unsteadiness of the inflow conditions [19, 23], and the

relevant role of atmospheric stability [51]. Recently, large-

eddy simulations (LES) have become a well-established

tool for the simulation of wind farm flows [5, 28, 40].

However, their computational costs are still prohibitive for

& S. Ashwin Renganathan

ashwin.renganathan@utah.edu

1 Department of Mechanical Engineering, The University of

Utah, Salt Lake City, UT, USA

2 Mathematics and Computer Science, Argonne National

Laboratory, Lemont, IL, USA

3 Wind Fluids and Experiments (WindFluX) Laboratory,

Department of Mechanical Engineering, The University of

Texas at Dallas, Dallas, TX, USA

123

Neural Computing and Applications (2022) 34:6171–6186
https://doi.org/10.1007/s00521-021-06799-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-6948-6932
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06799-6&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06799-6


large-scale tasks, such as for layout optimization and real-

time performance diagnostics.

Reynolds-averaged Navier-Stokes [20, 38] and engi-

neering wake models (e.g. [3, 14, 21]) provide faster and

simpler alternatives to LES, since they do not explicitly

solve the unsteady small-scale turbulent eddies. However,

while the former are oftentimes affected by inaccuracy due

to the turbulence closure [38], the latter require a thorough

calibration to achieve a satisfactory agreement with

experimental data [50].

The above-mentioned challenges have spurred the

interest of wind energy scientists in the experimental

characterization of the wind farm flow. In particular, the

improvements of remote sensing instruments, such as wind

light detection and ranging (LiDAR), have promoted the

proliferation of field experimental campaign investigating

the wakes of utility-scale wind turbines (e.g., see

[19, 24, 50]). These studies have highlighted the great

complexity and sensitivity to environmental conditions on

the characteristics and downstream evolution of wind tur-

bine wakes.

Following up on past work [27], in this work, LiDAR

measurements of individual wakes generated by utility-

scale wind turbines under broad ranges of atmospheric and

wind conditions are leveraged to develop data-driven

machine learning models to enable accurate predictions of

the wake velocity field for prescribed wind/atmospheric

conditions, while requiring computational costs as low as

for empirical wake engineering models. Specifically, we

explore the application of deep neural networks (DNN) for

efficient data reduction via autoencoders, as well as to

build predictive models via multilayer perceptrons. Fur-

thermore, we also explore the combination of the data

reduction via the DNN and Gaussian process (GP) models

to develop predictive probabilistic models of the wake

flow. This way, we show how probabilistic machine

learning can be leveraged to learn predictive wake models

from noisy and incomplete measurement data. To sum-

marize, the contributions of this article are:

1. A novel convolutional autoencoder framework to

obtain low-dimensional embeddings of wind LiDAR

measurements for wind-turbine wakes. In this manner,

we develop a compressed—and hence tractable—

representation of the high-dimensional LiDAR data.

2. A DNN to learn the mapping between the input

parameter space and the latent space derived from the

convolutional autoencoder. Therefore, we learn the

mapping between the input parameters and the spa-

tially distributed wake measurements, via two levels of

DNNs–one for data reduction and one for prediction.

This serves as a cheap-to-evaluate surrogate model to

predict wind turbine wake velocity fields.

3. Additionally, similar to item 2, we propose the use of

probabilistic machine learning model via GP regres-

sion to learn latent-space to wake flow field mapping,

which can simultaneously learn the noise in the data.

To address the tractability issues associated with GP

regression with big data, we also investigate the use of

variational and active learned GP regression.

Overall, this work brings together state-of-the-art data-

driven machine learning and the classic field of wind

energy to build cheap and reliable surrogate models that

can be leveraged to perform exploratory studies. Figure 1

provides a high-level summary of the work.

The remainder of this article is organized as follows. In

Sect. 2, we present the details of our experimental setup

and data collection via LiDAR. In sections Sects. 3 and 4

we present the theoretical details of our machine learning

methods. We present the results and associated discussion

in Sect. 5, followed by concluding remarks and an outlook

on future work in Sect. 6.

2 Experimental data and collection methods

The wind LiDAR measurements used in this work were

collected in the period from August 2015 to March 2017 at

a wind farm located in North Texas1. The wind farm

includes 25 identical wind turbines with a nameplate

capacity of 2.3 MW. The rotor diameter is d ¼ 127 m and

the height of the hub is 89 m above the ground. The local

topographic map provided by [45] with a resolution of 100

m shows that 95% of the terrain within the farm has a slope

lower than 3�, which allows to rule out effects due to the

terrain on the flow.

A WindCube 200S scanning pulsed Döppler LiDAR

was installed at turbine 11 (see Fig. 2) and probed the

wakes stemming from turbines 01 to 06 during the occur-

rence of southerly winds. Plan position indicator (PPI)

scans were scheduled targeting the wake of the turbine with

the best line-of-sight alignment with the LiDAR, which

enables achieving an optimal spatio-temporal sampling

resolution.

Furthermore, meteorological and SCADA data were

continuously collected for the whole duration of the cam-

paign in the form of 10-minute mean and standard devia-

tion of wind speed, wind direction, temperature,

atmospheric pressure, active power, RPM, and blade pitch

angle. The list of input parameters is presented in Table 1;

for a more detailed description of the experimental site and

LiDAR scanning strategy please refer to [13, 51].

1 The original LiDAR data used in this work are available upon

reasonable request from the fourth author, who may be contacted at

valerio.iungo@utdallas.edu.

6172 Neural Computing and Applications (2022) 34:6171–6186

123



The wind rose of the site (Fig. 2) indicates high likeli-

hood of southerly winds and a negligible directional

dependence of the turbulence intensity at hub-height,

which confirms the findings of previous studies [13, 51] on

the prevalent thermally-driven cycle of the atmospheric

boundary layer caused by the diurnal variation of the solar

irradiance.

Fig. 1 Summary of the overall methodology

Fig. 2 Map of the experimental site. On the left, is the topographic

map and farm layout, where the green arcs indicate wind sectors

where no relevant wake interactions are expected. On the right, it is

the directional histogram of wind speed and turbulence intensity

based on the meteorological data of the 80-meters tower at the ‘‘Met’’

location. Unorm refers to the hub-height wind speed normalized by the

rated wind speed of the turbines (11 m s�1). Grey sectors are likely

affected by wakes (Color figure online)

Neural Computing and Applications (2022) 34:6171–6186 6173

123



The LiDAR data undergo a quality control which

excludes all the points characterized by a carrier-to-noise

ratio lower than �25 dB. Subsequently, the wake data are

realigned with the wind direction, which is estimated as the

10-minute moving averaged wake direction. This also

allows estimating the horizontal equivalent velocity as:

ueq �
uLOS

cosðh� hwÞ cos b
; ð1Þ

where uLOS is the line-of-sight velocity measured by the

LiDAR, hw is the wind direction, h and b are the azimuth

and elevation angles of the LiDAR, respectively. The

vertical variability of the incoming wind due to wind shear

is corrected by normalizing the equivalent velocity by the

vertical undisturbed velocity profile. After the outlined

post-processing, 6654 quality-control re-aligned and non-

dimensional LiDAR scans are made available for the fol-

lowing analysis. For more technical details on this proce-

dure, the interested reader shall refer to [51].

3 Deep learning for parametric flow
prediction

In the following section, we introduce our deep neural

network architectures for establishing a viable emulation

strategy for data obtained from LiDAR measurements.

3.1 Convolutional autoencoder

Autoencoders are neural networks that learn a new repre-

sentation of the input data, usually with lower dimension-

ality. The initial layers, called the encoder, map the input

x 2 Rn to a new representation ~x 2 Rk with k � n. The

remaining layers, called the decoder, map ~x back to Rn

with the goal of reconstructing x. The objective is to

minimize the reconstruction error. Autoencoders are

unsupervised; the data x is given, but the representation ~x
must be learned.

More specifically, we use autoencoders that have con-

volutional layers. In a convolutional layer, instead of

learning a matrix that connects all m neurons of layer’s

input to all n neurons of the layer’s output, we learn a set of

filters that are convolved with regions of the layer’s input.

Suppose a one-dimensional (1-d) convolutional layer has

filters of length Lf , then, each of the layer’s output neurons

corresponding to a specific filter fi is connected to a patch

of Lf of the layer’s input neurons. In particular, a 1-d

convolution of filter fi and patch p is defined as fi � p ¼
P

j f
i
j pj (where f ij corresponds to the stencil coefficient in

the filter for index j). In other words, convolutional neural

networks identify stencil values f ij that obtain coherent

translationally invariant features relevant to a particular

function approximator. Then, for a typical 1-d convolu-

tional layer, the layer’s output neuron yij ¼ uðfi � pj þ BiÞ
where u is an activation function, and Bi are the entries of a

bias term. As j increases, patches are shifted by stride s. For

example, a 1-d convolutional layer with a filter f0 of length

mf ¼ 3 and stride s ¼ 1 could be defined so that y0j
involves the convolution of f0 and inputs j� 1; j, and jþ 1.

To calculate the convolution, it is common to add zeros

around the inputs to a layer, which is called zero padding.

In the decoder, we use deconvolutional layers to return to

the original dimension. These layers upsample with near-

est-neighbor interpolation.

Two-dimensional convolutions are defined similarly, but

each filter and each patch are two-dimensional. A 2-d

convolution sums over both dimensions, and patches are

shifted both ways. For a typical 2-d convolutional layer, the

output neuron yhij ¼ uðfh � pij þ BhÞ. Input data can also

have a ‘‘channel’’ dimension, such as red/green/blue values

for images. The convolutional operator sums over channel

dimensions, but each patch contains all of the channels.

The filters remain the same size as patches, so they can

have different weights for different channels. It is common

to follow a convolutional layer with a pooling layer, which

outputs a sub-sampled version of the input. In this paper,

Table 1 List of input parameters and their ranges

Parameter Range Description

SCADA_WS [m/s] [2.92, 15.22] Mean Hub-height wind speed recorded by the SCADA

MET_WS_80m [m/s] [3.9, 15.22] Mean Hub-height wind speed recorded by the met-tower

SCADA_TI [–] [0.04, 0.36] Hub-height wind turbulence intensity recorded by the SCADA

MET_BulkRichardson [–] ½�0:01; 0:01� Bulk Richardson number recorded by met-tower

SCADA_Power [kW] [58.8, 2423] Mean power capture recorded by the SCADA

SCADA_RPM [RPM] [7.07, 16.95] Mean rotor rotational speed recorded by the SCADA

SCADA_Pitch [�] ½�2; 80� Mean blade pitch angle recorded by the SCADA

6174 Neural Computing and Applications (2022) 34:6171–6186

123



we specifically use max-pooling layers. Each output of a

max-pooling layer is connected to a patch of the input, and

it returns the maximum value in the patch.

Autoencoders have recently become popular for the

nonlinear dimensionality reduction of datasets extracted

from several high-dimensional systems. These have been

motivated by the extraction of coherent structures that

parameterize low-dimensional embeddings in manifolds

[15, 29, 47], and the utilization of these embeddings for

efficient surrogate models of nonlinear dynamical systems

[6, 17, 22, 26, 33, 35, 37, 49]. In this work, we utilize

convolutional autoencoders to identify low-dimensional

representations of experimentally collected data for build-

ing parameter-observation maps where the former are

obtained through meteorological and wind turbine data and

the latter are LiDAR measurements collected in the wake

generated by wind turbines.

3.2 Multilayered perceptron (MLP)

One technique to obtain a mapping from the meteorologi-

cal and turbine datasets and the latent space embeddings of

the convolutional autoencoder is through the use of a

multilayered perceptron (MLP) architecture, which is a

subclass of feedforward artificial neural network. A general

MLP consists of several neurons arranged in multiple

layers. These layers consist of one input and one output

layer along with several hidden layers. Each layer (with the

exception of an input layer) represents a linear operation

followed by a nonlinear activation that allows for great

flexibility in representing complicated nonlinear mappings.

This may be expressed as

Ll tl�1
� �

:¼ wltl�1 þ bl; ð2Þ

where tl�1 is the output of the previous layer, and wl; bl are

the weights and biases associated with that layer. The

output tl, for each layer may then be transformed by a

nonlinear activation, such as rectified linear activation:

gðaÞ ¼ ReLUðaÞ ¼ maxða; 0Þ: ð3Þ

For our experiments, the inputs t0 are in Rd (i.e., d is the

number of inputs) and the outputs tK are in Rk (i.e., k is the

number of outputs). The final map is given by

F : Rd 7!Rk; t0 7!tK ¼ Fðt0; ðw; bÞÞ;

where

Fðt0;w; bÞ ¼gK LK � gK�1
act � LK�1 � . . . � g1act � L1

� �
ðt0Þ

ð4Þ

is a complete representation of the neural network and

where w and b are a collection of all the weights and the

biases of the neural network. These weights and biases,

lumped together as / ¼ fw; bg, are trainable parameters of

our map, which can be optimized by examples obtained

from a training set. The supervised learning framework

requires for this set to have examples of inputs in RNip and

their corresponding outputs RNop . This is coupled with a

cost function C, which is a measure of the error of the

prediction of the network and the ground truth. Our cost

function is given by

C ¼ 1

jTj
X

ðh;~xÞ2T
~x� Fðh;/Þk k2 ð5Þ

with |T| indicates the cardinality of the training dataset

given by

T ¼ hi; ~xið Þ : ~xi ¼ f hið Þf g:

and where f hið Þ are examples of the true targets obtained

from the compressed training data using the autoencoder

introduced in the previous sections. Gradients of this cost

function can then be used in an optimization framework to

obtain the best weights and biases, given the training data.

Finally, the trained MLP may be used for uniformly

approximating any continuous function on compact

domains [1, 12], provided gðxÞ is not polynomial in nature.

4 Gaussian process regression

We now review the preliminaries of GP models. Our pri-

mary interest in the use of GP models stems from its

promise of offering enhanced data efficiency in emulation

compared to DNNs [36] as well as in sequential decision-

making [34]. Although not pursued in this work, GPs offer

greater potential in emulating complex functions when

combined with DNNs; e.g., see [31, 32]. GP models pro-

vide a probabilistic approximation to an unknown function

f ðhÞ. Specifically, f ðhÞ is assumed to take the form of a GP,

where each realization (or sample path) is a function. This

prior assumption on the function can then be combined

with the probability of actual observations conditional on

the prior (a.k.a, the likelihood), using Bayes’ rule [16]. In

this section, we provide a brief overview of the theory

behind GP models and highlight the difference between

exact and approximate inference, the latter finding appli-

cations in the presence of large datasets.

4.1 Exact Gaussian process regression

We begin by placing a GP prior assumption on the

unknown function, that is, f ðhÞ�GPðlðhÞ; kðh; h0ÞÞ, where
lðhÞ is a mean function and kðh; h0Þ is a covariance func-

tion (or kernel), andH 2 T . We assume that we have noisy

observations of f ðhÞ of the form

Neural Computing and Applications (2022) 34:6171–6186 6175

123



yi ¼ f ðhÞ þ �i; i ¼ 1; . . .; n

where �i represents the observation noise. We assume �i to

take an independent and identically distributed normal

distribution with zero mean and a variance of r2� , that is,
�i �Nð0; r2� Þ. Furthermore, we assume a Gaussian likeli-

hood that defines the probability of observing the data

given the GP assumption.

Let yn ¼ ½y1; . . .; yn�> denote the vector of noisy obser-

vations of f at H ¼ ½h1; . . .; hn�>, and

Dn ¼ fðhi; yiÞ; i ¼ 1; . . .; ng, then, applying Bayes’ rule,

the posterior distribution [48] is given by

f ðhÞjDn �GPðlnðhÞ; r2nðhÞÞ;

where lnðhÞ ¼k>K�1ðyn � lðHÞÞ

r2nðhÞ ¼kðh; hÞ � k>K�1k:

ð6Þ

In (6), ln and r2n are the mean and variance of the posterior

distribution, K 	 K is the n
 n covariance matrix with

Kij ¼ kðhi; hjÞ; 8hi; hj 2 H and K being the cone of sym-

metric positive definite matrices,

lðHÞ ¼ ½lðh1Þ; . . .; lðhnÞ�>, and

k ¼ ½kðh; h1Þ; . . .; kðh; hnÞ�>.
The emulation properties of the GP are driven by the

choice of the mean and covariance functions. In this work,

we standarize the observations yn such that they have a

mean of zero; that is we set lðhÞ ¼ 0 in the prior

assumption. On the other hand, we use a covariance

function from the Matern class [11, 25, 44], given by

kðh; h0Þ ¼ 21�m

CðmÞ

ffiffiffiffiffi
2m

p
kh� h0k
‘

� �m

Km

ffiffiffiffiffi
2m

p
kh� h0k
‘

� �

;

ð7Þ

with positive parameters m and ‘, where Km is a modified

Bessel function, CðÞ is the Gamma function and k � k
denotes the Euclidean distance. The parameter m (which we

set to 3/2) controls the differentiability of the sample paths

of the GP and is fixed, whereas ‘ is a lengthscale parameter

that controls the rate of change of the sample paths in T
and is a hyperparameter. The GP hyperparameter set X ¼
f‘; r2�g is estimated via a maximum likelihood estimation

(MLE) procedure frequently followed in fitting GP models

[39, 48].

The fact that the posterior distribution of the function

given in (6) is available in closed-form, the inference of

such a model is called exact inference. One of the main

bottlenecks of the exact inference is that the computation

of the posterior mean and variance in (6) involves the

inversion of the matrix K, whose computational cost scales

as Oðn3Þ, and hence gets expensive as n increases. This

motivates the approximate inference technique for GPs,

namely, variational GP regression, which trades some

accuracy for large gains in computational efficiency in

fitting GP models when n is large.

4.2 Approximate Gaussian process regression

In addition to the cost of estimating hyperparameters of the

exact GP involving Oðn3Þ floating point operations, the

prediction with the GP costs OðnÞ and Oðn2Þ operations,

respectively, for the posterior mean and variance compu-

tation. Sparse GP models [43] circumvent this overhead by

identifying a subset m\n of the training points, resulting in

reduced computational costs that scale as Oðm2nÞ, OðmÞ,
and Oðm2Þ for fitting, predicting mean, and predicting

variance, respectively.

The choice of the subset of m inducing points can be

treated as another hyperparameter and estimated by max-

imizing the marginal likelihood, just like in the exact GP

model; this results in an extended set of hyperparameters

fX; �Hg, where �H 2 Rm
d are the inducing points.

While sparse GPs bring down the cost of inverting the

covariance matrix K and predictions with the GP, the

number of hyperparameters increases (due to the addition

of the inducing points), thereby making inference compu-

tationally more expensive. To overcome this, we use

variational inference [4], which provides a tractable alter-

native to approximate unknown probability densities in

Bayesian models. Below, we briefly provide an overview

of sparse GP models and variational inference.

We now present a sparse model that is computationally

tractable in terms of inference and prediction with GPs.

The sparsity arises because we consider a sparse dataset �D
of size m\n with inducing inputs
�H ¼ f �hi; i ¼ 1; . . .;mg 	 T . These inducing inputs can

either be a subset of the training inputs or can be randomly

sampled from T [43]. Let u ¼ f ð�hÞ be the inducing out-

puts, which are sampled from the same prior on the true

function f. In this work, we treat �H as hyperparameters and

estimate them from maximizing the marginal likelihood.

Let the prior on the inducing outputs be given as

pðuj�hÞ�N ð0;KmmÞ; ð8Þ

where Kmm is the matrix of covariances between the

inducing inputs. This prior follows from the assumption

that the inducing outputs also behave like the latent vari-

able f which has a Gaussian prior. Therefore, u and f have a

joint Gaussian distribution [18] given by

pðf; uÞ ¼pðfjuÞpðuÞ ¼ N ðKnmK
�1
mmu;Knn �QnnÞ 
 N ð0;KmmÞ;

ð9Þ

where Qnn ¼ KnmK
�1
mmK

>
nm. To estimate the extended

6176 Neural Computing and Applications (2022) 34:6171–6186

123



hyperparameter set fX; �Hg, we first need to define a mar-

ginal likelihood. In this case, the marginal likelihood is

marginalized over f and u, that is,

pðyjH;X; �HÞ ¼
Z

pðyjuÞpðuÞdu ð10Þ

Note that the density pðyjuÞ still involves inverting the

matrix of size n
 n and hence is expensive to compute.

Therefore, this density is approximated using the evidence

lower bound (ELBO) [4] as

pðyjuÞ� EpðfjuÞ pðyjfÞ½ �: ð11Þ

Substituting (11) in (10), the lower bound on the marginal

log likelihood can be approximated as [18]

pðyjH;X; �HÞ� logNð0;KnmK
�1
mmK

>
nm þ r2� IÞ �

1

2
trðKnn �QnnÞ:

ð12Þ

Equation 12 can be maximized with respect to �H and X to

estimate the hyperparameters, where the bound in (12)

costs Oðnm2Þ for computation.

4.3 Active learning for Gaussian process
regression

Whereas variational GPs provide an approximation to

exact GP regression, another approach to improving

tractability of exact GP models is active data selection

[8, 9]. Specifically, given a training dataset Dn, the dataset

is adaptively augmented as

Dnþi :¼ Dnþi�1

[
fðhnþi; ynþiÞg; i ¼ 1; . . .;m ð13Þ

where m is the number of adaptive model building steps.

Furthermore, each adaptive step can select a batch of q

training points jointly; when q ¼ 1 we call the approach

sequential active learning and when q[ 1, batch-sequen-

tial active learning. At the end of the active learning pro-

cess, the GP is trained with a total of nþ mq training

points. The main objective of active learning is to choose

points judiciously such that they are optimal in the sense of

improving model fit.

In this work, we choose points that are optimal in

reducing the overall uncertainty about the GP model. That

is, we select points such that

hnþ1 ¼ argmax
h02T

Z

T
�r2nþ1ðh0Þ dh0

where r2nþ1ðhÞ is the posterior variance of the GP, having

observed the ðnþ 1Þth point, and we introduce the negative
sign to solve a maximization problem. Essentially, we treat

the integrated posterior variance as a measure of uncer-

tainty over our domain T and seek to choose training data

that are optimal in minimizing this uncertainty.

A fundamental issue with the above equation is that the

posterior variance r2nþ1ðhÞ is unknown until we actually

commit to hnþ1 and choose a training point there. To cir-

cumvent, we simulate the choice of hnþ1 via the GP trained

with data Dnþ1, and choose hnþ1 as the point that reduces

the expected uncertainty:

hnþ1 ¼ argmax
h02T

�
Z

Y

Z

T
r2nðhÞjDn [ fh0; yðh0Þg dhdy

¼ argmax
h02T

�Ey�Yn

Z

T
r2nðhÞjDn [ fh0; yðh0Þg dh

� �

:

ð14Þ

Essentially, (14) seeks to find the point in T that likely

leads to the least overall uncertainty, if the corresponding

training point was chosen and the model updated.

Similarly, the batch-sequential active design, to select

H ¼ fh1; . . .; hqg, is performed by choosing points as

hnþ1:q ¼ argmax
H0

�Ey� Yn

Z

T
r2nðhÞjDn [ fH0; yðH0Þg dH

� �

:

The choice of q[ 1 particularly has advantages when the

training data are generated by running expensive computer

simulations, which can be evaluated synchronously in

parallel. In the cases such as the present work, where we

seek to actively select training data from an existing set,

batch-sequential selection results in fewer hyperparameter

training steps, which in the case of exact GPs scales as

Oðn3Þ. However, in terms of the improvement in model fit,

it is not obvious what choice of q is the best. Therefore, we

perform a simple sensitivity study to investigate the effect

of the choice of q on the model fit.

Finally, to assess model fit, we evaluate the GP posterior

mean on a hold-out test set fhi; f ðhiÞg; i ¼ 1; . . .; ntest, and

compute the log root mean squared error (RMSE), defined

as

logðRMSEÞ ¼ log
1

ntest

Xntest

i¼1

½lðhiÞ � f ðhÞi�
2

( )1=2

: ð15Þ

We note that the log(RMSE) is computed at each step of

the active learning process with the GP model trained with

the training data selected up to the previous step. Fur-

thermore, the log(RMSE) is independently computed for

each of the latent space outputs using the corresponding GP

model.

5 Results

We now demonstrate our proposed data-driven machine

learning approaches toward predicting the wake velocity

field, using data generated from a scanning wind LiDAR.

Neural Computing and Applications (2022) 34:6171–6186 6177

123



We begin by first discussing the latent space reconstruction

accuracy of the data, purely from the convolutional

autoencoder. The reconstruction results provide a visual

estimate of the trade-off between compression due to the

autoencoder and loss/retention of information. With the

latent space representation available from the autoencoder

compression, we then proceed to learn the mapping

between the inputs (operating conditions) and the latent

space, via the machine learning models. Finally, the pre-

dicted wake fields are ’’decoded’’ via the decoder, as shown

in Fig. 1.

5.1 Compression accuracy

We first examine the ability of the convolutional autoen-

coder to effectively compress the LiDAR observations to a

suitable latent space. Figure 3 shows the ability of the

autoencoder to reconstruct observed data, with only four

latent dimensions, through its bottleneck neural architec-

ture. The figures demonstrate that despite the drastic

dimensionality reduction (i.e., 2501 to 4), the reconstruc-

tion accuracy has not been compromised significantly.

However, the larger goal here is that we want to be able to

generalize to a similar reconstruction error everywhere in

the parameter space. For this, we introduce the results of

the methods to obtain parameter-output maps, which we

present next.

5.2 Parametric reconstruction

The latent space ~x 2 Rk provides a very concise encoding

of the high-dimensional velocity field since k � d.

Therefore, we learn the function f : h 2 Rp ! ~x 2 Rk. We

learn f via MLP and GP regression (with exact inference).

Furthermore, we also use VGP regression (approximate

inference) to improve the tractability of GP models for

large datasets. Finally, we also show the performance of

choosing training data via active learning for the exact GP.

The original LiDAR dataset has a dimensionality d ¼
2501 which is reduced to k ¼ 4, via the convolutional

autoencoder. Figure 4 shows the actual-vs-predicted plot of

each of the four latent space dimensions predicted via all of

the three machine learning models: MLP, GP, and VGP;

note that we also show results of fitting GP with active

learning used for training data selection. Firstly, the plots

show that the predictive accuracy for all the machine

learning models is somewhat similar. Secondly, there are

outliers in the dataset—as in, for example, the lower-left

and upper-right corners of subfigure (a), where the pre-

diction accuracy is poor. We attribute this primarily to the

fact that the LiDAR measurements are corrupted by noise,

whose structure is unknown and not captured by the

models. Even though the GP models do resolve the noise in

the dataset, our model makes simplifying assumptions such

as independent and identically distributed noise, which

might not necessarily provide a realistic model of the noise

(although they are relatively computationally more tract-

able). Furthermore, the raw measurements have missing

Fig. 3 The compressive effectiveness of the convolutional autoen-

coder on the LiDAR dataset for three test examples. The left column

shows the true behavior of the wake for a set of testing data (unseen

during model fit) and the right column shows reconstruction from a

4-dimensional latent space by the autoencoder

6178 Neural Computing and Applications (2022) 34:6171–6186

123



elements, which are imputed via a local interpolation,

which—although inevitable—is expected to bias the data-

set. Given these characteristics of our real-world dataset,

including more sophistication, such as heteroscedastic

noise variance, could potentially overfit the data; we

reserve those approaches for future work.

We show the predicted flow field with our machine

learning models, for two unseen parameters in Fig. 5. In

addition to the true flow-field obtained from experimental

observations, and the best possible reconstruction—via

autoencoding the true flow-field, the prediction accuracy is

more-or-less uniform across the various models, and

visually presents a very close match to the true flow field.

Note that, the machine learning models at best can only

emulate the reconstruction decoded via the autoencoder

and hence comparison against the Decoded-exact plot is

most appropriate.

In Fig. 6, we also show a worst-case prediction via our

machine learning models. These plots correspond to the

outliers identified in Fig. 4. Overall, we noticed that total

number of such outliers fall roughly within 10% of the

overall dataset. For the specific wake measurement shown

in Fig. 6, we notice that an anomalous speed-up is observed

on the side of the wake for negative values of the radial

position. This flow feature can be either due to flow

interaction with side wind turbines or to large coherent

Fig. 4 Fitting a parametric map between MET data and the latent

space representation extracted by the convolutional autoencoder on

the LiDAR snapshots. The different colors indicate different latent

space parametric mapping techniques. Similar results are obtained

across different methods (Color figure online)

Neural Computing and Applications (2022) 34:6171–6186 6179

123



flow structures typically present in the atmospheric

boundary layer. Even though this kind of wake realizations

are realistic, their occurrence can be relatively low and,

thus, not captured from the training dataset.

We have used the sequential GP model fitting via AL is

another approach to improve the tractability of (exact) GP

regression for large datasets. Essentially, we choose the

most relevant subset of the training dataset, instead of

using the entire dataset or randomly sampling from it.

Fig. 5 Two examples of parametric reconstruction ability where

information from the MET data is used to obtain a latent-space

representation for a test data point. Following this, the decoder of the

autoencoder is used to reconstruct in physical space. We show results

for the true test snapshots, their exact reconstructions using only the

autoencoder, and various parametric predictions in latent space

followed by use of the decoder

6180 Neural Computing and Applications (2022) 34:6171–6186

123



Figure 7 shows the log RMSE of the GP—based on a held

out test dataset of 1781 points—with sequential increments

in the training data. Recall that the points are chosen

sequentially to reduce the average uncertainty about the GP

in the entire input domain X , and Fig. 7 shows the resulting

prediction error (log RMSE) variation with training dataset

size. We start the GP fit with a randomly selected 50 points

(from the full dataset of 5000 points) and sequentially add

100 more points. We also show the impact of the choice of

the number of points selected (q) at each step by varying it

between q ¼ 1 to q ¼ 8. We repeat this exercise 20 times

for independently chosen random starting points and plot

the mean and �1 standard deviation. Finally, we also show

the prediction error due to selecting 250 points randomly in

one shot (i.e., no sequential point selection). The results

show that sequential point selection results in a smaller

prediction error, regardless of the choice of q, for the first

three latent space dimensions. For the fourth latent space

dimension (~x4), the q ¼ 1 still outperforms the one-shot

selection. It is worth noting that the one-shot selection of

points still has 100 points more than what was supplied to

the AL GP. The reason for the AL GP outperforming the

one-shot GP is because training points are more judiciously

chosen–in this case, they are chosen specifically to mini-

mize the uncertainty in the GP about its own prediction.

Furthermore, it can be shown [39] that the average

uncertainty in the GP is equivalent to the mean-squared

prediction error (MSPE) of the posterior mean of the GP,

and therefore in effect the AL chooses points to minimize

the overall prediction error.

The spatial distribution of points is visualized in Fig. 8,

which is a scatterplot matrix of all possible combinations of

the inputs listed in Table 1. In this figure, the blue symbols

indicate the full training dataset (5000 points) and the red

symbols are the points selected via AL. Notice that the red

points show a better spread and hence coverage of the

design space compared to the full dataset. This is further

emphasized by the kernel density plots shown along the

diagonal of the scatterplot matrix, where the AL shows a

larger variance which is indicative of the fact that points

are more spread out. Overall, we see that the choosing

points via AL is another way toward building a more

tractable GP model with large datasets, without compro-

mising on the predictive accuracy.

Figure 9 shows a probability density plot of the pre-

diction accuracy for all the machine learning models we

employed in this work. Note that the densities have similar

shapes indicating that the overall predictive accuracy for all

the used models is somewhat similar, as mentioned pre-

viously. It is also worth noting that the AL GP still has the

lowest accuracy amongst all the three GP approaches

presented; this can be appreciated by considering the R2

value in Fig. 4 and/or the sorted error and kernel density

plot of the error shown in Fig. 10. Our hypothesis for this

behavior is that these plots show just one realization of the

GP (as opposed to Fig. 7 where we show the average of 20

independent realizations). In general, the predictive accu-

racy of the GP is sensitive to the choice of starting points,

but Fig. 7 proves that on average, the AL GP outperforms a

GP with one-shot point selection. Despite this fact, we still

show just one realization of the AL GP in Figs. 4 and 10

Fig. 6 Potential issue with an outlier—showing limited parametric map expressiveness across various latent space interpolation methods. Note

that outliers were limited to around 10% of the dataset

Neural Computing and Applications (2022) 34:6171–6186 6181

123



(despite showing a relatively poor predictive accuracy)

because this is more representative of a realistic scenario.

6 Conclusions

Accurate predictions of wind-turbine wake flows are cru-

cial to estimate power efficiency of wind farms, power

losses due to wake interactions, and optimal design of wind

farm layout. High-fidelity large-eddy simulations, which

can resolve the turbulent flow fields with high accuracy, are

prohibitively expensive from the computational-cost

standpoint to tackle the foregoing wind energy problems.

Scanning Doppler wind LiDARs provide detailed mea-

surements of the wake flow field generated from utility-

scale wind turbines; however, experimental data can be

incomplete and noisy.

In this work, we develop data-driven machine learning

models for prediction of wind turbine wakes by leveraging

wind LiDAR measurements. Specifically, we develop

Fig. 7 One-shot vs sequential GP fit. Horizontal lines are the RMSE with a one-shot GP fit with 500 uniformly random points; solid and dashed

lines are the mean and �1r, respectively. Sequential fit outperforms one-shot fit despite fewer training data

6182 Neural Computing and Applications (2022) 34:6171–6186

123



several data-driven models from high-dimensional LiDAR

data and analyze their comparative performance in terms of

parametric prediction. In this regard, we first use deep

neural networks to achieve a drastically compressed

(2501 ! 4) latent-space representation of the high-di-

mensional data. Then, we use multilayered perceptrons and

Gaussian processes to learn the input parameter-latent-

space map. Results show that the predictive capability of

all the machine learning models is somewhat similar.

However, GP regression with exact inference resulted in

the least RMSE (best prediction). Furthermore, to address

the well-known tractability issues with exact-inference

Gaussian processes, we also propose variational sparse

Gaussian processes as well as active learned Gaussian

processes. These two approaches, while resulting in a

significant saving in the computation necessary for model

inference, are observed to make only a marginal trade in

the accuracy. Overall, once trained, all of the machine

Fig. 8 Selected points via active learning. Blue represents the full training dataset (5000 points) and red represents the points selected via active

learning (150 points)

Neural Computing and Applications (2022) 34:6171–6186 6183

123



Fig. 9 Density plots of data-driven predictions in latent space followed by reconstruction through the decoder for a a fully connected neural

network b a Gaussian process c a sparse variational Gaussian process and d a reconstruction using a Gaussian process trained by active learning

Fig. 10 The sorted root-mean-squared error on the testing dataset

after parametric latent space prediction and reconstruction in physical

space (left). Kernel density estimate of the mean-squared errors for

different parametric maps (right). The RMSEs are competitive across

a large portion of the test dataset with certain outliers (approximately

200 data points)

6184 Neural Computing and Applications (2022) 34:6171–6186

123



learning model takes only O(1) second of wall-clock time

to evaluate.

This work brings together state-of-the-art machine

learning, to develop data-driven models of real-world data

pertinent to wind energy. We show that robust and accurate

models can be developed despite the data being noisy and

incomplete. With the developed predictive models, sensi-

tivity of the wake flow field to the input parameters can be

analyzed in real-time, compared to the unrealistic cpu-

hours necessary for high-fidelity simulations. In the future,

we hope to streamline the whole framework for data-driven

wake modeling via automated neural architecture search

and improved uncertainty quantification (e.g., using

heteroscedastic noise models for Gaussian processes).

Furthermore, developing hybrid probabilistic machine

learning models such as deep GP models, which combine

multilayered perceptrons and Gaussian processes, is

another focus of future work.

Acknowledgements This material is partially based upon work sup-

ported by the U.S. Department of Energy (DOE), Office of Science,

Office of Advanced Scientific Computing Research, under Contract

DE-AC02-06CH11357. This research was funded in part and used

resources of the Argonne Leadership Computing Facility, which is a

DOE Office of Science User Facility supported under Contract DE-

AC02-06CH11357. SAR acknowledges the support by Laboratory

Directed Research and Development (LDRD) funding from Argonne

National Laboratory, provided by the Director, Office of Science, of

the U.S. Department of Energy under contract DE-AC02-

06CH11357. This research has been partially funded by a grant from

the National Science Foundation CBET Fluid Dynamics, award

number 1705837. Pattern Energy Group is acknowledged to provide

access to the wind farm for the LiDAR experiment and wind farm

data.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Barron AR (1993) Universal approximation bounds for super-

positions of a sigmoidal function. IEEE Trans Inf Theory

39(3):930–945

2. Barthelmie R, Pryor S, Frandsen S, Hansen K, Schepers J, Rados

K, Schelz W, Neubert A, Jensen L, Neckelmann S (2010)

Quantifying the impact of wind turbine wakes on power output at

offshore wind farms. J Atmos Ocean Technol. https://doi.org/10.

1175/2010JTECHA1398.1

3. Bastankhah M, Porté-Agel F (2014) A new analytical model for

wind-turbine wakes. Renew Energy 70:116–123. https://doi.org/

10.1016/j.renene.2014.01.002

4. Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational

inference: a review for statisticians. J Am Stat Assoc

112(518):859–877

5. Breton S, Sumner J, Sørensen JN, Hansen KS, Sarmast S, Ivanell

S (2017) A survey of modelling methods for high-fidelity wind

farm simulations using large eddy simulation. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences 375 (20160097)

6. Cheng M, Fang F, Pain C, Navon I (2020) An advanced hybrid

deep adversarial autoencoder for parameterized nonlinear fluid

flow modelling. Comput Methods Appl Mech Eng 372:113375

7. Churchfield MJ, Lee S, Michalakes J, Moriarty PJ (2012) A

numerical study of the effects of atmospheric and wake turbu-

lence on wind turbine dynamics. J Turbulence 13:1–32. https://

doi.org/10.1080/14685248.2012.668191

8. Cohn DA, Ghahramani Z, Jordan MI (1995) Active learning with

statistical models. Tech. rep., Massachusetts Inst of Tech Cam-

bridge Artificial Intelligence Lab

9. Cohn DA, Ghahramani Z, Jordan MI (1996) Active learning with

statistical models. J Artif Intell Res 4:129–145

10. Conti D, Dimitrov N, Peña A (2020) Aeroelastic load validation

in wake conditions using nacelle-mounted lidar measurements.

Wind Energy Sci 5(3):1129–1154. https://doi.org/10.5194/wes-5-

1129-2020

11. Cressie N, Huang HC (1999) Classes of nonseparable, spatio-

temporal stationary covariance functions. J Am Stat Assoc

94(448):1330–1339

12. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 2(4):303–314

13. El-Asha S, Zhan L, Iungo G (2017) Quantification of power

losses due to wind turbine wake interactions through SCADA,

meteorological and wind LiDAR data. Wind Energy

20(June):1823–1839. https://doi.org/10.1002/we.2123

14. Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S,

Højstrup J, Thøgersen M (2006) Analytical modelling of wind

speed deficit in large offshore wind farms. Wind Energy

9(1–2):39–53. https://doi.org/10.1002/we.189

15. Fukami K, Nakamura T, Fukagata K (2020) Convolutional neural

network based hierarchical autoencoder for nonlinear mode

decomposition of fluid field data. Phys Fluids 32(9):095110

16. Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data

analysis. Chapman and Hall/CRC, Boca Rato

17. Gonzalez FJ, Balajewicz M (2018) Deep convolutional recurrent

autoencoders for learning low-dimensional feature dynamics of

fluid systems. arXiv preprint arXiv:1808.01346

18. Hensman J, Matthews A, Ghahramani Z (2015) Scalable varia-

tional gaussian process classification. In: Artificial Intelligence

and Statistics, pp. 351–360. PMLR

19. Iungo GV, Porté-Agel F (2014) Volumetric lidar scanning of

wind turbine wakes under convective and neutral atmospheric

stability regimes. J Atmos Oceanic Technol 31(10):2035–2048

20. Iungo GV, Santhanagopalan V, Ciri U, Viola F, Zhan L, Rotea

MA, Leonardi S (2018) Parabolic rans solver for low-computa-

tional-cost simulations of wind turbine wakes. Wind Energy

21(3):184–197

21. Jensen NO (1983) A note on wind generator interaction. Tech.

rep., Risø, Roskilde, Denmark. DOI Riso-M-2411. URL http://

www.risoe.dk/rispubl/VEA/veapdf/ris-m-2411.pdf

22. Kim Y, Choi Y, Widemann D, Zohdi T (2020) A fast and

accurate physics-informed neural network reduced order model

with shallow masked autoencoder. arXiv preprint arXiv:2009.

11990

23. Letizia S, Zhan L, Valerio Iungo G (2021) LiSBOA: LiDAR

Statistical Barnes Objective Analysis for optimal design of

LiDAR scans and retrieval of wind statistics. Part I: Theoretical

framework. Atmos Measurement Tech 14:2065–2093. https://doi.

org/10.5194/amt-14-2065-2021

24. Machefaux E, Larsen GC, Koblitz T, Troldborg N, Kelly MC,

Chougule A, Hansen KS, Rodrigo JS (2016) An experimental and

numerical study of the atmospheric stability impact on wind

turbine wakes. Wind Energy 19(10):1785–1805

Neural Computing and Applications (2022) 34:6171–6186 6185

123

https://doi.org/10.1175/2010JTECHA1398.1
https://doi.org/10.1175/2010JTECHA1398.1
https://doi.org/10.1016/j.renene.2014.01.002
https://doi.org/10.1016/j.renene.2014.01.002
https://doi.org/10.1080/14685248.2012.668191
https://doi.org/10.1080/14685248.2012.668191
https://doi.org/10.5194/wes-5-1129-2020
https://doi.org/10.5194/wes-5-1129-2020
https://doi.org/10.1002/we.2123
https://doi.org/10.1002/we.189
http://arxiv.org/abs/1808.01346
http://www.risoe.dk/rispubl/VEA/veapdf/ris-m-2411.pdf
http://www.risoe.dk/rispubl/VEA/veapdf/ris-m-2411.pdf
http://arxiv.org/abs/2009.11990
http://arxiv.org/abs/2009.11990
https://doi.org/10.5194/amt-14-2065-2021
https://doi.org/10.5194/amt-14-2065-2021


25. Matérn B (2013) Spatial variation, vol 36. Springer Science &

Business Media, Berlin

26. Maulik R, Lusch B, Balaprakash P (2021) Reduced-order mod-

eling of advection-dominated systems with recurrent neural net-

works and convolutional autoencoders. Phys Fluids 33(3):037106

27. Maulik R, Rao V, Renganathan SA, Letizia S, Iungo GV (2021)

Cluster analysis of wind turbine wakes measured through a

scanning doppler wind lidar. In: AIAA Scitech 2021 Forum,

p. 1181

28. Mehta D, Zuijlen AHV, Koren B, Holierhoek JG, Bijl H (2014)

Large Eddy Simulation of wind farm aerodynamics: a review.

J Wind Eng Ind Aerodyn 133:1–17. https://doi.org/10.1016/j.

jweia.2014.07.002

29. Murata T, Fukami K, Fukagata K (2020) Nonlinear mode

decomposition with convolutional neural networks for fluid

dynamics. J Fluid Mech, 882

30. Porté-agel F, Bastankhah M, Shamsoddin S (2019) Wind-Turbine

and Wind-Farm Flows: a review. Boundary-Layer Meteorol.

https://doi.org/10.1007/s10546-019-00473-0

31. Rajaram D, Puranik TG, Ashwin Renganathan S, Sung W, Fis-

cher OP, Mavris DN, Ramamurthy A (2021) Empirical assess-

ment of deep gaussian process surrogate models for engineering

problems. J Aircraft 58(1):182–196

32. Rajaram D, Puranik TG, Renganathan A, Sung WJ, Pinon-Fis-

cher OJ, Mavris DN, Ramamurthy A (2020) Deep gaussian

process enabled surrogate models for aerodynamic flows. In:

AIAA Scitech 2020 Forum, p. 1640

33. Renganathan SA (2020) Koopman-based approach to nonintru-

sive reduced order modeling: Application to aerodynamic shape

optimization and uncertainty propagation. AIAA J

58(5):2221–2235

34. Renganathan SA, Larson J, Wild SM (2021) Lookahead acqui-

sition functions for finite-horizon time-dependent bayesian opti-

mization and application to quantum optimal control. arXiv

preprint arXiv:2105.09824

35. Renganathan SA, Liu Y, Mavris DN (2018) Koopman-based

approach to nonintrusive projection-based reduced-order model-

ing with black-box high-fidelity models. AIAA J

56(10):4087–4111

36. Renganathan SA, Maulik R, Ahuja J (2021) Enhanced data effi-

ciency using deep neural networks and gaussian processes for

aerodynamic design optimization. Aerospace Sci Technol

111:106522

37. Renganathan SA, Maulik R, Rao V (2020) Machine learning for

nonintrusive model order reduction of the parametric inviscid

transonic flow past an airfoil. Phys Fluids 32(4):047110

38. Sanderse B, van der Pijl S, Koren B (2011) Review of compu-

tational fluid dynamics for wind turbine wake aerodynamics.

Wind Energy 14: 799–819. https://doi.org/10.1002/we.1608/full.

URL http://onlinelibrary.wiley.com/doi/10.1002/we.1608/full

39. Santner TJ, Williams BJ, Notz WI, Williams BJ (2003) The

design and analysis of computer experiments, vol 1. Springer,

Berlin

40. Santoni C, Garcia-Cartagena EJ, Ciri U, Zhan L, Iungo GV,

Leonardi S (2020) One-way mesoscale-microscale coupling for

simulating a wind farm in North Texas: Assessment against

SCADA and LiDAR data. Wind Energy 23(3):691–710

41. Sanz Rodrigo J, Chávez Arroyo RA, Moriarty P, Churchfield M,

Kosović B, Réthoré PE, Hansen KS, Hahmann A, Mirocha JD,

Rife D (2017) Mesoscale to microscale wind farm flow modeling

and evaluation. Wiley Interdisciplinary Reviews: Energy and

Environment 6(2). https://doi.org/10.1002/wene.214

42. Sebastiani A, Segalini A, Castellani F, Crasto G (2020) Data

analysis and simulation of the Lillgrund wind farm. Wind Energy

(November). https://doi.org/10.1002/we.2594

43. Snelson E, Ghahramani Z (2005) Sparse gaussian processes using

pseudo-inputs. Adv Neural Inf Process Syst 18:1257–1264

44. Stein ML (2012) Interpolation of spatial data: some theory for

kriging. Springer Science & Business Media, Berlin

45. U.S.G.S. (2017) U.S. Geological Survey Website. URL https://

www.usgs.gov/43

46. Veers P, Dykes K, Lantz E, Barth S, Bottasso C, Carlson O,

Clifton A, Green J, Green P, Holttinen H, Laird D, Lehtomäki V,

Lundquist J, Manwell J, Marquis M, Meneveau C, Moriarty P,

Munduate X, Muskulus M, Naughton J, Pao L, Paquette J, Peinke

J, Robertson A, Rodrigo JS, Sempreviva A, Smith J, Tuohy A,

Wiser R (2019) Grand challenges in the science of wind energy.

Science. https://doi.org/10.1126/science.aau2027

47. Vennemann B, Rösgen T (2020) A dynamic masking technique

for particle image velocimetry using convolutional autoencoders.

Exp Fluids 61(7):1–11

48. Williams CK, Rasmussen CE (2006) Gaussian processes for

machine learning, vol 2. MIT press, Cambridge, MA

49. Wu P, Gong S, Pan K, Qiu F, Feng W, Pain C (2021) Reduced

order model using convolutional auto-encoder with self-attention.

Phys Fluids 33(7):077107

50. Zhan L, Letizia S, Iungo GV (2020) Optimal tuning of engi-

neering wake models through lidar measurements. Wind Energy

Sci 5(4):1601–1622. https://doi.org/10.5194/wes-5-1601-2020

51. Zhan L, Letizia S, Valerio Iungo G (2020) Lidar measurements

for an onshore wind farm: wake variability for different incoming

wind speeds and atmospheric stability regimes. Wind Energy

23(3):501–527

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

6186 Neural Computing and Applications (2022) 34:6171–6186

123

https://doi.org/10.1016/j.jweia.2014.07.002
https://doi.org/10.1016/j.jweia.2014.07.002
https://doi.org/10.1007/s10546-019-00473-0
http://arxiv.org/abs/2105.09824
https://doi.org/10.1002/we.1608/full
http://onlinelibrary.wiley.com/doi/10.1002/we.1608/full
https://doi.org/10.1002/wene.214
https://doi.org/10.1002/we.2594
https://www.usgs.gov/43
https://www.usgs.gov/43
https://doi.org/10.1126/science.aau2027
https://doi.org/10.5194/wes-5-1601-2020

	Data-driven wind turbine wake modeling via probabilistic machine learning
	Abstract
	Introduction
	Experimental data and collection methods
	Deep learning for parametric flow prediction
	Convolutional autoencoder
	Multilayered perceptron (MLP)

	Gaussian process regression
	Exact Gaussian process regression
	Approximate Gaussian process regression
	Active learning for Gaussian process regression

	Results
	Compression accuracy
	Parametric reconstruction

	Conclusions
	Acknowledgements
	References




