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ABSTRACT

Light detection and ranging (LiDAR) measurements of isolated wakes generated by wind turbines installed at an onshore wind farm are
leveraged to characterize the variability of the wake mean velocity and turbulence intensity during typical operations, which encompass a
breadth of atmospheric stability regimes and rotor thrust coefficients. The LIDAR measurements are clustered through the k-means algo-
rithm, which enables identifying the most representative realizations of wind turbine wakes while avoiding the imposition of thresholds for
the various wind and turbine parameters. Considering the large number of LIDAR samples collected to probe the wake velocity field, the
dimensionality of the experimental dataset is reduced by projecting the LiDAR data on an intelligently truncated basis obtained with the
proper orthogonal decomposition (POD). The coefficients of only five physics-informed POD modes are then injected in the k-means algo-
rithm for clustering the LIDAR dataset. The analysis of the clustered LiDAR data and the associated supervisory control and data acquisition
and meteorological data enables the study of the variability of the wake velocity deficit, wake extent, and wake-added turbulence intensity for
different thrust coefficients of the turbine rotor and regimes of atmospheric stability. Furthermore, the cluster analysis of the LiDAR data
allows for the identification of systematic off-design operations with a certain yaw misalignment of the turbine rotor with the mean wind
direction.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0070094

I. INTRODUCTION

Power generation through a wind turbine is based on the extrac-
tion of kinetic energy from the incoming atmospheric wind, which, in
turn, leads to a reduced mean wind speed and enhanced turbulence
intensity past the turbine rotor, namely, the generation of a wind tur-
bine wake. "

For wind power plants, the proximity of wind turbines can lead
to wake interactions for selected wind directions, namely, the wakes
generated by upstream turbines can impact downstream turbine
rotors, thus reducing power capture and enhancing fatigue loads of
the downstream turbines. Previous field studies of onshore wind farms

showed percentage power losses from 20% up to 40% of the potential
power for turbines at the second row under convective conditions.”
For stable conditions, the percentage power loss increased to
40%-60%. Moving further downstream, power losses at the third row
were enhanced, especially under stable conditions, for which power
losses up to 80% were observed. The cumulative energy loss of that
farm due to wake interactions was estimated to be about 2.4% of the
total annual energy production (AEP) when operating under convec-
tive conditions, while 4% for stable atmospheric regimes. In contrast,
for offshore wind farms, the typical lower turbulence intensity of the
incoming wind leads to larger downstream extent of the wind turbine
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wakes,” and more significant power losses, such as between 10% and
20% of the AEP, as estimated for the Horns Rev wind farm,” or up to
28% of the nominal capacity for the Lillgrund wind farm.’

The near-wake characteristics, e.g,, velocity deficit, wake width,
and wake-added turbulence intensity, are mainly affected by the
incoming wind speed, shear, and the aerodynamic characteristics of
the turbine rotor, which can be encompassed by the rotor thrust coeffi-
cient. In contrast, in the far wake, ie., downstream of the location
where the maximum velocity deficit is achieved,” the evolution of the
wake velocity field is mainly dominated by the surrounding atmo-
spheric turbulence, which determines the intensity of the turbulent
momentum fluxes promoting the gradual recovery of the wind field to
the incoming wind conditions.” "’

Reproducing the breadth in wake variability occurring during
normal operations of utility-scale wind turbines for the various param-
eters determining wind condition (e.g., hub-height wind speed, shear,
and veer), atmospheric stability regime (e.g., turbulence intensity,
Richardson number, Obukhov length), and turbine setting (e.g., rotor
rotational velocity, blade pitch angle, rotor yaw angle) through numer-
ical models and laboratory experiments is very challenging.'’
Numerical models, for instance, may struggle to generate realistic
atmospheric wind conditions, which has recently motivated research
to couple mesoscale and microscale models to reproduce large-scale
wind heterogeneity and the corresponding smaller-scale wind turbu-
lence.">"” On the other hand, modeling efficiently the action of the
turbine blades on the incoming turbulent wind field for numerical
simulations is still an active field of research delivering continuous
improvements."* %’

Laboratory experiments are also becoming a fruitful resource to
investigate wind turbine wakes thanks to new wind turbine models
reproducing the aerodynamic forcing induced by turbine rotors,”**”
and setups at the inlet of a test section to reproduce realistic wind con-
ditions.”® Nonetheless, the smaller Reynolds numbers and integral
length scales of the incoming flow generated in wind and water tun-
nels are still important limitations to be considered for characterizing
and modeling realistic velocity fields of wind turbine wakes.

Besides numerical simulations and laboratory experiments of wind
turbine wakes, field observations of wakes generated by utility-scale
wind turbines are becoming instrumental for learning in more detail the
complex physical processes connected with wind power generation and,
in turn, with the generation of wind turbine wakes.”” *’ Different
remote sensing techniques, such as light detection and ranging
(LiDAR),”" radar,”” unmanned aerial vehicles (UAVs),” and even
instrumented larger airplanes, have been producing compelling observa-
tions of wind turbine wakes over large volumes including the entire
downstream extent of wind turbine wakes, yet ensuring sufficient spatial
and temporal resolutions.” The advancements in remote sensing for
probing wind turbine wakes have involved not only the hardware and
the technical aspects of the instrumentation, but also the design and the
post-processing of the wind data collected under non-stationary and
variable conditions, which are typical for the atmospheric wind field.
Recently, a framework for the optimal design of field experiments with
scanning instruments and retrieval of wind statistics, which is denoted
as LIDAR statistical Barnes objective analysis (LiSBOA), has been pro-
posed to maximize the experimental capabilities of the available remote
sensing instrumentation and generate statistically accurate measure-
ments of wind turbine wakes.””*

ARTICLE scitation.org/journalirse

In this paper, we aim at characterizing the variability of the wake
mean velocity and added turbulence intensity under typical operations
of utility-scale onshore wind turbines. Wind LiDAR measurements,
together with meteorological data collected from a meteorological
(met) tower, supervisory control and data acquisition (SCADA) data
are leveraged for this study. Considering the large number of LiDAR
samples collected for probing a turbine wake, the experimental data
are first projected onto a suitable basis obtained with the proper
orthogonal decomposition (POD), to reduce the dimensionality of the
classification problem. Subsequently, the coefficients associated with
the selected POD modes, which are considered sufficient to recon-
struct the observed wake variability, are utilized for a k-means cluster-
ing algorithm to generate subsets of the initial LiDAR dataset by
grouping observations ascribed to analogous atmospheric and opera-
tional conditions. Once the clustering of the LIDAR data is performed,
effects on the subsets of the associated SCADA and meteorological
data are also investigated, together with the mean velocity and turbu-
lence intensity fields associated with the wakes of the various clusters.

The remainder of the paper is organized as follows: in Sec. 1], the
experimental dataset is described. Then, the dimensionality of the
LiDAR data is reduced by applying POD in Sec. III. Subsequently, in
Sec. 1V the coefficients of the selected POD modes are analyzed
through the k-means algorithm to generate clusters of the LiDAR
wake measurements. The results of the cluster analysis on the ensem-
ble statistics of the LIDAR measurements, SCADA, and meteorological
data are then discussed in Sec. V. Finally, concluding remarks are
reported in Sec. V1.

Il. LIDAR EXPERIMENT FOR AN ONSHORE WIND FARM

A LiDAR experiment was carried out at a wind farm in North
Texas (the location and name of the wind farm are not disclosed per
NDA agreement) comprising 39 Siemens 2.3-MW wind turbines with
rotor diameter, d, of 108 m, a hub height of 80 m, cut-in wind speed of
3 m/s, rated wind speed of 11.5 m/s, and cutout wind speed of 25 m/s.
The topography map of the site is retrieved from the U.S. Geological
Survey3 7 with a spatial resolution of 100 m [Fig. 1(a)]. The standard
deviation of the terrain is only 16 m, which allows considering this site
as flat terrain. For the retrieval of the LIDAR data, the hub height of
each turbine is corrected by taking the local altitude at the turbine
locations into account.

The measurement campaign was conducted through various
phases between August 2015 and March 2017 for a total of 236 days.
Meteorological data were provided as 10-minute averages and stan-
dard deviation of wind speed, wind direction, temperature, humidity,
and barometric pressure at heights of 36, 60, 75, and 80 m. Based on
data availability and the quality control of the meteorological data,
wind speed and direction were available for the duration of the experi-
ment only for the 60-m height, while temperature data at 75-m height.
The atmospheric stability regime is characterized through the Bulk
Richardson number ™

e gAT/Az  _,
Rig(z) = —=>—-——-7°, (1)
? T(z,) U(z,)
where g is the gravitational acceleration, z,, =60 m is the met-tower
height where the wind speed, U, is measured, AT is the temperature
variation over Az =z, — z; (z,=75mand z; =3m),and Z = /z12,
=15 m. Wind data at 3-m height were collected from a CSAT3 3D
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FIG. 1. Test site: (a) layout of the wind farm, where the size of the blue markers represents down-scaled rotor diameter; (b) wind rose of the hub-height wind measured by the
met-tower for the entire duration of the experiment and reported as a ratio of the turbine rated wind speed, which is 11.5 m/s.

sonic anemometer manufactured by Campbell Scientific Inc. installed
on a mast located in the proximity of the LIDAR.

SCADA data were provided for each turbine as 10-minute aver-
ages and standard deviation of wind speed, power output, rotor rota-
tional velocity, and pitch angle. For more details of this dataset and the
used quality control process, see El-Asha, Zhan, and Iungo3 and Zhan,
Letizia, and Iungo.9

The scanning pulsed Doppler wind LiDAR deployed for this
experiment, whose location is indicated with a yellow triangle in
Fig. 1(a), is a Windcube 200S manufactured by Leosphere, which emits
a laser beam into the atmosphere and measures the radial wind speed,
ie., the velocity component parallel to the laser beam, from the
Doppler frequency shift of the back-scattered LiDAR signal.
According to the wind farm layout and the prevalence of southerly
wind directions [Fig. 1(b)], for wind directions within the sector
between 145° and 235°, the wakes produced by the turbines from 1 to
6 evolve roughly toward the LiDAR location, which is a favorable con-
dition for the LIDAR to measure with close approximation the stream-
wise velocity through plan-position indicator (PPI) scans.
Furthermore, according to the layout of Fig. 1(a), for the considered
wind directions, these wind turbines are not affected by upstream
wakes.

The LiDAR measurements were typically performed using a
range gate of 50 m, an elevation angle of ¢ = 3°, an azimuthal range
of 20°, and a rotation speed of the scanning head of 2°/s, leading to a
typical scanning time for a single PPI of 10 s. After rejecting LIDAR
data with a carrier-to-noise ratio (CNR) lower than —25dB, a proxy
for the streamwise velocity is obtained through the streamwise equiva-
lent velocity,

Ueg = V;/[cos ¢ cos(0 — 0,,)], 2)

where V, is the LIDAR radial velocity, 0 is the azimuthal angle of the
LiDAR laser beam, and 0,, is the wind direction. Considering that the
PPI LiDAR data are collected at different heights, the equivalent veloc-
ity is made non-dimensional with the incoming boundary layer

profile, which is estimated from the PPI scans through the value of the
70th percentile of the distribution of the streamwise equivalent velocity
for each height probed by the LiDAR.”

The reference frame used has the x-direction aligned with the
wake direction, which is estimated with the linear fitting of the wake
centers at various downstream locations, the y-direction in the hori-
zontal transverse direction, and z-direction vertically and positive
moving upward. The transverse position of the wake center is defined
as the location of the minimum velocity obtained by fitting the velocity
data at a specific downstream distance through a Gaussian function.
More details of the LIDAR system, the field campaign, and data post-
processing are available in Zhan, Letizia, and Tungo.”

Total number N = 6654 quality-controlled PPI LiDAR scans of
isolated wind turbine wakes have been processed to provide the non-
dimensional wake velocity fields used for this study.”'’ To estimate
the normalized velocity field relevant for wake modeling, a generic
LiDAR sample collected at the location (x, y, z) is ascribed to the coor-
dinates (x, r), where the coordinate, r, is defined as

r = sign(y)\/y* + 22, (3)

noting that  has a sign to identify the two sides from the x-axis of the
wake. For the wake analysis, only LIDAR samples with |z/d| < 0.25
are considered to ensure that they are representative of the wake veloc-
ity field at hub height.

Considering that the x-direction of the reference frame is aligned
with the wake direction, it entails that the Cartesian coordinates of a
given LiDAR sample can vary for the various scans due to changes in
wake direction. Therefore, for each scan, the LIDAR data need to be
interpolated over a common Cartesian grid to calculate ensemble
flow statistics for each data cluster. Specifically, this Cartesian grid
is defined over the horizontal plane at hub height with dimensions
1 <x/d <7and —1 < r/d < 1. LIDAR data collected for x/d > 7d
are not considered because acquired at heights z/d < —0.25 and,
thus, they might reduce accuracy in the calculations of the velocity sta-
tistics at the hub height. LIDAR data collected at x/d < 1 are rejected
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because they are typically affected by spurious contamination of the
velocity signals due to the LiDAR laser beam hitting turbine compo-
nents. The wake velocity data have a spatial resolution of 0.1d and
0.05d in the x and r directions, respectively, generating a data matrix
of [p x q] = [61 x 41] (pg=2501) for a single LIDAR snapshot.

For grid points where the LiDAR data are not available, which
can be due to the quality control process of the LIDAR data or a signif-
icant misalignment between the wake direction and the direction con-
necting the LIDAR and turbine locations, the velocity fields are
interpolated through the inpaint-nans function available in Matlab.”
The ensemble-averaged velocity fields calculated over the entire data-
set are reported in Fig. 2 for both raw and interpolated data. The main
data distortion due to the velocity interpolation occurs at the down-
stream corners of the spatial domain, which are the areas where the
probability of missing LIDAR samples is higher. The interpolated
velocity fields are only used for the POD, which does not allow for
not-a-number (NaN) values over the spatial domain for the calcula-
tion of the eigenproblem of the velocity covariance matrix. In contrast,
statistics of the wake velocity field will be calculated with the original
non-interpolated velocity fields by rejecting NaN values.

I1Il. PROPER ORTHOGONAL DECOMPOSITION
OF THE LIDAR DATASET

The analysis of a large dataset encompassing correlated variables
aiming to detect trends, data variability, and features can be very chal-
lenging and computationally demanding. Specifically, considering a
cluster analysis with a total number of K clusters (K ~ 10 for this
work), I iterations for the k-means algorithm (I ~ 10K), and L repeti-
tions (L ~ 100), the total number of integrals to be computed is
LxIxKxN~O(10°)." Therefore, rather than analyzing the
LiDAR dataset in its entirety, it can be more convenient to represent
the data on a lower-dimensional subspace with a suitable lower rank
to enable a simplified analysis, which typically entails lower computa-
tional costs and clearer interpretation of the results."' "’ Specifically,
POD™° allows for the generation of an orthonormal basis, which
is optimal for the reconstruction of the data variability. The most
computationally expensive task of POD is the calculation of the
correlation matrix of the LiDAR measurements [proportional to
N x (N +1)/2]. Therefore, the computational saving is about two
orders of magnitude (N + 1)/(2L x I x K) = O(107?).

POD is computed for the non-dimensional interpolated LIDAR
data with the method of snapshots.”” A snapshot of the wake velocity
field measured with the LiDAR, u, can be represented through a linear
combination of deterministic functions, which are referred to as POD
modes ¢;

(a)

(b)

1.0
051 i
2 0.0 {- :
0.5 1 :
~1.04 : . . " " - ) Y

0 1 2 3 4 5 6 7
x/d
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pg—1

u(xv r, t) = Z¢j(x7 T’) aj(t)v (4)
=

where ¢ is time. The POD modes, ¢;, represent the typical spatial vari-
ability of the velocity field in a statistical sense, while the parameters
a;(t) are coefficients representing the amplitude of each POD mode as
a function of time. POD provides a modal decomposition that is
completely a-posteriori and data-dependent, which does not neglect
the non-linearities of the original dynamical system, even being a lin-
ear procedure. Furthermore, the POD basis is orthonormal and opti-
mal in variance, ie., among all linear decomposition techniques, it
provides the most efficient detection, in a certain least squares optimal
sense, of the dominant components.

The LiDAR dataset, U, with dimensions [pg x N] can be approx-
imated by computing the first » most energetic principal components
through the singular value decomposition (SVD)

UrxdxIx V', (5)

where @ ([pg % r]) and V ([N x r]) are orthonormal matrices and X
is a diagonal matrix ([r x r]) with the first r singular values of U in
descending order as diagonal entries." Each diagonal element of %, g,
represents the energy contribution of the POD mode ¢; to the covari-
ance matrix of the velocity snapshots. The POD modes are obtained as
columns of the matrix ®, while the principal components, a;, associ-
ated with each POD mode are obtained by projecting the snapshot
dataset onto the POD basis

A=UT0Q, (6)

where the principal components, a;, are the columns of A, whose size
is [N x r].

POD is applied to the non-dimensional interpolated LiDAR
wake measurements collected over the horizontal plane at hub height.
It is now crucial to select the smallest number of POD modes enabling
an efficient reconstruction of the wake variability probed through the
LiDAR measurements. The selection of POD modes can be done
based on the energetic contribution of the various POD modes. In
other words, by leveraging the energy optimality of the POD basis, the
latter is truncated to reconstruct a certain percentage of the total
energy of the velocity covariance matrix. An alternative to this ener-
getic approach has been used for the present work, which consists of
visually inspecting the most energetic POD modes and selecting only
POD modes whose spatial morphology indicates a clear physical
feature.”’ It is noteworthy that while the visual inspection of the POD
modes can increase the effectiveness for the POD-based reconstruction

FIG. 2. Ensemble mean of the non-dimensional wake velocity fields calculated over the entire dataset: (a) NaN values interpolated with the function inpaint-nans; (b)

interpolation-free data.
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of the wake velocity field, on the other hand, it makes the procedure
less automated because requiring direct inputs from the user.

The first 12 most energetic POD modes are reported in Fig. 3.
POD mode 0 resembles the ensemble average of the interpolated wake
velocity fields, which is shown in Fig. 2(a). Therefore, this POD mode
has an evident physical contribution to the wake morphology. In con-
trast, POD modes 1 and 2 represent the corrections performed
through the interpolation of the LIDAR data with the Matlab function
inpaint-nans,” and, thus, they are ignored being a numerical artifact
rather than a physical feature for the POD basis. POD modes 3 and 4
seem to indicate a modulation in the transverse direction over the
shape provided through the ensemble mean (POD mode 0). In other
words, POD modes 3 and 4 can represent contractions or expansions
of the wake in the transverse direction,”’ non-symmetric wake condi-
tions that were already observed in previous works for the near wake
under stable atmospheric conditions,'” wake meandering,30 or lateral
deflections due to the Coriolis effect.”’ Similarly, POD modes 5 and 11
seem to indicate contractions or extensions of the wake in the stream-
wise direction. The remaining POD modes shown in Fig. 3 seem to
indicate similar wake distortions, yet with slightly larger wavelengths,
which can be considered as sub-harmonics of the above-mentioned
wake modulations. Based on this qualitative analysis of the POD
modes, which we understand is speculative rather than based on quan-
titative characteristics, the truncated POD basis selected for this work
includes only POD modes 0, 3, 4, 5, and 11, which allows reconstruct-
ing 44.8% of the overall energy of the velocity covariance matrix.

The approximation of the LiDAR data with the POD projection
typically leads to a smoothed wake morphology throughout the spatial
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domain, which seems an affordable drawback of the POD data com-
pression, considering the reduced computational costs of the following
cluster analysis achieved by reducing the dimensionality of each snap-
shot from pg =2, 501 down to 5.

IV. k-MEANS CLUSTERING OF THE WIND LIDAR DATA

Clustering, in general, refers to a very broad set of techniques
for finding subgroups from a dataset, which are referred to as clus-
ters.”” The aim of clustering a dataset is to partition it into distinct
sub-groups where samples sharing similar features belong to the
same cluster and are segregated from those characterized by different
features.

For this work, the k-means algorithm is used, which is a simple
approach for partitioning a dataset into K distinct, non-overlapping
clusters.”” To perform k-means clustering, the desired number of clus-
ters, K, must be provided as input. The standard method used to per-
form k-means clustering is an iterative algorithm. First, a random
integer (from 1 to K) is assigned to each sample as an initial cluster
assignment. Next, for each of the K clusters, the centroid of the cluster
is computed and each observation is assigned to the cluster that it is
closest to. These two steps are repeated until convergence in the cluster
association is achieved."*

After the generation of clusters, a silhouette analysis is performed
for each cluster to reject samples considered as outliers for their
respective cluster.”* The silhouette analysis is performed by quantify-
ing for each sample its distance from the respective cluster centroid
through the L,-norm and the distances from the centroids of the
remaining clusters. The silhouette coefficient has a range between

e

E -'-
=
0
2
=
3
o
6
3
o
6

FIG. 3. First 12 most energetic POD modes obtained from the LIDAR dataset.
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—1 and 1, where 1 corresponds to the respective cluster centroid, 0 to
the boundary of the cluster associated with the sample, and a negative
number indicates that the sample might be an outlier for the consid-
ered cluster. In this work, all the samples with a non-positive silhouette
coefficient are rejected for further analyses, which correspond to 7% of
the source dataset.

For our study, the only inputs provided for the cluster analysis
are the time-series of the coefficients associated with the five POD
modes selected to approximate the LIDAR dataset. It is noteworthy
that no input is related neither to the wind turbine operative condi-
tions nor to the wind/atmospheric conditions, as for previous cluster
analyses of wind turbine wake measurements.”'’ The k-means out-
puts are the cluster centers, namely, the representative realization for
each cluster, and labeling for each LiDAR snapshot to its respective
cluster.

One of the challenges with using the k-means clustering algo-
rithm is the choice of the number of clusters, K. This decision pro-
cess is facilitated through the evaluation of the inertia parameter,
which is one of the outputs of the k-means algorithm indicating
the statistical relevance of each cluster within the dataset.”” It
should be considered that increasing the number of clusters, K,
might lead to the partitioning of clusters with a larger data popula-
tion, rather than identifying different data features. Therefore, for
this work, we have applied a hierarchical clustering approach,
where the data are classified according to a cluster tree, denoted as

ARTICLE scitation.org/journal/rse

dendrogram.” The dataset and the generated clusters (denoted as
nodes) are partitioned into more successor sub-groups. Finally, all
the nodes and sub-groups are nested and organized with a tree-like
structure to provide a more physical and meaningful classification
of the data. For the sake of efficiency, the number of the groups
generated from a single node should be limited to clusters repre-
senting distinct physical features, i.e., wake characteristics in terms
of velocity deficit and recovery rate.

After a preliminary cluster analysis, we decided to perform a first
partitioning of the LiDAR dataset into three clusters, denoted as Ca,
Cb, and Cc. The centroids of these clusters are reported in Fig. 4, which
are obtained by adding the centroids of each principal component
multiplied by their respective POD mode. In other words, these cluster
centroids are a proxy for the ensemble average of the LIDAR velocity
fields belonging to the same cluster.

With this initial clustering, the dataset has been partitioned
within groups with similar populations, as reported in the row
“Occurrence” of Table I. Figure 4 shows that the main differences
among the centroids of the three clusters are related to the wake veloc-
ity deficit and the downstream extent of the wakes.

These three clusters (Ca, Cb, Cc) are now considered as nodes
of the dendrogram, and, thus, each cluster is re-processed through
the k-means algorithm to generate further sub-groups of the
LiDAR dataset. The cluster analysis of Ca has led to the generation
of subgroups (not shown here for the sake of brevity) with very
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FIG. 4. Dendrogram of the LIDAR dataset reporting the cluster centers. The iso-curves represent values of U/U. from 0.4 up to 1.1 with steps of 0.1.
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TABLE 1. Cluster parameters.
Cluster label Co e e C1 C2 C3 C4 C5 C6 Cc7 C8
Initial label Ca Cb Cc Cba Cbb Cbc Cbd Cbe Cca Cbf Ccb
Occurrence 28.7% 40.4% 30.8% 9.1% 5.3% 4.8% 6.2% 3.3% 4.0% 8.2% 23.4%
Inertia 35.2 19.1 22.3 8.3 10.2 17.1 9.1 7.7 15.6 12.8 19.9
Xer/d 29 ce ce 2.2 2.3 1.5 1.9 1.5 1.4 2.3 1.9
A, 1.00 e e 1.38 1.32 1.55 2.17 2.20 3.00 0.59 0.49
N, 0.46 e e 0.78 0.83 1.10 1.29 1.45 2.26 0.23 0.34
vi/Us/d 0.0034 e 0.0073 0.0105 0.0223 0.0152 0.0305 0.1000 0.0010 0.0021
Cp 0.35 EE e 0.40 0.40 0.39 0.41 0.46 0.43 0.30 0.26
C5eADA 0.40 e e 0.46 0.46 0.45 0.47 0.55 0.51 0.33 0.28
C’}D 0.95 EE e 0.90 0.89 1.01 0.87 1.14 0.81 0.70 0.57
kK 0.017 0.029 0.017 0.050 0.023 0.071 0.050 0.012 —0.004
6y, /U 0.04 0.066 0.063 0.085 0.078 0.082 0.088 0.039 0.053

similar flow characteristics. Therefore, cluster Ca is considered a
definitive cluster for our study, which is ultimately labeled as CO.
In contrast, the sub-cluster analysis of node Cb leads to the identi-
fication of subgroups with a gradually varying downstream extent
of the wake. In Fig. 4, these sub-groups are indicated from Cba to
Cbf. A total number of six sub-groups is selected after a prelimi-
nary analysis to cover the variability of the wake velocity field
through the cluster centers while limiting the number of clusters
generated.

For the cluster analysis of the node Cc, two clusters are deemed
sufficient to identify the main wake topologies encompassed within
this sub-dataset. Specifically, the sub-group Cca is characterized by a
strong near-wake velocity deficit and fast recovery, while the sub-
group Ccb preserves wake features similar to those of the respective
node Cc.

In summary, through the k-means algorithm and the dendro-
gram approach, nine clusters are generated from the initial LIDAR
dataset, which are numbered from CO up to C8. The ensemble sta-
tistics in terms of average and standard deviation for the entire
dataset and the various clusters are reported in Fig. 5. As men-
tioned above, the ensemble mean fields resemble the cluster cent-
roids already reported in Fig. 4, yet avoiding data distortion
introduced by the interpolation of the LiDAR data required for
the application of the POD. The ensemble statistics highlight the
broad variability of the wake velocity field for different settings of
the turbines and meteorological conditions, both for the mean
and standard deviation. Furthermore, it is noteworthy that clus-
ters C2 and C3 show evident skewing of the wake from the x-axis
representing the wake direction. This particular wake morphol-
ogy, which can be ascribed to a certain yaw misalignment of the
rotor disk from the mean wind direction,”® will be analyzed more
in detail in Sec. V.

V. ANALYSIS OF THE CLUSTERED DATASETS

The statistical analysis presented in this section is performed with
the original non-dimensional LiDAR data partitioned according to the
nine clusters obtained in Sec. I'V, thus, avoiding any spurious effect on
the velocity statistics that might be introduced in case the POD-
projected LIDAR data were used.

A. Mean wake velocity field for the various clusters

For characterizing the mean wake velocity obtained for the
various clusters, the maximum velocity deficit, AU,/ Us
= (Uso — Upiin)/Usos (Upyiyy is the minimum streamwise velocity at a
given downstream distance), as a function of the downstream position
is reported in Fig. 6. This plot emphasizes even more clearly the vari-
ability in velocity deficit and wake persistence along the downstream
direction that can be observed during typical operations of a wind tur-
bine. For the clusters from CO up to C6, the velocity deficit in the very
near wake is comparable, which suggests that the thrust coefficient of
the turbine might be very similar for these clusters. Ranging from C0O
to C6, we generally observe a faster recovery of the velocity deficit. The
velocity deficit at x/d = 1 is lower for cluster C7 and even more for
C8. This wake feature may indicate that clusters C7 and C8 belong to
turbine operations with an active pitch control of the turbine blades
and, thus, reduced rotor thrust coefficient. For C7 and C8, the recovery
of the velocity deficit is significantly slower than for the remaining
clusters.

Starting from the most upstream location, ie., x/d =1, the
velocity deficit generally increases in the downstream direction, which
indicates that the turbine forcing, mainly through the generation of a
streamwise pressure gradient, is still acting on the incoming flow.”’
The downstream location where the maximum velocity deficit occurs,
X;,, can be associated with the transition between the near wake and
the far wake.””® This analysis shows that the near-to-far wake transi-
tion occurs for downstream distances in the range between 1.4d and
2.9d, which is in agreement with previous studies,”” and generally
moves upstream switching from cluster CO to C6, while it seems
roughly invariant for C7 and C8 (Table I).

It is noteworthy how the design of improved LiDAR scans cou-
pled with the data-driven clustering of the LIDAR data enables more
accurate characterization of the near-wake velocity field, which is asso-
ciated with the pressure gradients induced by the turbine rotor. The
maximum velocity deficit is typically achieved at a downstream dis-
tance smaller than 3d,”” while further downstream turbulent mixing
governs far-wake recovery.”’

To provide a more quantitative analysis of the mean wake veloc-
ity fields associated with the various clusters, the maximum velocity
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FIG. 5. Ensemble statistics of the LIDAR wake measurements for the various clus-
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standard deviation of the non-dimensional velocity fields, o/ Uw.

deficit, AUpin/Us, is fitted through the following power law for

x/d > 3%
AUmin X N
L I WY s , 7
o ( d) @)

where A, and N, represent the velocity deficit at x/d = 1 and the
wake-recovery rate, respectively. As reported in Table I, the parameter
A, generally increases spanning from the cluster CO up to C6 between
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FIG. 6. Maximum velocity deficit, AU,,;,, as a function of the streamwise coordi-
nate for the various clusters.

values 1 and 3, respectively. The fitted values of A, are significantly
larger than the actual maximum velocity deficit at x/d = 1 because of
a different variability of the mean velocity field in the near wake, ie.,
for x =< x4 (see Fig. 6). Similarly, the parameter N, increases from
0.46 for cluster CO up to 2.26 for C6. Therefore, the variability of N,
corroborates a faster wake recovery spanning from CO up to Cé6.

Completely different wake features are quantified for clusters C7
and C8, for which the reduced near-wake velocity deficit leads to A,
equal to 0.59 and 0.49, respectively, and very low wake recovery rates
than for the previous clusters, i.e., 0.23 and 0.34, respectively.

As mentioned above, the velocity deficit in the near-wake is
strictly connected with the rotor thrust coefficient, CT.IO‘m Estimates
of Cy from the mean wake velocity field can be generated by consider-
inga 1D stream tube with the bases centered along the x-direction and
located upstream and downstream of the rotor disk. By coupling mass
conservation and the momentum equation in the streamwise direc-

. Cary . 61,62
tion, it is obtained”

AD_§J2”J°°£ _UN\T (’_)
=2 | ) g dlG) )

where (r*, 0) are the cylindrical coordinates associated with the stream
tube. Equation (8) is solved numerically for the mean velocity fields
U/ Uy of each cluster at the various downstream locations by inject-
ing the velocity field from one side of the wake with positive r for the
range 0 < 0 < 7, and the velocity field on the other side of the wake
with negative r for the range 7 < 0 < 2m. The estimates of the thrust
coefficient through the actuator disk theory, C4P, are obtained for
each cluster at the location of the maximum velocity deficit, x;, (see
Table I). These results confirm that the thrust coefficient for clusters
C0-C6 is substantially larger (between 0.81 and 1.14) than for C7 and
C8 (0.7 and 0.57, respectively).

It is noteworthy that for the clusters C0-C6, the variability of
C4P does not reflect the variability observed for the parameter A,,.
Indeed, the quantification of A, is affected not only by the rotor thrust
in the near wake but also by the location of the transition from the
near and far wake, x;. Therefore, we consider C‘T‘D a more reliable
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parameter for the characterization of the rotor thrust and the near-
wake velocity field.

The recovery rate of the ensemble mean velocity field for each
cluster is further characterized by calculating the optimal turbulent
eddy-viscosity, v, for an axisymmetric Reynolds-averaged Navier—
Stokes (RANS) model” (the RANS code is publicly available®’)
Specifically, for each cluster, the mean velocity measured at x/d = 1 is
provided as the inlet condition for the RANS model, while a constant
v is optimized by minimizing the L,-norm of the difference between
the LIDAR mean velocity field and the velocity field predicted through
the RANS model. For the optimization, the sequential quadratic pro-
gramming implemented in Matlab through the fmincon function is
adopted”* with termination tolerance on the first optimality of 107°.
The estimates for vy show similar trends as for the parameter N,
namely, the lowest non-dimensional values are obtained for the clus-
ters C7 and C8 (0.0010 and 0.0021, respectively), reflecting the very
slow wake recovery and long downstream extent of the respective
mean velocity fields. A larger v1/U,,/d is estimated for CO (0.0034),
which is characterized by a significant downstream extent, yet larger
near-wake velocity deficit. For the remaining clusters, vr/Uy/d
increases up to 0.1, reflecting a gradually shorter downstream extent
and faster wake recovery.

The majority of the clusters are characterized by a quasi-
symmetric wake. However, the clusters C2 and C3 show a significant
transverse deflection of the wake center, reaching maximum values,
00> of about —0.19d and 0.33d, respectively (Fig. 5). This wake feature
can be ascribed to a misalignment of the rotor axis with the mean
wind direction of a certain angle 7, similarly to a wind turbine operat-
ing under yawed conditions.”**”° However, it is known that the wind
turbines were supposed to operate without any intentional yaw mis-
alignment. For a given asymptotic wake deflection, the rotor yaw
angle, 7, can be estimated as”®

0o 0.3y B — - cosy(l—h/l—CT)
7_(:05’7/(1 v/ 1 CTCOS/) |:ﬁ(d*TI+ﬁ*(1 /—lch))

1 cosYy 1.6++/Cr
— 2. 1.3v/1— — In| ———
147 k*ZCT( 9+13v1=Cr—Cr) n(1.6—\/CT>}7

€

where o* = 2.32, f* = 0.154, and k* is the linear growth rate of the
wake width. Using as the thrust coefficient the values obtained through
the actuator disk theory, C4P, and k* estimated through the Gaussian
model”” (both parameters are reported in Table 1), these asymptotic
wake deflections would correspond to a rotor yaw angle, y, of —3.2°
and 5.6° for C2 and C3, respectively. Unfortunately, the actual yaw
angle of the wind turbines is not provided from the SCADA data, and
it is known that the wind turbines under investigation were supposed
to operate with a zero yaw angle. Therefore, the observed skewed mor-
phology of the wake in the lateral direction for the clusters C2 and C3
seems to be associated with a variability of the wind direction along
the rotor heights or non-ideal performance of the sensors/controller of
the wind turbines in setting the rotor yaw angle.

This result is interesting because the cluster analysis of the
LiDAR data has enabled the identification of these operations with a
systematic yaw misalignment, leading to a noticeable deflection of the
wind turbine wakes, which might be important for the power
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efficiency of the entire wind farm. These operations under yaw mis-
alignment have a total occurrence of about 10% of the duration of the
LiDAR observations, which is not a negligible number. The detection
of these off-design conditions would not have been possible by gener-
ating bins of the LIDAR dataset by imposing thresholds on the various
wind and turbine parameters, as done for previous works;” in contrast,
this result has been achieved only thanks to the data-driven approach
of the k-means clustering algorithm.

B. Effects of the clustering analysis
on the meteorological and SCADA data

For the various clusters, we now analyze the statistics of SCADA
and meteorological parameters, which were collected simultaneously
to the LIDAR data. It is noteworthy that these parameters were not fed
into the cluster analysis and, thus, their variability has not affected the
generation of the data clusters. The histogram of the mean hub-height
wind speed recorded through the SCADA is reported in Fig. 7 for the
entire dataset and the various clusters, while the 25, 50, and 75 percen-
tiles for the entire dataset and the various clusters are reported in
Table TI. Considering that the rated wind speed of the turbines under
investigation is 11.5 m/s, then it becomes evident that the clusters
from CO up to C6 belong to operations in region 2 of the power curve,
while the cluster C8 belongs to operations in region 3, i.e., between
rated wind speed and cutoff wind speed, and the cluster C7 seems to
encompass operations at the transition between region 2 and region 3,
typically denoted as region 2.5.°°

This classification of the various clusters based on the turbine
operative conditions is corroborated from the respective histograms of
the turbine power and blade pitch angle, Figs. 8 and 9, respectively,
and related statistics reported in Table II. Power capture for the clus-
ters CO-C6 is lower than the rated power of 2300 kW, while the blade
pitch angle is generally between —2° and —1.5°, which is the typical
range for non-active pitch control of the turbine rotor. In contrast,
power capture for the operations of clusters C7 and C8 belongs to
operations with an active blade pitch control. Indeed, the statistics of
the pitch angle for C7 and C8 are larger than for C0-C6 with median
values of 1.26° and 2.64°, which are associated with a median power
capture of 2239 and 2304 kW, respectively.

Besides turbine settings, also atmospheric stability can signifi-
cantly affect the characteristics and evolution of wind turbine
wakes.”*”"”* To investigate the role of atmospheric stability on the var-
iability observed through the ensemble statistics of the wake velocity
field for the various clusters, histograms (Figs. 10-12) and percentiles
(Table IT) of the Bulk Richardson number, Riz, incoming wind turbu-
lence intensity at hub height, TT (defined as the ratio between the stan-
dard deviation and the mean value of the streamwise velocity), and
shear exponent, o, are also analyzed, respectively. Starting from the
clusters owing operations in region 2 of the power curve (C0-C6), the
Bulk Richardson number is generally positive for CO (median Rip of
0.0016), while it is typically negative for the remaining clusters C1-Cé6.
Therefore, operations associated with CO can occur under stable atmo-
spheric conditions while Cl1-C6 wunder unstable conditions.
Furthermore, the level of atmospheric instability increases ranging
from CO up to C6 (Table II).

This analysis is confirmed from the statistics of the incoming wind
turbulence intensity at hub height, T1, which has a median value of 5.8%
for C0 and the largest value of 15.9% for C6. Similar conclusions are
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obtained from the statistics of the incoming-wind shear exponent, ie., a __ Power
. . . CP - 2 (10)
larger value is reported for CO (0.42), while the other clusters of region 2 1 U3 d
can achieve a median value as low as 0.07. 3 P ™

The statistics of the meteorological parameters for the clusters
owing to operations in the proximity of the rated wind speed, ie., C7
and C8, indicate the prevalence of neutral-stable conditions. Indeed,
the median value of the shear exponent is larger than 0.3, the median
TI is lower than 8% and the statistics of the Bulk Richardson number
indicate predominantly stable atmospheric conditions for C7 (median
Riz=0.0018) and neutral atmospheric conditions for C8 (median
Rig = 0.0003).

To conclude this statistical survey of the SCADA and meteoro-
logical data partitioned through the cluster analysis, we calculate the
power coefficient as

where Uy, is the hub-height mean wind speed recorded from the tur-
bine anemometer through the SCADA, while the air density, p, is cal-
culated from the air temperature and pressure measured from the
met-tower. The minimum value of Cp (0.26) is estimated for cluster
(8, and it is slightly higher for C7 (0.3) (see Table I). A reduction of
Cp with increasing wind speed in region 3 of the power curve is consis-
tent with the operated blade pitching to keep power capture equal to
the rater power of the turbine. The power coefficient, Cp is larger for
the clusters associated with operations in region 2 (C0-C6), with val-
ues noticeably larger for operations under unstable atmospheric condi-
tions. This result corroborates a higher power efficiency of wind

TABLE II. Clustering of the SCADA and meteorological parameters. The superscript p25, p50, and p75 indicate the 25th, 50th, and 75th percentiles. The horizontal blocks of

the table (from top to bottom) are the statistics of the hub-height wind speed, powe
wind shear exponent.

r capture, pitch angle, Bulk Richardson number, hub-height wind turbulence intensity, and

Parameter All dataset Co C1 C2 C3 C4 C5 Cé6 Cc7 C8
UP> (m/s) 8.1 8.4 7.9 7.9 6.4 7.3 6.1 6.1 10.2 113
UﬁSE (m/s) 9.1 9.0 8.3 8.5 8.1 8.2 7.0 6.9 11.0 11.7
Uﬁﬁb (m/s) 11.0 9.6 8.9 9.1 8.8 9.1 8.2 8.2 11.6 119
Power?® (kW) 1173 1233 1094 1098 664 874 591 600 1990 2265
Power?™® (kW) 1530 1440 1279 1377 1173 1261 887 798 2239 2304
Power?”> (kW) 2235 1680 1494 1690 1548 1652 1270 1216 2293 2309
Pitch??(deg) —-1.93 —1.99 —1.97 —-1.97 —-1.93 —1.96 —-1.93 —-1.93 —0.24 0.68
Pitch?> (deg) -1.70 -1.93 -1.91 —1.88 —1.83 —1.80 —1.83 —1.82 1.26 2.64
Pitch?” (deg) 0.89 —1.50 —-1.76 —1.49 —1.59 —1.48 —-1.56 —1.57 1.99 438
Ri%” —0.0019 0.0008  —0.0021  —0.0022  —0.0032  —0.0030  —0.0044  —0.0044  —0.0001  —0.0004
Ri%” —0.0003 0.0016  —0.0014  —0.0012  —0.0022  —0.0021  —0.0034  —0.0034 0.0018 0.0003
Ri5” 0.0018 0.0026  —0.0007 0.0008  —0.0015  —0.0017  —0.0026  —0.0025 0.0038 0.0012
TP (%) 5.7 5.0 8.8 7.3 10.9 11.2 13.1 13.7 4.7 5.7
T (%) 8.6 5.8 10.7 10.5 12.7 12.9 15.1 15.9 5.2 7.6
TP (%) 119 7.2 12.4 12.4 15.4 14.7 18.1 18.9 7.7 9.6
a? 0.09 0.16 0.05 0.07 0.04 0.04 0.04 0.05 0.21 0.20
>0 0.22 0.42 0.14 0.16 0.07 0.07 0.07 0.07 0.38 0.31
o” 0.39 0.52 0.33 0.35 0.13 0.16 0.12 0.12 0.45 0.37
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turbines under convective conditions, as already observed through sev-
eral wind farm studies.””* However, it is noteworthy that the effect of
atmospheric stability on power capture of wind turbines is still an
open discussion, as highlighted from contrasting results obtained
through numerical simulations,”” or a lower power capture for convec-
tive atgrll(;;spheric conditions estimated from other wind farm
studies.” "

corded through the SCADA for the various clusters.

By leveraging the actuator disk theory, it is possible to estimate the
axial induction factor, a, from the power coefficient [Cp = 4a(1l — a)z],
and calculate, in turn, the thrust coefficient, C%CADA =4a(1 — a). The
latter is reported in Table I for the various clusters, which confirms
again an increasing axial induction of the turbine rotor moving from
operations in region 3 to operations in region 2 under stable atmo-
spheric conditions, and even further for operations in region 2 under
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FIG. 10. Histograms of the Bulk Richardson number cal

culated from the meteorological data for the various clusters.
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FIG. 11. Histograms of the hub-height turbulence intensity recorded through the SCADA for the various clusters.

unstable atmospheric conditions. More importantly, Table I shows that
estimates of the rotor thrust coefficient derived from the power data,
C3APA  are about half of the respective values obtained from the mass
conservation and streamwise momentum budget applied to the mean
LiDAR wake measurements with axisymmetry assumption, C#°. This
feature was already highlighted in previous works,”’ confirming that
accurate estimates of the rotor thrust coefficient for wake modeling and
predictions of power capture are still elusive.

Summarizing, this analysis of the SCADA and meteorological
data for the various clusters, coupled with the analysis of the mean
wake velocity field in Sec. V A, indicates that the clusters C0-C6
belong to operations in region 2 of the power curve, C7 to operations
at the interface between region 2 and region 3 with active pitch con-
trol, and C8 to operations in region 3. Regarding the wake variability
connected with atmospheric stability, CO and C7 capture operations
under stable conditions for regions 2 and 3 of the power curve, respec-
tively. The clusters C1-C6 belong to operations under unstable condi-
tions with a gradually increasing level of instability, while LIDAR data
of C8 were collected under quasi-neutral conditions.

forces (x 1 + Iﬁ), and turbine power capture (x 1 + 315 + yIi, where
7 is the skewness of the streamwise velocity) /%77 Furthermore, turbu-
lence intensity is very important in wind energy because it is typically
used to model turbine fatigue loads.”® Downstream of a turbine rotor,
the wake-added standard deviation of the streamwise velocity, Av/, is
calculat_eﬁi from the standard deviation of the incoming wind velocity,
oy, as’’

A (x,r) = sign [ai(x, r) — a%,x} (/o2 (x,r) — J%Jx l,

where the operator sign produces values equal to 1 or —1 if 62 is larger
or smaller than 7, , respectively.

From hot-wire measurements carried out in a boundary-layer
wind tunnel for the wake of a down-scaled wind turbine model, the
wake-added turbulence intensity was observed to be either positive or
negative over different wake areas and downstream locations.”” In the
far wake, statistics of the wake-added turbulence intensity, such as
mean, maximum, minimum, and average of only positive or negative
added turbulence intensity, showed the decay of these parameters in
the downstream direction according to power laws with an exponent
between —0.5 and —0.3. Au’ reaches typically its maximum within the
range 2 < x/d <5, which can coincide with the transition between
the near- and far-wake regions.

A simple model for predicting the maximum of the wake-added tur-
bulence intensity, A, / Us,, was proposed by Crespo and Hernéndez "’

(amn

C. Wake-added turbulence intensity
for the various clusters

Wake turbulence intensity, I, = 6,/ U.,, where o, is the ensem-
ble standard deviation of the streamwise velocity calculated through
the cluster analysis (Sec. V), affects directly the rotor aerodynamic

FIG. 12. Histograms of the shear exponent of the incoming wind for the various clusters.
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0362(1—1—-Cr), x/D<3,
Au, _ . —c 0.83 (12)
Uso 0.73 <_7 VZ_T> , x/D>3,
while the following model” is used for the IEC61400-1 standard:*’
A, 1 (13)

U 15+08C;%%%/d’

A similar model was proposed in Larsen, Hostrup, and Madsen®”

/!
% =0.29(x/d)*\/1 - V1= Cr. (14)

In Quarton and Ainslie,”” the downstream evolution of the peak
turbulence intensity is modeled by using as the scaling parameter the
location of the near-wake extent, x,,

Au _
= 48 G (/) (15)

(o @]

where x,, is estimated as’

V0214 + 0.144m (1 — \/0.134 + 0.124m) 1,
Xy = s
" (1 — 0214 + 0.144m)/0.134 + 0.124m dr/dx

where m = 1/4/10Cr and ry = 0.5d+/0.5(m + 1). The wake growth

rate, dr/dx, can be estimated as

dr <dr>2 (dr)2 (dr)2 17
dx dx a+ dx m+ dx);’ 17
where the three terms on the right-hand side represent the contribu-
tion due to ambient turbulence [(dr/dx)> = 2.51, 4 0.005], wake-
generated turbulence [(dr/dx), = (1—m)\/T.49+m/9.76/(1+m)],
and mechanical turbulence [(dr/ dx)i =0.012Ng A, where Nj is the
number of blades and 4 is the rotor tip-speed-ratio].
Another model to estimate the wake-added turbulence intensity
was proposed by Hassan™*
/!
At = 5.7 C71O88 (x /x,,) 0%, (18)

(o @]

(16)

For the analysis of the wake-added turbulence intensity for the
various clusters, the freestream turbulence intensity, oy /U, is esti-
mated from the ensemble standard deviation of the LIDAR measure-
ments associated with each cluster, specifically from the median of 7,
measured at x/d = 1 at sufficient lateral distance from the wake, typi-
cally |r/d| > 0.7. The respective values, which are reported in Table I,
show variability among the various clusters similar to that observed
for TI estimated from the SCADA data and reported in Table IL
However, the values of oy /U, are significantly smaller than the
respective ones estimated through the nacelle-mounted anemometers,
which might be a consequence of the larger measurement volume of
the LiDAR and the associated spatial averaging on the velocity fluctua-
tions over each measurement volume.”*°

We analyze the statistics of the wake-added turbulence intensity in
terms of minimum, maximum, and mean of Au/'; furthermore, mean
values for the regions where Au’ is only positive or negative are also

ARTICLE scitation.org/journalirse

calculated (referred to as mean™ and mean™, respectively). In Fig. 13,
the statistics of A’ indicate that in the near wake, ie., for x/d <3, a
region with turbulence intensity smaller than the incoming turbulence
intensity (A’ < 0) is generally observed for the clusters associated with
operations in region 2 of the turbine power curve under unstable atmo-
spheric conditions, i.e., for the clusters C1-Cé6. This wake feature can be
associated with regularization of the flow induced by the wake swirl and
the rotational flow induced by the near-wake vorticity structures, such
as hub vortex and root vortices present at the core of the wake,”*%?
with respect to the surrounding ambient turbulence. By proceeding
downstream, this region with negative Au’ gradually fades out together
with the diffusion of the mentioned wake vorticity structures.

In the near wake, the mean of Au’ generally increases as a result
of the shear-generated turbulence, which is due to the increasing
velocity deficit associated with the thrust force induced by the turbine
rotor. In the far-wake, Au/ shows a significant reduction only for the
clusters C5, C6, and C8. Indeed, the LiDAR velocity statistics in Fig. 5
show that the magnitude of the Au’ peaks located roughly at the lateral
boundaries of the wake reduce by proceeding downstream, which is a
consequence of the wake recovery, while Au’ increases at the wake
core, which might be the footprint of far-wake dynamics, e.g., wake
meandering.””""”

Predictions of the statistics for the wake-added turbulence inten-
sity obtained through the various above-mentioned models [Egs.
(12)-(18)] are also reported in Fig. 13. These models generally produce
realistic predictions of the maximum wake-generated turbulence; how-
ever, the downstream extent of the wake investigated (1 < x/d < 7) is
far to show an exponential decay, as usually predicted through these
models for the far-wake region. This is a critical limitation of the exist-
ing models for predicting the wake-added turbulence intensity because
of the lack of accurate predictions for cases where wake interactions
may occur with relatively small streamwise spacing among wind tur-
bines, i.e., smaller than 7d.”

VI. CONCLUSIONS

LiDAR measurements of wind turbine wakes have been investi-
gated through cluster analysis to identify the most representative wake
morphologies associated with different atmospheric stability regimes,
wind conditions, and control settings of the wind turbines. The wake
LiDAR measurements are first projected on a truncated POD basis
consisting of only five physics-informed POD modes. The reduced
dimensionality of the experimental dataset has been instrumental to
reduce the computational costs for the cluster analysis of two orders of
magnitude.

The coefficients of the selected POD modes are then injected in a
k-means algorithm, which identifies nine clusters to cover the variabil-
ity of the wind turbine wakes observed through the LIDAR measure-
ments. The synergistic analysis of the clustered LIDAR, meteorological,
and SCADA data has enabled us to ascribe seven clusters to operations
in region two of the power curve, namely, for incoming wind speeds
lower than the turbine rated wind speed, and two clusters for opera-
tions above rated wind speed. While the latter mainly occur under neu-
tral/stable atmospheric conditions, the other seven clusters owing to
region two of the power curve are characterized by a varying level of
atmospheric instability, leading to different incoming turbulence inten-
sity and wake recovery rate.
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FIG. 13. Statistics of the wake-added turbulence intensity, A’ /U, and comparison with the predictions obtained through several engineering models [Egs. (12)(18)].

It is noteworthy that the completely data-driven approach of the
cluster analysis, which avoids the imposition of bounds for the various
atmospheric, wind, and turbine parameters for detecting the wake var-
iability, allows for the identification of systematic operations of the
wind turbines with a certain yaw misalignment from the incoming
mean wind direction. Indeed, for a duration of about 10% of the entire
LiDAR experiment, the turbine rotors operated with a yaw angle
between 3° and 5°, leading to significant deflections of the wind tur-
bine wakes, and, eventually, effects on the wind farm power efficiency.

The clustered LiDAR data have also been analyzed in terms of
wake-added turbulence intensity. Specifically, regions with a reduced
wind turbulence intensity (negative wake-added turbulence intensity)
have been observed in the near wake for operations in region two of
the power curve and under unstable atmospheric conditions. This
wake feature might be ascribed to the flow re-organization due to the
wake vorticity structures, such as tip and hub vortices. In the far-wake,
a general decay of the wake-added turbulence intensity is observed, yet
not with a systematic exponential decay as proposed from existing
wake models. However, predictions of the wake-added turbulence
intensity obtained with several existing models have produced similar
values to those obtained from the experimental data, albeit their accu-
racy is relatively poor in terms of streamwise variability. This analysis
suggests that further work is needed for modeling the wake-added tur-
bulence intensity for wake regions where the asymptotic exponential
decay is not achieved yet, which can be an important flow feature in
the presence of wake interactions with streamwise spacing smaller
than about seven rotor diameters.
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