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Abstract

Motivated by the recent advances in Internet and communication techniques
and the proliferation of online social media, social sensing has emerged as a
new sensing paradigm to obtain timely observations of the physical world from
“human sensors”. In this study, we focus on an emerging application in social
sensing — streaming disaster damage assessment (DDA), which aims to auto-
matically assess the damage severity of affected areas in a disaster event on the
fly by leveraging the streaming imagery data about the disaster on social media.
In particular, we study a dynamic optimal neural architecture searching (NAS)
problem in streaming DDA applications. Our goal is to dynamically determine
the optimal neural network architecture that accurately estimates the damage
severity for each newly arrived image in the stream by leveraging human in-
telligence from the crowdsourcing systems. The present study is motivated by
the observation that the neural network architectures in current DDA solutions
are mainly designed by artificial intelligence (AI) experts, which often leads to
non-negligible costs and errors given the dynamic nature of the streaming DDA

applications and the lack of real-time annotations of the massive social media
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data inputs. Two critical technical challenges exist in solving our problem: i)
it is non-trivial to dynamically identify the optimal neural network architec-
ture for each image on the fly without knowing its ground-truth label a priori;
ii) it is challenging to effectively leverage the imperfect crowd intelligence to
correctly identify the optimal neural network architecture for each image. To
address the above challenges, we developed CD-NAS, a dynamic crowd-Al col-
laborative NAS framework that carefully explores the human intelligence from
crowdsourcing systems to solve the dynamic optimal NAS problem and optimize
the performance of streaming DDA applications. The evaluation results from a
real-world streaming DDA application show that CD-NAS consistently outper-
forms the state-of-the-art ATl and NAS baselines by achieving the highest disaster
damage assessment accuracy while maintaining the lowest computational cost.
Keywords: Crowdsourcing, Social Sensing, Neural Architecture Searching,

Disaster Damage Assessment

1. Introduction

Social sensing has emerged as a powerful sensing paradigm for collecting ob-
servations of the physical world through social media [1, 2]. Examples of social
sensing applications include city-wide traffic surveillance using Twitter feeds [3],
urban anomaly detection using Foursquare check-ins [4], and community disease
outbreak monitoring using Facebook posts [5]. Unlike other infrastructure-based
sensing paradigms (e.g., CCTV cameras, remote sensing, wireless sensor net-
works), social sensing provides a pervasive and scalable solution for obtaining
real-time damage information during disaster events [6]. In this paper, we fo-
cus on an emerging application in social sensing: streaming disaster damage
assessment (streaming DDA)[7]. The goal of streaming DDA applications is to
automatically assess the damage severity of affected areas in a disaster event
on the fly by leveraging the streaming imagery data posted on social media.
The outputs of streaming DDA applications can be shared with emergency re-

sponse agencies (e.g., Federal Emergency Management Agency (FEMA), fire



departments) for timely rescue and recovery operations.

Recent advancements in artificial intelligence (AI) have helped in improving
the performance of DDA applications [8, 7, 9, 10]. In particular, compared with
the traditional DDA solutions that largely rely on intensive manual labeling
efforts from disaster specialists [11], the Al-driven DDA solutions significantly
reduce the labeling costs while providing a reasonable assessment accuracy [12].
However, current Al-driven DDA solutions often require inputs from experts
who are specialists in both AI models and DDA applications to design an ap-
propriate neural network architecture for a particular DDA application. This
manual neural network architecture design process is known to be both time-
consuming and suboptimal [13]. Figure 1 shows an example where the opti-
mal neural network architecture in a streaming DDA application changes over
time. In particular, we observe that the optimal neural network architectures
for disaster-related images collected in consecutive timesteps in the same disas-
ter event are different. In such scenarios, it is difficult for AT experts to predict
and design an individual optimal neural network architecture for each newly
arrived image on the fly. Motivated by the above observations, we study a dy-
namic optimal neural architecture searching (NAS) problem in streaming DDA
applications where the goal is to dynamically determine the optimal neural net-
work architecture that accurately estimates the damage severity for each newly
arrived image without the inputs from Al experts.

In this study, we develop a crowd-driven dynamic neural architecture search
(CD-NAS) system to address the above problem by exploring the collective in-
telligence of both AI and humans. The objective of our CD-NAS design is to
leverage human intelligence from crowdsourcing systems to guide the discovery
of the optimal neural network architecture for every image in a streaming DDA
application. In particular, we observe that human perception is often more
reliable and consistent than AI algorithms in terms of identifying the severity
of disaster damage from the image (e.g., we can clearly determine the damage
severity of images reported in Figure 1). Such human intelligence could pos-

sibly help us dynamically identify the optimal neural network architecture in
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Figure 1: Changes in Optimal Neural Network Architecture Over Time in Streaming DDA
Applications

a streaming DDA application. To obtain accessible and timely human intelli-
gence, we leverage widely adopted open crowdsourcing platforms (e.g., Amazon
Mechanical Turk) [14]. We refer to the human intelligence collected from the
crowdsourcing platform as crowd intelligence in the remainder of this paper.
Two important technical challenges exist in designing such a crowd-driven NAS
system, which are elaborated below.

Dynamic optimal neural architecture searching. The first challenge lies in the
dynamic identification of the optimal instance of neural network architecture
for each image in the streaming DDA application without knowing its ground
truth label a priori. In particular, current NAS solutions in AI are mainly
designed to identify a single best-performing neural network architecture for a
given set of training data [15, 16] and leverage the identified neural network
architecture to estimate the damage severity for all testing data. However,
such a one-size-fits-all neural network architecture could inaccurately estimate
the damage severity for a non-negligible portion of images because the optimal

neural network architecture often changes over time (as shown in Figure 1).



Recent advancements in dynamic neural networks could potentially be applied
to address this issue [17, 18]. However, a major limitation of these solutions
is that they still require a large amount of high-quality training labels from
the studied disaster event to periodically retrain their models to capture the
dynamics of streaming data. However, such a high-quality training dataset is
often not available for an unfolding disaster in streaming DDA because of the
“cold start” problem [19] and the lack of real-time annotations due to cost and
resource constraints [20]. Additionally, recent efforts in online deep learning
have been made to dynamically update the learned network instances [21, 22].
However, these solutions primarily focus on periodically optimizing the perfor-
mance of a particular neural network architecture pre-defined by the Al experts
on relatively simple tasks (e.g., tweet text classification and handwriting num-
ber identification). As a result, their performance may be suboptimal because
of the potential bias and constraints of the manual network design process given
the excessive damage characteristics and fine-grained details of disaster-related
social media images [23]. Therefore, the dynamic identification of the optimal
neural network architecture for each incoming imagery data in streaming DDA
applications remains a nontrivial question.

Imperfect crowd intelligence-driven NAS. The second challenge lies in lever-
aging the imperfect crowd intelligence from potentially unreliable crowd work-
ers to facilitate the identification of the optimal neural network architecture
in streaming DDA applications. Unlike Al experts who are capable of design-
ing effective neural network architectures, crowd workers are often limited to
simplified annotation tasks (e.g., labeling damage severity levels for assigned
images). More importantly, unlike the damage severity annotated by disaster
specialists, the labels from crowd workers are often imperfect (biased, noisy,
and even conflicting responses from different crowd workers) [24]. Additionally,
the noise embedded in crowd intelligence can be amplified during the neural
network architecture search process, leading to the selection of the poorly per-
formed neural network architecture [15, 25]. Therefore, the key question in our

design is how to effectively transfer potentially imperfect crowd knowledge (e.g.,



noisy crowd labels) into an accurate neural network architecture selection for
streaming imagery data.

To address the above challenge, we developed CD-NAS, a crowd-driven dy-
namic neural architecture searching approach that carefully explores crowd in-
telligence to solve the optimal neural architecture search problem and optimize
the performance of streaming DDA applications. To address the first challenge,
we develop a streaming neural network architecture search framework that re-
cursively updates the optimal neural network architecture for each incoming
image through a novel recursive maximum likelihood estimation model. To ad-
dress the second challenge, we designed a novel crowd-Al fusion model that
translates imperfect crowd intelligence to effective neural network architecture
selection through a robust crowd-Al collaborative network searching process.
To the best of our knowledge, CD-NAS is the first dynamic crowd-driven NAS
approach for solving the streaming DDA problem. We evaluated CD-NAS using
a real-world streaming DDA application from a recent disaster event, Typhoon
Hagupit. The evaluation results show that our CD-NAS consistently outper-
forms both state-of-the-art Al and NAS baselines by achieving the highest dis-
aster damage assessment accuracy while maintaining the lowest computational
cost under various evaluation scenarios.

A preliminary version of this study was published in [26]. The journal paper
is a significant extension of previous work in the following aspects. First, we
identify two new intrinsic challenges (i.e., dynamic optimal neural architecture
searching and imperfect crowd intelligence-driven NAS) to solve the dynamic
optimal NAS problem and explicitly discuss how our scheme addresses these two
challenges (Section 1 and Section 4). Second, we extend the dynamic optimal
architecture searching (DOAS) module in CD-NAS by developing a dynamic
neural network architecture searching scheme that adaptively updates the esti-
mation of the optimal neural network for each image through a recursive estima-
tion framework (Section 4). Third, we extend the evaluation in the conference
paper by explicitly studying the performance of all compared schemes with a

diversified set of crowdsourcing settings (i.e., different numbers of crowd workers



and crowd query frequencies). The new results demonstrate the effectiveness
of our scheme in explicitly leveraging crowd intelligence to guide the discovery
of the optimal neural network architecture under different streaming DDA ap-
plication scenarios (Section 5). Fourth, we add a new study to evaluate the
computational cost of all compared schemes (i.e., the average computation time
required to estimate the damage severity of an image). This is motivated by
the fact that the computational cost is critical in streaming DDA applications,
especially in the context of massive social media data inputs. The new results
demonstrate that our CD-NAS scheme takes orders of magnitude less time to
accomplish the streaming DDA task compared with other baselines (Section 5).
Fifth, we compare CD-NAS with two additional deep learning and NAS base-
lines (i.e., DenseNet and MnasNet) and demonstrate the performance gains
achieved by CD-NAS compared with all baselines (Section 5). Sixth, we add
a new robustness study to evaluate the robustness of the CD-NAS by varying
one key parameter in our design: the size of the sliding window for streaming
DDA applications (Section 5). Finally, we extend the related work by adding
discussions on recent progress in social sensing and NAS Both of these topics

are closely related to the theme of this study (Section 2).

2. Related Work

2.1. Social Sensing

Motivated by the recent advances in Internet and communication techniques
(e.g., 4/5G, Internet of Everything (IoE)), as well as the proliferation of online
social media (e.g., Twitter and Instagram), social sensing has emerged as a new
sensing paradigm to obtain timely observations of the physical world from “hu-
man sensors” [27]. Examples of social sensing applications include monitoring
real-time traffic conditions in a metro area using mobile crowdsensing to en-
hance traffic safety [3], obtaining situational awareness in the aftermath of a
disaster using online social media for rapid disaster response [28], and detection

of infectious disease outbreaks in big cities using location-based crowd track-



ing services to improve public health [5]. Several key challenges exist in the
current social sensing applications. Examples include real-time guarantee, data
reliability, incentive design, privacy protection, and noise reduction [29, 30, 31].
However, the crowd-driven dynamic optimal NAS problem in streaming DDA
applications remains an unsolved challenge in social sensing. In this paper, we
address this problem by developing a novel crowd-Al collaborative NAS frame-
work to accurately assess the damage severity of affected areas on the fly using

streaming imagery data posted on social media.

2.2. Disaster Damage Assessment

Recent advances in Al and deep learning have been proved remarkably help-
ful in improving the performance of DDA applications [8, 7, 9, 10, 32, 33]. For
example, Li et al. developed a deep domain adaptation approach to estimate
the damage severity of affected areas using online social media data via ad-
versarial transfer learning [8]. Nguyen et al. proposed a deep convolutional
network framework for disaster damage assessment of unfolding disaster events
for timely disaster response [7]. Kumar et al. proposed a deep image classifi-
cation framework to identify disaster-affected cultural heritage sites from social
media imagery data via an end-to-end deep image processing system design [9].
Mouzannar et al. developed a deep neural network approach that utilizes both
text and image data from social media posts for damage identification via mul-
timodal convolutional neural networks [10]. However, current Al-driven DDA
solutions often require extensive inputs from Al experts to design an effective
neural network architecture for DDA tasks. Such a manual design process is
known to be both error-prone and time-consuming in the presence of massive
social data inputs in streaming DDA applications [13]. Efforts on dynamic
neural networks in DDA are also relevant to our work [17, 18|. However, two
limitations prevent them from being applied to address our problem: i) those
methods often require periodical model retraining that often cannot catch up
with the large dynamics in our streaming DDA application settings [34]; ii) the

performance of these models often drops significantly when they are retrained



using the imperfect crowd labels [35]. In contrast, our CD-NAS framework effec-
tively identifies the optimal neural network architecture for each image without
the inputs from Al experts and in the absence of ground-truth labels of newly

arrived images.

2.8. Crowd Intelligence

Our work is also related to the growing trend of utilizing pervasive and
scalable human intelligence from crowdsourcing systems to solve complex real-
world problems [36, 37, 38, 39, 40]. For example, Harris et al. leveraged mobile
crowdsourcing to detect the defected and deteriorated urban infrastructure for
smart city management [37]. Dos Reis et al. utilized citizen scientists to seg-
ment cancer cells from breast tumors in biomedical research [38]. Wang et al.
used road traffic information reported by common citizens to monitor real-time
traffic congestion in intelligent transportation [40]. However, two fundamental
limitations exist in current solutions that fully rely on human intelligence from
crowdsourcing systems. First, these approaches may be too labor-intensive and
costly compared to our CD-NAS which only requires crowd labels from a small
subset of studied images to guide the discovery of the optimal neural network
architecture for desirable DDA performance [12]. Second, unlike the profes-
sional annotations from disaster specialists, labels from crowd workers can be
biased, noisy, and even conflicting because of the lack of sufficient expertise on
disaster assessment and response [24]. As a result, the current crowdsourcing
solutions could suffer from a non-trivial DDA performance drop by using only
the imperfect responses from crowd workers. In contrast, our CD-NAS jointly
integrates the inputs from crowd workers and AI models into a novel crowd-Al
collaborative model that effectively fuses intelligence from both the crowd and
AT to address the imperfect crowd response challenge and identify the optimal

neural network architecture in DDA applications.

2.4. Neural Architecture Searching
Our work also resembles the NAS technique that is used to automate the

neural network design process in many Al-driven real-world applications [15,



16, 25, 41, 42]. For example, Zoph et al. developed a scheduled drop path
mechanism to enable an effective neural network architecture search for seman-
tic image segmentation [15]. Liu et al. proposed a differentiable architecture
representation mechanism to effectively refine the neural network architecture
during the NAS process in natural language modeling [16]. Tan et al. designed
a lightweight NAS approach to incorporate model inference latency into the
factorized hierarchical searching process for image object detection via multi-
objective reinforcement learning [25]. Mo et al. proposed a recursive NAS
approach to concurrently search for the optimal network architecture on layer
and network block levels to improve the NAS performance in keyword spot-
ting on smart devices [41]. To the best of our knowledge, CD-NAS is the first
NAS solution that effectively transfers imperfect crowd intelligence to dynamic

optimal neural network architecture selections in streaming DDA applications.

3. Problem Description

In this section, we formally define our crowd-driven dynamic NAS problem
in streaming DDA applications. We first define a few key terms that will be

used in the problem formulation.

Definition 1. Disaster-related social media images (X ): We define X to
represent the disaster-related images posted by common citizens on social media
(e.g., Twitter) during a disaster event (as shown in Figure 2), where each posted

image captures a specific scene of the studied disaster event.

Definition 2. Social media image stream (S): We define S = {X1, X2, ..., X1}
as the set of streaming social media images collected during a disaster event,
where X; represents the disaster-related social media image collected from the
t* timestep and T is the total number of timesteps in the studied streaming

DDA application (e.g., see Figure 1).
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Figure 2: Examples of Disaster-related Social Media Images

Definition 3. Damage severity level (L): We define the damage severity
level L to represent the severity of the damage captured in a disaster-related so-
cial media tmage. In particular, we define L = {L1, La, ..., L7} to represent the
damage severity levels for all collected social media images, where L; represents

the damage severity level for X;.

Definition 4. Categories of damage severity level (K ): Following a sim-
ilar procedure in [7], the damage severity level in an image can be classified
into one of the K pre-defined categories: Ly € {1,2,..., K}. For example, we
can consider three categories of damage severity levels (i.e., K =38) that include

severe damage, mild damage, no/minor damage as shown in Figure 2.

Definition 5. Neural network architecture search space (N ): We define
N ={N1,Na,...,Ng} as an NAS search space that contains a set of E different
neural network architecture candidates for streaming DDA tasks, where N, rep-
resents a neural network architecture candidate in N (e.g., architecture 1 and 2
in Figure 1). In this study, we leverage the neural network architecture design
space (i.e., different configurations of adopting ImageNet-pre-trained convolu-
tional layers for image classification tasks [43]), which is commonly adopted in

the current Al-driven DDA solutions [7, 11].

Definition 6. Damage severity estimation from Al (I//\V) We define N

as the damage severity level estimated by different neural network architectures

11
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m N. In particular, LiVQ represents the damage severity level estimated by the

neural network architecture N, for the reported image X;.

Definition 7. Dynamic optimal network architecture (N*): We define
N* as the set of optimal neural network architectures identified by our CD-NAS
framework from N for different images in S. In particular, N'* represents
the optimal neural network architecture that produces the most accurate damage
severity estimation Lfvt* for the image X* collected at the t*" timestep (e.g.,
N'™ is set to be architecture 1 at timestep 1 and architecture 2 at timestep 2 in

Figure 1).

The goal of our crowd-driven dynamic NAS problem is to leverage human
intelligence from the crowdsourcing systems to improve the performance of
streaming DDA applications. In particular, our goal was to dynamically se-
lect the optimal neural network architecture for each image. We formally define

our problem as follows:

argmaxPr(IZV?* =L ]X), Vi<a<T (1)
Nt

This problem is challenging because of the difficulty of transferring the imperfect
crowd intelligence to dynamically identify the optimal neural network architec-
ture for streaming social media image data in the absence of ground-truth labels.
In this paper, we develop a CD-NAS system to address this problem, which is

elaborated in the next section.

4. Solution

In this section, we present the CD-NAS framework to address the dynamic
optimal neural architecture search problem in streaming DDA applications. We
first present an overview of CD-NAS and then discuss its core modules in detail.

Finally, we summarize the CD-NAS framework using pseudocodes.
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4.1. Overview of CD-NAS Framework

An overview of the CD-NAS is shown in Figure 3. In particular, it con-
sists of two modules: 1) crowd-driven network architecture selection (CNAS)
and dynamic optimized architecture searching (DOAS). First, the CNAS mod-
ule develops a novel crowd-Al integration model to effectively leverage imperfect
crowd knowledge to facilitate the discovery of an optimal neural network archi-
tecture. Second, the DOAS module designs a dynamic neural network archi-
tecture searching scheme that adaptively updates the estimation of the optimal

neural network for each image through a recursive estimation framework.
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Figure 3: Overview of CD-NAS Framework

4.2. Crowd-driven Network Architecture Selection (CNAS)

In this subsection, we develop a principled crowd-Al integration model to
explicitly leverage imperfect crowd intelligence to facilitate the discovery of the
optimal neural network architecture in streaming DDA applications. In partic-

ular, we first define a key concept that is used in our CNAS module:

Definition 8. AI-crowd fusion window (AFW ): The AFW is defined as a
sliding window for the streaming DDA applications that includes the most recent

I images from the social media stream S. In particular, we define AFW =

13



{X1,Xo,..., X1}, where X; represents the it" image in the sliding window and
1 is the size of the AFW . We note that I is an application-specific parameter
and will study its effect in Section 5.

Similar to the online video applications (e.g., YouTube) that often use a
local data buffer to ensure a smooth streaming video service, the AFW here is
designed to buffer a set of images in streaming DDA applications for the dynamic
neural network architecture search. In particular, we add newly arrived images
to the AFW until it is full. Then, we apply the first-in-first-out (FIFO) strategy
to replace the oldest image in AF'W with the newly arrived image. The optimal
neural network architecture for each image in the AFW was identified when
the image was evicted from the AFW. Such a design is performed to ensure
that our CD-NAS can recursively improve the estimation of the optimal neural
network for each image in the AFW.

In our CD-NAS system, we explicitly leverage human intelligence from a
crowdsourcing system to guide the discovery of the optimal neural network
architecture for each image in AFW. Hence, we further define a few concepts

related to crowd intelligence as follows:

Definition 9. Crowd query (Q): We define a crowd query as a crowdsourc-
ing task in which our system sends a subset of images in the AFW for the
crowd workers to label their damage severity levels. The returned crowd la-
bels are used to search the optimal neural network architecture for each image,
which is discussed later in this section when we formally introduce our Al-crowd

collaboration model design.

Definition 10. Damage severity labeled by crowd workers (EB ): Ina
crowd query @, each image is labeled by a set of B crowd workers, where Cy, is
the b crowd worker in Q. We further define Lic" as the damage severity level

labeled by a crowd worker Cy for an image X;.

Definition 11. Crowd query frequency (5): We define 8 as an application-

specific parameter that specifies the frequency to periodically sample the images

14



from the DDA data stream for crowd annotations. In Section 5, we study the

effect of 5.

Unlike labels annotated by domain experts in disaster damage management,
the labels from crowd workers are often imperfect (e.g., biased, noisy, and even
conflicting with each other) [24]. In particular, the noise embedded in the crowd
intelligence can be amplified during the neural network architecture searching
process, leading to the selection of the poorly performed neural network architec-
ture. To address the imperfect crowd label challenge, our CNAS module designs
a crowd-Al integration model to accurately identify the optimal neural network
architecture by leveraging imperfect crowd intelligence. Our design integrates
the estimations of different neural network architectures and imperfect crowd
responses into a principled estimation framework to estimate the performance
of each neural network architecture, N, in N. In particular, we observe that
every neural network architecture N, in N and every participating crowd worker
Ch, in a crowd query @ generate their own estimation of damage severity levels
for the images in the AFW. In our CNAS module, we consider both N, and Cj,
as data sources with unknown reliability to estimate the variables of unknown
ground-truth labels (i.e., disaster-related images with unknown damage severity

levels). First, we define an Al-crowd collaboration committee as follows:

Definition 12. AI-crowd collaboration committee (M ): We define M as
a committee that includes both different neural network architectures in N and
the crowd workers who participate in the crowd query Q in the streaming DDA

application as follows:
M ={Ny,Na,...,Ng,C1,Cs,...,Cp} (2)

where N, represents the et neural network architecture in N, and Cj repre-
sents the b*" crowd worker in crowd query Q. In particular, we define M, as
representing the u‘" committee member in M (i.e., representing either N, or

Cy). In addition, there are a total of U = E + B members in M.
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Definition 13. Assessment reliability (6): We define 0yr, to represent the
disaster damage assessment reliability of member M, in M. In particular, s,
represents the probability that the estimated damage severity level by M, is cor-

rect.

Given the above definitions, the goal of our CNAS module is to select the
neural network architecture in M with the highest assessment reliability as the
optimal neural network architecture in our crowd-driven NAS problem. To
that end, we further define P;: . and P, as the unknown probability that the
member M, estimates the damage severity level of an image to be the k" level
and the value other than the k' level given the ground-truth damage severity
level of the image is the k*" level, respectively. We formally define PJ pand Py

as follows:
Pho=Pr(L} = k|L; = k)

N T (3)
P, => Pr(L}M =F&|L; = k)

Ttk

—

where LiVI“ represents the estimated damage severity level by a member M, in
M on an image X; in AFW. L; is the ground-truth damage severity level for
X;. Given the above definition, Pj) r and P are related to the assessment

reliability 05y, using Bayesian theorem as follows:

4
GM“,EX(I_(SMu) ( )

where Gy, and G, 7 represent the probability that a member M, estimates
the k" damage severity level and values other than the k*" level, respectively.
d* represents the prior probability that a randomly selected image belongs to
the k' damage severity level. We note that we can learn the assessment relia-
bility score dps, if we can obtain the values for the other parameters in the above
equation. To that end, we formulate a crowd-Al maximum likelihood estima-

tion (MLE) problem to estimate the unknown assessment reliability score s,
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for each member M, in the Al-crowd collaboration committee and unknown

damage severity level L as follows:

Pr ((L/\Ml,m,...,m)w, (6M175M27~~,5MU)) (5)

where LMv indicates the damage severity estimated by a neural network archi-
tecture L™ or labeled by a crowd worker LE® in M.

Given the crowd-AI MLE problem above, we further define the likelihood
function L(0;w, Z) of our MLE problem as follows:

L(0;w, Z) = L(6; (LM, LMz, ..., M), L)
K U _
Ry - Ry,
SIS (I P ™ < o
] k=1 wu=1

(1= Pl = P) D dx 24

The above likelihood function represents the likelihood of the observed data
w (i.e., damage severity levels of images in the current AFW estimated by
different neural network architectures and crowd workers) and the values of
hidden variables Z (i.e., the actual damage severity level of an image) given the
estimated parameter 6. Detailed explanations of the parameters in the L(6;w, Z)

are summarized in Table 1.

4.8. Dynamic Network Architecture Searching (DNAS)

In the previous subsection, we presented our crowd-AI MLE formulation to
learn the assessment reliability for each neural network architecture in our Al-
crowd collaboration committee. The next question involves adaptively solving
the formulated crowd-AI MLE problem to learn the assessment reliability on the
fly so that we can dynamically identify the optimal neural network architecture
for each image. To that end, we propose a recursive expectation maximization
(EM) solution to solve the crowd-AI MLE problem. In estimation theory [44],

the estimation parameter of an MLE problem can be recursively updated in
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Notations ‘ Definitions/Explanations

I ‘ size of Al-crowd fusion window

K ‘ number of damage severity levels

‘ number of members in Al-crowd collaboration committee

Rﬁ i indicator variable that is set to be 1 when a member M,, estimates the damage
severity of a given image X; to be the k" level and is set to be 0 otherwise.

RE i indicator variable that is set to be 1 when a member M,, estimates the damage
severity of a given image X; to be the value other than k" level and is set to
be 0 otherwise.

Zik probability that the damage severity of an image X; in image sliding window
to be k" level.

6 estimation parameter of the model, where 0 =
{Plfk,sz’k,...,P;}U;P;K,P;VK, o Py pidi} fork=1,2.. K

w observed variable of the model, where w = (L/J‘71 , L/A\f’z, . L/M\U)

Z hidden variable of the MLE model, which indicates the damage severity L for
each image

Table 1: Notations in Crowd-guided Architecture Searching

consecutive timesteps by considering the streaming data input as follows:
Ori1 = 0+ [(t+1) X 1o(00)] 7 @ (X1, 6) (7)

where 0; and 60,1 indicate the estimation parameters 6 at two consecutive
timestep ¢t and t + 1, respectively. X;;; indicates the nearly arrived image at
timestep ¢ 4+ 1. The estimation parameter ;41 is used to calculate the updated
assessment reliability for each neural network architecture in the Al-crowd col-
laboration committee using Equation (4). I.(6;)~! indicates the inverse of the
Fisher information of the estimation parameter ; at timestep t. ®(X;y1,06:)
represents the score vector of the observed data (input image X;1) at timestep
t+1 given the estimation parameter 6; from the last timestep ¢. The key idea of
the above streaming formulation is to provide a dynamic solution to recursively

update the estimation parameter 6 on the fly.

18



To obtain the Fisher information I.(6;) and score vector ®(X;i1,6;), we
first derive the log function of L(#;w, Z) by assuming that the correctness of the
hidden variable (Z; ;) can be correctly estimated when the number of members
in the Al-crowd collaboration committee is sufficient. In particular, we can

derive the log-likelihood function logl (6;w, Z) as:

logl (6;w, Z) = L(6; (LM, LM2 ... [Mu) L) =

I U
> (Z > R, xlogPf, + RE, x logP, , + (8)
(1-RE, —R’f i) xlog(1—Pf — P ) +dy + Zi,k))

Given the log-likelihood function logl (8;w, Z), we can derive the inverse of

the Fisher information I.(6;)~! for our problem as follows:

Pr x(1-pP}, P;k*)

dk><I><(1 P’k) ’UZUG[I’U]
L(6,)-! = P x(1—PF CP*,C )
( t)u,'u drxIx(1— k) ,U—UG(U,?U]
0,u#w

In addition, we can also derive the score vector ®(Myy1, 6;) from logl (6; w, Z)

as follows:
k k K
I t+1 Ry 1-R, ;— R, .
Zi:lZi,k X P+t+ _P+t P,f ,’U/—’UE[LU]

u,k u,k
= I t+1 Rﬁ i lka Rﬁ i

D(Mi11,0t)u,v Y oic1 Zi,—}; X oot + x o cu=wv e (U,2U]
uk wk

0,u#v
(9)
Finally, we can plug in I.(6;)~! and ®(M,1,6;) into Equation (7) to obtain

the recursive formula to update the estimation parameters 6 (i.e., P, rand P )

as follows:

19



t+1 t 1
Pufk = ijfk + — «
I'xdpx(1—=P ) x(t+1)
1 t _t 1 t
Z Z;Hl; X(l_sz:k _Pu,k:)_ Z Zﬁ XPJ,/@
i€AktT iEA0t+1

1 (10)
Pu_kt+1:Pu_lct+ 7 X
’ ’ Ixdp x (1= Pf ) x (t+1)

Szt xa-pL P Y- Y 2t <Py
ieAkt ! P€AL
where AﬁtH and AEtH indicate the set of images from the current AF'W The
member M, estimates the damage severity as the k** level and value other than
the k' level. A?f“ indicates the set of images that the member M, does not
make any estimation of the damage severity level (e.g., the images that are not
selected for the crowd query).

Given the above equation, we can clearly observe that the estimation of the
estimation parameter PI ktﬂ and P, ktﬂ (which is used to derive the assess-
ment reliability for each member M,, in the Al-crowd collaboration committee)
at the current timestep ¢+ 1 can be computed from their values PJ, kt and P, kt
from the previous timestep ¢t and the observed data in the new timestep t + 1
(i.e., Aﬁtﬂ, AEtH, and A2t+1). In addition, we observe that Zz.tj;l is unknown

and can be estimated by its approximation Zﬁl as follows:

t+1
Zt—‘rl ~ Zt-‘,];l _ Wn k X d (11)
i +1
Zk 1 Wik X dk
where Wﬁ: can be computed as follows:
t+1
QtH t\RE Q% r
t4+1 + u,k — Ry
Wn,k - H (( x Pu,k ) x (Qt X Pu,k )
=1 “k u,k (12)
QtH t " t\(1—R* ,—RF )
+ u,k - Ty T
x(1- XPle = ot xpu,k) )
u k u.k

In summary, the above recursive approach provides a dynamic solution for

learning the estimation parameter 6 of the crowd-AI MLE problem on the fly at
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each timestep using the estimation from the previous timestep and the images
from the current image sliding window. Finally, we can derive the assessment
reliability d5y, for each member M,, in M dynamically by plugging the updated
0:+1 to Equation (4) at each timestep. After obtaining the assessment relia-
bility score for each neural network architecture, we select the neural network
architecture with the highest assessment reliability score as the optimal neural
network architecture N* for the image that is about to be evicted from the
AFW as follows:
aulrgma:)c(SMqu7 where M, € {Ny, N, ..., Ng}

M (13)
set M, as N*™* for X;'*!

where X! represents the image that is about to be evicted from the AFW
at timestep t + 1. 0 MuHl represents the updated assessment reliability score
at timestep t + 1. In addition, the estimated damage severity L/N\’ * from the
optimal neural network architecture N** was taken as the final output of our
CD-NAS framework for image X;'*.

Finally, we summarize the CD-NAS framework in Algorithm 1. The inputs
to the CD-NAS are the set of streaming social media images X;. The outputs
are the dynamically identified optimal neural network architecture N** and the

estimated damage severity level LV generated by N** for each X;.

5. Evaluation

In this section, we evaluate the performance of the CD-NAS framework using
real-world streaming DDA applications from a real world disaster event. The
results show that CD-NAS consistently outperforms the state-of-the-art AT and
NAS baselines in terms of both damage assessment accuracy and computational

cost under various application scenarios.
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A

lgorithm 1 CD-NAS Framework Summary

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

1
2
3
4
5:
6
7
8
9

: initialize each N¢ in N (Definition 5)
: for each incoming X; (timestep t) do
obtain [Tt]?" for each N,
if t is a crowd query timestep based on frequency 8 then
add X; to Q (Definition 9)
obtain I;C\" from @
end if
if AFW is not full then
add X; to AFW
else
calculate Z; , using Equation (11)
calculate qu—,k and P, using Equation (10)
derive 6,7, using Equation (4)
for each N in M do
select M., with top ranked d57, (Equation (13))
end for
set My as N** for X; (X; to be evicted from AFW)
obtain L/]\F* using N** for X;
replace X; with X in AFW
end if
end for

output LN** for each X}

22



5.1. Dataset and Crowdsourcing Platform

Disaster Damage Assessment Dataset: In our evaluation, we used a
real-world dataset on disaster damage assessment collected by [7] !. In par-
ticular, the dataset consists of social media images collected over the course of
Typhoon Hagupit in Philippines (2014). The collected social media images have
diversified damage characteristics (e.g., flooding damage, buildings and infras-
tructure damage, and vehicle damage) as shown in Figure 1. In the dataset,
the ground-truth damage severity level of each social media image was manu-
ally classified by domain experts into three categories (i.e., severe damage, mild
damage, and no/minor damage). In particular, the distributions of different
damage severity levels in our dataset were as follows: severe damage: 11.2%;
mild damage: 42.2%; and no damage: 46.6%. We keep the ratio of training to
testing data as 3:1, the same as in [7]. The training dataset was used to train

all the compared AT models for disaster damage assessment.

Amazon Mechanical Turk Platform: To obtain the crowd intelligence, we
utilize Amazon Mechanical Turk (AMT) 2, one of the largest crowdsourcing
platforms that provides a large number of 24/7 freelance crowd workers to com-
plete assigned tasks with reasonable incentives. In each crowdsourcing task, we
ask the crowd workers to label the damage severity level of the image in the
query. To ensure the crowd label quality, we select the crowd workers who have
an overall task approval rate greater than 95% and have completed at least 1000
approved tasks to participate in our crowdsourcing tasks. We paid $0.20 for each
worker per image in our experiment. In our evaluation, we study a diversified
set of crowd query settings to create a challenging evaluation scenario for our
CD-NAS framework. In particular, we vary the number of participating crowd
workers who respond to each queried image (Definition 10) from 3 to 5 and vary

the crowd query frequency § (Definition 11) from 1/5 to 1/3.

Ihttps://crisisnlp.qcri.org/
2https://www.mturk. com/
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5.2. Baselines and FExperiment Settings

We compared CD-NAS with a set of representative deep neural network
(DNN) and neural architecture searching (NAS) baselines in streaming DDA

applications.
¢ DNN Baselines:

1. InceptationNet [45]: a popular deep learning model that accel-
erates the learning process of the DDA task through a convolution
factorization mechanism.

2. DenseNet [46]: a widely used deep neural network approach that
establishes dense connections among different network layers to boost
the DDA accuracy.

3. VGG [11]: A representative deep convolutional network framework
that utilizes recursive deep convolutional operations to ensure the

sufficient network depth for a desirable DDA performance.

e NAS Baselines:

1. NashNetLarge/Mobile [15]: A state-of-the-art NAS approach that
effectively refines the neural network architecture by introducing a
scheduled drop path mechanism. In addition to the standard ver-
sion of NashNet (NashNetLarge), we also consider the mobile version
of NashNet (NashNetMobile) which achieves a better trade-off be-
tween the NAS performance and computational efficiency in stream-
ing DDA applications.

2. Darts [16]: a representative NAS framework that introduces a differ-
entiable architecture representation to ensure an effective NAS pro-
cess.

3. MansNet [25]: A lightweight NAS approach to incorporate model
inference latency into the factorized hierarchical architecture search-

ing process via multi-objective reinforcement learning.
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To ensure a fair comparison, the inputs to all compared schemes were set to
be the same, which included: 1) the input social media images, 2) the ground
truth labels of images in the training dataset, and 3) the labeled images from
crowd workers. In particular, we retrained all compared baselines using the
labels returned by the crowd query to ensure a fair comparison. In addition,
we also consider the random baseline, which estimates the damage severity
for each image by randomly selecting a damage severity level from the possible
categories. In our system, we implemented our CD-NAS model using Tensorflow
2.0 3, and trained our model using the NVIDIA Quadro RTX 6000 GPU. In our
experiment, all hyperparameters were optimized using the Adam optimizer [47].
In particular, we set the learning rate to be 1075, We also set the batch size to
be 20, and the model was trained over 300 epochs.

To evaluate the performance of all compared schemes, we adopted three
metrics that are widely used to evaluate the performance of multi-class image
classification tasks in image processing: 1) FI-score, 2) Cohen’s kappa Score (K-
Score) [48], and Matthews correlation coefficient (MCC) [49]. We use K-Score
and MCC in our evaluation because we have an imbalanced dataset, and these
two metrics have been proven to be reliable for imbalanced data [50]. Higher

F1-score, K-Score, and MCC indicate better performance.

5.3. FEvaluation Results

5.3.1. DDA Classification Accuracy with Different Crowdsourcing Settings

In the first set of experiments, we studied the performance of all the com-
pared schemes with different crowdsourcing settings. First, we vary the crowd
query frequency (3 (Definition 11) from 1/5 to 1/3 for all compared schemes
(e.g., we periodically send every one out of three images in the data stream
when £ is 1/3 in crowd query) while fixing the number of participating crowd
workers B (Definition 10) to be 3. Second, we change the number of partici-

pating crowd workers B in the crowd query from three to five while fixing the

Shttps://wuw.tensorflow.org/
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crowd query frequency to be 1/3. We set the size of the Al-crowd fusion window
AFW (Definition 8) to be 40. The evaluation results are presented in Tables 2
and 3. We observed that our CD-NAS consistently outperformed all the com-
pared baselines in all experimental settings. For example, the performance gain
of CD-NAS compared to the best-performing baseline (i.e., DenseNet) when
the crowd query frequency 8 = 1/3 and B = 3 on F1-Score, K-Score, and
MCC are 5.76%, 7.48%, and 6.00%, respectively. The performance gains of
our scheme mainly come from the fact that it adaptively transfers the imper-
fect crowd intelligence to the optimal neural network selection for each image
through the dynamic crowd-Al MLE design. In addition, we further evaluated
the performance of our CD-NAS on additional settings of the two experimental
variables (i.e., crowd query frequency  and the crowd worker numbers B). We
also compared the performance of the CD-NAS with the best-performing base-
lines from the different categories (i.e., DenseNet for DNN baselines in Table 2
and Table 3, NasNetMobile for NAS baselines in Table 2 and NasNetLarge for
NAS baselines in Table 3). The results are shown in Figure 4 and Figure 5,
respectively. We observed that CD-NAS consistently outperformed the best-
performing baselines on different evaluation metrics for all evaluation settings.
Such evaluation results demonstrate the effectiveness of our scheme in leverag-
ing the imperfect crowd knowledge to dynamically identify the optimal neural
network architecture for each newly arrived image to provide accurate DDA

results across different experimental variable settings.

5.3.2. Computational Efficiency

In the second set of experiments, we compared the computational cost of
all the compared schemes (except the trivial random baseline) in the studied
streaming DDA application. We define the computational cost as the aver-
age computational time required to estimate the damage severity of an image.
To ensure a fair comparison, we evaluated all schemes using the same NVIDIA
Quadro RTX 6000 GPU. The evaluation results are presented in Tables 4 and 5,

respectively. We observe that our CD-NAS scheme takes orders of magnitude
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Table 2: DDA classification accuracy Comparisons (Varying Crowd Query Frequency)

[ ‘ g=1/5 B=1/4 g=1/3
Category Algorithm i MCC i r- MCC ) MCC
Score Score Score Score Score Score
Random | Random | 03201 00100 00118 || 03664 00681 00738 || 03416 00164 0.0175
| mceptionNet | 0.6319 03833 03834 | 06054 03646 03857 | 0.689 04785 04871
DNN | DemseNet | 07007 05092 05004 || 05684 03593 04131 || 06949 05030 05192
| vee | oesss oamo 04757 | 05670 03386 03711 || 06493 04250 04319
| NaSNetLarge | 06721 04473 04478 | 05573 03148 03410 | 06916 04904 05020
| NASNetMobile | 07231 05356 05367 | 0.6009 03884 04150 | 06496 04528 0.4637
NAS || DARTS | 05907 03208 03225 | 05506 02825 02084 || 0.6450 03040  0.3088
| MuasNet | 05600 02569 02596 | 0.6331 08705 03758 || 06183 03625  0.3033
Ours H CD-NAS ‘ 0.7471 0.5696 0.5701 H 0.7471 0.5696 0.5701 H 0.7525 0.5787 0.5792

Table 3: DDA classification

accuracy Comparisons (Varying Number of Crowd Workers)

B—3 B—14 B=5
Category | Algorithm Fl- MCC - MCC - MCC
Score Score Score Score Score Score
Random | Random | 03416 00164 00175 || 03614 00088 00000 || 03590 00314  0.0334
| meeptionNet | 06849 04785 04871 | 0.6819 04667 04688 || 06017 04803 04980
DNN | DenscNet | 0.6049 05030 05192 || 0.6861 04842 04939 || 07305 05541 0.5604
| vee | o693 04250 04319 | 06072 04174 04217 || 06013 04919 0.4975
| NasNetLarge | 06016 0.4904 05020 | 06915 0.4907 0.4943 | 07170 05316 05464
| NASNetMobile | 06496 04528 0.4637 | 0.6847 04767 04799 || 0.6004 04804 05070
| DaRTs | 0650 03010 03088 | 0.6507 04233 04230 | 06733 04410  0.4465
| MuasNet | 06183 03625 03033 | 0.6564 04160 04214 || 05010 03287 0.3613
Ours H CD-NAS ‘ 0.7525 0.5787 0.5792 H 0.7525 0.5787 0.5792 H 0.7579 0.5878 0.5883

less time to accomplish the DDA task compared to other

baselines under dif-

ferent evaluation settings. This is because the compared baselines require addi-

tional computational time to retrain their models to capture the dynamics of the

streaming data by leveraging the labels from crowd workers. In contrast, our

CD-NAS designs a recursive expectation maximization solution that estimates

the assessment reliability score of each neural network architecture on the fly

without requiring any additional network retraining. In addition, we evaluated
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the computational cost of our CD-NAS for additional crowdsourcing settings.
Similar to the performance comparison in Section 5.3.1, we compare the perfor-
mance of the CD-NAS with the best-performing baselines from each category in
Tables 2 and 3. The results are shown in Figure 6 and Figure 7. We observe that
our CD-NAS achieves a clear performance gain compared to the best-performing
baselines in all different settings, which further demonstrates the effectiveness
of the dynamic neural network architecture searching scheme in maintaining the

best DDA performance while maintaining the lowest computational time cost.
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0.7 0.5 0.5
0.6
205 w04 L 04
304 S03 go3
w03 %02 0.2
0.2
0.1 0.1 0.1
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1/7 1/6 1/5 1/4 1/3 1/2 1/7 1/6 1/5 1/4 1/3 1/2 1/7 1/6 1/5 1/4 1/3 1/2
B B B
M DenseNet M NASNetMobile  m DenseNet H NASNetMobile  ®m DenseNet m NASNetMobile
CD-NAS CD-NAS CD-NAS
(a) F1-Score (b) K-Score (c) MCC

Figure 4: Performance Comparisons between CD-NAS and Best-performing Baselines (Vary-

ing Crowd Query Frequency)
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Figure 5: Performance Comparisons between CD-NAS and Best-performing Baselines (Vary-

ing Number of Crowd Workers)
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Table 4: Computational Time Comparisons (Seconds) - Varying Crowd Query Frequency

Algorithm ‘ ‘ B=1/5 ‘ p=1/4 ‘ p=1/3
InceptionNet H 1.2542 1.4427 1.8782
DenseNet H 1.2891 1.5389 1.9914
VGG H 1.1466 1.3928 1.7735

NASNetMobile H 1.3917

NASNetLarge H 1.5198 ‘ 1.7942 ‘ 2.2076

DARTS H 0.3067 0.3329 0.3918
MnasNet H 0.7937 1.0152 1.1192
CD-NAS H 0.0195 0.0197 | 0.0203

Table 5: Computational Time Comparisons (Seconds) - Varying Number of Crowd Workers

Algorithm H B=3 ‘ B=4 B=5
InceptionNet H 1.8782 1.8773 1.8790
DenseNet H 1.9914 1.9842 1.9923
VGG H 1.7735 1.7768 1.7793

NASNetMobile H 2.0130

NASNetLarge H 2.2076 2.2084 2.2063
DARTS H 0.3918 0.3923 0.3945
MnasNet H 1.1192 1.1142 1.1154

CD-NAS H 0.0203 | 0.0198 0.0201

5.8.3. Robustness of CD-NAS Framework

In the third set of experiments, we study the robustness of the CD-NAS by
varying one key parameter in our design, that is, the size I of the Al-crowd
fusion window AFW (Definition 8). The evaluation results are presented in
Figure 8. Given the space limit, we only present the results of one representative
crowdsourcing setting (i.e., B = 3 and § = 1/3). The results for the other
scenarios are similar. We observe that the performance of CD-NAS is stable as
the size of the AFW changes, which demonstrates the robustness of CD-NAS

over the key parameter in our model design. The robustness study in Figure 8
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Figure 7: Computational Time Comparisons (Seconds) between CD-NAS and Best-performing
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demonstrates that our CD-NAS can achieve consistent DDA performance over
a reasonable range of different AFW sizes (i.e., between 25 and 55). The results
provide a window for users of our CD-NAS scheme to select the AFW size to
achieve a desirable DDA performance. In addition, we also note that the CD-
NAS buffers very few images in AFW when its size is too small, which often
leads to suboptimal classification results. On the other hand, CD-NAS can
buffer too many images in AFW when its size is too large, which often leads

to a significantly reduced computation time. The actual selection of the AFW
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size will largely depend on the tradeoff between the classification accuracy and
response time of the CD-NAS scheme that the users would like to achieve in a

particular DDA application.

1.0 m F1-Score mK-Score = MCC

0.0 || || || h || |I h
25 30 35 40 45 50 55

AFW Size

o o
a o

o
>

Metirc Value

o
N

Figure 8: Robustness of CD-NAS Framework

5.8.4. Convergence of CD-NAS Framework

In the last set of experiments, we study the convergence of our CD-NAS by
plotting the performance of CD-NAS over different timesteps in the social media
image stream (Definition 1). The results are presented in Figure 9. Similar
to the robustness study, we only show the performance for one representative
setting (i.e., B = 3 and 8 = 1/3) because of the space limit. The results
for the other scenarios are similar. Please note that we show the performance
of CD-NAS from the 20" timestep because our CD-NAS needs to explore the
imagery data at the first few timesteps to overcome the cold start problem of the
recursive EM algorithm. We observe that our CD-NAS can quickly boost the
assessment performance and remain stable afterward, suggesting its effectiveness
in recursively learning the optimal neural network architecture in the studied

application.

6. Conclusion

We presented a CD-NAS framework to address a crowd-driven dynamic NAS

problem and improve the QoS of streaming DDA applications. Our solution is
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Figure 9: Convergence of CD-NAS Framework

inspired by interdisciplinary techniques such as Al, crowdsourcing, and estima-
tion theory. Our results on a real-world streaming DDA application showed that
CD-NAS outperforms AT and NAS baselines in terms of both damage assessment
accuracy and computational cost. We believe that CD-NAS will provide useful
insights to explore the collective power of AI and crowd intelligence in a rich
set of Al-driven streaming applications (e.g., disaster response, truth discovery,

intelligent transportation).
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