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ABSTRACT

Next-generation models of wind farm flows are increasingly needed to assist the design, operation, and performance diagnostic of modern
wind power plants. Accuracy in the descriptions of the wind farm aerodynamics, including the effects of atmospheric stability, coalescing
wakes, and the pressure field induced by the turbine rotors are necessary attributes for such tools as well as low computational costs. The
Pseudo-2D RANS model is formulated to provide an efficient solution of the Navier-Stokes equations governing wind-farm flows installed
in flat terrain and offshore. The turbulence closure and actuator disk model are calibrated based on wind light detection and ranging mea-
surements of wind turbine wakes collected under different operative and atmospheric conditions. A shallow-water formulation is imple-
mented to achieve a converged solution for the velocity and pressure fields across a farm with computational costs comparable to those of
mid-fidelity engineering wake models. The theoretical foundations and numerical scheme of the Pseudo-2D RANS model are provided,
together with a detailed description of the verification and validation processes. The model is assessed against a large dataset of power
production for an onshore wind farm located in North Texas showing a normalized mean absolute error of 5.6% on the 10-min-averaged
active power and 3% on the clustered wind farm efficiency, which represent 8% and 24%, respectively, improvements with respect to the
best-performing engineering wake model tested in this work.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0076739

I. INTRODUCTION

A deeper understanding of the physical processes governing
the operation of modern wind farms is instrumental to enable
reduction of the levelized cost of energy (LCOE) and increase in

for power maximization) revealed a reduction in power capture as
high as 28% of the nominal capacity."'

The prediction of wake impact on wind farm performance is
complicated by the influence of the atmospheric stability on wake

recovery,”'” which results in significantly reduced power losses for

wind energy penetration in the global power system.” Specifically,
many mechanisms governing the aerodynamics of wind turbines
immersed in the atmospheric turbulent boundary layer remain still
elusive nowadays.” By extracting kinetic energy from the incoming
flow, wind turbines generate wakes, which can persist for several
kilometers downstream® ° and cause power losses and enhanced
fatigue loads for downstream wind turbines.”® Wind industry
stakeholders identify turbine wakes as one of the major causes for
energy losses for onshore power plants in North America.’
Quantitative studies of wake effects based on the analysis of super-
visory control and data acquisition (SCADA) data showed energy
losses between 2% and 4% for onshore sites” and 10% to 20% of
the annual energy production (AEP) for offshore wind farms.'’
Nonetheless, a recent analysis of data covering ten years of opera-
tions for the Lillgrund offshore wind farm (a power plant designed

high turbulence intensity and convective atmospheric conditions com-
pared to low turbulence intensity, stable atmospheric conditions.”'*"”
An additional hurdle for predicting wake-induced power losses is rep-
resented by the coalescence of multiple wakes, which creates a spatially
heterogeneous and highly turbulent flow within the wind farm bound-
ary layer. Furthermore, the pressure field created by the thrust of the
rotors induces blockage'® >’ and speedups,'®***” which can signifi-
cantly impact wind turbine performance, yet generally not modeled in
engineering approaches due to the excessive computational burden
that a coupled solution of the continuity and momentum equation
entails when including the pressure field.

During the past four decades, several wake and wind farm mod-
els have been proposed, spanning a breadth of approaches and levels
of sophistication. Wake models can be broadly classified into two
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categories: analytical models and computational fluid mechanics
(CFD) methods.” The simplest analytical models assume a top-hat
velocity profile and calculate the wake width and velocity deficit based
on mass”® or momentum”’ conservation. Other analytical wake mod-
els assume self-similarity of the wake velocity profiles, in analogy to
the shear-flow theory,””” to predict maximum velocity deficit and
wake width as a function of the downstream distance from the turbine
rotor.”’** The self-similarity assumption is also at the basis of the
Gaussian wake model™ and the subsequent evolutions, such as the
Ishihara model,” the elliptic-Gaussian model,”” the Gaussian plume
dispersion model,”® the double-Gaussian model,”” and the super-
Gaussian models.”*”” It is noteworthy that the self-similarity hypothe-
sis is strictly valid only if the wake velocity deficit is significantly
smaller than the freestream velocity, which is typically true only in the
very far-wake."’

The extremely low computational cost and the simple implemen-
tation contributed to the popularity of engineering wake models,
which are still included in several state-of-the-art tools for wind farm
design and modeling.*' ** The main drawbacks of most analytical
wake models are the need for tuning parameters regulating the wake
recovery and the shape of the velocity profiles.”* Furthermore, engi-
neering wake models typically require the use of superposition princi-
ples in the case of multiple wakes, which introduce a further
inaccuracy."”*® Nevertheless, if properly calibrated, these models
exhibit a mean absolute error in the prediction of wake power losses
smaller than 15% and, unexpectedly, comparable to that of more com-
plex CED models.'*" "

CFD models, especially Reynolds-Averaged Navier-Stokes
(RANS) and Large Eddy Simulations (LES), have been increasingly
employed to simulate wind farm flows by solving the governing equa-
tions for turbulent flows.”"” Specifically, LES have provided insightful
information into the turbine wake flow physics (see reviews by ")
however, their high computational cost (~10%-10* CPU hours,”
depending on the Reynolds number ™) represents a serious hindrance
for their utilization in computationally intensive tasks, such as online
control, real-time diagnostic applications, and layout optimization.
Furthermore, the sub-grid model needs to be carefully selected to
avoid inconsistent results near the ground,™ for stratified flows,” and
in the proximity of the turbines.”

Although very sensitive to the type of turbulent closure adopted,
RANS models have computational costs generally three orders of mag-
nitude smaller than LES.”® The time required for a RANS simulation
is intrinsically dependent on the simplifying assumption applied to the
Navier-Stokes equations and the solver implemented. Linearization of
the advection term is a commonly adopted approximation for early
RANS models™ °' and received renewed interest more recently thanks
to the achieved low computational costs. Modern linearized models
include FUGA,®” ORFEUS,”’ the curled wake model.”” Another popu-
lar class of models is the parabolic RANS, where, by leveraging the
boundary-layer approximation, computational costs are reduced by
solving the RANS equations from the inlet moving in the downstream
direction by neglecting the elliptic nature of subsonic flows. The classic
models of Liu,"* Ainslie,”” and UPMWAKE®" belong to this category.
More recently, a parabolic axisymmetric solver for turbine arrays was
optimally calibrated based on high-fidelity simulations.”® °* The com-
mercial tool WakeBlaster®” is also a parabolic 3D wind farm model
that can solve the flow of a medium-size wind farm in a few seconds.

ARTICLE scitation.org/journalirse

Furthermore, the curled wake model in his fully linearized version®”
and the newest release’’ use a parabolic solution to reduce the compu-
tational time. The main drawback of parabolic models is the break-
down of the boundary layer approximation in the near wake*’ and the
inability to simulate the effects of pressure (namely, blockage and
speedups) on the wind field.”’

A more detailed flow characterization can be achieved through
elliptic RANS models, which solve the full set of RANS equations at
the cost of a significantly higher computational requirement. Crespo
and Hendindez’' formulated an elliptic implementation of
UPMW AKE, whose results showed only slight differences with respect
to the original parabolic version. Masson et al.”* formulated a steady
laminar axisymmetric RANS solver based on the actuator disk theory,
subsequently enhanced through the inclusion of a turbulence model
and a 3D formulation.”* In an attempt to reduce the dimensionality
and, thus, computational burden, several authors resolved the wind
farm flow at hub height in a purely 2D fashion,” ’* which however
can result in an excessive curvature of the streamlines due to the
unphysical vertical confinement.””

A crucial aspect of a RANS model is the modeling of the turbu-
lent Reynolds stresses, aimed at capturing the complex role of atmo-
spheric turbulence, blade- and wake-generated turbulence, and wake
dynamics, such as wake meandering.””*' The vast majority of the
RANS models adopt the linear turbulent eddy viscosity hypothesis,*
with just a few examples of Reynolds Stress transport®>** and non-
linear eddy viscosity closures.” It is worth mentioning that the eddy
viscosity approach has been disproved based on theoretical arguments
and experimental evidence for flows undergoing rapid distortion,"’
and particularly for the flow near wind turbines.”® Nevertheless, the
eddy viscosity can provide a useful characterization of mean quantities
for simple shear flows."’

Algebraic closures for turbine wakes specify the value of the tur-
bulent eddy viscosity or mixing length a priori,/” based on the
Monin-Obukhov similarity theory,””** **”* wake characteristics”’ or
both.”>***" A fairly complex algebraic closure is implemented in the
dynamic wake meandering model and includes effects of atmospheric
stabili'[y,88 shear, and wake-added turbulence.®” Some authors pursued
a more data-driven approach by calibrating the turbulence model
against LES”” or experimental data collected with light detection and
ranging (LiDAR) systems.”*”” The standard two-equation models
(namely, Kk — ¢ and k — ), despite their well-documented accuracy
in the solution of other classic fluid mechanics problems, are known to
be over-diffusive in the near wake,**’" where the rapid flow changes,
high velocity, and pressure gradients undermine the fundamental
assumptions of the eddy viscosity model.*® This has spurred significant
research work in the development of advanced turbulence closure for
turbine wake flow.”*">"*

The foregoing appraisal of the capabilities and limitations of the
state-of-the-art turbine wake models inspired the formulation of a
novel mid-fidelity model for wind farm flows: the Pseudo-2D RANS
(P2D-RANS hereinafter). This tool is conceived to provide a compre-
hensive description of the time-averaged wind farm aerodynamics,
including multiple wake interactions and the effects of atmospheric
stability and pressure field while keeping the computational costs low
enough to simulate a medium-size farm in a few CPU seconds. With
these aims, three main novelties are introduced: (i) the 3D flow equa-
tions are reduced to a 2D mathematical problem by adopting the
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shallow-water model with tailor-made corrections for near-wake verti-
cal fluxes and dispersive terms; (i) the partially parabolized
Navier-Stokes (PPNS) equations are solved by retaining the full ellip-
tic pressure field yet ensuring numerical efficiency of the iterative
marching scheme of the numerical solver; and (iii) the turbulence clo-
sure and actuator disk model are optimally calibrated based on LIDAR
data clustered based on incoming wind speed and turbulence inten-
sity.”** We will show in the following that the P2D-RANS is also
capable of accurately simulating highly challenging wind conditions
where the pressure field induced by the turbine rotors can modify the
incoming wind leading to local speedups, and, in turn, increased
power capture, which has been confirmed experimentally. Accuracy of
the P2D-RANS is assessed for the case study of an onshore wind farm
located in North Texas including 25 2.3 MW turbines. The current
implementation of the code can simulate the steady-state operation of
the investigated wind farm for a single inflow case in around 80s on
an i5 single-core laptop computer.

The remainder of this manuscript is organized as follows: the
first two sections describe the conceptual (Sec. IT) and numerical
(Sec. TIT) modeling of the depth-averaged, partially parabolized
Navier-Stokes equations. Section IV provides a description of the
experimental site and the dataset used for the tuning of the
LiDAR-driven actuator disk and turbulence closure, as well as a
detailed outline of the calibration procedure. The novel approach
is then verified (Sec. V), validated against real power data, and
compared to other models of wind turbine wakes (Sec. VI). Finally,
concluding remarks are discussed in Sec. VII.

Il. CONCEPTUAL MODEL

Under steady conditions, negligible Coriolis and buoyancy forces,
the flow around wind turbines can be described through the non-
dimensional RANS equations for incompressible turbulent flows,

Ou; _
ox;
Jom_op 1 Puy 0wy
4 0x; " 0x; Re 0x;0x; 0x;

0,

1)
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where 1@, p, and f are the Reynolds-averaged velocity vector, pressure,
and body force vector, respectively (f, representing the turbine rotor
thrust), and Re is the diameter-based Reynolds number. Within the
present notation, repeated indices imply summation and bold quanti-
ties indicate vectorial quantities. The x;-axis (or x) is aligned with the
turbine axis and points downstream, x3 (or z) is the vertical direction,
and x;, (or y) is the traversal direction defined according to a right-
handed reference system (Fig. 1). The velocity components in the
(x, v, z) directions are (u, v, w), respectively. Throughout the paper,
all the physical quantities have been made non-dimensional through
the turbine diameter, D (length), incoming wind speed, U, (veloci-
ties), undisturbed dynamic pressure pUOZO, (pressure), and the purely
dimensional terms U,,D (eddy-viscosity), and pU2 /D (forces per
unit volume). It is noteworthy that utility-scale turbines operate within
a range of Reynolds numbers (Re® — Re®) that justifies neglecting vis-
cous terms in the wake modeling (i.e., the flow is Re-independent™).

The Boussinesq hypothesis allows expressing the deviatoric part
of the Reynolds stress tensor to be proportional to the strain rate ten-
sor through the turbulent eddy-viscosity, v/, as follows:"”

2 on;  Ou;
i j i
=2 Sk — +o, 2
utuj 35116 VT( : ]-> ( )

where 6;; is the Kronecker delta and x the turbulent kinetic energy. By
incorporating the first term on the RHS of Eq. (2) into a modified
pressure, neglecting the molecular viscosity, and assuming a constant
turbulent eddy viscosity, we obtain:

Ou; _
ox;
Com Op

on_ 0p o o (3)
u” 8)6] o Bx,- vr 6XJ(9XJ i

where the Reynolds-stress term has been reduced by enforcing
continuity.

For the P2D-RANS, the dimensionality of the problem is reduced
from 3D to 2D by adopting a depth-averaged (or shallow water)
approximation of the RANS equations, which requires the horizontal

)
FIG. 1. Schematic of the reference system
_____ T of the P2D-RANS and the shallow-water
decomposition.
21
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length and velocity scales of the mean flow to be significantly greater
than their respective vertical quantities.”” For wind farm flows, this
assumption may not be satisfied in the presence of significant vertical
shear (which is at the moment not considered and can eventually be
added a posteriori through a superposition model”**’) or complex ter-
rain, whose modeling is beyond the scope of this work.

We define a generic Reynolds-averaged scalar, ¢, as the sum of a
vertically averaged value, ¢, and a z-varying (or dispersive) compo-
nent, ¢, as sketched in Fig. 1. The depth-averaged parameter is defined
as

et I L @

where z; and z, are the vertical coordinates of the bottom and top
boundaries, respectively, of the integration domain. In this work, these
boundaries are selected as z; = —z; = D/2 to include the entire rotor
layer, which is convenient to study wind turbines with uniform hub
height and rotor diameter on flat terrain.

Application of the operator defined in Eq. (4) to both sides of Eq.
(3) in conservative form, yields

ou v

Wy — Wi

P T S A
6x+5y+z2—zl ’
@aJrajanzwz_ﬁlwl_a(%_wl)
Ox Oy -z

b, (7 o
TR PP 0y?

Cfpvr (0w _ow| )\ _ouu_oiv
Yoz \0z|, 0z|, Ox 0Oy ®)
W V. Vvwy — Vi —V(wy — W)
U+
Ox 0 Z — 2z
B, (v o
)Y "\ ox2 0y?

-~ vr v ov
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where subscript 1 and 2 refer to 3D quantities evaluated at z; and z,,
respectively. Equation (5) include depth-averaged (7), 3D (=), and dis-
persive () terms. While the first are explicitly solved by the P2D-
RANS model, the last two contributions need to be modeled as a func-
tion of the depth-averaged field. By neglecting the wake swirling
motion, which is only present in the near wake ~ and has negligible
effects on the streamwise velocity and power,”® and assuming an axi-
symmetric wake velocity field, which can be recovered for cases with
no yaw misalignment of the turbine rotor by subtracting the incoming
vertical profile of the incoming streamwise velocity,””'"" it is possible
to calculate these fluxes following the approach proposed by Boersma
et al.'”" Specifically, this allows defining linear operators that map the
depth-averaged field (u,V) onto the corresponding axisymmetric
streamwise velocity field (iiy, ,), as follows (see Appendix A for
details):

ox Oy’

1

- 1/~
{ ;x - Mli] (u).y (6)
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Once the axisymmetric velocity components corresponding to a given
provisional depth-averaged field are known, the vertical fluxes and the
dispersive stresses in Eq. (5) can be numerically evaluated and fed as
source terms into the model in an iterative way, as it will be detailed in
Sec. I1I. In the case of side-wise multiple wake interaction, which
causes a breakdown of the assumption of axisymmetric flow, an
appropriate superposition of the single-wake vertical and dispersive
fluxes is performed, as it will be described in Sec. V.

. COMPUTATIONAL MODEL

The depth-averaged RANS equations (3) are solved in terms of
velocity components using a marching scheme approach in the
streamwise direction, x, while the pressure field is calculated iteratively
due to its inherently elliptic nature. Problems where the streamwise
diffusion is negligible but the pressure gradient is not are referred to as
Partially Parabolized Navier-Stokes (PPNS)'** and provide advantages
in terms of computational cost and data usage compared to fully ellip-
tic solvers.'”” An essential feature of PPNS algorithms is the imple-
mentation of a pressure correction necessary to calculate the pressure
field and enforce continuity to guarantee a divergence-free velocity
field.

The PPNS scheme adopted for the P2D-RANS is inspired by pre-
vious works for ducted flows,"”” "' with the main difference that no
velocity correction is enforced throughout the sweeps. The global pres-
sure field is indeed corrected at the end of each parabolic sweep.'"”
The provisional velocity field does not satisfy mass conservation until
the pressure correction achieves convergence (see Fig. 2).

The numerical scheme adopted for the momentum equations is
identical to that documented in Ref. 107, except for the inclusion of
the streamwise turbulent diffusion terms in Eq. (5), which are retained
to enhance accuracy and numerical stability. The scheme is fully
implicit, and the non-linear terms are treated via the lagging coefficient
technique.'”* The uniform grid is staggered so that each velocity node
is placed between two pressure nodes (Fig. 3). The momentum equa-
tions in their discretized form are:

Uir1j—Uit1j-1  ~ Uit1j+1 —Uit1,j

~ Uiy1j—Uij L5
i FVir1j+1
T 2Ay

|
YT Ax

T Vitl, ZA)’

:pi+1,j_pi+2,j+VTui+2,j—2ui+1J+uij
Ax Ax?

Uip1 1 —2Uip1 j T Uis1j-1

1 Ay2 fx,i+1,j7
UijtUij—1Vie1j = Vij |~ Visljrl —Vitlj-1

Vi

2 Ax ' 2Ay
_Pinij1 7Py y Vitaj—2Viy1j+Vij
= +ur

Ay Ax?

Vit1jr1 — 2Vig1jHVip1j-1 I?
Ay? Tyt

™)

+V1

where the indices i and j refer to the ith streamwise and jth spanwise
locations, respectively. It is noteworthy that the 3D correction terms
are tacitly included in the volumetric forces f. The elliptic terms
Uit2js Vit 2 12 are evaluated from the previous sweep. As indicated
in Fig. 2, Eq. (7) is solved parabolically marching from the inlet to the
outlet and twice for each sweep, first without streamwise diffusion and
then with the streamwise diffusion activated.
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FIG. 2. Workflow of the P2D-RANS.

The pressure correction is derived from first principles in
Appendix B. The final form of the Poisson equation for the calculation
of the corrective pressure field, p, that is applied at the end of each
sweep to correct the provisional velocity is

- o oy

R N\ A\ v PV PV
W 3—)/2qu Va—y—VT 5 (8)

or, more concisely:

. DV
V=" — VY ©)]
P="p VY
where V is the divergence of the provisional velocity field, including
the correction for vertical mass fluxes. From a numerical standpoint,
the pressure correction is discretized as

Ax
j+1 ® o ®
Aay
Ji ® > @
j—1 @ L
i—1 i i+1

FIG. 3. Numerical grid of the P2D-RANS.
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Ax Ay -z

where the last term represents the vertical mass flux obtained as
explained in Sec. II.

The Poisson equation for the pressure is solved through the back-
slash Matlab solver for sparse linear systems.'”* To speed up the con-
vergence, the pressure correction is applied alternatively to all the cells
and in blocks of 2x 2 cells."”” Convergence is considered to be
achieved when the mass residual, defined as the integral of the absolute
value of the mass sources and sinks normalized by the incoming mass
flow rate, is below 1%.'"”

Dirichlet boundary conditions on velocity (i = 1,7 = 0) and
pressure (p = 0) are prescribed at the inlet and outlet, respectively.
Non-homogeneous Neumann conditions are applied to the side
boundaries by imposing the spanwise gradients of the velocity compo-
nents to be equal to their respective values at the nearest y locations,
which minimizes the backpropagation of boundary effects in the inner
domain.” Finally, a homogeneous Neumann boundary condition is
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applied to the remaining boundaries for pressure, which is consistent
with the Navier-Stokes equations.'’” The spatial resolution of the grid
is selected as Ax = 0.125 and Ay = 0.05, while the domain extends
15D away from the turbines in all directions. These parameters are
selected after a comprehensive sensitivity analysis to ensure a mean
percentage absolute error (MAPE) on the streamwise component
smaller than 0.1% in the induction zone and 1% in the wake region.
Figure 4 shows the results of the sensitivity analysis for an incoming
wind speed set to U, = 10ms " and different levels of the incoming
turbulence intensity, TI...

IV. MODEL CALIBRATION
A. Experimental dataset

To enhance accuracy in predictions of the intra-wind-farm veloc-
ity field and wind turbine power capture, the P2D-RANS has been
developed by encompassing a fully data-driven actuator disk model
and turbulence closure, both calibrated through wind LiDAR mea-
surements of individual wakes generated by utility-scale wind turbines.
The onshore wind farm under examination is located in North Texas
and includes 25 2.3-MW turbines of the same model, with a rotor
diameter D = 108 m and hub height H= 80 m (Fig. 5).

A meteorological (met) mast is located at the South-East corner
of the farm and recorded for the whole duration of the field campaign
mean and standard deviation of horizontal wind speed and direction
at 36, 60, and 80-m heights, barometric pressure at 2 and 75-m
heights, and temperature at 3-m and 75-m heights. Furthermore,
SCADA data in the form of mean and standard deviation of hub-
height wind speed, active power, and other operational parameters
were collected.

A WindCube 200S scanning pulsed Doppler wind LiDAR was
deployed at the center of the farm from August 2015 to March 2017.
This section provides a concise overview of the field campaign, since a
detailed description of the site, experimental strategy, and LIDAR data
processing can be found in previous related publications.”'>""’

The wind LiDAR was set up with a range gate of 50 m and an
accumulation time of 500 ms. The scanning wind LiDAR performed
Plan Position Indicator (PPI) scans with low elevation angles (typically
3°), azimuthal range of 20°, and rotation speed of the scanning head
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of 2° s, leading to a typical scanning time for a single PPI scan of 10
s. PPI scans were performed for wind directions included within the
sector 145°-235° when the wakes of turbines 1-6 are advected toward
the LiDAR location. Overall, 16 765 quality-controlled PPI scans are
available for the present study.

Individual LiDAR samples undergo a quality control process,
including data rejection based on the dynamic filtering,''' After
realigning the wake according to the 10-min-averaged wind direction,
the horizontal equivalent velocity field, g, is made non-dimensional
through the 10-min-averaged incoming vertical wind profile, accord-
ing to the procedure outlined in Zhan et al.'” Finally, the LIDAR mea-
surements are reported in an axisymmetric-equivalent reference frame
(2, 1), where the radial position, r, represents the distance from the
expected wake center."” The re-aligned and non-dimensional horizon-
tal-equivalent wake velocity data are clustered in bins based on opera-
tive conditions (i.e., aerodynamic rotor thrust) and incoming wind
turbulence intensity. The selection of the bin edges is guided by a pre-
liminary characterization of the wind farm performance as a function
of the inflow conditions, which is the object of Sec. IV B.

B. Wind turbine and wind farm performance

The operation of a pitch-regulated turbine can be characterized
as a function of the hub-height density-corrected wind speed,''” as
follows:

U 1/3
Unorm = hub (ﬁ) s ( 1 3)
Urated Po

where Uy, is the 10-min-averaged horizontal wind speed at hub height,
Upated = 11 ms™ ! is the rated wind speed, p is the measured air density,
and p, = 1.225kgm > is the reference air density. Wake turbulent
mixing and recovery can be conveniently investigated through the tur-
bulence intensity, TI, defined as the ratio between the standard devia-
tion of the hub-height wind speed over the mean of the same quantity.
Specifically, Zhan et al' identified through an atmospheric stability
analysis values of 7% and 13.5% as thresholds of the incoming-wind
turbulence intensity bounding stable (TI, < 7%), near-neutral
(Tl € [7,13.5)%), and convective (unstable) (TL,, > 13.5%) regimes
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FIG. 4. Mean absolute percentage error with respect to the finest grid (Ax = Ay = 0.01) and for U, = 10 ms~": (a)~(c) induction zone (=5 < x < 0, |y| < 1); (d)~(f):
wake region (0 < x < 15, |y| < 1); (a) and (d) Tlo < 7%, (b) and (e) Tl € [7,13.5)%, and (c) and (f) Tl., > 13.5%.
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FIG. 5. Characterization of the wind farm under investigation: (a) topographic map of the site; (b) directional histogram of the normalized wind speed at hub height [Eq. (13)];
and (c) directional histogram of the incoming turbulence intensity at hub height. The green sectors in (a) represent the unwaked wind sectors, while the gray ones in (b) and

(c) correspond to wind sectors where the met mast is likely affected by turbine wakes.

for the site under investigation. In general, the subscript co refers to
quantities recorded by the SCADA not affected by wakes and is, thus,
representative of the incoming wind field. In this work, wind sectors
affected by wakes are defined according to the 61400-12, Annex B of
the IEC standards.'"”

Wind speed at hub height, Uy, is retrieved based on the mea-
surements of the nacelle anemometer, which undergoes quality control
and correction processes. First, occurrences of unrealistic velocity and
turbulence intensity, extreme veer, yaw misalignment, idling sensors,
and zero or negative active power are rejected (see Table I). Then the
nacelle transfer function is calculated based on met-tower normalized
wind speed collected at 80-m height and the nacelle anemometer of
Turbine 06 (namely, the closest turbine to the met tower) only for
unwaked wind sectors, in compliance with the International IEC
Standards.''” Such transfer function cannot be applied directly to the

TABLE I. Breakdown of the quality check on meteorological and SCADA data.

Formulation Rejection rate (%)
do,, o
Veer —>0.25"m 16.3
dz
. . o do,,
Idling wind direction T 0 2.1
Yaw misalignment [Oyaw — 04| > 30° 1.6
Idling power dPporm -0 0.04
a
No power Poom <0 9.9
Zero velocity Unorm = 0 0.02
Off-range T1 TI < 0 or TI >100% 1.1

whole park since biases of up to 5% between different SCADA ane-
mometers are present. The mentioned biases are estimated by compar-
ing the raw individual power curves.'' Therefore, all the wind speed
data are re-scaled by a multiplicative factor using the data of Turbine
06 as a reference before the correction for the nacelle flow distortion.

The experimental turbine power curve is calculated by leveraging
the data from all the turbines following the IEC Standards.'"” To flag
power curtailments associated with off-design operations, an initial
nominal power curve is generated based on the power of reference
Turbine 06 only and the met-tower normalized wind speed only for
unwaked sectors. Power reads exhibiting a deficit larger than 300 kW
from the power estimated through the nominal power curve (~1% of
the cases) are then rejected.''* The final power curves are generated
using all the available SCADA data (August 2015-April 2017) and dif-
ferentiated as a function of TL.'"” It is noteworthy that power in region
III can exceed the nameplate value by virtue of the power-boost mode,
which enables the generator to produce additional power under favor-
able operative conditions. The TI-based normalized power (Pporm)
curves are reported in Fig. 6(a). The accuracy of this method is
assessed quantitatively by evaluating the error between the measured
power and the power obtained from the different power curves and
using either met or SCADA (corrected) hub-height wind speeds as
input variables. The error metric used here is the normalized mean
absolute error,”” which is defined as

Z |xi - xi,ref|

i
)
E Xi ref
i

where x and x,f represent the modeled and reference value of the tar-
get quantity, respectively. This error analysis indicates that the best

NMAE(x, Xpef) = (14)
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FIG. 6. (a) Power curves for different stability classes. The gray dots represent quality-controlled 10-min-averaged data. (b) Normalized Mean Absolute Error (NMAE) of the
SCADA 10-min-averaged power and the power obtained through different power curves and using different inputs as in incoming wind speed.

agreement with the SCADA data is achieved by using the TI-based
power curves and the corrected SCADA wind speed as input. Slightly
worse accuracy is obtained by using the nominal power curve. The
highest error associated with the met tower wind speed is due to the
presence of spatial heterogeneity of the flow over the farm."'* Further,
higher uncertainty is observed for the power output of waked turbines,
likely due to the more heterogeneous velocity distribution over the
rotor area not captured by the nacelle anemometer.

Similar procedures are used to evaluate the power coefficient, Cps
and total farm power curve, which guide the selection of the bin edges
of the incoming normalized hub-height velocity, Uporm, oo, used for the
clustering of the LiDAR data. The heat map of Fig. 7(a) shows the
occurrence of [Unorm oo, Tls] pairs based on the available SCADA
data for unwaked turbine operations. The green dots refer to the
SCADA data paired with the LIDAR scans, which can be seen to cover
satisfactorily most of the typical wind conditions, except for the
Urorm,oo < 0.5, T, < 13.5% region. For this study, bin edges in

Unorm,co are selected as [0.25,0.5,0.7,0.85,1,1.15,2] [see Fig. 7(b)]
and are purposely refined in the proximity of the turbine rated power
(i.e., Unorm,c = 1), where a stronger variation of [ and, thus, thrust
coefficient, are expected. Finally, as highlighted by the farm power
curve calculated including all the turbines regardless of their waked/
unwaked state [Fig. 7(c)], for Uporm,co > 1.15, the average total farm
power is practically equal to the nominal capacity of the wind plant.
The numerical modeling of such cases is irrelevant for the assessment
of the proposed wind farm model in terms of power capture, and fur-
ther bins for very high Upom oo are thus not defined. Table II reports
the number of raw and quality-controlled experimental LiDAR sam-
ples available for each cluster.

C. Data-driven calibration of the RANS model

The mean streamwise velocity for each cluster is reconstructed
using the LiDAR Statistical Barnes Objective Analysis (LiSBOA)
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FIG. 7. Selection of the bin edges: (a) two-dimensional pdf of Unom,~ and Tl (green dots correspond to available LIDAR scans, while crosses indicate the bin centroids); (b)
average ¢, experimental curves; and (c) overall normalized farm power as a function of Unom,, Where the shaded areas represent standard deviation. The dashed lines sepa-

rate the different bins in Unom,oc -
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TABLE II. Number (in millions) and percentage (in brackets) of quality-controlled
LiDAR samples available for each cluster.

Tl o < 7% TI o € [7,13.5)% TI o > 13.5%
Unomoeo € [0,0.25) 0 0.04 (0.3) 0.24 (1.8)
Unorme € [0.5,0.7)  0.29 (2.2) 0.88 (6.6) 0.52 (3.9)
Unorm.so € [0.7,0.85) 0.77 (5.8) 1.32(9.9) 0.42 (3.1)
Unormo € [0.85,1)  1.77(20.7)  2.87 (21.5) 03(22)
Unormoo € [1,1.15)  0.58 (4.4) 1.46 (11.0) 0.16 (1.2)
Unormso € [1.15,2)  0.21 (1.6) 0.48 (3.6) 0.03 (0.2)

tool''*""” on a Cartesian grid with fundamental half-wavelengths
Ang, = 1.5D, Ang, = 0.5D and region with local data spacing Ad
> 0.25 are rejected (refer to Ref. 116 for more theoretical details on
LiSBOA). Data voids are filled through a bi-harmonic interpolation
algorithm.'' The velocity fields in axisymmetric coordinate are finally
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depth-averaged to build the reference dataset of #(x, ¥, Unorm,co; Tlso)»
which are reported in Fig. 8. Results are not shown for two bins, which
fail to satisfy the statistical constraints imposed by the LiSBOA due to
the limited availability of data points. The used methodology for the
characterization of the wake velocity field captures satisfactorily the
reduced velocity deficit occurring for cases with lower ¢, (ie., for
Unorm,co 2 0.85), as well as the faster wake recovery occurring with
increasing turbulence intensity. The quantification of the wake variabil-
ity with incoming wind speed and turbulence intensity is instrumental
for the calibration of the actuator disk and the turbulence closure model
of the P2D-RANS and, more in general, for accurate modeling of the
wind farm flow.

The tuning of the turbulent eddy-viscosity and axial force distri-
bution are performed following the methodology introduced by Tungo
et al,” but adopting depth-averaged velocity fields and the P2D-
RANS model instead of the axisymmetric flow and RANS model of
the original publication. The present calibration procedure includes
the following steps:

. 1 Unormo € [0-25,0.5); TLe > 13.5%

e
0 2 4 6 8 10
Unormeoo € [0.5,0.7); TIy, > 13.5%

1
0
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Unorm,co € [0.7,0.85); Tl > 13.5%

=

Unorm.oo € [0.85,1); TI, > 13.5%

6 8 10

6 8 10

FIG. 8. Mean streamwise, depth-averaged velocity fields (u) calculated from the LIDAR data for the various bins defined based on hub-height wind speed, Unom, o, and, turbu-

lence intensity, Tl..
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FIG. 9. Calibration of the P2D-RANS: (a) optimal turbulent eddy-viscosity; (b) optimal thrust coefficient, ¢; and (c) mean absolute percentage error (MAPE) (empty bars repre-
sent the MAPE for the far wake velocity field after the optimization of »/+only, and the full ones represent the final MAPE after the estimation of the axial load).

¢ the near wake length, xnw, namely the extension of the region
where the pressure gradients are relevant, is estimated as the
streamwise location where the minimum rotor-averaged velocity
occurs;' "’

* a constant turbulent eddy-viscosity is estimated by minimizing
the MAPE between the average streamwise wake velocity pre-
dicted with the P2D-RANS and that obtained from the LiDAR

data, where:

MAPE = =
uripar (¥, [y] < 1)

|tpap_rans (X, |y| < 1) — Urpar (¥, [y] < 1) > (15)

with () indicating space average. In this case, the modified P2D-
RANS solver does not include the rotor region, instead the u
velocity profile calculated from the LiDAR data at xnw is injected
as inlet boundary condition, while assuming constant pressure to
calculate v. The optimization algorithm used to estimate turbu-
lent eddy-viscosity is described in Tungo et al.;”

* once the optimal v is known, the axial thrust force on the tur-
bine rotor is estimated by correcting iteratively the streamwise

forcing, fx, in the full version of the P2D-RANS model to match
the experimental velocity profile at xxw as:

~

+00 nt+1 +oo N ,
J fo (xp)dx :J fe (x,y) dx + Upap—rans (Xnw, )

—0oC

— Uripar (vw, ¥)7, (16)

where the index 7 is the iteration counter. This method repre-
sents a simplified version of the technique based on the local
momentum budget.”” Tt is noteworthy that the integrals in the x-
direction are included only to compensate for the streamwise
smoothing of the forces applied in the P2D-RANS to prevent
numerical instabilities (further details of the formulation of the
aerodynamic loads are provided in Appendix C). The algorithm
stops when variation in the above-defined MAPE lower than
0.1% is attained (generally with less than 5-6 iterations).

The results of the calibration procedure are summarized in
Figs. 9 and 10. The behavior of the optimal turbulent eddy-viscosity
[Fig. 9(a)] lends interesting insight into the wake recovery process.
The most consistent pattern is the increase in vy as a function of TI,
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FIG. 10. Optimal axial forcing distribution after calibration: (a) Tl o, < 7%; (b) Tl € [7,13.5)%; and (c) Tl o > 13.5%.
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which is expected since TIL, is linked to the magnitude of the turbu-
lent momentum fluxes in the wake. The turbulent eddy viscosity
increases by nearly tenfold in convective conditions compared to sta-
ble conditions, which confirms the necessity of including effects of
atmospheric stability in wind farm models. Furthermore, the turbulent
eddy-viscosity for low and moderate TI,, decreases as a function of
Unorm,oo» €xcept for the last bin Unorm oo € [1.15,2). Our interpreta-
tion is that the v optimizer identifies effects related to the wake-
added turbulence, which is indeed stronger for higher ¢, value (i.e., low
Unorm,o0) conditions due to the enhanced shear-generated turbulence.
The proportionality of the turbulent eddy viscosity to the velocity defi-
cit, Au, (ie., ¢,), is predicted by the shear flow theory, which produces
the well-known scaling vr ~ r,,Au, where r,, is the wake radius, for a
self-similar axisymmetric wake.””*>*”

It is noteworthy that vy for convective conditions increases
between Unorm,oc = 0.5 and 1.15. This trend, which is reversed com-
pared to what is observed for low to moderate incoming TI, condi-
tions, is likely due to a different wake recovery mechanism occurring
for unstable atmospheric conditions, where the incoming turbulence
significantly contributes to the momentum diffusion in the wake, espe-
cially through the flow dynamics connected with wake meandering.*’
Furthermore, the inverse proportionality between v and ¢, observed
in convective conditions may be due to the damping of the largest
incoming coherent structures operated by the rotor already docu-
mented by Chamorro et al.,'”" which is expected to be more severe for
high ¢, A more thorough investigation of this interesting behavior will
be the object of future work. Finally, the reduction of v observed for
the last bin Uporm oo € [1.15,2) is ascribed to the very shallow wake
deficit, which makes the definition of an eddy viscosity quite elusive. It
is important to reiterate that, in this context, TI,, represents a conve-
nient engineering parameter associated with the velocity fluctuations
connected with the shear and buoyancy generated turbulence, while a
more comprehensive characterization of the incoming wind field
should encompass the quantification of a reference turbulence length
scale and the atmospheric stability regime, e.g., through the Obukhov
length or the Richardson number.

Figures 9(b) and 10 show ¢, and the spanwise distribution of
depth-averaged thrust force. The thrust coefficient is practically
constant for 0.25 < Upermeo < 0.7 (i.e., region II of the power
curve), and then it decreases due to the blade pitching and tip-
speed ratio reduction operated by the controller to limit the power
output to the nameplate capacity. The only available thrust-force
profile at very low Uporm,co corresponds to convective conditions,
which shows an overall higher aerodynamic force. The force distri-
bution is less sensitive to the atmospheric stability, although slightly
higher values are estimated in high TI conditions.”” Figure 9(c)
shows a MAPE that lies below the 5% threshold for all the wakes
after the calibration, which is considered satisfactory. To conclude,
the calibrated numerical fields are shown in Fig. 11, while the differ-
ence fields (P2D-RANS minus LiDAR) are reported in Fig. 12.
Finally, Tables I1I and IV provide v and ¢, resulting from the cali-
bration procedure.

For the implementation of the P2D-RANS, the values of the cali-
brated rotor thrust coefficient and turbulent eddy-viscosity are
assigned to the bin centroids displayed in Fig. 7(a) and investigated
through a linear/nearest-neighbor Delauney interpolation to perform
simulations with an arbitrary inflow.
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V. VERIFICATION

According to the technical report AIAA, ~ the process of deter-
mining if a model implementation accurately represents the concep-
tual description and the solution of a model is referred to as
verification. The purpose of this section is indeed to verify the validity
of the proposed shallow-water approach corrected for vertical fluxes
and dispersive terms, the pressure correction algorithm of the P2D-
RANS, and the numerical method. To this aim, the P2D-RANS solu-
tion of a single-wake velocity field is compared to the equivalent result
calculated through an elliptic axisymmetric RANS solver. The latter
uses the Newton algorithm to solve the full non-linear set of RANS
equations in cylindrical coordinates discretized through a spectral col-
location method based on Chebyshev polynomials (for more details,
refer to Refs. 90 and 122, while the code is publicly available'”) The
simulations with the axisymmetric code are carried out using equiva-
lent boundary conditions, turbine load, and turbulence model.
The inflow conditions are arbitrarily chosen as Uy = 10ms %,
Tl = 10%, which in turn define the axial aerodynamic thrust and
the turbulent eddy viscosity (Sec. IV).

Figure 13 shows the spanwise profiles of 7,7, p extracted at sev-
eral downstream locations calculated by the axisymmetric solver
(dots) and the P2D-RANS (solid lines), as well as the same quantities
for a purely 2D solver, i.e., without 3D corrections (dashed lines). The
agreement between the axisymmetric solver (i.e., the benchmark) and
the P2D-RANS is excellent, with negligible discrepancies, which are
due to the slightly different implementation of the boundary condi-
tions for the two models.”’ The almost perfect overlapping between
the pressure obtained by the axisymmetric RANS solving the fully
elliptic Navier-Stokes equations and through the iterative marching
scheme of the P2D-RANS described in Sec. I1I serves as verification of
the proposed pressure-velocity coupling scheme. Conversely, the pro-
files obtained with the merely 2D-RANS code exhibit significantly
higher speedups, hampered wake recovery, excessive spanwise velocity
magnitude, and pressure gradients compared to the benchmark simu-
lations, which justifies the utilization of the proposed 3D corrections
to relax the vertical confinement, which is a typical limitation of 2D
wind farm flow simulators.

The 3D correction terms introduced in the P2D-RANS are
assessed by plotting in Fig. 14 the individual contributions of the verti-
cal fluxes and dispersive terms [overbarred and tilded terms, respec-
tively, in Eq. (4)] to the mass (left column), x-momentum (center),
and y-momentum (right) budgets. For an isolated turbine, these terms
peak in the rotor area and drop sharply outside of the rotor span and
decay further downstream as the wake recovers, and cross-stream
components dissipate. The significance of the 3D corrective terms
within the P2D-RANS equations is further explored in Fig. 15, where
the individual terms constituting the mass and momentum balances
are visualized separately. For the momentum equations, the vertical
and dispersive fluxes are generally one order of magnitude smaller
than the dominant terms (advection and pressure) in the rotor region,
but become relatively significant in the far wake, which is dominated
by turbulent diffusion.

It is noteworthy that the results of the present verification hold
valid for an arbitrary turbine thrust and eddy viscosity, namely, for
the full range of inflow conditions defined in the calibration phase
(Sec. IV).
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FIG. 11. Mean streamwise, depth-averaged velocity fields (0) of the P2D-RANS after calibration.

For the simulation of a wind farm flow, the assumption of axially
symmetrical and non-swirling flow underpinning the method for the
estimation of the 3D effects described in Appendix A fails due to the
merging of multiple wakes. Therefore, it is necessary to formulate an
appropriate superposition method of the vertical fluxes and dispersive
terms of the single turbines. To this aim, the flow resulting from the
interaction of two in-tandem turbines with a streamwise spacing of 5D
is calculated through the axisymmetric elliptic RANS and the P2D-
RANS. The latter estimates the overall vertical mass and momentum
fluxes through a superposition of those obtained for single-wake simu-
lations and stored in a lookup table as a function of Unorm,oc and Tl
and interrogated through a nearest-neighbor method. Namely, the 3D
corrections are evaluated for 15 values of Uporm o from 0.2 to 2 and 12
values of TI,, from 4% to 50% (i.e., 180 total single-wake cases), which
cover the 98.5% of the climatology of the Panhandle wind farm. The
domain considered for single-wake fluxes extends from —4D to 20D
in the streamwise direction and *2D in the spanwise direction, since
vertical fluxes and dispersive terms beyond such region are negligible

for a wide range of operative conditions (see Fig. 14). Different meth-
ods have been considered for the estimate of the total fluxes resulting
from wake overlapping, such as linear sum, root-squared signed sum,
and the maximum absolute value of the single-wake contributions.
The error with respect to the axisymmetric RANS, which solves
directly the full flow equations without any simplifying assumption, is
quantified to identify the best performing superposition principle. A
total of 18 simulations of two in-tandem wind turbines with 5D
streamwise spacing are performed for each method, each one having
as input the centroid of the clusters in terms of Unorm,oc and TI, pre-
viously defined. This analysis aims to characterize the flow-dependent
error for various wake conditions.

The MAPE of u for all the simulations is provided in Fig. 16 and
indicates the root squared method with sign as that exhibiting the
overall best agreement, with error exceeding 2% for only one case (sta-
ble, region II). It is noteworthy that the MAPE in % due to the super-
position of the 3D corrections is always lower than 3%, which is quite
smaller than the errors reported for traditional engineering wake
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FIG. 12. Difference U velocity field between P2D-RANS and LiDAR after calibration.

models, for which these types of superposition methods are applied
directly on the velocity field.*>'**

Figure 17 shows three selected cases with two in-tandem turbines
with 5D streamwise spacing for the centroid of the cluster Unorm,oo

€ (0.75,0.8] (optimal ¢,) and different TI., simulated through the

TABLE IlI. Optimal turbulent eddy viscosity of the P2D-RANS model. The value is
made non-dimensional by U, D.

reference elliptic RANS solver and the P2D-RANS with the root-
squared signed sum method. The difference fields [Figs. 17(g)-17(i)]
show that a systematic velocity underestimation takes place in the near
wake region for the P2D-RANS, where vertical fluxes and dispersive
terms peak, while the error decreases in magnitude and switches sign

TABLE IV. Coefficient of thrust calibrated on LIDAR data.

Tl < 7% Tl € [7,13.5)% Tl > 13.5% Tl < 7% Tl € [7,13.5)% Tl > 13.5%
Unorm.o € [0,0.25) N/A N/A 0.0575 Unorm.se € [0,0.25) N/A N/A 1.83
Unormoe € [0.5,0.7)  0.0082 0.0139 0.0318 Unormoo € [0.5,0.7) 121 1.28 1.51
Unormoo € [0.7,0.85)  0.0095 0.0133 0.0356 Unormee € [0.7,0.85) 1.3 1.24 1.52
Unorm.ee € [0.85,1) 0.0057 0.0097 0.0499 Unorm.0 € [0.85,1) 0.81 0.8 111
Unormoo € [1,1.15) 0.003 0.0051 0.0663 Unorm.se € [1,1.15) 0.46 0.48 0.86
Unormeo € [1.15,2) 0.0081 0.0176 0.0323 Unormoo € [1.15,2) 0.23 0.37 0.64
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FIG. 13. Comparison between the depth-averaged fields of the elliptic axisymmetric RANS solver, a purely 2D-RANS code, and the P2D-RANS with 3D corrections: (a)
streamwise velocity component; (b) spanwise velocity component; and (c) pressure.

moving downstream. These features are observed in most of the simu- broadly classified into two categories: (i) real-time diagnostic and con-
lations performed for this analysis and indicate that the empirical trol of wind turbines; and (ii) wind farm performance analysis and opti-
superposition technique of the 3D corrections may lead to substantial mal design. The former focuses on the estimation of the time variability
errors only in the case of very close wake interaction (e.g., with stream- of power production (typically in the form of 10-min-averaged quanti-

wise spacing smaller than 3D), which is however unlikely for well-  ties) and accuracy of the P2D-RANS is assessed by comparing model
designed wind farms. A more in-depth investigation on the accuracy ~ Ppredictions with the SCADA data for specific time series. The second

of the 3D corrections and the superposition method through a com- application mainly entails the evaluation of wind turbine and wind farm
parative analysis with a fully 3D RANS might be the object of future performance in terms of power capture and quantification of wake
work. losses as a function of atmospheric and turbine operational parameters.

In this case, the following performance indicators are evaluated:

V1. VALIDATION * percentage power losses, which are more relevant from the
The validation of a computational model is formally defined as single-turbine modeling standpoint and are defined as follows:

“the process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended

uses of the model.”"*! In our case, real-world data are available in the APi(tj )=1- P ;(t]) ) 17)
form of 10-min-averaged power from the SCADA data of the wind
farm under investigation. The applications of the P2D-RANS model, where P;(t;) and P, ;(tj) are the actual and unwaked power of
considering its potential in accuracy and computational costs, can be the ith turbine at time #;, respectively;
Wy —w; U Wy —U Wy —ﬁ(mz —wl) VoW —V1 W1 7’0(@2 7@1) X 1073
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FIG. 14. 3D corrections for the single turbine case [symbols as in Eqg. (5)].
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FIG. 15. Breakdown of the individual terms of the P2D RANS equations for the single turbine verification case. The 3D corrections are included in the dashed box, and their
colormap limits have been narrowed for better clarity.

* the wind farm efficiency, which is analogous to the previous each flow scenario within the local climatology, which can be
parameter, yet for the entire turbine array:'*’ recast as:
1N
o AE =— (Po.i(tj) — Pi(t;)) - 8760, (19)
ZPi(tj) N ]:21 i=1
=1
n= 1\1;, J (18) where N is the number of available quality controlled data for the
Z Poi(t) flow conditions under consideration and the unit is kWh/y.
i

The unwaked power for each turbine, P ;(t), is defined as the

with N; =25 turbines for this study; ideal power capture in the absence of wake interactions, and it is esti-

e the annual (or cumulative) energy loss,” which is more relevant mated through a method similar to that proposed by Farrel et al."** to
from a financial standpoint since it considers the occurrence of ~ map a heterogeneous wind velocity field over a farm from pointwise

3 3 3
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I Tle [7,13.5)%
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2 2t 2
X
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FIG. 16. Mean absolute percentage error of U for between the axisymmetric RANS and the P2D-RANS using different superposition methods for the 3D corrections: (a) linear
sum; (b) root-squared signed sum; and (c) maximum absolute value.
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FIG. 17. Streamwise velocity simulated for two in-tandem wind turbines with a streamwise spacing of 5D, Unom.~o = 0.775, and different turbulence intensity levels. By row:
(a)~(c) axisymmetric RANS; (d)—(f) P2D-RANS using the root-squared superposition method; (g)—(i) difference (P2D-axisymmetric RANS). By columns: (a), (d), and (g)

Tloo < 7%; (b), (€), and (h) Tl € (7, 13.5]%; (c), (f), and (i) Tl > 13.5%.

sparse measurements. In this case, the same technique is applied to the
power, using the power of unwaked turbines as input. Namely, the
power from unwaked turbines [see Fig. 5(a)] is interpolated (extrapo-
lated) at the location of waked turbines through a linear (nearest-
neighbor) interpolation approach after a Delaunay triangulation. This
ensures that the gross power takes into account possible heterogeneity
in the wind field over the farm, whose relevance was already confirmed
through the power curve analysis (Sec. V).

It is noteworthy that the occurrence of overpower conditions, i.e.,
P; > P, ;, for a wind farm in flat terrain can be either due to speedups
caused by the induction pressure field of neighboring turbines or to an
incorrect estimation of P, ;, which might be associated with low avail-
ability of unwaked turbines for a certain wind direction. To exclude
this last type of outlier yet retain cases with speedups, cases with over-
power higher than 10% are discarded only if the P2D-RANS model
indicates that no pressure-induced speedup occurs at that turbine. In
other words, the data point is rejected if SCADA data indicate
P;/P; > 1.1 and the P2D-RANS shows P; /P, ; < 1 (1.3% rejection
rate).

Similarly to power, the undisturbed hub-height wind speed,
Usorm,o0» turbulence intensity, TI.., and wind direction, 0,,, are esti-
mated as averages of the respective quantities recorded by all the
nacelle anemometers (Uyorm and TI,) and yaw encoders (0,,) over
the set of unwaked turbines at a specific time, #;. Cases exhibiting error
on the mean over the unwaked turbines at time # based on the
Student’s ¢ distribution'”” higher than 0.25 for Uperm o (0.5% of the
overall datasets), 25% of the average value for TI, (16%), and 5° for
0,, (1.9%) consequent to high flow variability within the park are dis-
carded. Furthermore, periods when more than two turbines are either
curtailed (based on the criteria described in Sec. IV) or likely affected
by wakes from neighboring turbine arrays that are not modeled are
entirely excluded (35%). This slightly relaxed criterion for the rejection
of off-design farm operation is beneficial in terms of data availability
and has minimal impact on the final statistics.**

To showcase the capabilities of the P2D-RANS and highlight the
challenges connected with the predictions of power production for
individual onshore wind turbines, the simulations of a full day of tur-
bine operation are first analyzed. The simulations are carried out for

operations on August 26, 2016, and use the previously defined undis-
turbed hub-height wind speed, direction, and turbulence intensity as
input with a 10-min resolution. The selected day exhibits the typical
stability-driven diurnal cycle of the wind resource,” as shown in Fig.
18. Specifically, the SCADA-recorded and P2D-RANS simulated
power capture indicate a generally good agreement, except around
06:00 and 21:00 when the power is overestimated with the P2D-
RANS, which is probably a consequence of the inherently complex
transition in the atmospheric stability regime. Further insight is gained
by selecting four illustrative cases indicated with vertical dashed lines
in Fig. 18. For these cases, experimental and numerical wind speed
and power capture are reported in Figs. 19 and 20, respectively.

Case 1 represents a typical wind farm operation in region IIT of
the power curve under stable atmospheric conditions and southerly
wind direction. Relatively long wakes are observed with a weak veloc-
ity deficit [Figs. 19(a) and 19(e)] leading to significant and localized
power losses [Figs. 20(a) and 20(e)]. The main challenges in modeling
this type of wind farm operation arise from the uncertainty in the
quantification of the local wind direction throughout the farm, which
is a major source of error in the case of persistent wakes with limited
lateral expansion.

Case 2 shows the occurrence of strong wake interactions with rel-
atively small streamwise spacing (~3D) associated with moderate wes-
terly winds for operations in region II of the power curve. The
proximity of the waked rotors to the complex near-wake turbulent
flow of multiple upstream turbines is arguably the most challenging
(yet unlikely for a well-designed farm layout) case to simulate.
Nevertheless, the P2D-RANS can reproduce satisfactorily the pattern
of power losses across the farm [Fig. 20(f)], albeit an evident overesti-
mation in power capture is observed for specific turbines, which may
be attributed to the detrimental effect on power capture of partial and/
or intermittent wake interaction not reproduced by the steady RANS
model.

Case 3 corresponds to highly convective daytime conditions, as
portrayed by the utterly complex instantaneous flow field probed by
the LiDAR [Fig. 19(c)]. Thanks to the optimally calibrated vy, the
P2D-RANS model is capable of reproducing the enhanced turbulent
mixing of the wakes, which results in moderate yet widespread power
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FIG. 18. Inflow characterization for August 26th, 2016: (a) hub-height normalized wind speed; (b) wind direction; (c) turbulence intensity; (d) Bulk Richardson number; and (e)
total normalized farm power capture. The background colors in (a) and (c) facilitate the identification of the Uyom, and Tl clusters used in this work.

losses [Fig. 20(g)], in agreement with the respective SCADA data Finally, case 4 represents an interesting south-east wind event,

[Fig. 20(c)]. The latter plots also show the occurrence of significant
spanwise wind gradient at the southern-most array facing the incom-
ing wind field, which is a quite common phenomenon at this site that
justified the formulation of the turbine-specific unwaked power, P, ;,
adopted in Egs. (17)-(19).
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which results in ~80% power loss at turbine 07, which is accurately
simulated by the P2D-RANS [Figs. 20(d) and 20(h)].

This qualitative analysis is meant to remark the considerable
complexity of a real wind farm flow and the challenges inherent to the
simulation of the 10-min-averaged power at the single turbine level, at
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FIG. 19. Horizontal equivalent LiDAR (top row) and depth-averaged P2D-RANS (bottom rows) streamwise velocity for selected 10-min periods on August 26th, 2016 (a) and (e)
case 1, 1:10-1:20, Unom,oc = 1.07, 0, = 194°, Tl = 5.3%; (b) and (f) case 2, 7:10-7:20, Unom,oc = 0.85, Oy, = 262°, Tl,, = 8.5%; (c) and (g) case 3, 14:40-14:50,
Unom,so = 0.55, 0, = 202°, Tl = 21.2%; (d) and (h) case 4, 18:50-19:00, Upom,~ = 0.74, 0, = 156°, Tl = 6.8%;.
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FIG. 20. As in Fig. 19, but for SCADA (top row) and P2D-RANS simulated (bottom row) power capture.

the same time to stress the ability of the P2D-RANS model to repro-
duce the physical behavior of individual turbines experiencing a real-
world turbulent flow, yet keeping the required computational costs
and resources very limited.

More systematic quantification of the uncertainty of the P2D-
RANS model is carried out through a statistical analysis encompassing
all the available SCADA data. To this aim, a lookup table of simulated
single-turbine power is built for a wide range of inflow conditions cov-
ering the overall climatology of the site. The input inflow matrix is the
combination of several Upom ~ Values between 0.2 and 2 (15 cases),
TI,, between 4% and 50% (12 cases), and wind directions from 0° to
360° with a resolution of 5°, resulting in 12960 simulations and a
98.5% coverage of the climatic conditions of the wind farm. A further
refinement of the input matrix did not produce any significant differ-
ences in the results. The simulated power at the generic time ¢; is
obtained by interrogating independently for the ith turbine the power
lookup table, P;(Unorm,ocs T1so, 0y), through a tri-linear interpolation
with the experimental values of Upomm,oo (), TIo(tj), and 0,,(tj) as
inputs.

The characterization of the accuracy of the P2D-RANS in simu-
lating the time-resolved 10-min-averaged power is carried out through
a linear regression of the power, as reported in Fig. 21. There is an
outstanding agreement for the overall power of the entire farm
[Fig. 21(a)] with a negligible bias and R? = 0.998, which drops when
considering the regression between the power of individual turbines
[Fig. 21(b), R* = 0.956]. This feature indicates that a noticeable error
cancelation occurs at the farm level, thus making the actual accuracy
in power predictions for single turbine power a better indicator to
assess the validity of the proposed flow model. For a better under-
standing of the error source, Figs. 21(c) and 21(d) report the linear
regression of single-turbine power for unwaked and waked wind
turbines, respectively. It is noteworthy that, although the prediction of
the power of waked turbines exhibits larger discrepancies compared to
that of unwaked turbines (R*> = 0.945 vs R? = 0.974), the latter still is
encumbered with a non-negligible scattering. This mismatch between
the predicted and measured power for unwaked turbines is due to spa-
tial wind gradients, unsteady conditions within the 10-min periods,

power curve uncertainty, and undetected wakes, which represent a
baseline error that is inevitably present regardless of the accuracy of
the used wind farm model. The linear regression of power capture
under waked conditions shows an almost unitary slope and nearly
zero intercept, which indicates a negligible contribution of systematic
biases in the prediction of the wake interactions to the overall
uncertainty.

To provide a more focused statistical analysis of power and
energy losses due solely to wake interactions, further validation is per-
formed also including results obtained with the ]ensen,% Multizone, ™
and Gaussian’”'*’ wake models implemented in the FLORIS pack-
age."”" All these models use the nominal power curve (see Fig. 6) and
the optimally calibrated ¢, reported in Sec. IV, while other wake
parameters have default FLORIS settings (specific documentation and
references are available at Ref. 130).

First, the ability of the P2D-RANS model to predict the direc-
tional wake losses is tested by calculating the bin-average of the per-
centage power losses for each turbine [Eq. (17)] in 5°-wide sectors,
as shown in Fig. 22. Statistics for bins having an error on the mean
larger than 25% with 95% confidence are excluded. The model can
reproduce the directional pattern of power losses of each turbine
satisfactorily with a NMAE = 30.5% with respect to the SCADA
data. In Fig. 22, the zoomed-in frame shows how the model can
accurately reproduce the wake losses resulting from both near
(between turbine 07 and 08, with spacing 4.7D) and far (South
direction for turbine 08, with spacing ~15D) wake interactions,
thus confirming the validity of the wake model for a wide range of
streamwise distances, even exceeding the domain of LiDAR data
used for the calibration.

The zoomed region also indicates that the P2D-RANS provides
accurate quantification of the physically consistent overpower occur-
ring at turbine 08 for wind directions at the edge of a heavily waked
eastern sector (overpower is visualized as a negative power loss, ie.,
the part of the polar plot that lies inside the gray circle corresponding
to zero losses). For these cases, the P2D over-performs other engineer-
ing wake models, which lack modeling of the pressure field, as the
Gaussian wake model (black line in the same plot), and, thus, any
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effect on the incoming wind field induced by the thrust force of a tur-
bine rotor.

The analysis of the wind farm performance as a function of the
incoming flow is further refined by bin-averaging the wind farm effi-
ciency, #, for all the wind directions and separately for each Upom so

0.5 0.75 1

(SCADA, waked)

and TI, cluster (Fig. 23). The resulting directional and clustered wind
farm efficiency exhibits, as expected, significant variability with lower
values occurring for Iow Unomm,oc (i€, high ¢;), low TI,, (ie., slower
wake recovery), and winds aligned with the turbine arrays (i.e.,, W-E
direction). This analysis corroborates the high accuracy of the model
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FIG. 22. Polar chart of the directional percentage power losses. The blue bars represent the SCADA data, while the red lines are the P2D-RANS results and the black
(zoomed region only) the Gauss model of FLORIS. The gray dots represent the turbines, with the radius corresponding also the AP; = 0% losses. The dashed circles indicate

AP; = 100%.
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in reproducing the wind farm flow at the turbine level. The Gauss
model shows comparatively a poorer agreement with the experimental
wind farm efficiency, especially for heavily waked sectors (0,, ~ 90°
and 0,, ~ 270°), a general underestimation of losses for southerly
winds, and a complete lack of wind farm overpower (ie., 1 > 1),
which on the contrary is observed for the SCADA and the P2D-RANS
for narrow wind sectors around 0,, = 65° and 6,, = 245°.

In this regard, two occurrences of wind farm efficiency greater
than one, which are circled in green in Fig. 23, are further investigated
by extracting the individual turbine power gain (i.e., —AP;, which is
more suitable to investigate speed-up conditions). Figure 24 displays
—AP; and the non-dimensional wind speed anomaly, % — 1, obtained
from the P2D-RANS simulation corresponding to the bin centroids.
The visualizations of the wind speed reveal the presence of channeling
effects leading to power increases up to ~10%, which are also observed
in the SCADA data. This is further evidence of the importance of the
rotor-induced pressure field on the performance of utility-scale wind
turbines.

The influence of the incoming flow on the wind farm perfor-
mance is further characterized by disregarding power capture variabil-
ity with the wind direction and calculating clustered wind farm
efficiency and annual energy losses associated with the different
Usorm,oo and TI bins (Fig. 25). The omnidirectional wind farm effi-
ciency exhibits a neat variability for the different TI,, clusters, with
higher efficiency achieved for convective conditions, and the expected
trend as a function of Uporm o> as higher losses are observed in region
II of the power curve. From the modeling standpoint, the P2D-RANS
shows a general slight underestimation of wake losses in stable

atmospheric conditions and overestimation for neutral and convective
clusters. Nevertheless, the P2D-RANS achieves better agreement in
clustered wind farm efficiency [Fig. 25(a)] and annual energy losses
[Fig. 25(e)] than the other wake models considered for this study.

The Jensen model [Figs. 25(b) and 25(f)] generally overestimates
the wake losses and does not capture the change in wind farm effi-
ciency due to atmospheric stability. The difference in wind farm effi-
ciency among different TI,, values is solely due to intra-cluster
variability of wind direction, being the analytical wake-field insensitive
to the turbulence intensity due to the constant wake expansion coeffi-
cient k, = 0.05. The Multizone model [Figs. 25(c) and 25(g)] also fails
to fully capture the effect of the atmospheric stability, since it still uses
a fixed wake expansion coefficient k, = 0.05. The overestimation of
wake losses is however assuaged thanks to the improved formulation
of the velocity field, compared to Jensen. The Gaussian model with the
TI-dependent wake expansion'”' k, = 0.004 + 0.38 Tl shows a sig-
nificant improvement, although it generally underestimates the wake
losses in region II of the power curve. The performance of the
Gaussian model is remarkable, considering the extremely low compu-
tational time (0.1 s per simulation) and the lack of a site-specific cali-
bration of the wake expansion coefficient.

The NMAE for all the performance indicators presented in
this section are summarized in Fig. 26 and for all the models.
Although the P2D-RANS shows the smallest error for all the statis-
tics, there are important distinctions that it is worth pointing out.
Table V provides the percentage improvement attained by the
P2D-RANS compared to the other wake models to assist the inter-
pretation of the results. The P2D-RANS achieves a significant
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FIG. 24. Power gain for selected wind direction bins within the cluster Unom oo € [0.7,0.85), Ty, € [7,13.5)%: (a) SCADA power gain for 0y, € [62.5, 67.5)°; (b) P2D-
RANS power gain for 6,, € (62.5,67.5) ; (c) SCADA power gain for 0, € [242.5,247.5) ; and (d) P2D-RANS power gain for 6, € (242.5,247.5) . The velocity fields in (b)

and (d) corresponds to the P2D-RANS solution for the bin centroid.

reduction of error for the farm and single-turbine power (espe-
cially waked turbines) compared to Jensen and Multizone, while
the improvement compared to the more accurate TI-dependent
Gaussian model is more limited (8% for the single turbine power).
Better relative performances are observed for the directional
single-turbine power losses, with a 22% error reduction achieved
by the P2D-RANS compared to the Gaussian model, a conse-
quence of the more accurate description of the wake velocity field
and the modeling of the rotor-induced pressure field and the asso-
ciated speed-up conditions for specific wind directions. A further
significant margin of improvement is obtained for the statistics
taking into account atmospheric stability through the clustering in
TI.., which is a clear indication that the site-specific calibration of
v is beneficial. The NMAE reduction with respect to the Gaussian
model is 24% for the directional and clustered wind farm efficiency
and 40% for the annual energy losses. This last parameter is partic-
ularly relevant for the quantification of the financial losses due to
wake interactions at a specific site. Therefore, the significantly
enhanced accuracy in the prediction of the energy losses achieved
by the P2D-RANS compared to other models is required to justify
the investment in such LiDAR-driven CFD approach, which is

computationally and logistically more expensive than the other
engineering wake models.

For the sake of completeness, the gross and net capacity factors
and the overall wake losses for the full SCADA dataset are reported in
Table VI. The P2D-RANS is still the model giving the best prediction;
nevertheless its capability in simulating the wake interaction under dif-
ferent atmospheric stability and operative conditions is not clearly
identifiable using these global statistical parameters.

VIl. CONCLUSIONS

The theoretical fundamentals, numerical scheme, verification,
and validation process of the Pseudo 2D-RANS (P2D-RANS) model
have been discussed in this manuscript. The P2D-RANS uses a
shallow-water approximation of the RANS equations to achieve an
efficient solution of a wind farm flow vertically averaged over the rotor
heights by inserting into the RANS solver appropriate corrective
source terms, which take into account the contribution to the mass
and momentum budgets of vertical fluxes and spatial dispersive
stresses.

The set of depth-averaged and corrected flow equations is solved
through an iterative marching scheme, which alternates sweeps in the

J. Renewable Sustainable Energy 14, 023301 (2022); doi: 10.1063/5.0076739
Published under an exclusive license by AIP Publishing

14, 023301-21


https://scitation.org/journal/rse

Journal Of Renewable ARTICLE scitation.org/journalirse
and Sustainable Energy

TI < 7% - TIe [7,135)% TI > 13.5%
P2D-RANS . Jensen ) Multizone )
@ © @
0.95 0.95 7 0.95 0.95
= 09 09t . 0.98<-o—9 0.9
0.85 0.85 / 0.85 0.85
0.8 0.8 0.8 0.8
0.5 1 1.5 0.5 1 1.5 0.5 1 15 0.5 1 1.5
6 x 106 6 x 106 6 x10° 6 x10°
(e) (f) i (2) (h)
4 4 " 4
//
2 2 .
s 0
0.5 1 15 0.5 1 15 0.5 1 1.5

Unorm,oo Unorm,oc Unorm,oo Unorm,oo

FIG. 25. Clustered wind farm efficiency (a)—(d) and annual energy losses (e)—(h) obtained with the P2D-RANS (a) and (e), Jensen model (b) and (f), Multizone model (c) and
(9), and the Gaussian model (d) and (h). The dots indicate the SCADA statistics; the empty circles refer to the models. All points displayed satisfy the requirement of less than

25% of error on the mean with a 95% confidence.

to calibrate the turbulence closure and the actuator disk models imple-
mented into the P2D-RANS. The optimally tuned turbulent eddy-
viscosity exhibits physically reasonable trends as a function of the
turbulence intensity of the incoming wind with a striking wake recov-
nient numerical tool for the solution of partially parabolized flows ery enhancement detected for convective conditions, which might be
with source terms, is also provided. connected with the occurrence of wake meandering. The thrust-force

Clustered and statistically analyzed LiDAR measurements of distribution over the rotor radial direction has been estimated for the
wakes generated by utility-scale wind turbines have been leveraged various bins of incoming wind speed and turbulence intensity at hub

streamwise directions for the solution of the momentum equations
and global pressure corrections to ensure a solenoidal velocity field
upon the convergence of the algorithm. The detailed derivation of the
pressure correction, which may represent a generalizable and conve-
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FIG. 26. Normalized mean absolute error (NMAE) for the different performance indicator of the P2D-RANS and FLORIS wake models: (a) power capture; (b) single-turbine
directional percentage power losses; (c) directional and clustered wind farm efficiency; and (d) clustered annual energy losses.
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TABLE V. Percentage improvement in NMAE of the P2D-RANS model compared to
the FLORIS wake models.

Jensen Multizone Gauss
Prorm (farm) 37 27 16
Pporm (single-turbine) 23 15 8
Pporm (single-turbine, unwaked) 8 8 7
Phorm (single-turbine, waked) 29 18 8
AP;(0,) 51 33 22
1(Unorm, o0 TT 0o O) 57 39 24
AE(Unorm.,ooxTI oo) 82 61 40

height. This data-driven approach has enabled the detection of a gen-
eral reduction of the thrust force when turbine operations transition
from region II to region III of the power curve.

The correctness of the conceptual and computational framework
of the P2D-RANS and its numerical implementation has been verified
vs the solution of an elliptic axisymmetric RANS solver for single and
in-tandem wind turbines. The validation process of the P2D-RANS
has been broken down into three phases. First, effects of the daily cycle
of the atmospheric stability on operations of an onshore farm have
been simulated with a 10-min resolution and then assessed against the
SCADA data at the single-turbine level. Subsequently, the 10-min-
averaged power has been simulated for the whole set of available
SCADA data to perform statistically meaningful error analysis. The
power of single turbines shows an R?> = 0.956, a normalized mean
absolute error of 5.6%, and negligible bias, which represents an
8% error reduction compared to the Gaussian wake model. Finally,
wake losses have been quantified through different indicators and
extensively analyzed as a function of the inflow conditions. The P2D-
RANS reproduces satisfactorily the single-turbine directional wake
losses, including the effect of a local increase in the freestream wind
speed, referred to as flow speed-up conditions, which are induced by
the rotor pressure field for specific wind directions. Such speed-up
conditions have also repercussions on the wind farm efficiency, which
is predicted with a normalized mean absolute error of 3% and 24%
smaller than for the Gaussian model.

The P2D-RANS reproduces convincingly the annual energy
wake losses (12% error) for different stability and operative conditions,
which indicates the financial relevance of LIDAR-driven CFD model-
ing in the context of the optimal design of wind farms. It is also proven
the necessity for correct modeling of the variability of wind farm effi-
ciency with atmospheric stability.

The current implementation of the P2D-RANS can solve the
steady flow over a wind farm with 25 turbines and extending 30D by

TABLE VI. Gross capacity factor, net capacity factor, and wake loss factor estimated
with the various wind farm models.

SCADA P2D-RANS Jensen Multizone Gauss

Gross capacity factor 0.801 0.800 0.799  0.799  0.800
Net capacity factor ~ 0.77 0.768 0.746  0.763  0.774
Wake losses (%) 3.87 4.00 6.63 4.51 3.25

ARTICLE scitation.org/journalirse

30D in an averaged time of ~80 s on a commercial laptop equipped
with a single i5 1.70 GHz core, which can enable performing real-time
wind farm monitoring and control. The required computational time
has been observed to be roughly half when operating an Intel Xeon
Platinum 8160 48-core 2.1 GHz cluster, which implies that the full
characterization of the performances of a mid-sized farm can be com-
pleted in ~170 CPU-hours.
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APPENDIX A: ESTIMATION OF 3D CORRECTION FOR
AN AXISYMMETRIC FLOW

The 3D and dispersive terms in Eq. (5) are estimated assuming
an axisymmetric, non-swirling flow. By setting the boundary of the
domain to z; = —D/2 and z; = D/2, the unknown 3D terms can
be conveniently recast as follows:

Wy — W1 Wpj
on DR
UyWy — Wy — U(Wy —wy) (tip/, —U)Wp),
-2z a D/2 ’
vr ou ou _Ur ou
22—z 527&1 _Di/ng/z (A1)
VaWy — VW — V(Wy — W) (Vpj2 = V)Wpy2
Zy — 21 a D/2 ’
vr ov ov T ov
L -2 &2_51 _Di/zab/z.

The depth-average ~ is related to the 3D field by the operator
defined in Eq. (4).

Under the assumption of axisymmetric flow, the 3D field
(x;,j,2;) can be obtained by sampling the streamwise velocity

component expressed in cylindrical coordinates, i, (x,7) at x=x;
and radial location 7, = ,/ yjz + zj2 (see Fig. 27). Formalizing the

sampling operation from the radial location 7, to the Cartesian
equivalent (yj, zx) as a linear interpolation operator, ®, yields
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Similarly, for the depth-averaged transverse velocity, one can
show that:

/‘;1]—_22 q)klurtl:>V— (_) (A3)
Zk 1 I=1

It is noteworthy that the linear operators M, and M, of Egs. (A2)
and (A3) are invertible, namely, it always possible to calculate from
a depth-averaged velocity (i.e., the P2D-RANS provisional solution)
the equivalent axisymmetric velocity field without swirl.

APPENDIX B: DERIVATION OF THE PRESSURE
CORRECTION

To derive the pressure correction, the velocity, and pressure
fields at the current iteration are separated into two components:

(1) the provisional field (#, 7, and p), in which the velocity compo-
nents satisfy the momentum equation with the currently esti-
mated pressure p;

(2) the correction field (%€, 7, andp°), that is added to the provi-
sional field to satisfy the continuity equation.

By assuming that the correction field is much smaller than the
main field, i.e, u° < %, ¥ <V, p° < p, and considering that the
main field satisfies the RANS equations [Eq. (5)], one can recast the
correction field equations as

ARTICLE scitation.org/journal/rse

_+—

e ou L5 ou dp° 82 s
ox2  0y?

ai+ﬁ@+’”@ ’\”@__871;6 K‘F@
0. 17) Ox y 0 ox?  0y?
(B1)
Taking the divergence of Eq. (B1) yields
_O(V-u) _oV-u) _9oV-u) _oV-u
Ox +v ay +u o +v dy
A 62/ﬁc 82/ﬁc
=+y(u,v,u’,v") o oy
0*(V -u°) 82(V uc)
+I/T< Ox2 ayz , (BZ)
where
ALY = Bxax 6}/6}/ 8x6y Ox dy |’

For the corrected fields to be solenoidal, the following equality must
be satisfied
W, — W

V-u‘=-V-u— =-V. (B4)

Z — 21
Equation (B4) implies that even though [u¢| < [u], the divergence
of both fields has the same magnitude. This allows neglecting the
first two terms of the LHS of Eq. (B2):

T Ve T T T VT e T

256 ¢ 2 2

OV oV " % (av av) +5)
The correction velocity components are unknown, so the term y
defined in Eq. (B3) is necessarily dropped,'’”'** which yields the
final results reported as Eq. (8). The error associated with this
approximation is eventually reduced by applying the correction
iteratively. The RHS of the pressure correction [Eq. (9)] contains an
advection term and a diffusion term. The former creates a positive
(negative) local pressure if a certain material volume of fluid is
undergoing compression (expansion), while the latter creates a
positive (negative) local pressure if a region of fluid is locally experi-
encing compression (expansion). The latter induces a pressure max-
imum (minimum) if the flow is locally experiencing a compression
(expansion). Nonetheless, the pressure correction guides the solu-
tion toward a divergence-free velocity field. Figure 28 shows graphi-
cally the behavior of the pressure correction, p', in response to a
local compression.

APPENDIX C: LOAD FORMULATION

The non-dimensional streamwise momentum sink used to
mimic the action of the generic ith rotor on the flow in the P2D-
RANS is defined as

Fri = X)) (x0,,), (Cn)
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FIG. 28. Graphical representation of the
effect of the LHS of Eq. (9) on pressure
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correction: (a): advection term; (b) diffu-
sion term.

> V=0 V<0 V=20

)

where ¢ is a normalization constant, i(x) is a Gaussian smoothing
kernel with standard deviation 0.5D, ¢ (y) is a shape function con-
taining the information on the radial distribution of the axial induc-
tion, and xg; is the sampling location 2D upstream of the turbine
where the freestream velocity is extracted. Specifically, the freestream
velocity is defined as the rotor-averaged 4. The introduction of the
W (x04,y) modulates the local thrust in the case of non-uniform
inflow and enhances numerical stability by preventing reverse flow.
The normalization constant is obtained by imposing the total thrust
to equate the one dictated by the LIDAR-driven ¢, as follows:

0.5 ) —00 E pCtsz Ugo,i
| B0 || sty -2 e

where Uy ; is the dimensional local incoming wind speed, defined
as the average of the streamwise velocity over the rotor span at xg ;.
Since that s(x) has unit integral, the former equality yields

2
€="ms AnCt (Uw’i) . (C3)
J RIS

In the case of uniform inflow, the former equation reduces to

Ty

sf”jsw'

c= (C4)
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