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Abstract

Motivated by the recent advances in Internet and communication techniques

and the proliferation of online social media, social sensing has emerged as a

new sensing paradigm to obtain timely observations of the physical world from

“human sensors”. In this study, we focus on an emerging application in social

sensing – streaming disaster damage assessment (DDA), which aims to auto-

matically assess the damage severity of affected areas in a disaster event on the

fly by leveraging the streaming imagery data about the disaster on social media.

In particular, we study a dynamic optimal neural architecture searching (NAS)

problem in streaming DDA applications. Our goal is to dynamically determine

the optimal neural network architecture that accurately estimates the damage

severity for each newly arrived image in the stream by leveraging human in-

telligence from the crowdsourcing systems. The present study is motivated by

the observation that the neural network architectures in current DDA solutions

are mainly designed by artificial intelligence (AI) experts, which often leads to

non-negligible costs and errors given the dynamic nature of the streaming DDA

applications and the lack of real-time annotations of the massive social media
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data inputs. Two critical technical challenges exist in solving our problem: i)

it is non-trivial to dynamically identify the optimal neural network architec-

ture for each image on the fly without knowing its ground-truth label a priori ;

ii) it is challenging to effectively leverage the imperfect crowd intelligence to

correctly identify the optimal neural network architecture for each image. To

address the above challenges, we developed CD-NAS, a dynamic crowd-AI col-

laborative NAS framework that carefully explores the human intelligence from

crowdsourcing systems to solve the dynamic optimal NAS problem and optimize

the performance of streaming DDA applications. The evaluation results from a

real-world streaming DDA application show that CD-NAS consistently outper-

forms the state-of-the-art AI and NAS baselines by achieving the highest disaster

damage assessment accuracy while maintaining the lowest computational cost.

Keywords: Crowdsourcing, Social Sensing, Neural Architecture Searching,

Disaster Damage Assessment

1. Introduction

Social sensing has emerged as a powerful sensing paradigm for collecting ob-

servations of the physical world through social media [1, 2]. Examples of social

sensing applications include city-wide traffic surveillance using Twitter feeds [3],

urban anomaly detection using Foursquare check-ins [4], and community disease

outbreak monitoring using Facebook posts [5]. Unlike other infrastructure-based

sensing paradigms (e.g., CCTV cameras, remote sensing, wireless sensor net-

works), social sensing provides a pervasive and scalable solution for obtaining

real-time damage information during disaster events [6]. In this paper, we fo-

cus on an emerging application in social sensing: streaming disaster damage

assessment (streaming DDA)[7]. The goal of streaming DDA applications is to

automatically assess the damage severity of affected areas in a disaster event

on the fly by leveraging the streaming imagery data posted on social media.

The outputs of streaming DDA applications can be shared with emergency re-

sponse agencies (e.g., Federal Emergency Management Agency (FEMA), fire
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departments) for timely rescue and recovery operations.

Recent advancements in artificial intelligence (AI) have helped in improving

the performance of DDA applications [8, 7, 9, 10]. In particular, compared with

the traditional DDA solutions that largely rely on intensive manual labeling

efforts from disaster specialists [11], the AI-driven DDA solutions significantly

reduce the labeling costs while providing a reasonable assessment accuracy [12].

However, current AI-driven DDA solutions often require inputs from experts

who are specialists in both AI models and DDA applications to design an ap-

propriate neural network architecture for a particular DDA application. This

manual neural network architecture design process is known to be both time-

consuming and suboptimal [13]. Figure 1 shows an example where the opti-

mal neural network architecture in a streaming DDA application changes over

time. In particular, we observe that the optimal neural network architectures

for disaster-related images collected in consecutive timesteps in the same disas-

ter event are different. In such scenarios, it is difficult for AI experts to predict

and design an individual optimal neural network architecture for each newly

arrived image on the fly. Motivated by the above observations, we study a dy-

namic optimal neural architecture searching (NAS) problem in streaming DDA

applications where the goal is to dynamically determine the optimal neural net-

work architecture that accurately estimates the damage severity for each newly

arrived image without the inputs from AI experts.

In this study, we develop a crowd-driven dynamic neural architecture search

(CD-NAS) system to address the above problem by exploring the collective in-

telligence of both AI and humans. The objective of our CD-NAS design is to

leverage human intelligence from crowdsourcing systems to guide the discovery

of the optimal neural network architecture for every image in a streaming DDA

application. In particular, we observe that human perception is often more

reliable and consistent than AI algorithms in terms of identifying the severity

of disaster damage from the image (e.g., we can clearly determine the damage

severity of images reported in Figure 1). Such human intelligence could pos-

sibly help us dynamically identify the optimal neural network architecture in
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Figure 1: Changes in Optimal Neural Network Architecture Over Time in Streaming DDA

Applications

a streaming DDA application. To obtain accessible and timely human intelli-

gence, we leverage widely adopted open crowdsourcing platforms (e.g., Amazon

Mechanical Turk) [14]. We refer to the human intelligence collected from the

crowdsourcing platform as crowd intelligence in the remainder of this paper.

Two important technical challenges exist in designing such a crowd-driven NAS

system, which are elaborated below.

Dynamic optimal neural architecture searching. The first challenge lies in the

dynamic identification of the optimal instance of neural network architecture

for each image in the streaming DDA application without knowing its ground

truth label a priori. In particular, current NAS solutions in AI are mainly

designed to identify a single best-performing neural network architecture for a

given set of training data [15, 16] and leverage the identified neural network

architecture to estimate the damage severity for all testing data. However,

such a one-size-fits-all neural network architecture could inaccurately estimate

the damage severity for a non-negligible portion of images because the optimal

neural network architecture often changes over time (as shown in Figure 1).
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Recent advancements in dynamic neural networks could potentially be applied

to address this issue [17, 18]. However, a major limitation of these solutions

is that they still require a large amount of high-quality training labels from

the studied disaster event to periodically retrain their models to capture the

dynamics of streaming data. However, such a high-quality training dataset is

often not available for an unfolding disaster in streaming DDA because of the

“cold start” problem [19] and the lack of real-time annotations due to cost and

resource constraints [20]. Additionally, recent efforts in online deep learning

have been made to dynamically update the learned network instances [21, 22].

However, these solutions primarily focus on periodically optimizing the perfor-

mance of a particular neural network architecture pre-defined by the AI experts

on relatively simple tasks (e.g., tweet text classification and handwriting num-

ber identification). As a result, their performance may be suboptimal because

of the potential bias and constraints of the manual network design process given

the excessive damage characteristics and fine-grained details of disaster-related

social media images [23]. Therefore, the dynamic identification of the optimal

neural network architecture for each incoming imagery data in streaming DDA

applications remains a nontrivial question.

Imperfect crowd intelligence-driven NAS. The second challenge lies in lever-

aging the imperfect crowd intelligence from potentially unreliable crowd work-

ers to facilitate the identification of the optimal neural network architecture

in streaming DDA applications. Unlike AI experts who are capable of design-

ing effective neural network architectures, crowd workers are often limited to

simplified annotation tasks (e.g., labeling damage severity levels for assigned

images). More importantly, unlike the damage severity annotated by disaster

specialists, the labels from crowd workers are often imperfect (biased, noisy,

and even conflicting responses from different crowd workers) [24]. Additionally,

the noise embedded in crowd intelligence can be amplified during the neural

network architecture search process, leading to the selection of the poorly per-

formed neural network architecture [15, 25]. Therefore, the key question in our

design is how to effectively transfer potentially imperfect crowd knowledge (e.g.,
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noisy crowd labels) into an accurate neural network architecture selection for

streaming imagery data.

To address the above challenge, we developed CD-NAS, a crowd-driven dy-

namic neural architecture searching approach that carefully explores crowd in-

telligence to solve the optimal neural architecture search problem and optimize

the performance of streaming DDA applications. To address the first challenge,

we develop a streaming neural network architecture search framework that re-

cursively updates the optimal neural network architecture for each incoming

image through a novel recursive maximum likelihood estimation model. To ad-

dress the second challenge, we designed a novel crowd-AI fusion model that

translates imperfect crowd intelligence to effective neural network architecture

selection through a robust crowd-AI collaborative network searching process.

To the best of our knowledge, CD-NAS is the first dynamic crowd-driven NAS

approach for solving the streaming DDA problem. We evaluated CD-NAS using

a real-world streaming DDA application from a recent disaster event, Typhoon

Hagupit. The evaluation results show that our CD-NAS consistently outper-

forms both state-of-the-art AI and NAS baselines by achieving the highest dis-

aster damage assessment accuracy while maintaining the lowest computational

cost under various evaluation scenarios.

A preliminary version of this study was published in [26]. The journal paper

is a significant extension of previous work in the following aspects. First, we

identify two new intrinsic challenges (i.e., dynamic optimal neural architecture

searching and imperfect crowd intelligence-driven NAS ) to solve the dynamic

optimal NAS problem and explicitly discuss how our scheme addresses these two

challenges (Section 1 and Section 4). Second, we extend the dynamic optimal

architecture searching (DOAS) module in CD-NAS by developing a dynamic

neural network architecture searching scheme that adaptively updates the esti-

mation of the optimal neural network for each image through a recursive estima-

tion framework (Section 4). Third, we extend the evaluation in the conference

paper by explicitly studying the performance of all compared schemes with a

diversified set of crowdsourcing settings (i.e., different numbers of crowd workers
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and crowd query frequencies). The new results demonstrate the effectiveness

of our scheme in explicitly leveraging crowd intelligence to guide the discovery

of the optimal neural network architecture under different streaming DDA ap-

plication scenarios (Section 5). Fourth, we add a new study to evaluate the

computational cost of all compared schemes (i.e., the average computation time

required to estimate the damage severity of an image). This is motivated by

the fact that the computational cost is critical in streaming DDA applications,

especially in the context of massive social media data inputs. The new results

demonstrate that our CD-NAS scheme takes orders of magnitude less time to

accomplish the streaming DDA task compared with other baselines (Section 5).

Fifth, we compare CD-NAS with two additional deep learning and NAS base-

lines (i.e., DenseNet and MnasNet) and demonstrate the performance gains

achieved by CD-NAS compared with all baselines (Section 5). Sixth, we add

a new robustness study to evaluate the robustness of the CD-NAS by varying

one key parameter in our design: the size of the sliding window for streaming

DDA applications (Section 5). Finally, we extend the related work by adding

discussions on recent progress in social sensing and NAS Both of these topics

are closely related to the theme of this study (Section 2).

2. Related Work

2.1. Social Sensing

Motivated by the recent advances in Internet and communication techniques

(e.g., 4/5G, Internet of Everything (IoE)), as well as the proliferation of online

social media (e.g., Twitter and Instagram), social sensing has emerged as a new

sensing paradigm to obtain timely observations of the physical world from “hu-

man sensors” [27]. Examples of social sensing applications include monitoring

real-time traffic conditions in a metro area using mobile crowdsensing to en-

hance traffic safety [3], obtaining situational awareness in the aftermath of a

disaster using online social media for rapid disaster response [28], and detection

of infectious disease outbreaks in big cities using location-based crowd track-
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ing services to improve public health [5]. Several key challenges exist in the

current social sensing applications. Examples include real-time guarantee, data

reliability, incentive design, privacy protection, and noise reduction [29, 30, 31].

However, the crowd-driven dynamic optimal NAS problem in streaming DDA

applications remains an unsolved challenge in social sensing. In this paper, we

address this problem by developing a novel crowd-AI collaborative NAS frame-

work to accurately assess the damage severity of affected areas on the fly using

streaming imagery data posted on social media.

2.2. Disaster Damage Assessment

Recent advances in AI and deep learning have been proved remarkably help-

ful in improving the performance of DDA applications [8, 7, 9, 10, 32, 33]. For

example, Li et al. developed a deep domain adaptation approach to estimate

the damage severity of affected areas using online social media data via ad-

versarial transfer learning [8]. Nguyen et al. proposed a deep convolutional

network framework for disaster damage assessment of unfolding disaster events

for timely disaster response [7]. Kumar et al. proposed a deep image classifi-

cation framework to identify disaster-affected cultural heritage sites from social

media imagery data via an end-to-end deep image processing system design [9].

Mouzannar et al. developed a deep neural network approach that utilizes both

text and image data from social media posts for damage identification via mul-

timodal convolutional neural networks [10]. However, current AI-driven DDA

solutions often require extensive inputs from AI experts to design an effective

neural network architecture for DDA tasks. Such a manual design process is

known to be both error-prone and time-consuming in the presence of massive

social data inputs in streaming DDA applications [13]. Efforts on dynamic

neural networks in DDA are also relevant to our work [17, 18]. However, two

limitations prevent them from being applied to address our problem: i) those

methods often require periodical model retraining that often cannot catch up

with the large dynamics in our streaming DDA application settings [34]; ii) the

performance of these models often drops significantly when they are retrained
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using the imperfect crowd labels [35]. In contrast, our CD-NAS framework effec-

tively identifies the optimal neural network architecture for each image without

the inputs from AI experts and in the absence of ground-truth labels of newly

arrived images.

2.3. Crowd Intelligence

Our work is also related to the growing trend of utilizing pervasive and

scalable human intelligence from crowdsourcing systems to solve complex real-

world problems [36, 37, 38, 39, 40]. For example, Harris et al. leveraged mobile

crowdsourcing to detect the defected and deteriorated urban infrastructure for

smart city management [37]. Dos Reis et al. utilized citizen scientists to seg-

ment cancer cells from breast tumors in biomedical research [38]. Wang et al.

used road traffic information reported by common citizens to monitor real-time

traffic congestion in intelligent transportation [40]. However, two fundamental

limitations exist in current solutions that fully rely on human intelligence from

crowdsourcing systems. First, these approaches may be too labor-intensive and

costly compared to our CD-NAS which only requires crowd labels from a small

subset of studied images to guide the discovery of the optimal neural network

architecture for desirable DDA performance [12]. Second, unlike the profes-

sional annotations from disaster specialists, labels from crowd workers can be

biased, noisy, and even conflicting because of the lack of sufficient expertise on

disaster assessment and response [24]. As a result, the current crowdsourcing

solutions could suffer from a non-trivial DDA performance drop by using only

the imperfect responses from crowd workers. In contrast, our CD-NAS jointly

integrates the inputs from crowd workers and AI models into a novel crowd-AI

collaborative model that effectively fuses intelligence from both the crowd and

AI to address the imperfect crowd response challenge and identify the optimal

neural network architecture in DDA applications.

2.4. Neural Architecture Searching

Our work also resembles the NAS technique that is used to automate the

neural network design process in many AI-driven real-world applications [15,
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16, 25, 41, 42]. For example, Zoph et al. developed a scheduled drop path

mechanism to enable an effective neural network architecture search for seman-

tic image segmentation [15]. Liu et al. proposed a differentiable architecture

representation mechanism to effectively refine the neural network architecture

during the NAS process in natural language modeling [16]. Tan et al. designed

a lightweight NAS approach to incorporate model inference latency into the

factorized hierarchical searching process for image object detection via multi-

objective reinforcement learning [25]. Mo et al. proposed a recursive NAS

approach to concurrently search for the optimal network architecture on layer

and network block levels to improve the NAS performance in keyword spot-

ting on smart devices [41]. To the best of our knowledge, CD-NAS is the first

NAS solution that effectively transfers imperfect crowd intelligence to dynamic

optimal neural network architecture selections in streaming DDA applications.

3. Problem Description

In this section, we formally define our crowd-driven dynamic NAS problem

in streaming DDA applications. We first define a few key terms that will be

used in the problem formulation.

Definition 1. Disaster-related social media images (X): We define X to

represent the disaster-related images posted by common citizens on social media

(e.g., Twitter) during a disaster event (as shown in Figure 2), where each posted

image captures a specific scene of the studied disaster event.

Definition 2. Social media image stream (S): We define S = {X1, X2, ..., XT }

as the set of streaming social media images collected during a disaster event,

where Xt represents the disaster-related social media image collected from the

tth timestep and T is the total number of timesteps in the studied streaming

DDA application (e.g., see Figure 1).
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Figure 2: Examples of Disaster-related Social Media Images

Definition 3. Damage severity level (L): We define the damage severity

level L to represent the severity of the damage captured in a disaster-related so-

cial media image. In particular, we define L = {L1, L2, ..., LT } to represent the

damage severity levels for all collected social media images, where Lt represents

the damage severity level for Xt.

Definition 4. Categories of damage severity level (K): Following a sim-

ilar procedure in [7], the damage severity level in an image can be classified

into one of the K pre-defined categories: Lt ∈ {1, 2, ...,K}. For example, we

can consider three categories of damage severity levels (i.e., K =3) that include

severe damage, mild damage, no/minor damage as shown in Figure 2.

Definition 5. Neural network architecture search space (N): We define

N = {N1, N2, ..., NE} as an NAS search space that contains a set of E different

neural network architecture candidates for streaming DDA tasks, where Ne rep-

resents a neural network architecture candidate in N (e.g., architecture 1 and 2

in Figure 1). In this study, we leverage the neural network architecture design

space (i.e., different configurations of adopting ImageNet-pre-trained convolu-

tional layers for image classification tasks [43]), which is commonly adopted in

the current AI-driven DDA solutions [7, 11].

Definition 6. Damage severity estimation from AI (L̂N): We define L̂N

as the damage severity level estimated by different neural network architectures
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in N . In particular, L̂Ne
t represents the damage severity level estimated by the

neural network architecture Ne for the reported image Xt.

Definition 7. Dynamic optimal network architecture (N∗): We define

N∗ as the set of optimal neural network architectures identified by our CD-NAS

framework from N for different images in S. In particular, N t∗ represents

the optimal neural network architecture that produces the most accurate damage

severity estimation LNt∗

t for the image Xt collected at the tth timestep (e.g.,

N t∗ is set to be architecture 1 at timestep 1 and architecture 2 at timestep 2 in

Figure 1).

The goal of our crowd-driven dynamic NAS problem is to leverage human

intelligence from the crowdsourcing systems to improve the performance of

streaming DDA applications. In particular, our goal was to dynamically se-

lect the optimal neural network architecture for each image. We formally define

our problem as follows:

argmax
Nt∗

Pr(L̂Nt∗
t = Lt | X), ∀1 ≤ a ≤ T (1)

This problem is challenging because of the difficulty of transferring the imperfect

crowd intelligence to dynamically identify the optimal neural network architec-

ture for streaming social media image data in the absence of ground-truth labels.

In this paper, we develop a CD-NAS system to address this problem, which is

elaborated in the next section.

4. Solution

In this section, we present the CD-NAS framework to address the dynamic

optimal neural architecture search problem in streaming DDA applications. We

first present an overview of CD-NAS and then discuss its core modules in detail.

Finally, we summarize the CD-NAS framework using pseudocodes.
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4.1. Overview of CD-NAS Framework

An overview of the CD-NAS is shown in Figure 3. In particular, it con-

sists of two modules: 1) crowd-driven network architecture selection (CNAS)

and dynamic optimized architecture searching (DOAS). First, the CNAS mod-

ule develops a novel crowd-AI integration model to effectively leverage imperfect

crowd knowledge to facilitate the discovery of an optimal neural network archi-

tecture. Second, the DOAS module designs a dynamic neural network archi-

tecture searching scheme that adaptively updates the estimation of the optimal

neural network for each image through a recursive estimation framework.

Figure 3: Overview of CD-NAS Framework

4.2. Crowd-driven Network Architecture Selection (CNAS)

In this subsection, we develop a principled crowd-AI integration model to

explicitly leverage imperfect crowd intelligence to facilitate the discovery of the

optimal neural network architecture in streaming DDA applications. In partic-

ular, we first define a key concept that is used in our CNAS module:

Definition 8. AI-crowd fusion window (AFW): The AFW is defined as a

sliding window for the streaming DDA applications that includes the most recent

I images from the social media stream S. In particular, we define AFW =
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{X1, X2, ..., XI}, where Xi represents the ith image in the sliding window and

I is the size of the AFW . We note that I is an application-specific parameter

and will study its effect in Section 5.

Similar to the online video applications (e.g., YouTube) that often use a

local data buffer to ensure a smooth streaming video service, the AFW here is

designed to buffer a set of images in streaming DDA applications for the dynamic

neural network architecture search. In particular, we add newly arrived images

to the AFW until it is full. Then, we apply the first-in-first-out (FIFO) strategy

to replace the oldest image in AFW with the newly arrived image. The optimal

neural network architecture for each image in the AFW was identified when

the image was evicted from the AFW . Such a design is performed to ensure

that our CD-NAS can recursively improve the estimation of the optimal neural

network for each image in the AFW .

In our CD-NAS system, we explicitly leverage human intelligence from a

crowdsourcing system to guide the discovery of the optimal neural network

architecture for each image in AFW . Hence, we further define a few concepts

related to crowd intelligence as follows:

Definition 9. Crowd query (Q): We define a crowd query as a crowdsourc-

ing task in which our system sends a subset of images in the AFW for the

crowd workers to label their damage severity levels. The returned crowd la-

bels are used to search the optimal neural network architecture for each image,

which is discussed later in this section when we formally introduce our AI-crowd

collaboration model design.

Definition 10. Damage severity labeled by crowd workers (L̂C): In a

crowd query Q, each image is labeled by a set of B crowd workers, where Cb is

the bth crowd worker in Q. We further define L̂Cb
i as the damage severity level

labeled by a crowd worker Cb for an image Xi.

Definition 11. Crowd query frequency (β): We define β as an application-

specific parameter that specifies the frequency to periodically sample the images
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from the DDA data stream for crowd annotations. In Section 5, we study the

effect of β.

Unlike labels annotated by domain experts in disaster damage management,

the labels from crowd workers are often imperfect (e.g., biased, noisy, and even

conflicting with each other) [24]. In particular, the noise embedded in the crowd

intelligence can be amplified during the neural network architecture searching

process, leading to the selection of the poorly performed neural network architec-

ture. To address the imperfect crowd label challenge, our CNAS module designs

a crowd-AI integration model to accurately identify the optimal neural network

architecture by leveraging imperfect crowd intelligence. Our design integrates

the estimations of different neural network architectures and imperfect crowd

responses into a principled estimation framework to estimate the performance

of each neural network architecture, Ne, in N . In particular, we observe that

every neural network architecture Ne in N and every participating crowd worker

Cm in a crowd query Q generate their own estimation of damage severity levels

for the images in the AFW . In our CNAS module, we consider both Ne and Cb

as data sources with unknown reliability to estimate the variables of unknown

ground-truth labels (i.e., disaster-related images with unknown damage severity

levels). First, we define an AI-crowd collaboration committee as follows:

Definition 12. AI-crowd collaboration committee (M): We define M as

a committee that includes both different neural network architectures in N and

the crowd workers who participate in the crowd query Q in the streaming DDA

application as follows:

M = {N1, N2, ..., NE , C1, C2, ..., CB} (2)

where Ne represents the eth neural network architecture in N , and Cb repre-

sents the bth crowd worker in crowd query Q. In particular, we define Mu as

representing the uth committee member in M (i.e., representing either Ne or

Cb). In addition, there are a total of U = E +B members in M .
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Definition 13. Assessment reliability (δ): We define δMu to represent the

disaster damage assessment reliability of member Mu in M . In particular, δMu

represents the probability that the estimated damage severity level by Mu is cor-

rect.

Given the above definitions, the goal of our CNAS module is to select the

neural network architecture in M with the highest assessment reliability as the

optimal neural network architecture in our crowd-driven NAS problem. To

that end, we further define P+
u,k and P−

u,k as the unknown probability that the

member Mu estimates the damage severity level of an image to be the kth level

and the value other than the kth level given the ground-truth damage severity

level of the image is the kth level, respectively. We formally define P+
u,k and P−

u,k

as follows:

P+
u,k = Pr(L̂Mu

i = k|Li = k)

P−
u,k =

K∑
k ̸=k

Pr(L̂Mu
i = k|Li = k)

(3)

where L̂Mu
t represents the estimated damage severity level by a member Mu in

M on an image Xt in AFW . Li is the ground-truth damage severity level for

Xi. Given the above definition, P+
u,k and P−

u,k are related to the assessment

reliability δMu
using Bayesian theorem as follows:

P+
u,k =

GMu,k × δMu

dk

P−
u,k =

GMu,k
× (1− δMu

)

dk

(4)

where GMu,k and GMu,k
represent the probability that a member Mu estimates

the kth damage severity level and values other than the kth level, respectively.

dk represents the prior probability that a randomly selected image belongs to

the kth damage severity level. We note that we can learn the assessment relia-

bility score δMu if we can obtain the values for the other parameters in the above

equation. To that end, we formulate a crowd-AI maximum likelihood estima-

tion (MLE) problem to estimate the unknown assessment reliability score δMu
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for each member Mu in the AI-crowd collaboration committee and unknown

damage severity level L as follows:

Pr
(
(L̂M1 , L̂M2 , ..., L̂MU )|L, (δM1

, δM2
, ..., δMU

)
)

(5)

where LMu indicates the damage severity estimated by a neural network archi-

tecture LNe or labeled by a crowd worker LCb in M .

Given the crowd-AI MLE problem above, we further define the likelihood

function L(θ;ω,Z) of our MLE problem as follows:

L(θ;ω,Z) = L(θ; (L̂M1 , L̂M2 , ..., L̂MU ), L)

=
I∏

i=1

( K∑
k=1

( U∏
u=1

P+
u,k

Rk
u,i × P−

u,k

Rk
u,i

× (1− P+
u,k − P−

u,k)
(1−Rk

u,i−Rk
u,i) × dk × Zi,k

))
(6)

The above likelihood function represents the likelihood of the observed data

ω (i.e., damage severity levels of images in the current AFW estimated by

different neural network architectures and crowd workers) and the values of

hidden variables Z (i.e., the actual damage severity level of an image) given the

estimated parameter θ. Detailed explanations of the parameters in the L(θ;ω,Z)

are summarized in Table 1.

4.3. Dynamic Network Architecture Searching (DNAS)

In the previous subsection, we presented our crowd-AI MLE formulation to

learn the assessment reliability for each neural network architecture in our AI-

crowd collaboration committee. The next question involves adaptively solving

the formulated crowd-AI MLE problem to learn the assessment reliability on the

fly so that we can dynamically identify the optimal neural network architecture

for each image. To that end, we propose a recursive expectation maximization

(EM) solution to solve the crowd-AI MLE problem. In estimation theory [44],

the estimation parameter of an MLE problem can be recursively updated in
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Notations Definitions/Explanations

I size of AI-crowd fusion window

K number of damage severity levels

U number of members in AI-crowd collaboration committee

Rk
u,i indicator variable that is set to be 1 when a member Mu estimates the damage

severity of a given image Xi to be the kth level and is set to be 0 otherwise.

Rk
u,i indicator variable that is set to be 1 when a member Mu estimates the damage

severity of a given image Xi to be the value other than kth level and is set to

be 0 otherwise.

Zi,k probability that the damage severity of an image Xi in image sliding window

to be kth level.

θ estimation parameter of the model, where θ =

{P+
1,k, P

+
C2,k, ..., P

+
P−,U

;P−
1,K , P−

2,K , ..., P−
U,k; dk} for k = 1, 2...,K

ω observed variable of the model, where ω = (L̂M1 , L̂M2 , ..., L̂MU )

Z hidden variable of the MLE model, which indicates the damage severity L for

each image

Table 1: Notations in Crowd-guided Architecture Searching

consecutive timesteps by considering the streaming data input as follows:

θt+1 = θt + [(t+ 1)× Ic(θt)]
−1Φ(Xt+1, θt) (7)

where θt and θt+1 indicate the estimation parameters θ at two consecutive

timestep t and t + 1, respectively. Xt+1 indicates the nearly arrived image at

timestep t+1. The estimation parameter θt+1 is used to calculate the updated

assessment reliability for each neural network architecture in the AI-crowd col-

laboration committee using Equation (4). Ic(θt)
−1 indicates the inverse of the

Fisher information of the estimation parameter θt at timestep t. Φ(Xt+1, θt)

represents the score vector of the observed data (input image Xt+1) at timestep

t+1 given the estimation parameter θt from the last timestep t. The key idea of

the above streaming formulation is to provide a dynamic solution to recursively

update the estimation parameter θ on the fly.
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To obtain the Fisher information Ic(θt) and score vector Φ(Xt+1, θt), we

first derive the log function of L(θ;ω,Z) by assuming that the correctness of the

hidden variable (Zt,k) can be correctly estimated when the number of members

in the AI-crowd collaboration committee is sufficient. In particular, we can

derive the log-likelihood function logL(θ;ω,Z) as:

logL(θ;ω,Z) = L(θ; (L̂M1 , L̂M2 , ..., L̂MU ), L) =

I∑
i=1

( K∑
k=1

( U∑
u=1

Rk
u,i × logP+

u,k +Rk
u,i × logP−

u,k+

(1−Rk
u,i −Rk

u,i)× log(1− P+
u,k − P−

u,k) + dk + Zi,k

))
(8)

Given the log-likelihood function logL(θ;ω,Z), we can derive the inverse of

the Fisher information Ic(θt)
−1 for our problem as follows:

Ic(θt)
−1
u,v =


P+

u,k

t×(1−P+
u,k

t−P−
u,k

t
)

dk×I×(1−P−
u,k

t
)

, u = v ∈ [1, U ]

P−
u,k

t×(1−P+
u,k

t−P−
u,k

t
)

dk×I×(1−P+
u,k

t
)

, u = v ∈ (U, 2U ]

0, u ̸= v

In addition, we can also derive the score vector Φ(Mt+1, θt) from logL(θ;ω,Z)

as follows:

Φ(Mt+1, θt)u,v =



∑I
i=1 Z

t+1
i,k ×

(
Rk

u,i

P+
u,k

t +
1−Rk

u,i−Rk
u,i

1−P+
u,k

t−P−
u,k

t

)
, u = v ∈ [1, U ]∑I

i=1 Z
t+1
i,k ×

(
Rk

u,i

P−
u,k

t +
1−Rk

u,i−Rk
u,i

1−P+
u,k

t−P−
u,k

t

)
, u = v ∈ (U, 2U ]

0, u ̸= v

(9)

Finally, we can plug in Ic(θt)
−1 and Φ(Mt+1, θt) into Equation (7) to obtain

the recursive formula to update the estimation parameters θ (i.e., P+
u,k and P−

u,k)

as follows:
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P+
u,k

t+1
= P+

u,k

t
+

1

I × dk × (1− P−
u,k

t
)× (t+ 1)

× ∑
i∈∆k

u
t+1

Zt+1
i,k × (1− P+

u,k

t − P−
u,k

t
)−

∑
i∈∆0

u
t+1

Zt+1
i,k × P+

u,k

t


P−
u,k

t+1
= P−

u,k

t
+

1

I × dk × (1− P+
u,k

t
)× (t+ 1)

× ∑
i∈∆k

u
t+1

Zt+1
i,k × (1− P+

u,k

t − P−
u,k

t
)−

∑
i∈∆0

u
t+1

Zt+1
i,k × P−

u,k

t



(10)

where ∆k
u
t+1 and ∆k

u

t+1
indicate the set of images from the current AFW The

member Mu estimates the damage severity as the kth level and value other than

the kth level. ∆0
u
t+1 indicates the set of images that the member Mu does not

make any estimation of the damage severity level (e.g., the images that are not

selected for the crowd query).

Given the above equation, we can clearly observe that the estimation of the

estimation parameter P+
u,k

t+1 and P−
u,k

t+1 (which is used to derive the assess-

ment reliability for each member Mu in the AI-crowd collaboration committee)

at the current timestep t+1 can be computed from their values P+
u,k

t and P−
u,k

t

from the previous timestep t and the observed data in the new timestep t + 1

(i.e., ∆k
u
t+1, ∆k

u

t+1
, and ∆0

u
t+1). In addition, we observe that Zt+1

i,k is unknown

and can be estimated by its approximation Ẑt+1
i,k as follows:

Zt+1
i,k ≈ Ẑt+1

i,k =
W t+1

n,k × dk∑K
k=1 W

t+1
n,k × dk

(11)

where W t+1
n,k can be computed as follows:

W t+1
n,k =

A∏
i=1

((Qt+1
u,k

Qt
u,k

× P+
u,k

t)Rk
u,i ×

(Qt+1

u,k

Qt
u,k

× P−
u,k

t)Rk
u,i

×
(
1−

Qt+1
u,k

Qt
u,k

× P+
u,k

t −
Qt+1

u,k

Qt
u,k

× P−
u,k

t)(1−Rk
u,i−Rk

u,i)
) (12)

In summary, the above recursive approach provides a dynamic solution for

learning the estimation parameter θ of the crowd-AI MLE problem on the fly at
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each timestep using the estimation from the previous timestep and the images

from the current image sliding window. Finally, we can derive the assessment

reliability δMn
for each member Mu in M dynamically by plugging the updated

θt+1 to Equation (4) at each timestep. After obtaining the assessment relia-

bility score for each neural network architecture, we select the neural network

architecture with the highest assessment reliability score as the optimal neural

network architecture N∗ for the image that is about to be evicted from the

AFW as follows:

argmax
Mu

δMu

t+1, where Mu ∈ {N1, N2, ..., NE}

set Mu as N i∗ for Xi
t+1

(13)

where Xi
t+1 represents the image that is about to be evicted from the AFW

at timestep t + 1. δMu

t+1 represents the updated assessment reliability score

at timestep t + 1. In addition, the estimated damage severity L̂Ni∗ from the

optimal neural network architecture N i∗ was taken as the final output of our

CD-NAS framework for image Xi
t+1.

Finally, we summarize the CD-NAS framework in Algorithm 1. The inputs

to the CD-NAS are the set of streaming social media images Xt. The outputs

are the dynamically identified optimal neural network architecture N t∗ and the

estimated damage severity level L̂Nt∗ generated by N t∗ for each Xt.

5. Evaluation

In this section, we evaluate the performance of the CD-NAS framework using

real-world streaming DDA applications from a real world disaster event. The

results show that CD-NAS consistently outperforms the state-of-the-art AI and

NAS baselines in terms of both damage assessment accuracy and computational

cost under various application scenarios.
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Algorithm 1 CD-NAS Framework Summary
1: initialize each Ne in N (Definition 5)

2: for each incoming Xt (timestep t) do

3: obtain L̂Ne
t for each Ne

4: if t is a crowd query timestep based on frequency β then

5: add Xt to Q (Definition 9)

6: obtain L̂
Cb
t from Q

7: end if

8: if AFW is not full then

9: add Xt to AFW

10: else

11: calculate Zi,k using Equation (11)

12: calculate P+
u,k and P−

u,k using Equation (10)

13: derive δMu using Equation (4)

14: for each Ne in M do

15: select Mu with top ranked δMu (Equation (13))

16: end for

17: set Mu as N i∗ for Xi (Xi to be evicted from AFW )

18: obtain L̂Ni∗ using N i∗ for Xi

19: replace Xi with Xt in AFW

20: end if

21: end for

22: output L̂Nt∗ for each Xt
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5.1. Dataset and Crowdsourcing Platform

Disaster Damage Assessment Dataset: In our evaluation, we used a

real-world dataset on disaster damage assessment collected by [7] 1. In par-

ticular, the dataset consists of social media images collected over the course of

Typhoon Hagupit in Philippines (2014). The collected social media images have

diversified damage characteristics (e.g., flooding damage, buildings and infras-

tructure damage, and vehicle damage) as shown in Figure 1. In the dataset,

the ground-truth damage severity level of each social media image was manu-

ally classified by domain experts into three categories (i.e., severe damage, mild

damage, and no/minor damage). In particular, the distributions of different

damage severity levels in our dataset were as follows: severe damage: 11.2%;

mild damage: 42.2%; and no damage: 46.6%. We keep the ratio of training to

testing data as 3:1, the same as in [7]. The training dataset was used to train

all the compared AI models for disaster damage assessment.

Amazon Mechanical Turk Platform: To obtain the crowd intelligence, we

utilize Amazon Mechanical Turk (AMT) 2, one of the largest crowdsourcing

platforms that provides a large number of 24/7 freelance crowd workers to com-

plete assigned tasks with reasonable incentives. In each crowdsourcing task, we

ask the crowd workers to label the damage severity level of the image in the

query. To ensure the crowd label quality, we select the crowd workers who have

an overall task approval rate greater than 95% and have completed at least 1000

approved tasks to participate in our crowdsourcing tasks. We paid $0.20 for each

worker per image in our experiment. In our evaluation, we study a diversified

set of crowd query settings to create a challenging evaluation scenario for our

CD-NAS framework. In particular, we vary the number of participating crowd

workers who respond to each queried image (Definition 10) from 3 to 5 and vary

the crowd query frequency β (Definition 11) from 1/5 to 1/3.

1https://crisisnlp.qcri.org/
2https://www.mturk.com/
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5.2. Baselines and Experiment Settings

We compared CD-NAS with a set of representative deep neural network

(DNN) and neural architecture searching (NAS) baselines in streaming DDA

applications.

• DNN Baselines:

1. InceptationNet [45]: a popular deep learning model that accel-

erates the learning process of the DDA task through a convolution

factorization mechanism.

2. DenseNet [46]: a widely used deep neural network approach that

establishes dense connections among different network layers to boost

the DDA accuracy.

3. VGG [11]: A representative deep convolutional network framework

that utilizes recursive deep convolutional operations to ensure the

sufficient network depth for a desirable DDA performance.

• NAS Baselines:

1. NashNetLarge/Mobile [15]: A state-of-the-art NAS approach that

effectively refines the neural network architecture by introducing a

scheduled drop path mechanism. In addition to the standard ver-

sion of NashNet (NashNetLarge), we also consider the mobile version

of NashNet (NashNetMobile) which achieves a better trade-off be-

tween the NAS performance and computational efficiency in stream-

ing DDA applications.

2. Darts [16]: a representative NAS framework that introduces a differ-

entiable architecture representation to ensure an effective NAS pro-

cess.

3. MansNet [25]: A lightweight NAS approach to incorporate model

inference latency into the factorized hierarchical architecture search-

ing process via multi-objective reinforcement learning.
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To ensure a fair comparison, the inputs to all compared schemes were set to

be the same, which included: 1) the input social media images, 2) the ground

truth labels of images in the training dataset, and 3) the labeled images from

crowd workers. In particular, we retrained all compared baselines using the

labels returned by the crowd query to ensure a fair comparison. In addition,

we also consider the random baseline, which estimates the damage severity

for each image by randomly selecting a damage severity level from the possible

categories. In our system, we implemented our CD-NAS model using Tensorflow

2.0 3, and trained our model using the NVIDIA Quadro RTX 6000 GPU. In our

experiment, all hyperparameters were optimized using the Adam optimizer [47].

In particular, we set the learning rate to be 10−6. We also set the batch size to

be 20, and the model was trained over 300 epochs.

To evaluate the performance of all compared schemes, we adopted three

metrics that are widely used to evaluate the performance of multi-class image

classification tasks in image processing: 1) F1-score, 2) Cohen’s kappa Score (K-

Score) [48], and Matthews correlation coefficient (MCC) [49]. We use K-Score

and MCC in our evaluation because we have an imbalanced dataset, and these

two metrics have been proven to be reliable for imbalanced data [50]. Higher

F1-score, K-Score, and MCC indicate better performance.

5.3. Evaluation Results

5.3.1. DDA Classification Accuracy with Different Crowdsourcing Settings

In the first set of experiments, we studied the performance of all the com-

pared schemes with different crowdsourcing settings. First, we vary the crowd

query frequency β (Definition 11) from 1/5 to 1/3 for all compared schemes

(e.g., we periodically send every one out of three images in the data stream

when β is 1/3 in crowd query) while fixing the number of participating crowd

workers B (Definition 10) to be 3. Second, we change the number of partici-

pating crowd workers B in the crowd query from three to five while fixing the

3https://www.tensorflow.org/
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crowd query frequency to be 1/3. We set the size of the AI-crowd fusion window

AFW (Definition 8) to be 40. The evaluation results are presented in Tables 2

and 3. We observed that our CD-NAS consistently outperformed all the com-

pared baselines in all experimental settings. For example, the performance gain

of CD-NAS compared to the best-performing baseline (i.e., DenseNet) when

the crowd query frequency β = 1/3 and B = 3 on F1-Score, K-Score, and

MCC are 5.76%, 7.48%, and 6.00%, respectively. The performance gains of

our scheme mainly come from the fact that it adaptively transfers the imper-

fect crowd intelligence to the optimal neural network selection for each image

through the dynamic crowd-AI MLE design. In addition, we further evaluated

the performance of our CD-NAS on additional settings of the two experimental

variables (i.e., crowd query frequency β and the crowd worker numbers B). We

also compared the performance of the CD-NAS with the best-performing base-

lines from the different categories (i.e., DenseNet for DNN baselines in Table 2

and Table 3, NasNetMobile for NAS baselines in Table 2 and NasNetLarge for

NAS baselines in Table 3). The results are shown in Figure 4 and Figure 5,

respectively. We observed that CD-NAS consistently outperformed the best-

performing baselines on different evaluation metrics for all evaluation settings.

Such evaluation results demonstrate the effectiveness of our scheme in leverag-

ing the imperfect crowd knowledge to dynamically identify the optimal neural

network architecture for each newly arrived image to provide accurate DDA

results across different experimental variable settings.

5.3.2. Computational Efficiency

In the second set of experiments, we compared the computational cost of

all the compared schemes (except the trivial random baseline) in the studied

streaming DDA application. We define the computational cost as the aver-

age computational time required to estimate the damage severity of an image.

To ensure a fair comparison, we evaluated all schemes using the same NVIDIA

Quadro RTX 6000 GPU. The evaluation results are presented in Tables 4 and 5,

respectively. We observe that our CD-NAS scheme takes orders of magnitude
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Table 2: DDA classification accuracy Comparisons (Varying Crowd Query Frequency)

β = 1/5 β = 1/4 β = 1/3

Category Algorithm
F1-

Score

K-

Score
MCC

F1-

Score

K-

Score
MCC

F1-

Score

K-

Score
MCC

Random Random 0.3291 0.0109 0.0118 0.3664 0.0681 0.0738 0.3416 0.0164 0.0175

InceptionNet 0.6349 0.3833 0.3834 0.6054 0.3646 0.3857 0.6849 0.4785 0.4871

DNN DenseNet 0.7097 0.5092 0.5094 0.5684 0.3593 0.4131 0.6949 0.5039 0.5192

VGG 0.6888 0.4739 0.4757 0.5670 0.3386 0.3711 0.6493 0.4250 0.4319

NASNetLarge 0.6721 0.4473 0.4478 0.5573 0.3148 0.3410 0.6916 0.4904 0.5020

NASNetMobile 0.7231 0.5356 0.5367 0.6099 0.3884 0.4150 0.6496 0.4528 0.4637

NAS DARTS 0.5907 0.3208 0.3225 0.5596 0.2825 0.2984 0.6450 0.3940 0.3988

MnasNet 0.5600 0.2569 0.2596 0.6331 0.3705 0.3758 0.6183 0.3625 0.3933

Ours CD-NAS 0.7471 0.5696 0.5701 0.7471 0.5696 0.5701 0.7525 0.5787 0.5792

Table 3: DDA classification accuracy Comparisons (Varying Number of Crowd Workers)

B = 3 B = 4 B = 5

Category Algorithm
F1-

Score

K-

Score
MCC

F1-

Score

K-

Score
MCC

F1-

Score

K-

Score
MCC

Random Random 0.3416 0.0164 0.0175 0.3614 0.0088 0.0090 0.3540 0.0314 0.0334

InceptionNet 0.6849 0.4785 0.4871 0.6819 0.4667 0.4688 0.6917 0.4893 0.4980

DNN DenseNet 0.6949 0.5039 0.5192 0.6861 0.4842 0.4939 0.7305 0.5541 0.5604

VGG 0.6493 0.4250 0.4319 0.6472 0.4174 0.4217 0.6913 0.4919 0.4975

NASNetLarge 0.6916 0.4904 0.5020 0.6945 0.4907 0.4943 0.7170 0.5346 0.5464

NASNetMobile 0.6496 0.4528 0.4637 0.6847 0.4767 0.4799 0.6904 0.4894 0.5070

NAS DARTS 0.6450 0.3940 0.3988 0.6597 0.4233 0.4239 0.6733 0.4410 0.4465

MnasNet 0.6183 0.3625 0.3933 0.6564 0.4169 0.4214 0.5919 0.3287 0.3613

Ours CD-NAS 0.7525 0.5787 0.5792 0.7525 0.5787 0.5792 0.7579 0.5878 0.5883

less time to accomplish the DDA task compared to other baselines under dif-

ferent evaluation settings. This is because the compared baselines require addi-

tional computational time to retrain their models to capture the dynamics of the

streaming data by leveraging the labels from crowd workers. In contrast, our

CD-NAS designs a recursive expectation maximization solution that estimates

the assessment reliability score of each neural network architecture on the fly

without requiring any additional network retraining. In addition, we evaluated
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the computational cost of our CD-NAS for additional crowdsourcing settings.

Similar to the performance comparison in Section 5.3.1, we compare the perfor-

mance of the CD-NAS with the best-performing baselines from each category in

Tables 2 and 3. The results are shown in Figure 6 and Figure 7. We observe that

our CD-NAS achieves a clear performance gain compared to the best-performing

baselines in all different settings, which further demonstrates the effectiveness

of the dynamic neural network architecture searching scheme in maintaining the

best DDA performance while maintaining the lowest computational time cost.

(a) F1-Score (b) K-Score (c) MCC

Figure 4: Performance Comparisons between CD-NAS and Best-performing Baselines (Vary-

ing Crowd Query Frequency)

(a) F1-Score (b) K-Score (c) MCC

Figure 5: Performance Comparisons between CD-NAS and Best-performing Baselines (Vary-

ing Number of Crowd Workers)
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Table 4: Computational Time Comparisons (Seconds) - Varying Crowd Query Frequency

Algorithm β=1/5 β=1/4 β=1/3

InceptionNet 1.2542 1.4427 1.8782

DenseNet 1.2891 1.5389 1.9914

VGG 1.1466 1.3928 1.7735

NASNetMobile 1.3917 1.5896 2.0130

NASNetLarge 1.5198 1.7942 2.2076

DARTS 0.3067 0.3329 0.3918

MnasNet 0.7937 1.0152 1.1192

CD-NAS 0.0195 0.0197 0.0203

Table 5: Computational Time Comparisons (Seconds) - Varying Number of Crowd Workers

Algorithm B=3 B=4 B=5

InceptionNet 1.8782 1.8773 1.8790

DenseNet 1.9914 1.9842 1.9923

VGG 1.7735 1.7768 1.7793

NASNetMobile 2.0130 2.0142 2.0121

NASNetLarge 2.2076 2.2084 2.2063

DARTS 0.3918 0.3923 0.3945

MnasNet 1.1192 1.1142 1.1154

CD-NAS 0.0203 0.0198 0.0201

5.3.3. Robustness of CD-NAS Framework

In the third set of experiments, we study the robustness of the CD-NAS by

varying one key parameter in our design, that is, the size I of the AI-crowd

fusion window AFW (Definition 8). The evaluation results are presented in

Figure 8. Given the space limit, we only present the results of one representative

crowdsourcing setting (i.e., B = 3 and β = 1/3). The results for the other

scenarios are similar. We observe that the performance of CD-NAS is stable as

the size of the AFW changes, which demonstrates the robustness of CD-NAS

over the key parameter in our model design. The robustness study in Figure 8
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Figure 6: Computational Time Comparisons (Seconds) between CD-NAS and Best-performing

Baselines - Varying Crowd Query Frequency

Figure 7: Computational Time Comparisons (Seconds) between CD-NAS and Best-performing

Baselines - Varying Number of Crowd Workers

demonstrates that our CD-NAS can achieve consistent DDA performance over

a reasonable range of different AFW sizes (i.e., between 25 and 55). The results

provide a window for users of our CD-NAS scheme to select the AFW size to

achieve a desirable DDA performance. In addition, we also note that the CD-

NAS buffers very few images in AFW when its size is too small, which often

leads to suboptimal classification results. On the other hand, CD-NAS can

buffer too many images in AFW when its size is too large, which often leads

to a significantly reduced computation time. The actual selection of the AFW
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size will largely depend on the tradeoff between the classification accuracy and

response time of the CD-NAS scheme that the users would like to achieve in a

particular DDA application.

Figure 8: Robustness of CD-NAS Framework

5.3.4. Convergence of CD-NAS Framework

In the last set of experiments, we study the convergence of our CD-NAS by

plotting the performance of CD-NAS over different timesteps in the social media

image stream (Definition 1). The results are presented in Figure 9. Similar

to the robustness study, we only show the performance for one representative

setting (i.e., B = 3 and β = 1/3) because of the space limit. The results

for the other scenarios are similar. Please note that we show the performance

of CD-NAS from the 20th timestep because our CD-NAS needs to explore the

imagery data at the first few timesteps to overcome the cold start problem of the

recursive EM algorithm. We observe that our CD-NAS can quickly boost the

assessment performance and remain stable afterward, suggesting its effectiveness

in recursively learning the optimal neural network architecture in the studied

application.

6. Conclusion

We presented a CD-NAS framework to address a crowd-driven dynamic NAS

problem and improve the QoS of streaming DDA applications. Our solution is
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Figure 9: Convergence of CD-NAS Framework

inspired by interdisciplinary techniques such as AI, crowdsourcing, and estima-

tion theory. Our results on a real-world streaming DDA application showed that

CD-NAS outperforms AI and NAS baselines in terms of both damage assessment

accuracy and computational cost. We believe that CD-NAS will provide useful

insights to explore the collective power of AI and crowd intelligence in a rich

set of AI-driven streaming applications (e.g., disaster response, truth discovery,

intelligent transportation).
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