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Abstract

Wind farm design primarily depends on the variability of the wind turbine wake flows to the atmospheric wind conditions
and the interaction between wakes. Physics-based models that capture the wake flow field with high-fidelity are compu-
tationally very expensive to perform layout optimization of wind farms, and, thus, data-driven reduced-order models can
represent an efficient alternative for simulating wind farms. In this work, we use real-world light detection and ranging
(LiDAR) measurements of wind-turbine wakes to construct predictive surrogate models using machine learning. Specif-
ically, we first demonstrate the use of deep autoencoders to find a low-dimensional lafent space that gives a computa-
tionally tractable approximation of the wake LiDAR measurements. Then, we learn the mapping between the parameter
space and the (latent space) wake flow fields using a deep neural network. Additionally, we also demonstrate the use of a
probabilistic machine learning technique, namely, Gaussian process modeling, to learn the parameter-space-latent-space
mapping in addition to the epistemic and aleatoric uncertainty in the data. Finally, to cope with training large datasets, we
demonstrate the use of variational Gaussian process models that provide a tractable alternative to the conventional
Gaussian process models for large datasets. Furthermore, we introduce the use of active learning to adaptively build and
improve a conventional Gaussian process model predictive capability. Overall, we find that our approach provides accurate
approximations of the wind-turbine wake flow field that can be queried at an orders-of-magnitude cheaper cost than those
generated with high-fidelity physics-based simulations.

Keywords Machine Learning - Gaussian process - Deep neural networks - Wind energy

1 Introduction

Understanding and modeling wind farm flows still repre-
sent major challenges for wind farm designers and opera-
tors. Important aspects, such as the interaction of the
atmospheric boundary layer with wind turbines [41, 46]
and prediction of the wake morphology and their super-
position [30], are far from being fully understood, in spite
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of having been the object of numerous insightful scientific
studies.

The term turbine wake refers to the low momentum and
highly turbulent region located downstream of an operating
wind turbine, which is a direct consequence of the
extraction of kinetic energy from the incoming wind field.
Significant power losses [2, 13, 42] and enhanced fatigue
loads [7, 10] were documented for turbines impinged by
upstream wakes. The study of turbine wakes through
numerical simulations is encumbered with difficulties due
to the high Reynolds number flow (which entails a great
span of length and time scales involved) [30], the
unsteadiness of the inflow conditions [19, 23], and the
relevant role of atmospheric stability [51]. Recently, large-
eddy simulations (LES) have become a well-established
tool for the simulation of wind farm flows [5, 28, 40].
However, their computational costs are still prohibitive for
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large-scale tasks, such as for layout optimization and real-
time performance diagnostics.

Reynolds-averaged Navier-Stokes [20, 38] and engi-
neering wake models (e.g. [3, 14, 21]) provide faster and
simpler alternatives to LES, since they do not explicitly
solve the unsteady small-scale turbulent eddies. However,
while the former are oftentimes affected by inaccuracy due
to the turbulence closure [38], the latter require a thorough
calibration to achieve a satisfactory agreement with
experimental data [50].

The above-mentioned challenges have spurred the
interest of wind energy scientists in the experimental
characterization of the wind farm flow. In particular, the
improvements of remote sensing instruments, such as wind
light detection and ranging (LiDAR), have promoted the
proliferation of field experimental campaign investigating
the wakes of utility-scale wind turbines (e.g., see
[19, 24, 50]). These studies have highlighted the great
complexity and sensitivity to environmental conditions on
the characteristics and downstream evolution of wind tur-
bine wakes.

Following up on past work [27], in this work, LiDAR
measurements of individual wakes generated by utility-
scale wind turbines under broad ranges of atmospheric and
wind conditions are leveraged to develop data-driven
machine learning models to enable accurate predictions of
the wake velocity field for prescribed wind/atmospheric
conditions, while requiring computational costs as low as
for empirical wake engineering models. Specifically, we
explore the application of deep neural networks (DNN) for
efficient data reduction via autoencoders, as well as to
build predictive models via multilayer perceptrons. Fur-
thermore, we also explore the combination of the data
reduction via the DNN and Gaussian process (GP) models
to develop predictive probabilistic models of the wake
flow. This way, we show how probabilistic machine
learning can be leveraged to learn predictive wake models
from noisy and incomplete measurement data. To sum-
marize, the contributions of this article are:

1. A novel convolutional autoencoder framework to
obtain low-dimensional embeddings of wind LiDAR
measurements for wind-turbine wakes. In this manner,
we develop a compressed—and hence tractable—
representation of the high-dimensional LiDAR data.

2. A DNN to learn the mapping between the input
parameter space and the latent space derived from the
convolutional autoencoder. Therefore, we learn the
mapping between the input parameters and the spa-
tially distributed wake measurements, via two levels of
DNNs—one for data reduction and one for prediction.
This serves as a cheap-to-evaluate surrogate model to
predict wind turbine wake velocity fields.
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3. Additionally, similar to item 2, we propose the use of

probabilistic machine learning model via GP regres-
sion to learn latent-space to wake flow field mapping,
which can simultaneously learn the noise in the data.
To address the tractability issues associated with GP
regression with big data, we also investigate the use of
variational and active learned GP regression.

Overall, this work brings together state-of-the-art data-
driven machine learning and the classic field of wind
energy to build cheap and reliable surrogate models that
can be leveraged to perform exploratory studies. Figure 1
provides a high-level summary of the work.

The remainder of this article is organized as follows. In
Sect. 2, we present the details of our experimental setup
and data collection via LiDAR. In sections Sects. 3 and 4
we present the theoretical details of our machine learning
methods. We present the results and associated discussion
in Sect. 5, followed by concluding remarks and an outlook
on future work in Sect. 6.

2 Experimental data and collection methods

The wind LiDAR measurements used in this work were
collected in the period from August 2015 to March 2017 at
a wind farm located in North Texas'. The wind farm
includes 25 identical wind turbines with a nameplate
capacity of 2.3 MW. The rotor diameter is d = 127 m and
the height of the hub is 89 m above the ground. The local
topographic map provided by [45] with a resolution of 100
m shows that 95% of the terrain within the farm has a slope
lower than 3°, which allows to rule out effects due to the
terrain on the flow.

A WindCube 200S scanning pulsed Doppler LiDAR
was installed at turbine 11 (see Fig. 2) and probed the
wakes stemming from turbines 01 to 06 during the occur-
rence of southerly winds. Plan position indicator (PPI)
scans were scheduled targeting the wake of the turbine with
the best line-of-sight alignment with the LiDAR, which
enables achieving an optimal spatio-temporal sampling
resolution.

Furthermore, meteorological and SCADA data were
continuously collected for the whole duration of the cam-
paign in the form of 10-minute mean and standard devia-
tion of wind speed, wind direction, temperature,
atmospheric pressure, active power, RPM, and blade pitch
angle. The list of input parameters is presented in Table 1;
for a more detailed description of the experimental site and
LiDAR scanning strategy please refer to [13, 51].

! The original LiDAR data used in this work are available upon
reasonable request from the fourth author, who may be contacted at
valerio.iungo@utdallas.edu.
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Fig. 2 Map of the experimental site. On the left, is the topographic
map and farm layout, where the green arcs indicate wind sectors
where no relevant wake interactions are expected. On the right, it is
the directional histogram of wind speed and turbulence intensity

The wind rose of the site (Fig. 2) indicates high likeli-
hood of southerly winds and a negligible directional
dependence of the turbulence intensity at hub-height,
which confirms the findings of previous studies [13, 51] on

U, > 2
15 < U < 2
1 < Unorm < 1.15
[ 1085 < Uporm < 1
[ 10.7 < Upomn < 0.85
0.5 < Upoymn < 0.7
025 < Uyp < 0.5

BT > 100 %

I 135 % < TI < 100 %
I 7 %< TI < 135 %
O % <TI<7%

based on the meteorological data of the 80-meters tower at the “Met”
location. U, refers to the hub-height wind speed normalized by the
rated wind speed of the turbines (11 m s~!). Grey sectors are likely
affected by wakes (Color figure online)

the prevalent thermally-driven cycle of the atmospheric
boundary layer caused by the diurnal variation of the solar
irradiance.
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Table 1 List of input parameters and their ranges

Parameter Range Description

SCADA_WS [m/s] [2.92, 15.22] Mean Hub-height wind speed recorded by the SCADA
MET_WS_80m [m/s] [3.9, 15.22] Mean Hub-height wind speed recorded by the met-tower
SCADA_TI [-] [0.04, 0.36] Hub-height wind turbulence intensity recorded by the SCADA
MET_BulkRichardson [-] [—0.01,0.01] Bulk Richardson number recorded by met-tower
SCADA_Power [kW] [58.8, 2423] Mean power capture recorded by the SCADA

SCADA_RPM [RPM] [7.07, 16.95] Mean rotor rotational speed recorded by the SCADA
SCADA_Pitch [°] [—2,80] Mean blade pitch angle recorded by the SCADA

The LiDAR data undergo a quality control which
excludes all the points characterized by a carrier-to-noise
ratio lower than —25 dB. Subsequently, the wake data are
realigned with the wind direction, which is estimated as the
10-minute moving averaged wake direction. This also
allows estimating the horizontal equivalent velocity as:

“LOS
"1™ Cos(0 — 0,,) cos B’ (1)

where up g is the line-of-sight velocity measured by the
LiDAR, 0,, is the wind direction, 0 and f§ are the azimuth
and elevation angles of the LiDAR, respectively. The
vertical variability of the incoming wind due to wind shear
is corrected by normalizing the equivalent velocity by the
vertical undisturbed velocity profile. After the outlined
post-processing, 6654 quality-control re-aligned and non-
dimensional LiDAR scans are made available for the fol-
lowing analysis. For more technical details on this proce-
dure, the interested reader shall refer to [51].

3 Deep learning for parametric flow
prediction

In the following section, we introduce our deep neural
network architectures for establishing a viable emulation
strategy for data obtained from LiDAR measurements.

3.1 Convolutional autoencoder

Autoencoders are neural networks that learn a new repre-
sentation of the input data, usually with lower dimension-
ality. The initial layers, called the encoder, map the input
x € R" to a new representation X € R* with k < n. The
remaining layers, called the decoder, map X back to R"
with the goal of reconstructing x. The objective is to
minimize the reconstruction error. Autoencoders are
unsupervised; the data x is given, but the representation X
must be learned.

@ Springer

More specifically, we use autoencoders that have con-
volutional layers. In a convolutional layer, instead of
learning a matrix that connects all m neurons of layer’s
input to all n neurons of the layer’s output, we learn a set of
filters that are convolved with regions of the layer’s input.
Suppose a one-dimensional (1-d) convolutional layer has
filters of length Ly, then, each of the layer’s output neurons
corresponding to a specific filter fi is connected to a patch
of Ly of the layer’s input neurons. In particular, a 1-d
convolution of filter fi and patch p is defined as f x p =
>, fipj (where f/ corresponds to the stencil coefficient in
the filter for index j). In other words, convolutional neural
networks identify stencil values ]7 that obtain coherent
translationally invariant features relevant to a particular
function approximator. Then, for a typical 1-d convolu-
tional layer, the layer’s output neuron y; = o(f % p; + Bi)
where ¢ is an activation function, and B; are the entries of a
bias term. As j increases, patches are shifted by stride s. For
example, a 1-d convolutional layer with a filter £ of length
ms =3 and stride s =1 could be defined so that yg;
involves the convolution of f* and inputs j — 1, j, and j + 1.
To calculate the convolution, it is common to add zeros
around the inputs to a layer, which is called zero padding.
In the decoder, we use deconvolutional layers to return to
the original dimension. These layers upsample with near-
est-neighbor interpolation.

Two-dimensional convolutions are defined similarly, but
each filter and each patch are two-dimensional. A 2-d
convolution sums over both dimensions, and patches are
shifted both ways. For a typical 2-d convolutional layer, the
output neuron yj; = @(f" « pi; + By). Input data can also
have a “channel” dimension, such as red/green/blue values
for images. The convolutional operator sums over channel
dimensions, but each patch contains all of the channels.
The filters remain the same size as patches, so they can
have different weights for different channels. It is common
to follow a convolutional layer with a pooling layer, which
outputs a sub-sampled version of the input. In this paper,
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we specifically use max-pooling layers. Each output of a
max-pooling layer is connected to a patch of the input, and
it returns the maximum value in the patch.

Autoencoders have recently become popular for the
nonlinear dimensionality reduction of datasets extracted
from several high-dimensional systems. These have been
motivated by the extraction of coherent structures that
parameterize low-dimensional embeddings in manifolds
[15, 29, 47], and the utilization of these embeddings for
efficient surrogate models of nonlinear dynamical systems
[6, 17, 22, 26, 33, 35, 37, 49]. In this work, we utilize
convolutional autoencoders to identify low-dimensional
representations of experimentally collected data for build-
ing parameter-observation maps where the former are
obtained through meteorological and wind turbine data and
the latter are LIDAR measurements collected in the wake
generated by wind turbines.

3.2 Multilayered perceptron (MLP)

One technique to obtain a mapping from the meteorologi-
cal and turbine datasets and the latent space embeddings of
the convolutional autoencoder is through the use of a
multilayered perceptron (MLP) architecture, which is a
subclass of feedforward artificial neural network. A general
MLP consists of several neurons arranged in multiple
layers. These layers consist of one input and one output
layer along with several hidden layers. Each layer (with the
exception of an input layer) represents a linear operation
followed by a nonlinear activation that allows for great
flexibility in representing complicated nonlinear mappings.
This may be expressed as

L) = wd + b, (2)

where #~! is the output of the previous layer, and w', b’ are
the weights and biases associated with that layer. The
output #, for each layer may then be transformed by a
nonlinear activation, such as rectified linear activation:

n(a) = ReLU(a) = max(a,0). (3)
For our experiments, the inputs £ are in R? (i.e., d is the

number of inputs) and the outputs X are in R¥ (i.e., k is the
number of outputs). The final map is given by

F:R—RE Ot = F(©; (w,b)),
where
F(w,b) =n* (LK oy 1o £¥ o lonl, o L) (&)

(4)

is a complete representation of the neural network and
where w and b are a collection of all the weights and the
biases of the neural network. These weights and biases,

lumped together as ¢ = {w, b}, are trainable parameters of
our map, which can be optimized by examples obtained
from a training set. The supervised learning framework
requires for this set to have examples of inputs in R¥» and
their corresponding outputs RY». This is coupled with a
cost function C, which is a measure of the error of the
prediction of the network and the ground truth. Our cost

function is given by

C= 3 IR-F: ) (5)
I,

0.X)eT

with |71 indicates the cardinality of the training dataset
given by

T ={(0;,%:) : X; = f(6:)}.

and where f(6;) are examples of the true targets obtained
from the compressed training data using the autoencoder
introduced in the previous sections. Gradients of this cost
function can then be used in an optimization framework to
obtain the best weights and biases, given the training data.
Finally, the trained MLP may be used for uniformly
approximating any continuous function on compact
domains [1, 12], provided 5(x) is not polynomial in nature.

4 Gaussian process regression

We now review the preliminaries of GP models. Our pri-
mary interest in the use of GP models stems from its
promise of offering enhanced data efficiency in emulation
compared to DNNs [36] as well as in sequential decision-
making [34]. Although not pursued in this work, GPs offer
greater potential in emulating complex functions when
combined with DNNs; e.g., see [31, 32]. GP models pro-
vide a probabilistic approximation to an unknown function
£(0). Specifically, f(0) is assumed to take the form of a GP,
where each realization (or sample path) is a function. This
prior assumption on the function can then be combined
with the probability of actual observations conditional on
the prior (a.k.a, the likelihood), using Bayes’ rule [16]. In
this section, we provide a brief overview of the theory
behind GP models and highlight the difference between
exact and approximate inference, the latter finding appli-
cations in the presence of large datasets.

4.1 Exact Gaussian process regression

We begin by placing a GP prior assumption on the
unknown function, that is, () ~ GP(u(0),k(0,0')), where
w(0) is a mean function and k(0,8') is a covariance func-
tion (or kernel), and @ € 7. We assume that we have noisy
observations of f(0) of the form

@ Springer
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yi =f(0) + €,

where ¢; represents the observation noise. We assume ¢; to
take an independent and identically distributed normal
distribution with zero mean and a variance of af, that is,

i=1,...,n

¢; ~N(0,0?). Furthermore, we assume a Gaussian likeli-
hood that defines the probability of observing the data
given the GP assumption.

Let y, = [y1,...,y,] denote the vector of noisy obser-
vations of f at 0=160,... 0,,]T, and
D, ={(0;,y:),i=1,...,n}, then, applying Bayes’ rule,
the posterior distribution [48] is given by

FO)[D, ~GP(1,(0),7(0)),
where ,(0) =k'K™'(y, — u(0)) (6)
a2(0) =k(0,0) — k'K 'k.

In (6), p,, and afl are the mean and variance of the posterior
distribution, K C K is the n x n covariance matrix with
K; = k(0;,0;),v0;,0;, € © and K being the cone of sym-
metric positive definite matrices,

w(O) = [u(0),- -, n(6,)] ", and
k = [k(0,0,),...,k(0,0,)]".

The emulation properties of the GP are driven by the
choice of the mean and covariance functions. In this work,
we standarize the observations y, such that they have a
mean of zero; that is we set w(@) =0 in the prior
assumption. On the other hand, we use a covariance
function from the Matern class [11, 25, 44], given by

il(v; (\/ﬂllﬂe— 0’|>"Kv (\/ZIIZ— 6"II)7

k(0,0') =

(7)

with positive parameters v and ¢, where K, is a modified
Bessel function, I'() is the Gamma function and || - ||
denotes the Euclidean distance. The parameter v (which we
set to 3/2) controls the differentiability of the sample paths
of the GP and is fixed, whereas / is a lengthscale parameter
that controls the rate of change of the sample paths in 7
and is a hyperparameter. The GP hyperparameter set Q =
{¢,62} is estimated via a maximum likelihood estimation
(MLE) procedure frequently followed in fitting GP models
[39, 48].

The fact that the posterior distribution of the function
given in (6) is available in closed-form, the inference of
such a model is called exact inference. One of the main
bottlenecks of the exact inference is that the computation
of the posterior mean and variance in (6) involves the
inversion of the matrix K, whose computational cost scales
as O(n®), and hence gets expensive as n increases. This
motivates the approximate inference technique for GPs,
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namely, variational GP regression, which trades some
accuracy for large gains in computational efficiency in
fitting GP models when n is large.

4.2 Approximate Gaussian process regression

In addition to the cost of estimating hyperparameters of the
exact GP involving O(n?) floating point operations, the
prediction with the GP costs O(n) and O(n*) operations,
respectively, for the posterior mean and variance compu-
tation. Sparse GP models [43] circumvent this overhead by
identifying a subset m < n of the training points, resulting in
reduced computational costs that scale as O(m*n), O(m),
and O(m?) for fitting, predicting mean, and predicting
variance, respectively.

The choice of the subset of m inducing points can be
treated as another hyperparameter and estimated by max-
imizing the marginal likelihood, just like in the exact GP
model; this results in an extended set of hyperparameters
{Q, 0}, where @ € R™ are the inducing points.

While sparse GPs bring down the cost of inverting the
covariance matrix K and predictions with the GP, the
number of hyperparameters increases (due to the addition
of the inducing points), thereby making inference compu-
tationally more expensive. To overcome this, we use
variational inference [4], which provides a tractable alter-
native to approximate unknown probability densities in
Bayesian models. Below, we briefly provide an overview
of sparse GP models and variational inference.

We now present a sparse model that is computationally
tractable in terms of inference and prediction with GPs.
The sparsity arises because we consider a sparse dataset D
of size with inducing inputs
©®={0;,,i=1,...,m} CT. These inducing inputs can
either be a subset of the training inputs or can be randomly
sampled from 7 [43]. Let u = f(0) be the inducing out-
puts, which are sampled from the same prior on the true
function f. In this work, we treat @ as hyperparameters and
estimate them from maximizing the marginal likelihood.

Let the prior on the inducing outputs be given as

p(|0) ~N(0,K,), (3)

m<n

where K,,, is the matrix of covariances between the
inducing inputs. This prior follows from the assumption
that the inducing outputs also behave like the latent vari-
able f which has a Gaussian prior. Therefore, u and f have a
joint Gaussian distribution [18] given by

p(f,u) :p(f|u)p(u) = N(Kan‘;}nu, K — an) X N(07Kmm)7
9)

where Q,, = K,,K !K' . To estimate the extended

mm
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hyperparameter set {Q, @}, we first need to define a mar-
ginal likelihood. In this case, the marginal likelihood is
marginalized over f and u, that is,

P(y]0.9.0) = / p(y/u)p(w)du (10)

Note that the density p(y|u) still involves inverting the
matrix of size n X n and hence is expensive to compute.
Therefore, this density is approximated using the evidence
lower bound (ELBO) [4] as

Epcew [P(YIE)]. (11)

Substituting (11) in (10), the lower bound on the marginal
log likelihood can be approximated as [18]

p(ylu) >

1
p(y|0.2.0) >10gN (0. K, K, K, + 071) — S tr(K,

mm nm

Q’H’l)'
(12)

Equation 12 can be maximized with respect to @ and  to
estimate the hyperparameters, where the bound in (12)
costs O(nm?) for computation.

4.3 Active learning for Gaussian process
regression

Whereas variational GPs provide an approximation to
exact GP regression, another approach to improving
tractability of exact GP models is active data selection
[8, 9]. Specifically, given a training dataset D,,, the dataset
is adaptively augmented as

Dn+i = Dn+i71 U{(onJriaynJri)}a i= 1a cem (13)

where m is the number of adaptive model building steps.
Furthermore, each adaptive step can select a batch of g
training points jointly; when ¢ = 1 we call the approach
sequential active learning and when g > 1, batch-sequen-
tial active learning. At the end of the active learning pro-
cess, the GP is trained with a total of n+ mgq training
points. The main objective of active learning is to choose
points judiciously such that they are optimal in the sense of
improving model fit.

In this work, we choose points that are optimal in
reducing the overall uncertainty about the GP model. That
is, we select points such that

0,11 = arg max / —a? 1 (0) a0’
0T J1

where o2, () is the posterior variance of the GP, having
observed the (n + 1)th point, and we introduce the negative
sign to solve a maximization problem. Essentially, we treat
the integrated posterior variance as a measure of uncer-
tainty over our domain 7 and seek to choose training data
that are optimal in minimizing this uncertainty.

A fundamental issue with the above equation is that the
posterior variance o2 () is unknown until we actually
commit to 6,; and choose a training point there. To cir-
cumvent, we simulate the choice of 0, via the GP trained
with data D,,. |, and choose 0, as the point that reduces
the expected uncertainty:

arg max —/ /[ai(())ﬂ?nu {0, y(0')} dody

0n+l = g
0cT

=argmax —F, .y, [/ a2(0)[D, U {0, y(0)} o).
0T ’ T
(14)

Essentially, (14) seeks to find the point in 7 that likely
leads to the least overall uncertainty, if the corresponding
training point was chosen and the model updated.

Similarly, the batch-sequential active design, to select
© ={0,,...,0,}, is performed by choosing points as

014 = arg max —Ey~v, {/ a2(0)|D, U {0, y(0)}doO|.
T

The choice of g > 1 particularly has advantages when the
training data are generated by running expensive computer
simulations, which can be evaluated synchronously in
parallel. In the cases such as the present work, where we
seek to actively select training data from an existing set,
batch-sequential selection results in fewer hyperparameter
training steps, which in the case of exact GPs scales as
O(n*). However, in terms of the improvement in model fit,
it is not obvious what choice of ¢ is the best. Therefore, we
perform a simple sensitivity study to investigate the effect
of the choice of g on the model fit.

Finally, to assess model fit, we evaluate the GP posterior
mean on a hold-out test set {0;,7(0;)}, i = 1, ..., ngegt, and
compute the log root mean squared error (RMSE), defined
as

ntest 1/2
Z (0;) } . (135)

We note that the log(RMSE) is computed at each step of
the active learning process with the GP model trained with
the training data selected up to the previous step. Fur-
thermore, the log(RMSE) is independently computed for
each of the latent space outputs using the corresponding GP
model.

log(RMSE) = log
Ntest 7=

5 Results

We now demonstrate our proposed data-driven machine
learning approaches toward predicting the wake velocity
field, using data generated from a scanning wind LiDAR.

@ Springer
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We begin by first discussing the latent space reconstruction
accuracy of the data, purely from the convolutional
autoencoder. The reconstruction results provide a visual
estimate of the trade-off between compression due to the
autoencoder and loss/retention of information. With the
latent space representation available from the autoencoder
compression, we then proceed to learn the mapping
between the inputs (operating conditions) and the latent
space, via the machine learning models. Finally, the pre-
dicted wake fields are ”decoded” via the decoder, as shown
in Fig. 1.

5.1 Compression accuracy

We first examine the ability of the convolutional autoen-
coder to effectively compress the LIDAR observations to a
suitable latent space. Figure 3 shows the ability of the
autoencoder to reconstruct observed data, with only four
latent dimensions, through its bottleneck neural architec-
ture. The figures demonstrate that despite the drastic
dimensionality reduction (i.e., 2501 to 4), the reconstruc-
tion accuracy has not been compromised significantly.
However, the larger goal here is that we want to be able to
generalize to a similar reconstruction error everywhere in
the parameter space. For this, we introduce the results of
the methods to obtain parameter-output maps, which we
present next.
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5.2 Parametric reconstruction

The latent space X € R¥ provides a very concise encoding
of the high-dimensional velocity field since k < d.
Therefore, we learn the function f : 0 € R” — X € R¥. We
learn f via MLP and GP regression (with exact inference).
Furthermore, we also use VGP regression (approximate
inference) to improve the tractability of GP models for
large datasets. Finally, we also show the performance of
choosing training data via active learning for the exact GP.

The original LiDAR dataset has a dimensionality d =
2501 which is reduced to kK =4, via the convolutional
autoencoder. Figure 4 shows the actual-vs-predicted plot of
each of the four latent space dimensions predicted via all of
the three machine learning models: MLP, GP, and VGP;
note that we also show results of fitting GP with active
learning used for training data selection. Firstly, the plots
show that the predictive accuracy for all the machine
learning models is somewhat similar. Secondly, there are
outliers in the dataset—as in, for example, the lower-left
and upper-right corners of subfigure (a), where the pre-
diction accuracy is poor. We attribute this primarily to the
fact that the LIDAR measurements are corrupted by noise,
whose structure is unknown and not captured by the
models. Even though the GP models do resolve the noise in
the dataset, our model makes simplifying assumptions such
as independent and identically distributed noise, which
might not necessarily provide a realistic model of the noise
(although they are relatively computationally more tract-
able). Furthermore, the raw measurements have missing

Reconstructed
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Recénstrucfed

100 §

Recénstruceed

100

035 075

rid

Fig. 3 The compressive effectiveness of the convolutional autoen-
coder on the LiDAR dataset for three test examples. The left column
shows the true behavior of the wake for a set of testing data (unseen
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during model fit) and the right column shows reconstruction from a
4-dimensional latent space by the autoencoder
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Fig. 4 Fitting a parametric map between MET data and the latent
space representation extracted by the convolutional autoencoder on
the LiDAR snapshots. The different colors indicate different latent

elements, which are imputed via a local interpolation,
which—although inevitable—is expected to bias the data-
set. Given these characteristics of our real-world dataset,
including more sophistication, such as heteroscedastic
noise variance, could potentially overfit the data; we
reserve those approaches for future work.

We show the predicted flow field with our machine
learning models, for two unseen parameters in Fig. 5. In
addition to the true flow-field obtained from experimental
observations, and the best possible reconstruction—via
autoencoding the true flow-field, the prediction accuracy is
more-or-less uniform across the various models, and
visually presents a very close match to the true flow field.
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space parametric mapping techniques. Similar results are obtained
across different methods (Color figure online)

Note that, the machine learning models at best can only
emulate the reconstruction decoded via the autoencoder
and hence comparison against the Decoded-exact plot is
most appropriate.

In Fig. 6, we also show a worst-case prediction via our
machine learning models. These plots correspond to the
outliers identified in Fig. 4. Overall, we noticed that total
number of such outliers fall roughly within 10% of the
overall dataset. For the specific wake measurement shown
in Fig. 6, we notice that an anomalous speed-up is observed
on the side of the wake for negative values of the radial
position. This flow feature can be either due to flow
interaction with side wind turbines or to large coherent
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Fig. 5 Two examples of parametric reconstruction ability where
information from the MET data is used to obtain a latent-space
representation for a test data point. Following this, the decoder of the
autoencoder is used to reconstruct in physical space. We show results

flow structures typically present in the atmospheric
boundary layer. Even though this kind of wake realizations
are realistic, their occurrence can be relatively low and,
thus, not captured from the training dataset.

@ Springer

for the true test snapshots, their exact reconstructions using only the
autoencoder, and various parametric predictions in latent space
followed by use of the decoder

We have used the sequential GP model fitting via AL is
another approach to improve the tractability of (exact) GP
regression for large datasets. Essentially, we choose the
most relevant subset of the training dataset, instead of
using the entire dataset or randomly sampling from it.
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Fig. 6 Potential issue with an outlier—showing limited parametric map expressiveness across various latent space interpolation methods. Note

that outliers were limited to around 10% of the dataset

Figure 7 shows the log RMSE of the GP—based on a held
out test dataset of 1781 points—with sequential increments
in the training data. Recall that the points are chosen
sequentially to reduce the average uncertainty about the GP
in the entire input domain X, and Fig. 7 shows the resulting
prediction error (log RMSE) variation with training dataset
size. We start the GP fit with a randomly selected 50 points
(from the full dataset of 5000 points) and sequentially add
100 more points. We also show the impact of the choice of
the number of points selected (g) at each step by varying it
between ¢ = 1 to g = 8. We repeat this exercise 20 times
for independently chosen random starting points and plot
the mean and +1 standard deviation. Finally, we also show
the prediction error due to selecting 250 points randomly in
one shot (i.e., no sequential point selection). The results
show that sequential point selection results in a smaller
prediction error, regardless of the choice of g, for the first
three latent space dimensions. For the fourth latent space
dimension (X4), the ¢ = 1 still outperforms the one-shot
selection. It is worth noting that the one-shot selection of
points still has 100 points more than what was supplied to
the AL GP. The reason for the AL GP outperforming the
one-shot GP is because training points are more judiciously
chosen—in this case, they are chosen specifically to mini-
mize the uncertainty in the GP about its own prediction.
Furthermore, it can be shown [39] that the average
uncertainty in the GP is equivalent to the mean-squared
prediction error (MSPE) of the posterior mean of the GP,
and therefore in effect the AL chooses points to minimize
the overall prediction error.

The spatial distribution of points is visualized in Fig. 8§,
which is a scatterplot matrix of all possible combinations of
the inputs listed in Table 1. In this figure, the blue symbols
indicate the full training dataset (5000 points) and the red
symbols are the points selected via AL. Notice that the red
points show a better spread and hence coverage of the
design space compared to the full dataset. This is further
emphasized by the kernel density plots shown along the
diagonal of the scatterplot matrix, where the AL shows a
larger variance which is indicative of the fact that points
are more spread out. Overall, we see that the choosing
points via AL is another way toward building a more
tractable GP model with large datasets, without compro-
mising on the predictive accuracy.

Figure 9 shows a probability density plot of the pre-
diction accuracy for all the machine learning models we
employed in this work. Note that the densities have similar
shapes indicating that the overall predictive accuracy for all
the used models is somewhat similar, as mentioned pre-
viously. It is also worth noting that the AL GP still has the
lowest accuracy amongst all the three GP approaches
presented; this can be appreciated by considering the R?
value in Fig. 4 and/or the sorted error and kernel density
plot of the error shown in Fig. 10. Our hypothesis for this
behavior is that these plots show just one realization of the
GP (as opposed to Fig. 7 where we show the average of 20
independent realizations). In general, the predictive accu-
racy of the GP is sensitive to the choice of starting points,
but Fig. 7 proves that on average, the AL GP outperforms a
GP with one-shot point selection. Despite this fact, we still
show just one realization of the AL GP in Figs. 4 and 10
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Fig. 7 One-shot vs sequential GP fit. Horizontal lines are the RMSE with a one-shot GP fit with 500 uniformly random points; solid and dashed
lines are the mean and +10, respectively. Sequential fit outperforms one-shot fit despite fewer training data

(despite showing a relatively poor predictive accuracy)
because this is more representative of a realistic scenario.

6 Conclusions

Accurate predictions of wind-turbine wake flows are cru-
cial to estimate power efficiency of wind farms, power
losses due to wake interactions, and optimal design of wind
farm layout. High-fidelity large-eddy simulations, which
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can resolve the turbulent flow fields with high accuracy, are
prohibitively expensive from the computational-cost
standpoint to tackle the foregoing wind energy problems.
Scanning Doppler wind LiDARs provide detailed mea-
surements of the wake flow field generated from utility-
scale wind turbines; however, experimental data can be
incomplete and noisy.

In this work, we develop data-driven machine learning
models for prediction of wind turbine wakes by leveraging
wind LiDAR measurements. Specifically, we develop
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Fig. 8 Selected points via active learning. Blue represents the full training dataset (5000 points) and red represents the points selected via active

learning (150 points)

several data-driven models from high-dimensional LiDAR
data and analyze their comparative performance in terms of
parametric prediction. In this regard, we first use deep
neural networks to achieve a drastically compressed
(2501 — 4) latent-space representation of the high-di-
mensional data. Then, we use multilayered perceptrons and
Gaussian processes to learn the input parameter-latent-
space map. Results show that the predictive capability of
all the machine learning models is somewhat similar.

However, GP regression with exact inference resulted in
the least RMSE (best prediction). Furthermore, to address
the well-known tractability issues with exact-inference
Gaussian processes, we also propose variational sparse
Gaussian processes as well as active learned Gaussian
processes. These two approaches, while resulting in a
significant saving in the computation necessary for model
inference, are observed to make only a marginal trade in
the accuracy. Overall, once trained, all of the machine
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learning model takes only O(1) second of wall-clock time
to evaluate.

This work brings together state-of-the-art machine
learning, to develop data-driven models of real-world data
pertinent to wind energy. We show that robust and accurate
models can be developed despite the data being noisy and
incomplete. With the developed predictive models, sensi-
tivity of the wake flow field to the input parameters can be
analyzed in real-time, compared to the unrealistic cpu-
hours necessary for high-fidelity simulations. In the future,
we hope to streamline the whole framework for data-driven
wake modeling via automated neural architecture search
and improved uncertainty quantification (e.g., using
heteroscedastic noise models for Gaussian processes).
Furthermore, developing hybrid probabilistic machine
learning models such as deep GP models, which combine
multilayered perceptrons and Gaussian processes, is
another focus of future work.
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