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Abstract

Phase field models for ductile fracture have gained significant attention in the last two decades due to their ability in
implicitly tracking the nucleation and propagation of cracks. However, most crack phase field formulations for elastoplastic
solids focus only on the effects of plastic deformation, and do not consider the different multi-axial stress states that may arise
in practical designs. In this work, a thermodynamically consistent phase field approach coupled with finite strain plasticity,
considering multi-axial stress states is presented. In order to account for the coupling between plasticity and stress states,
the Stress-Weighted Ductile Fracture Model (SWDFM) is utilized. The SWDFM represents a criterion for predicting ductile
crack initiation under both monotonic and cyclic loadings based on histories of an internal plastic variable, stress triaxiality,
and the Lode angle parameter. The excellent performance of the SWDFM for predicting ductile crack initiation motivates
for its incorporation into a phase field approach for predicting both crack initiation and propagation through degradation of
the fracture toughness. Moreover, based on the second law of thermodynamics, exact requirements are imposed on the rate
at which the fracture toughness can evolve. A novel function for degrading the plastic yield surface during the evolution of
damage is introduced. This function, in line with experimental observations, leads to an accumulation of plastic deformation
in damaged regions of a solid, and avoids numerical instabilities arising from concentrations of large plastic deformations in
severely damaged regions. For validating the proposed model, results of computational simulations are compared to data from
selected tests considering different multi-axial stress states. Comparisons of the numerical results with data from laboratory
experiments demonstrate the capabilities of the proposed framework.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Ductile fracture in solids is one of the most common failure mechanisms, and its study is of great importance in
engineering applications for predicting the load capacity, and for preventing crack-induced failure. The investigation
of fracture dates back to the seminal work of Griffith [1] studying brittle fracture of materials, who stated that a
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crack originates in a solid when the amount of stored strain energy reaches a critical value known as the energy
release rate or fracture toughness, reflecting the amount of energy required to create a unit area of crack surface.
Unlike brittle fracture, which usually occurs abruptly and at small deformations, ductile fracture exhibits a more
involved behavior before cracking such as considerable plastic dissipation, hardening, and necking, which causes
failure to occur at relatively large strains. As a result, the prediction of failure mechanisms due to crack initiation
and propagation in elastoplastic solids is a challenging task.

Among many methods, the phase field approach to fracture, a smeared crack modeling technique, has gained
significant attention in the last two decades. The phase field approach originated in the mechanics community
based on a variational formulation of brittle fracture by Francfort and Marigo [2], and was later employed for
numerical solutions by Bourdin et al. [3]. The phase field approach implicitly tracks the propagation of a crack
through the evolution of an order parameter (the crack phase field) that transitions smoothly between sound and
fully cracked material points. As a result, unlike for discrete crack models where displacement jumps are introduced
in the kinematical description [4-9], the tedious task of tracking the crack surface is avoided.

Following the concepts of fracture mechanics, Miehe et al. [10,11] proposed a gradient damage theory based
on a geometrical approximation of the crack surface, leading to a thermodynamically consistent approach to phase
field fracture combined with an irreversibility constraint for the order parameter. In addition, Miehe et al. [11],
based on the spectral decomposition of the strain tensor, introduced a mechanism for distinguishing crack response
under tensile and compressive forces. To capture an asymmetric fracture response in tension and compression and
to avoid crack interpenetration, Amor et al. [12] also used a form of spherical and deviatoric decomposition of
the strain energy. Borden et al. [13], Bourdin et al. [14], Remacle et al. [15], and Geelen et al. [16] extended the
phase field model to represent fracture in dynamic conditions, and they showed its capability in modeling crack
branching without a need for ad hoc criteria. Miehe and Schinzel [17], Talamini et al. [18], and Swamynathan et al.
[19] outlined a phase field framework for modeling fracture in polymers. Phase field models for brittle fracture of
shells were proposed by Reinoso et al. [20] and Kiendl et al. [21]. To study the failure mechanism of geological
materials, Choo and Sun [22] suggested a phase field model considering the effects of confining pressure and strain
rate, and Zhou et al. [23] presented a new formulation for compressive-shear fracture in brittle rock-like materials.
Multi-physics phase field formulations were proposed by Zhang et al. [24] for modeling fracture in silicon electrodes,
and by Cheng et al. [25] for capturing crack patterns induced by thermal spalling in concrete. Recently, Wu et al.
[26] provided an extensive overview of the available phase field formulations for fracture in both quasi-static and
dynamic conditions.

For modeling ductile fracture, different phase field frameworks for elastoplastic materials have been pro-
posed. Borden et al. [27] developed a finite strain ductile phase field formulation based on micro-force balance
laws. In their formulation, the plastic yield surface is degraded with the ongoing evolution of fracture, leading to an
accumulation of plastic deformation while avoiding nonphysical elastic deformation in damaged regions of a solid.
Furthermore, in order to avoid damage accumulation at small plastic deformations, they assumed that the plastic
strain energy acts as an additional crack driving force once it exceeds a threshold value. Most recently, Li et al.
[28] revisited the same concept. However, in their formulation the energy threshold value is not constant, rather it
evolves with the stress and strain state inside the body. Ambati et al. [29,30] related the evolution of fracture to
plasticity by degrading the toughness of material points exhibiting large plastic deformations, a concept that is in
line with experimental observations. Yin and Kaliske [31] associated the growth of damage to the evolution of a
plastic strain measure, assuming that the local fracture toughness decreases due to increasing plastic deformations.
A similar concept was also extended to the geometrically nonlinear setting by Han et al. [32], where in addition to
the degradation of the fracture toughness, the plastic strain energy drives the evolution of cracks. Recently, Alessi
et al. [33] compared selected available ductile phase field models and investigated the coupling between plasticity
and the phase field evolution.

For many materials exhibiting ductile fracture, the occurring large deformations as well as the localization of
deformations invalidate the assumption of the small strain theory. Hence, the proper kinematical description of
deformations demands for a formulation in the geometrical exact regime. However, compared to formulations
in the small strain regime, few approaches for ductile phase field fracture under finite deformation have been
proposed. As pointed out, Ambati et al. [30], Borden et al. [27], and Han et al. [32] have extended the ductile phase
field framework to a finite deformation setting. Furthermore, Miehe et al. [34] incorporated a thermodynamically
consistent framework of ductile phase field fracture into a formulation of gradient thermo-plasticity in the finite
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deformation regime. In their work, the crack driving forces are based on the mass specific elastic and plastic works,
and barrier functions are defined to hinder the evolution of damage at low levels of elastic and plastic deformations.
Aldakheel et al. [35] combined an elastoplastic constitutive model for porous media with a phase field approach for
finite strain deformations, and showed the capabilities of the proposed method in capturing experimentally observed
cup-cone failure mechanisms.

It is well understood that ductile fracture in elastoplastic materials, especially in metals, happens at micro-
level where nucleation of small defects such as micro-cracks and micro-voids, concentrated mostly in regions with
large plastic deformations, initiates the crack formation. Micro-voids grow and coalesce to form larger voids, and
consequently realize their effects at the macro-scale, leading to a loss of stiffness and finally rupture [36,37]. In
addition to the amount of plastic deformation, the mechanism of micro-void growth is affected to a great extent
by the multi-axial stress state inside the body. McClintock [38] and Rice and Tracey [39] highlighted the influence
of the hydrostatic stress component on the ductile behavior of metals through theoretical studies of growth of
voids embedded in plastically deforming solids. Following a continuum damage model, Lemaitre [40] and La Rosa
et al. [41] observed that fracture criteria should depend on the hydrostatic stress. Experiments done by Norris et al.
[42], Oyane et al. [43], and Bao and Wierzbicki [44] also indicated the critical importance of the level of hydrostatic
stress in changing the mechanism of fracture. Accordingly, in order to accurately capture the ductile fracture of
materials, models should consider a coupling between the macroscopic stress state, the plastic deformation, and the
evolution of damage. However, in contrast to these findings, except for a few models [27,28,35,45], most ductile
phase field formulations focus only on the effects of plastic deformation, while they do not consider different
multi-axial stress states that may arise in practical designs.

On the other hand, independently of phase field crack developments, many continuum ductile fracture models
provide an estimate for the local initiation of fracture by linking the damage evolution to both plasticity and the
stress state [46—49]. In these models, a damage field variable calculated based on the stress and strain histories
counts towards the inception of cracks. Johnson and Cook [50] introduced a damage model depending on the strain
rate, the temperature, and the pressure, and they concluded that fracture is heavily influenced by the hydrostatic
pressure compared to the other two factors. Following the work of Gurson [51], Tvergaard and Needleman [36]
proposed a model coupling the evolution of damage to plasticity and the stress state through void growth. Despite
offering a connection between the evolution of damage, plasticity and the stress intensity, most of the prior studies
were concerned with a limited range of the stress and strain states, and loading conditions. To overcome this
shortcoming, most recently and based on previous work of Smith et al. [52], the Stress-Weighted Ductile Fracture
Model (SWDFM) [53] was proposed. The SWDFM represents a criterion for predicting ductile crack initiation
based on the mechanism of micro-void growth and coalescence under both monotonic and cyclic loadings. In this
model, a damage quantity, which is calculated based on histories of plastic strain and stress, signals the inception of
fracture once its value attains a critical limit. Unlike prior continuum damage models, the SWDFM was validated
against experimental results with large plastic strains, considering multi-axial stress conditions [53,54].

The excellent performance of the SWDFM for predicting ductile crack initiation alongside its micro-mechanically
based formulation motivates for a combination with the phase field method for predicting the propagation of cracks.
This is the focus of this work. We present a phase field approach to ductile fracture based on the SWDFM accounting
for different types of multi-axial stress states and large inelastic deformations, formulated in a geometrically exact
setting. To this end, we follow a micro-mechanically motivated approach, deriving all governing equations from
micro-force balance laws alongside the first and second laws of thermodynamics within the finite strain regime.
The SWDFM initiation criterion is incorporated into the model for predicting both crack initiation and propagation
through the degradation of the resistance to ductile fracture in line with previous studies [31,32,55,56]. From the
second law of thermodynamics, and based on the dissipation inequality, restrictions are imposed on the rate at which
the fracture toughness can evolve.

We start our investigation in Section 2, describing the finite strain kinematics, the phase field approximation
to fracture, and the derivation of the balance laws of the governing equations in terms of a general potential
functional. The hyperelastic—plastic constitutive model specific to this work, governing the stress and the fracture
responses of a solid, is presented in Section 3. The degradation of the fracture toughness, and its coupling to the
SWDFM are also investigated in this Section. The strong and weak forms of the governing equations and the
finite element implementation are shown in Section 4. Section 5 contains a representative numerical study of tests
considering different multi-axial stress states, including a comparison of the numerical results with data from real
world experiments. Finally, Section 6 concludes with a summary.
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X3, x3

Fig. 1. Finite deformation of a solid with a discontinuity. The body at time ¢+ C RT undergoes a deformation ¢(X,t), which maps the
reference material point X € Vj, onto the current material point x € V such that x = ¢(X, ).

2. Framework

2.1. Finite strain kinematics

The reference configuration of a body of interest with an internal discontinuity boundary &, is denoted by
Vo € R" and its surface with Ag C R™~!, with nd € {2, 3} as the spatial dimension. The corresponding current
configuration is shown by V C R™ with the discontinuity S and surface A C R™~!. The position vectors at the
reference and current configurations are denoted by X and x, respectively. The body in time interval of [0, 1] C Rt
undergoes a deformation ¢(X, ) : Vo x [0, ] — R™ which maps the reference material points (X € V) onto the
current material points (x € V) such that x = ¢(X, t), as visualized in Fig. 1. We denote derivatives with respect
to the reference frame as

d d
(o) x = ﬁ(.) and Div(e) = X (o), (1)
and derivatives with respect to the coordinates in the spatial configuration as
a 0
(0)x = —(o) and div(e) = — - (). 2)
ax 0x

Furthermore, c%(°) = (;) denotes the material time derivative. We also recall the definition of the deformation
gradient as F = ¢ x(X,t), with its determinant J := det(F) > 0 known as the Jacobian of transformation.
Furthermore, for an elastoplastic response we assume the existence of an intermediate, in general incompatible,
stress-free configuration, which leads to a local multiplicative decomposition of the deformation gradient [57,58]
into an elastic F° part and a plastic FP part as

F = F°F". 3)
We define the elastic Eulerian logarithmic strain tensor

e’ = %ln (be) . @)

In this equation, b° = F°F T is the elastic left Cauchy—Green strain tensor, whose Lie derivative is defined as

Lo,bS =b° —1b° — b°I" 5)



S. Abrari Vajari, M. Neuner, PK. Arunachala et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115467

l sharp crack diffused crack
Aoy

Fig. 2. Reference configuration of a solid with a sharp crack surface Sp, and its regularized approximation using the phase field parameter
d. The length scale parameter / controls the length over which the crack is diffused.

with the help of the spatial velocity gradient I = FF~'. Furthermore, we decompose I into its symmetric and
skew-symmetric parts as

D=sym)=1(+1") and w=skewd®)=1(-1"), (©6)

with D denoting the rate of deformation tensor, and @ denoting the spin tensor.
We describe the behavior of the fracturing solid by the displacement field # := x — X defined on the set

u(X) € {ulu(X)=uvX € Ay} (7)

The surface Ag is decomposed into Ag, and Ag, where the displacement field satisfies the Dirichlet boundary
conditions on Ag, with given values of #, and the Neumann-type boundary conditions defined over Ag with
prescribed values of the traction. Dirichlet and Neumann boundary conditions are also defined over A, and A¢
in the deformed configuration as depicted in Fig. 1.

2.2. Phase field approximation

To study the evolution of a crack inside a solid, we introduce the time-dependent crack phase field d, illustrated
in Fig. 2, which distinguishes between an intact (d = 0) versus a fully damaged (d = 1) material point and is
defined on the set

d(X) € {d]d(X) € [0, 11, d(X) = OVX € V). (8)

The condition d(X) > 0 follows physical considerations, and it guarantees that internal discontinuities evolve
in an irreversible manner [11]. Accounting for reversibility might be required under special circumstances such
as cyclic loadings or for brittle materials that can retain their full strength even after experiencing loads close to
failure limits [59]. However, since in this initial study we are concerned with ductile behavior of materials under
monotonic loadings, the crack irreversibility is a logical assumption.

Next, following [60] we approximate the energy required to create a diffusive fracture surface as

/ G.dS, %/ G.ydVy )
So Vo

with the help of G, the critical fracture energy per unit area in the reference configuration. Moreover, the crack
surface density per unit reference volume function y [10,11], depending on the crack phase field and its gradient,
is defined as

1 /1
yd,dx;]) = - <7F(d) +1ld x 'd,x) . (10)
0

Therein, I'(d) is the geometric crack function, which characterizes the homogeneous and local evolution of the
crack phase field [61], and [ is a regularization parameter, known as the phase field length scale parameter which

5



S. Abrari Vajari, M. Neuner, PK. Arunachala et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115467

controls the diffusive crack width. Furthermore, ¢y = 4 fol VI'(d)dd is the scaling parameter introduced such that
the sharp crack surface is recovered for a vanishing length scale parameter, i.e.,

[—0

lim [ G.ydvy = / G. dSe. (11
Vo So

In this work, we follow the geometrical approximation of a crack surface shown in [10] and assume a crack surface
density function in the form

1
yd.dyx;)=1 (7612 +ld x 'd,X> . (12)

As shown later on, this definition of the crack surface density leads to a strong form of the governing equation
involving second-order derivatives of d. Hence, models employing this form of y are known as second-order phase
field theories [62].

2.3. Balance laws

Since the process of material degradation is governed by physical mechanisms at the micro level, where micro-
forces cause the evolution of micro-voids, we formulate the (quasi-static) balance laws for micro-forces alongside
the first and second laws of thermodynamics following [63,64]. We start with the balance laws derived in the
reference configuration V, with boundary Ag. The derivation of these laws in the deformed configuration V can be
done in a similar manner. It is worth mentioning that although the equations are derived over V;, they can also be
derived for any subset Py C Vj, as shown in [27].

Balance of mass. Assuming that mass of the system is conserved at all times, the balance of mass in its local form
in the reference configuration is

,[)0 =0 in V(). (13)

Therein, py is the mass density per unit reference volume. Defining p := J~!py as the mass density per unit current
volume, the local balance of mass in the current configuration is stated as

o+ pdive)=0 inV. (14)
Balance of linear momentum. The balance of linear momentum in the reference configuration is written as

d

dr Jy, Vo Ao

with Ty = PN denoting the traction force acting on the surface of the reference configuration. In this equation,
P is the first Piola—Kirchhoff stress tensor, N is the outward unit normal vector at the boundary of the reference
configuration, and B is the body force per unit volume of the reference configuration. Writing the equation in the
current configuration, the local form leads to

divie)+J 'B=pii inV (16)
with 0 = %PF T denoting the Cauchy stress tensor.

Balance of angular momentum. The balance of momentum of momentum in the reference configuration is expressed
as

d

— Xxpoz'th():/ X xBdVy+ | X x PNdA)g— PF'=FP' inV,. (17)
d Vo Yo Ag

Similarly, the balance of angular momentum in the deformed configuration leads to the symmetry of the Cauchy

stress tensors, i.e.,

6=0" inV. (18)

Micro-force balance law. For the micro-force balance law, we assume that the phase field is characterized by an
intrinsic micro-force 7 (X, t), and an extrinsic micro-force acting on the body 4 (X, ¢). Furthermore, we assume the
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existence of a micro-force traction vector (X, ¢), such that & - N is the external micro-force acting on the surface
of the body Ajy. We then get the micro-force balance law in the reference configuration as

$~NdAo+/

tho—i—/ 7dVy=0—DivE +h+7 =0 in V. (19)
Vo Vo

Ao

First law of thermodynamics. Restricting the discussion to the adiabatic and isothermal case, the energy balance is

written as
d

5 B-udv0+/ PN -udAy + (§~N)ddA0+f hddVy, (20)
Vo

(3008 - it + poeo) dVo = /
Ag Aoy Vo

Vo
with e, denoting the internal energy per unit reference mass and d as the rate-of-work conjugate to the micro-forces.
Complementing this equation with (13), (15), (17), (19), and by using the divergence theorem for the boundary
terms, the equation in the reference configuration is transformed to

/ poéodvoz/ P:FdVo+/ g-d,xdvo—/ wd dv, (1)
Vo Vo Vo Vo
which in the local form becomes

,Ooé():PZF—i-g'dqx—ﬂd in Vj. 22)

Second law of thermodynamics. With 0 as the absolute temperature of the system, sy the referential entropy per
unit mass, r the heat source per unit reference mass, and ¢ the heat flux in the reference configuration, the second
law of thermodynamics is stated as

d r - N
— | posodVp = / o dVp —/ = dAy, (23)
dt Vo Vo 9 Ag 0
where again by using the divergence theorem for the boundary term the local form follows as
. . q-0x .
oS08 > por — Divg + v i V. (24)

For isothermal and adiabatic processes, i.e., assuming » =0, ¢ = 0, and 6 x = 0, the local form of the second law
transforms into

posof >0 in V. (25)
Next, the Helmholtz free energy v is introduced by means of the Legendre-transformation

ey = + 6Osp. (26)
Taking 6 = 0 and putting (26) back into (25), while utilizing (22), we get to

P:F+&-dy—mnd—pyyr >0 inVp, (27)

which can be similarly expressed as
1:D+E-dx—nd—poy =0 inV, (28)

in terms of the Kirchhoff stress tensor T = P FT. We assume a stored energy functional of the form

&= U(c)dVy 29)
Yo
with ¥(c) = poy(c). Here ¢ = {e° o, d,d x, G.} is the set of constitutive state variables, with the Eulerian
logarithmic strain tensor €° as one of the state variables. As shown later on, this choice alongside the use of « as the
scalar internal plastic variable is two-fold: First it allows for use of the well-established volumetric and deviatoric
decomposition of the elastic strain energy, a concept that has been used widely in the small strain regime, and
second, it facilitates a straightforward extension of small strain plasticity models to the finite strain regime. Finally,
G, is considered as a variable to reflect the evolution of the fracture toughness.
The material time derivative of the internal energy is obtained as

Ay S L L LA L, (30)
: —a+ — —_— —0G..
ab° do | ad ' adx FT9G.

7

povr (e, a.d,dx, G,) = W =
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Using (5) and after some simpliﬁcations, this time derivative reduces to
. oV oV ov . v . ov .
U= : L,b° 2 be A+ —a+—d+—-d G.. 31
9b° R T R P R VR TN G

Combination with (28) yields

ov ov ov ov .
- be D+ (-1 — —)d + —)-dyx— cLb— —a— —G. >0, 32
(t abe )i DA (-7 — —)d + (6 - ) X =g L 3 36,02 (32
and employing the Coleman—Noll procedure [65] results in
) ov b ov £ ov (33
T = , T=——), = —.
ab° ad ad x )
For the Kirchhoff stress, this reduces to (see [66] for reference)
ov 0¥ 3lnd° ov
=2—b° = ——=b° = . 34
FTTT T hec ab T e G
With these equations, we define the reduced total dissipation functional as
ov .
D :=1DP— G.>0. (35)
G.
In this equation, DP is the plastic dissipation defined as
'
DP = — : L,b° — Ad 36
Py a (36)

where we have introduced the thermodynamical force A = % conjugate to «. After some straightforward

manipulations, the plastic dissipation can be expressed in terms of the Kirchhoff stress as

DP =1 : (—3L,6%) ()" — Ad. (37)

3. Constitutive relations

We propose the Helmholtz free energy function with a general form
poyr (e, a,d, dx, G.) = W = g(d) U5 (&%) + ¥ (%) + ¥P(a) + ¥'(d,d x, G.) (38)

depending on the set of state variables ¢ = {&°, @, d,dx, G.}. Therein, ¥ and W are the positive and
negative elastic strain energies following the volumetric and deviatoric decomposition of [12] defined to capture the
asymmetric fracture response in tension and compression. In this work we use

U (e) = ti(tre®)] + pel,, : €5, and  UC(e%) = ik (tre®)? (39)

where the bulk modulus « and the shear modulus p are materials parameters related to the Young’s modulus E,
and the Poisson’s ratio v through

__£ R — 40
3o M AT aaey “

The deviatoric part of a second order tensor with I as the identity tensor is given as (e)gey, = dev(e) = (o) — %tr (o)1,
and positive and negative bracket operations are defined for any real number as
et |e]

T
The degradation function g(d) is employed for representing the loss of stiffness at the macroscopic level and the
change of stress responses with evolution of damage [67]. The degradation function is a monotonically decreasing
function, and it satisfies the properties

(o)+ = @1)

0g

d=0=1, gd=1)=0, -2
8( ) 8( ) 2|,

=0. (42)



S. Abrari Vajari, M. Neuner, PK. Arunachala et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115467

The first two conditions include the limit states for unbroken and fully cracked stages. The last property also ensures
that as d — 1 the crack driving force attains an ultimate value [68]. In this work we employ a degradation function
of the form

g(d) = (1 —a)? (43)

where a small positive value (* 107*) is added to the function to circumvent the full degradation of Ue as well as
ill posedness of equations at a fully broken stage [11,59,69]. Moreover, in this form 2—5 at d = 0 is non-zero, as if
that was not the case a uniform phase field of d = 0 would satisfy the governing equations for any state of strain
and crack nucleation would never occur.

For the plastic strain energy we propose an exponential form

1
(o) = Qosler + E(CXP(—ba) — DI, (44)

where Q. and b are two material parameters defining the plastic behavior of the solid, fitted based on experimental
data.
For the crack surface energy we follow the geometrical approximation introduced earlier to the form

v'd,dx,G.) = G.y(d,dx). (45)

For brittle fracture, G, is commonly taken as a constant material parameter, independent of the loading conditions.
In this work for ductile fracture, however, it is assumed that G, degrades as a result of the stress and the
inelastic strain induced in the material by the external loading. Similar ideas have been used for fatigue crack
modeling [70], as well as alternative approaches for ductile fracture [31,32,55,56]. In ductile models, the degradation
of G, establishes a mechanism between plasticity and fracture, assuming that the evolution of a plastic strain
measure degrades the crack resisting force through reduction of G., and hence, damage concentrates in regions
with high values of plastic deformations. However, most phase field formulations focus only on the effects of
plastic deformation, and do not consider the wide range of multi-axial stress states that a solid might experience.
Accordingly, we propose a fracture toughness degradation function F, governing the evolution of G. in the form

G.=FGY, (46)

in which G? is a material constant reflecting the initial crack resistance. The exact form of F related to the history
of a material and state of stress and strain will be determined in the next section. However, based on physical
considerations we assume that

0<F=1, (47)

i.e., the fracture toughness G, cannot exceed its initial value G, and it cannot take nonphysical negative values.
Furthermore, considering (35) and requiring that both dissipative parts should be greater or equal to zero, we
write

M 0 (48)
3G, ‘T
Based on the defined energy functional % = ‘5—({{; = y, which is always a positive value, (48) boils down to
G, <0. (49)

This condition puts another restriction on the toughness degradation function and requires it to be non-increasing,
ie.,

F<o. (50)

This condition states that fracture toughness can only degrade over time (or at most stay constant) and no healing
can take place. This is also in line with the physical requirement that cracks do not heal (i.e., d > 0). It is worth
mentioning that although this property arises from formulating (35) in a too restrictive manner, since in this work
we are dealing with monotonic loadings, (50) is a reasonable assumption.
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3.1. Plastic constitutive model

For the proposed model, a plasticity model with purely isotropic hardening, purely kinematic hardening, or a
combination of the two can be used. However, since in this work we are concerned with behavior of materials under
monotonic loadings, an associative isotropic elastoplastic constitutive model based on the von Mises flow theory
with exponential isotropic hardening is employed. We assume isochoric plastic deformation, i.e.,

det(FP) = 1. 51
The yield function is defined as

Bz, A) = ldev(r)l - (@) 2o + A] (52)
Following the specific form of the elastic strain energy (39) for the Kirchhoff stress tensor (34), (52) reduces to

D1, A) = g@2u5 )| - 2@y [w+ 4] (53)

Therein, material parameter Tty is the initial yield stress, and g¥(d) is the yield surface degradation function with
the same properties as g(d) defined in (42). The degradation of the yield surface leads to an accumulation of plastic
strain in damaged regions (i.e., material points with d > 0) while nonphysical elastic deformations are avoided,
which is in line with experimental results as discussed in [27,32]. In addition, this yield surface degradation follows
other continuum damage models that incorporate the accumulation of damage into the constitutive response such
as Gurson’s void growth model [51], in which the evolution of damage induces a shrinkage of the yield surface.

However, a degrading yield surface might lead to numerical difficulties. Han et al. [32] mentioned that in order to
maintain computational stability for material points with value of d close to 1, the evolution of plastic deformation
should be terminated, since otherwise the model may experience huge amounts of plastic deformation concentrated
in severely damaged parts. As a result, to overcome this issue we propose a yield surface degradation function of
the form

g (d) = (1 - gl)(1 —d)* + g%, (54)

with ggo denoting a residual value. For small values of d, g¥(d) & g(d) as a result of which both the stress tensor and
the plastic yield surface degrade at a similar rate. Therefore, for a yielding material point, the stress state remains
on the yield surface and plastic deformation will accumulate. On the other hand, for material points characterized
by large values of d, g leads to g¥(d) > g(d) which results in a slower degradation of the plastic yield surface
compared to the degradation of the stress tensor based on g(d). Consequently, for severely damaged regions the
stress state moves back inside the yield surface, thus limiting future plastic deformation.

Remark 1. Choosing g2 = 1 results in g¥(d) = 1, as used in [29-31], where the plastic yield surface is not
degraded with the evolution of damage and material points may undergo elastic unloading. In contrast, setting
ggo = 0 results in the same function as the degrading function, i.e., g¥(d) = g(d), and thereby reduces the
formulation to a plastic yield surface used in [27,71], which may cause excessive plastic deformation to concentrate
in severely damaged regions. To overcome these issues, in this work a value of g3, = 0.8 is used which gives
reasonable results and helps to avoid numerical difficulties.

For describing the evolution of the plastic deformation and the internal variable, and in order to ensure a positive
plastic dissipation (36), in line with the restrictive requirement on the dissipation functional (35), the principle of
maximum plastic dissipation is employed. Following this principle, a Lagrange functional of the form

Lo=1:(3L,6°) ()" + Adq + ig (55)

is defined, where A is a plastic Lagrange multiplier enforcing the elastic region ¢(r, A) < 0. The necessary
conditions of this stationary principle results in the flow rule

. 0¢
1 e ey—1
—1r.b%) (b = A— 56
(=3 ) (&%) Py (56)
as well as the evolution equation of the plastic internal variable
. 0¢p
¥ = —A— 57
o 9 A (37
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and the so-called loading—unloading conditions (Karush—Kuhn—Tucker conditions)

A>0, ¢$<0, ip=0 (58)
for the plastic multiplier A. By considering plastic isotropy [72,73], zero plastic spin is assumed in the form

o = skew (F°(F?)") =0 (59)
and after simplifications, the flow rule (56) can be expressed as

FP(FP)™! = iReTg—‘fRe, (60)
where we have used the polar decomposition

F¢ =R°U* (61)

with R® as the elastic rotation tensor and U® as the elastic right stretch tensor.
3.2. Degradation of the fracture toughness: Stress-weighted ductile fracture model

A realistic description of ductile fracture requires a close coupling between macro and micro level phenomena,
and should account for the stress state as well as plastic strain intensity. Accordingly, this section covers a micro-
mechanically motivated criterion based on the history of stress and strain states for ductile crack initiation and its
incorporation into the phase field model for predicting both crack initiation and advancement.

3.2.1. Fracture initiation criterion based on the stress-weighted ductile fracture model

The Stress-Weighted Ductile Fracture Model (SWDFM) [53], an uncoupled damage formulation [46,47], is
incorporated into the phase field framework. Uncoupled damage models provide an estimate for the local initiation
of fracture by driving the damage evolution with stress and strain states [38,39,44], where a damage field variable
signals the inception of a crack when its value exceeds a critical limit. However, in these models the evolution of
the damage variable is uncoupled from constitutive response of the material, and hence these models do not account
for deterioration of stiffness with evolution of damage.

Similar to other uncoupled damage methods, in SWDFM a damage quantity, Dswpgm, is calculated based on
histories of plastic strain and stress, and its rate form is given as

Dsworm = f(I1, Ja, J3, @). (62)

In this equation I} = tr(t) is the first invariant of the Kirchhoff stress tensor, J, = %tr (Tﬁev) is the second invariant
of the deviatoric part of the Kirchhoff stress tensor, J3 = det(T4ey) is the third invariant of the deviatoric part of
the Kirchhoff stress tensor, and « is the rate of the plastic internal variable. For SWDFM, this dependency on the
invariants is expressed using the stress triaxiality and the Lode angle parameter. The stress triaxiality 7 is defined
as

Tm

V35

with 7, = %I 1 as the hydrostatic Kirchhoff stress. The Lode angle parameter ¢ is related to the Lode angle 6, and
is defined as

T = (63)

335

{ = COS(S@) = W (64)
The Lode angle parameter is in the range —1 < ¢ < 1, and it distinguishes between the type of stress states,
e.g., axisymmetric tensile (¢ = 1), axisymmetric compressive ({ = —1), or pure shear (¢ = 0) states.

With these quantities, similar to the analytical formulation of Rice and Tracey [39], and following the work
of Smith et al. [52], specific form of the SWDFM is written as

1
f(T,¢,a)=C <|:exp(1.3T) — gexp(—1.3T)i| exp(K(|¢] — 1))) a. (65)
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Parameters C, B, and C are material constants, which are calibrated based on experimental tests [54]. Parameter
C is inversely related to deformation capacity of the body, where a higher value causes the damage to grow faster.
The term involving B, distinguishes between void growth and shrinkage rates, where B > 1 biases the damage rate
towards positive levels of stress triaxiality. This parameter is also used to model the response of the material under
cyclic loadings [53]. The parameter K reflects the influence of the Lode angle parameter and can take positive or
negative values.

Finally, using (65) the damage quantity is defined in the form

Dswprm = C /a <|:exp(1.3T) - %exp(—l.ST):| exp(K(|¢| — l))) da <1 (66)
0

which indicates the initiation of a crack as soon as Dswprm = 1.

3.2.2. Combination of the stress-weighted ductile fracture and phase field models

For the proposed framework, G, is assumed to be a non-constant property, depending on the loading conditions
and the stress—strain history of the material. Similar concepts have been used in the literature [31,32,55,56]; however,
they mostly concentrate on the effects of plastic deformations, and do not account for stress triaxiality and the Lode
angle parameter. To account for the latter, we incorporate the SWDFM approach in (46) for degrading the fracture
resistance, and propose a fracture degradation function of the form

F = (1 — Foo)(1 — Dswprm)* + Foo (67)

where similar to the degradation function, a residual positive value F, (*107") is used to avoid numerical
difficulties arising from full degradation of the fracture toughness.

This approach has several advantages: (i) through degradation of fracture toughness damage concentrates in
regions with high values of Dswppm @ quantity that takes into account plastic deformation, stress triaxiality and the
Lode angle parameter. As a result, evolution of damage is coupled with evolution of stress—strain states; (ii) the
use of the SWDFM in context of the phase field formulation allows the transformation of the uncoupled SWDFM
criterion to a more realistic coupled formulation where evolution of damage affects the constitutive response of the
material through degradation of stiffness and shrinkage of the plastic yield surface; (iii) this proposition allows the
use of the SWDFM originally developed as a criterion for ductile crack initiation, as a method for predicting crack
inception and propagation.

Due to the integration of the SWDFM and the phase field model into a coupled framework, the material
parameters C, B3, and KC are in general different from those reported for the uncoupled SWDFM in [54,74,75].
However, for the calibration process, a similar procedure as discussed in [54] can be used. Accordingly, first a
loading condition with ¢ = 1 is studied using an axisymmetric specimen loaded in monotonic tension. Given high
level of stress triaxiality, even for B # 1, (exp(1.3T) — %exp(—lﬁT)) ~ exp(1.3T). Consequently parameter C
can be adjusted independently based on the point of fracture identified by the sudden drop in the measured load—
displacement curve. Under cyclic loadings, parameter B can be identified, and a third test with an intermediate
value of the Lode angle parameter may be used to calibrate K. However, since in this work we are concerned with
monotonic loadings, in line with [53], a value of B = 2 is used throughout this work. Furthermore, as shown in
Section 5 we use a value of K = 0.5 for all the examples, which is again in line with the value reported in [53]
based on experimental tests. As a result, two out of the three parameters required for the SWDFM are assumed
fixed in this work, which as discussed in [53], renders the proposed model to be significantly easier to calibrate and

apply.

Remark 2. In the present work, the value of G?. is chosen such that the numerical results match the test data in
capturing the experimental peak load. The first reason for this is that the geometrical approximation of the crack
surface (9) alongside the length scale parameter [, cause the crack resistance parameter G(C) to be different from
the so called Griffith energy release rate determined commonly from experiments. Secondly, introduction of the
SWDFM into the evolution of G, couples the phase field parameters to those of the SWDFM, which might require
a set of specific experiments to determine the parameters. As a result, further investigation is needed to relate the
GY parameter to a material parameter found by experimental tests.
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3.3. Restrictions on the fracture toughness degradation function

Following the second law of thermodynamics and for the first time, to the best of our knowledge, we impose
an exact requirement on the degradation of fracture toughness. Following (35) the reduced dissipation function is
expressed as

T (=1L,6°) ) — Ad > y FGY. (68)

Using the flow rule (56) and the evolution equation for the internal plastic variable (57), this inequality is reformed
into

. A 3 o
A —+A— | = yFG,. 69
( * aA) =776, (69)
Following the specific form of the yield function given in (52), this turns into
. dev(t) > = 0
it —2 - gY(d)\ﬁA > y FG. (70)
( l[dev(D)l }
By adding and subtracting gy(d)\/g 79 and using the fact that 7 : llgi‘\;g:;” = ||dev(7)||, the inequality is stated as
ip+ig@)2n = yFGL an

However, based on the KKT conditions iq& = 0, the relation simplifies into
1Y (d) >y F. (72)

Finally (assuming y # 0) the rate of fracture toughness degradation function should satisfy the inequality

. hg¥(d)
o ().

As apparent from this equation, requirement (50) is a special case of this more general condition. Constraint (73)
is the thermodynamic requirement, however, since in this work we are dealing with monotonic loading and do not
consider crack healing, the stricter condition (50) is enforced. On the other hand, accounting for crack healing under
special circumstances such as cyclic loading might be formulated based on the less restricting equation (73).

4. Governing equations and finite element implementation

4.1. Strong form of the governing equations

Inserting the results of (33) into (16), and assuming quasi-static loading without body forces B = 0, we obtain
the strong form of the equilibrium equation
div(eg) =0 inV (74)
with the Cauchy stress o0 = %r and the Kirchhoff stress t defined in (34).
From (19), and assuming 4 = 0, the strong form of the crack phase field equation is obtained as
aur ag vt
Div(—) = —= ¥¢ in V{ 75
Voay) Toa T g MV (75)

which by using the specific form of fracture energy in (45), becomes

g G.
Div(G.ld x) = 3q 478 + Td in V. (76)
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4.2. Requirements for crack irreversibility

To enforce an irreversibility of crack growth for brittle fracture, Miehe et al. [11] introduced a history functional
of the form
H(e, 1) :== max WS (%, 1) a7n
<t
which replaces WS in the governing equation. This idea was extended by Yin and Kaliske [31] to ductile fracture,
expressing the governing equation as

Gl G, , .
Div(G.ld x) = ﬁ% +=5d in Vi (78)

where in contrast to [11], G, is assumed to be a changing variable, which can stay constant or decrease depending
on the evolution of a plastic measure. However, for the most general case of an increasing or decreasing fracture
toughness G, the use of a history functional might violate the inequality d > 0, as (77) is not a sufficient condition
to satisfy the crack irreversibility. To illustrate this issue, we consider an example and without loss of generality
assume d y = 0, leading to the phase field equation (78) over Vj of the form

FG?
!

2(1 —dyH = (79)

where we have used (43) and (46). After straightforward calculations, the evolution of the phase field parameter is
given as

;. 2la (HF — HF)

2 (80)
(2IH+ FGY)
Accordingly, the crack irreversibility requirement reduces into
HF —HF > 0. (81)

Due to its nature > 0, and if we enforce the strong requirement (50) on F , (81) is satisfied a priori. However, if
we use the exact requirement (73) for F , (81) might not be satisfied in general. As a result, we conclude that for the
most general case use of the history variable approach with an evolving fracture toughness does not guarantee the
crack irreversibility. Hence, to circumvent such a violation, in the present work the crack irreversibility requirement
is satisfied node-wise with a primal-dual active set strategy [76].

4.3. Weak form of the governing equations

Using the method of weighted residuals and by multiplying (74) with the test function of the displacement field
Sdu, we obtain

/ div(o) - SudV = 0. (82)
v
After simplifications this leads to
/6n~8udA—/a:8u,de=0, (83)
Ar 4

with n as the outward unit vector normal to A;, the surface in the deformed configuration over which the
Neumann-type boundary conditions are defined.
Similarly we can find the weak form of the crack equation as

a G
/ (DiV(Geld.x) = =5 w5 — ZCd)sd dVy =0, (84)
Vo ad [
where &d is the test field for the phase field. After some simplifications we obtain
3 FG?
/ (f Gldy-5dx + £ wsed + — ‘dad) dVp =0, (85)
Vo
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where we have used the fact that
d,X -N=0 on A(). (86)

This boundary condition is imposed to enforce the crack evolution by mechanical loads only and no other external
sources, indicating that crack phase field is passive in nature and external driving via boundary conditions is not
allowed [10,77-79]. Furthermore, in (85) the gradient of the crack phase field, the term responsible for diffusing
the crack surface, is multiplied by the toughness degradation function F. Accordingly, if ' — 0, the gradient term
vanishes, which in turn would make the formulation mesh sensitive. As a result, as shown in (67), a residual value
Foo 18 required to obtain a mesh objective formulation.

4.4. Finite element implementation

The spatial discretization of the weak from is performed by means of the Galerkin method. We discretize the
displacement field within an element as

Nrode

u; = Z NAIZIA s (87)
A=1

where N is the shape function used for the displacement field at node A, and i/ is the i™ component of the nodal
value of the displacement vector at node A. Similarly, in a Bubnov Galerkin context, we choose an approximation
for the test displacement field as

Nnode
Su; =y NAsif (88)
A=1
and its derivative with respect to x; is approximated as
Niode
Sui j =y  NAsif. (89)
A=1

Using the discretized fields, the residual form of the mechanical problem at node A and direction i reads as
nd

R = ( f

O’ijl’leA dA—/ O'ijN’/; dV) (90)
o Va 14
Next, we discretize the crack phase field within an element using discrete nodal values with a form

Nhode
d= Z NAGA 91)
A=1
where N4 is the shape function at node A, and d* is the corresponding value of the phase field parameter at that
node. Furthermore, for the derivative of this field with respect to X; we can write

Nnode
d;=Y" Nid. 92)
A=1

Using the same shape functions for the test fields leads to

Nm)de Nnode
8d = Z NAsd*  and  8d; = Z NAsd™. (93)
A=1 A=1

As a result, the residual form of the crack problem at node A is obtained as

nd
5 FGO
(Ra)* = [ (> FGlua,Ny + ﬁ weNA + TCdNA) ve. (94)
Vo ty=1
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4.5. Finite strain plasticity return mapping algorithm

The numerical integration of the constitutive relations is done using the so-called elastic predictor/plastic corrector
algorithm, commonly also called the “Stress Return Algorithm (Return Mapping)”. Following this procedure
outlined in, e.g., [66], we assume that for each time interval [f,, 4], the initial state defined by &Y, «,, and
F, is known. The configuration at time f,; is obtained from the incremental displacement field, and leads to the
current deformation gradient F, . The incremental deformation gradient F 4 is defined as

Fy:=F, F' (95)

Next, for determining whether the load increment is elastic or elastoplastic, we assume an elastic trial state with

trial
a,) = o, and

b\ = FAb F (96)

computing the value of b, from the known value of ef. With the trial value of the left Cauchy—Green strain tensor
at hand, the trial elastic Eulerian logarithmic strain tensor is computed as

syl = L In (8517 ©7)

The trial value of the Kirchhoff stress tensor (34) considering the specific form of the elastic strain energy (39) is
calculated as

T = 8(d) (e (g i) T+ 20(e5 i aer) + e ftreg i) -1 98)
Using the trial values, the yield function is evaluated as
B = Idev(ziihll - gy 3[ro + A ] ©9)
with
At = 0 [1 — exp(—bal ). (100)
If ¢>fff{ < 0 the load increment is purely elastic, and the elastic trial is accepted as the updated configuration.

Otherwise, if d)mal > 0, the trial state is not admissible, i.e., the load increment is elastoplastic and a plastic corrector
is computed. Therefore, the plastic strain increment as well as updated values of 7, and A, are computed, such
that the stress state is projected back on the yield surface. Those increments are determined by discretization of the
evolution equations for the plastic flow rule (60) and the internal variable (57). A backward Euler discretization of
the evolution equation (57) leads to

U1 = o + \@Ax. (101)
Using a backward exponential integrator for (60) leads to
P eT 8¢ e
F,., =R}  exp Aka— R F", (102)
T lnt1

where the isochoric nature of the plastic deformation, i.e., det(FP) = 1, for pressure insensitive flow potentials is
carried over exactly for a traceless flow vector, % A substantial simplification of the return—-mapping algorithm
can be achieved by rewriting this equation equivalently in terms of the logarithmic elastic strain measure as

i d¢
&° — eema] Ah— 103
n+1 n+1 8'[ ( )
which for the yield function in this work simplifies into
e = et — AN, (104)
with
deV(Tn-H)
Nog1 = —————. (105)
T el
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As it is evident from the equations, use of the elastic logarithmic strain has led to a simple evolution equation that
resembles its small strain counterpart. With these values we can find the updated forces as

A1 = 0o |:1 — exp (—b (oz,, + @Ak))} (106)

and
Tt = T8 — 2¢(d) e AL N (107)
where we have used the fact that
o dev(zhi
N1 = NI = —5E. (108)
[y
Finally we can form the consistency condition and write
Inir = ldev(@ )l = '@y 270+ Avi | = 0. (109

This equation can be solved for the value of incremental plastic multiplier AA which is then used in (101) and
(104) to update the state and bring it back to the yield surface.

5. Numerical results

The proposed phase field model is validated by means of a numerical study of experimental tests, considering
different levels of stress triaxiality and the Lode angle parameter. Fig. 3 schematically depicts the resulting levels
of stress triaxiality 7, and values of the Lode angle parameter ¢ at the respective location of crack initiation for
different, commonly employed experimental tests.

In this work, for assessing the proposed model considering different values of 7 and ¢, we investigate

e two different geometries of the Cylindrical Notched Tension (CNT) test performed by Kanvinde and Deierlein
[74], characterized by a moderate to high stress triaxiality and an axisymmetric stress state with the Lode
angle parameter of { = 1 at the center of specimen where the crack initiates,

e the Grooved Plate (GP) test done by Terashima and Deierlein [75], characterized by a high stress triaxiality
with ¢ = 0 at the location of crack initiation, i.e., midpoint of the notched region,

e the Blunt Notch (BN) test investigated by Ziccarelli [54], for a combination of low to moderate stress triaxiality,
and an intermediate Lode angle parameter in the range of 0 < ¢ < 1 at the location of crack initiation.

The subsequently presented numerical results are obtained using RACCOON [80,81], see also [56,82], a
massively parallel finite element library developed upon MOOSE [83]. For the time stepping procedure within the
incremental-iterative nonlinear solution algorithm, we follow a staggered scheme similar to [11,84], where at each
loading step the equilibrium equation (90) and the phase field equation (94) are decoupled and solved alternately.
In this scheme at each loading step, while the phase field is held constant, initially the equilibrium equation is
solved for the displacement field with the help of the Newton—Raphson method. Next the displacement field is held
constant and the crack evolution equation is solved using PETSc’s variational inequality solver [76]. The simulation
advances to the next loading step when the residual of the equilibrium equation is less than a prescribed threshold.
We also mention that another technique for solving the governing equations is the monolithic scheme, in which
equations are solved for all the unknowns simultaneously. However, due to robustness issues encountered in our
numerical simulations, also documented in [26], we utilize the staggered scheme in this work.

For identifying the material parameters for each test, the elastoplastic parameters, i.e., constants E, v, 79, Qoo,
and b, are calibrated first such that the behavior of the solid before cracking (pre-peak behavior) is captured. For
calibrating the rest of the parameters, i.e., G?., C, B, and K, the fracture response of the material is considered. For
these parameters, the method outlined in Section 3.2.2 is utilized.

5.1. Cylindrical notched tension (CNT) test

The first considered example is the Cylindrical Notched Tension (CNT) test. CNT tests, as a result of the
specimen geometry, are widely used to investigate ductile fracture under axisymmetric stress states with Lode
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Fig. 3. Level of stress triaxiality and Lode angle parameter at fracture locus for various common experimental tests.
Source: Adopted from [53].
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Fig. 4. Geometry of the CNT specimen. For the loading, the top and bottom surfaces of the specimen are pulled vertically in a displacement
controlled manner.

angle parameters close to unity, i.e., { & 1, and moderate to high values of stress triaxiality at the location
of crack initiation. The test setup of the CNT test alongside the loading conditions are illustrated in Fig. 4. As
discussed in [53,85], an increase in the ratio dyn/rn leads to higher values of the stress triaxiality at the center of
the specimen where the crack initiates. Accordingly, to capture different level of stress triaxiality, we consider two
different geometries, characterized by ry = 1.59 mm and ry = 3.18 mm. The employed geometrical dimensions
for the two cases are summarized in Table 1.

In the finite element model, axisymmetry and vertical symmetry are exploited. For both geometries, quadrilateral
elements with a characteristic element size of 0.04 mm in areas where the crack is expected to propagate are used.
In line with the suggestions made in [10,61,86] that the length scale parameter should be at least twice the size
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Table 1
Dimensions for the CNT specimens with small and large notch radii.
dyn (mm) dxgr (mm) rN (mm) h (mm) dyn (mm) dyr (mm) rN (mm) h (mm)
12.7 6.35 1.59 254 12.7 6.35 3.18 25.4
Table 2

Parameters for the CNT tests.
AS572 Grade 50 steel

E (GPa) v () 7o (MPa) Qco (MPa) b (=) G? (N/mm) CO B (-) K
205 0.3 345 380 18 95 0.9 2 0.5
A709 Grade 70 steel
E (GPa) v () 7o (MPa) Qo (MPa) b ) G2 (N/mm) C ) B () K-
205 0.3 551 310 14 100 0.28 2 0.5

30 35

25 g 30

20 R %
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S 215
10 R
101 ) 8
Experiment 1
| — — Experiment 2
5 Experiment 1 7 5 I —— Simulation - element size ~ 0.04 mm ]
— — Experiment 2 | —— Simulation - element size ~ 0.02 mm
Simulation | Simulation - element size ~ 0.01 mm
0 . . . d, ol . . . . .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 1.2

a) Displacement (mm) b) Displacement (mm)

Fig. 5. Computed and experimental (conducted by Kanvinde and Deierlein [74]) load—displacement curves for the CNT specimen with
rn = 1.59 mm for (a) the A572 Grade 50 steel and (b) the A709 Grade 70 steel. Markers shown on the load—displacement curve
correspond to the evaluation plots shown in Fig. 9.

of elements, a length scale of / = 0.25 mm is used. Furthermore, to demonstrate the suitability of the model for
different materials, two different grades of structural steel, namely the A572 Grade 50 steel and the A709 Grade
70 steel, are investigated. The employed material properties for the two different materials were calibrated based
on experimental results and they are summarized in Table 2.

The obtained load—displacement curves for the geometries with ry = 1.59 mm and ry = 3.18 mm alongside
the experimental data for both materials are presented in Figs. 5 and 6, respectively. A good agreement between
the simulated results and the experiments is obtained. The proposed framework accurately captures the fracture
initiation and propagation by using a set of parameters that only depend on the used material and not the geometry
of the specimen or the stress state at the crack initiation location. Furthermore, Fig. 5b demonstrates the mesh
objectivity of the proposed framework for three levels of finite element refinements with element sizes of 0.04 mm,
0.02, and 0.01 mm.

The evolution of the crack phase field d and the internal plastic variable « at the location of crack initiation,
i.e., the center of the specimen, for selected CNT tests are shown in Fig. 7. The introduction of the yield surface
degradation function g¥(d) in (54) leads to an accumulation of plastic strain at damaged material points, which is
in line with experimental observations [27,32]. Furthermore, parameter g2, prevents the accumulation of plastic
deformation for severely damaged material points, which in turn maintains the computational stability of the
simulations.
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Fig. 6. Computed and experimental (conducted by Kanvinde and Deierlein [74]) load—displacement curves for the CNT tests with
rn = 3.18 mm for (a) the A572 Grade 50 steel and (b) the A709 Grade 70 steel. Markers shown on the load—displacement curve
correspond to the evaluation plots shown in Fig. 10.
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Fig. 7. Evolution of the crack phase field d and the internal plastic strain variable « at the location of crack initiation for (a) the ry = 1.59 mm
specimen with the A572 Grade 50 steel and (b) the rny = 3.18 mm specimen with the A709 Grade 70 steel.

Figs. 8a and 8b depict the radial distribution of the stress triaxiality and the Lode angle parameter along the
plane of vertical symmetry of the specimen for the A572 Grade 50 steel once the phase field parameter attains a
value of d = 0.05 and a macroscopic crack starts to form. This figure illustrates the axisymmetric stress state of
the CNT tests with ¢ ~ 1, as well as the influence of the value of ry in producing moderate to high levels of stress
triaxiality at the center of the specimens. Similarly, Figs. 8c and 8d depict the radial distribution of the internal
plastic variable and the SWDFM damage quantity. Unlike the stress triaxiality, the internal plastic variable attains
its maximum value at the outer surface of the specimen. The SWDFM accounts for the combined effects of the
plastic deformation and the stress state, and leads to an accurate prediction of the crack initiation at the center of
the specimen, which is in line with experimental observations. Figs. 9 and 10 show selected stages of the evolution
of the crack phase field until complete failure for the A572 Grade 50 steel for both geometries. In both cases, the
crack initiates at the center of the specimen, where triaxiality attains its maximum, and it propagates in the radial
direction until final rupture.
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Fig. 8. Radial distribution of (a) the stress triaxiality 7', (b) the Lode angle parameter ¢, (c) the internal plastic variable «, and (d) the
SWDFM damage quantity Dswprm over the center line of the CNT specimens for the A572 Grade 50 steel once d = 0.05 at the crack
initiation location.
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Fig. 9. Evolution of contour plots of the fracture phase field for the specimen with ry = 1.59 mm for the A572 Grade 50 steel at
displacements of (a) 0.67 mm, (b) 0.68 mm, (c) 0.72 mm, and (d) 0.83 mm.
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=

Fig. 10. Evolution of contour plots of the fracture phase field for the specimen with ry = 3.18 mm for the A572 Grade 50 steel at
displacements of (a) 0.95 mm, (b) 0.96 mm, (c) 1.03 mm, and (d) 1.16 mm.

Table 3
Dimensions for the GP specimen.
wyN (mm) h (mm) t (mm) wNRr (mm) rN (mm)
9.53 25.4 19.05 2.54 2.03
Table 4
Parameters for the GP test.
E (GPa) v (=) 70 (MPa) O (MPa) b () G2 (N/mm) C O B (=) K-
205 0.3 240 265 14 85 0.17 0.5 2

5.2. Grooved Plate (GP) test

The CNT tests discussed in the previous section allow for investigating different levels of stress triaxiality.
However, they are limited to axisymmetric stress states with ¢ & 1. To investigate stress states characterized by a
Lode angle parameter close to zero at the location of crack initiation, Grooved Plate (GP) tests are used, cf. Fig. 3.
Accordingly, for assessing the proposed model, the GP test performed by Terashima and Deierlein [75] on steel of
grade A36 is investigated in this example. The geometry of a GP specimen and the loading conditions are visualized
in Fig. 11. A specimen for the GP test is characterized by two smooth notches along its depth. As a consequence
of the geometry, the stress state in the vicinity of the crack tip is characterized by nearly plane strain conditions.
Similar to the CNT tests, the level of stress triaxiality experienced at the crack initiation location can be adjusted
by changing the specimen geometry, namely the notch aspect ratio w’;’R [53,75]. The dimensions for the specimen
used in the investigated GP test are summarized in Table 3.

For the finite element simulation, the symmetry of the specimen is exploited, and accordingly, only one eighth
of the body is modeled. Brick elements with an approximate size of 0.07 mm are used in regions where crack is
expected to propagate. For the crack phase field, a length scale parameter of / = 0.25 mm is used. The parameters
used for this test are listed in Table 4.

Fig. 12a illustrates the obtained load—displacement response where a good agreement with the experimental
data is shown. In particular, the pre-peak behavior is captured perfectly by the proposed framework, whereas the
load—displacement curve in the early post peak region is slightly underestimated by the model, which however, is
mainly attributed to the assumed simplistic form of the plasticity model. For the stage of final rupture, again a perfect
agreement, characterized by a virtually identical slope of the load—displacement curve, is observed. Fig. 12b depicts
the distribution of the stress triaxiality 7 and the Lode angle parameter ¢ along the thickness of the specimen once
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Fig. 11. Geometry of the GP specimen. For the loading, the top and bottom surfaces of the specimen are pulled vertically in a displacement
controlled manner.

the crack phase field attains a value of d = 0.05, and a macroscopic crack starts to form. A high value of stress
triaxiality in combinations with a nearly zero Lode angle parameter are observed at the crack initiation location.

Finally, Figs. 13 and 14, respectively depict the resulting crack patterns and the internal plastic variable for
different stages of the test. As apparent, the crack initiates at the center of the specimen, where the stress triaxiality
attains a high value, and it propagates in both depth and thickness directions. Interestingly, the evolution of the
internal plastic variable shows that « is highest not at the crack initiation location but at the free surface, i.e., the
groove tip, of the specimen.

5.3. Blunt Notch (BN) test

The CNT and GP tests studied are characterized by moderate to high level of stress triaxiality as well as ¢ ~ 1 and
¢ =~ 0, respectively. Therefore, to investigate comparatively low to moderate levels of stress triaxiality, i.e., T < 1,
combined with Lode angle parameters in the range 0 < ¢ < 1, Blunt Notch (BN) tests are used. In particular,
we investigate a test performed by Ziccarelli [54] on A913 Grade 65 steel. The geometry of the studied BN test
specimen alongside the loading conditions are shown in Fig. 15. Similar to the CNT and the GP tests, the stress
triaxiality and the Lode angle parameter can be adjusted by modifying the geometry, specifically by changing the
notch radius ry and the horizontal distance between the loading point and the notch tip wy. The dimensions for
the investigated BN specimen are listed in Table 5.

For the finite element simulations, two-fold symmetry is exploited. Accordingly, one fourth of the body is
modeled using brick elements with an approximate size of 0.26 mm in those areas where the crack is expected
to propagate. For the crack phase field, a length scale parameter of / = 0.6 mm is used. The employed parameters
for this example are summarized in Table 6.
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Fig. 12. (a) Computed and experimental (conducted by Terashima and Deierlein [75]) load—displacement curves for the GP test and (b)

distribution of the stress triaxiality 7 and the Lode angle parameter ¢ from the center of specimen to the groove tip once d = 0.05. Markers
shown on the load—displacement curve correspond to the evaluation plots shown in Figs. 13 and 14.
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Fig. 13. Evolution of contour plots of the fracture phase field for the GP test at displacements of (a) 1.14 mm, (b) 1.18 mm, (c) 1.22 mm,

and (d) 1.26 mm.
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Fig. 14. Evolution of contour plots of the internal plastic variable o for the GP test at displacements of (a) 1.14 mm, (b) 1.18 mm, (c)

1.22 mm, and (d) 1.26 mm.
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Fig. 15. Geometry of the BN test. For the loading, top and bottom edges of the holes are moved vertically in a displacement controlled
manner.

Table 5
Dimensions for the BN test.
w (mm) h (mm) t (mm) wp (mm) wN (mm) wnp (mm)
63.5 60.96 12.7 12.7 25.4 6.35
hg (mm) h1 (mm) hp (mm) rp (mm) rp (mm) rN (mm)
12.7 5.08 36.07 1.59 6.35 0.79
Table 6
Parameters for the BN test.
E (GPa) v (=) 70 (MPa) Qoo (MPa) b (-) Gg (N/mm) C (- B (-) K-
205 0.3 410 245 18 265 0.65 0.5 2

Fig. 16a shows the predicted load—displacement curve together with the experimental data. The considered
displacement is taken to be the vertical movement of the holes, as visualized in Fig. 15. A good agreement between
the simulated results and the experimental data is stated.

Fig. 16b shows the evolution of the stress triaxiality and the Lode angle parameter at the tip of the notch located
on the plane of symmetry until the crack phase field reaches d = 0.05. A moderate value of stress triaxiality
alongside an intermediate Lode angle parameter are visible.

The evolution of damage in the specimen is visualized in Fig. 17. For this example, the crack initiates at the tip of
the notched hole on the plane of symmetry, and then as expected, propagates horizontally and outward towards the
free surface and reaches the drilled hole. In this example, unlike the other two examples, the crack does not initiate
at the location with the highest level of stress triaxiality, rather it starts from the location where a combination of
the stress triaxiality and large plastic deformation leads to crack nucleation. Fig. 18 depicts the distribution of the
stress triaxiality and the internal plastic variable when d =~ 1 at the notch tip. This demonstrates the capability of
the SWDFM in accounting for not only the stress state but also the plastic deformation experienced by material
points for predicting different ductile crack mechanisms.
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Fig. 16. (a) Computed and experimental (conducted by Ziccarelli [54]) load—displacement curves for the BN test and (b) evolution of the
stress triaxiality 7, and the Lode angle parameter ¢ at the tip of the notch located on the plane of symmetry in the BN specimen until
d =0.05 at crack initiation location. Markers shown on the load—displacement curve correspond to the evaluation plots shown in Fig. 17.
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Fig. 17. Evolution of contour plots of the fracture phase field for the BN test at displacements of (a) 4.38 mm, (b) 4.70 mm, (c) 5.50 mm,
and (d) 6.70 mm.

Fig. 18. Distribution of the stress triaxiality 7 and the internal plastic variable « for the BN test when d ~ 1 at the notch tip.
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6. Conclusion

In this work, we proposed a phase field framework for predicting crack initiation and propagation in elastoplastic
solids experiencing multi-axial stress states under finite, inelastic deformations. To this end, we followed a micro-
mechanically motivated approach for deriving the governing equations, accompanied with the first and second laws
of thermodynamics. The proposed framework assumes a close coupling between the history of the material and the
evolution of damage through degradation of the fracture toughness. To account for different multi-axial stress states,
the degradation of the fracture toughness is coupled with the Stress-Weighted Ductile Fracture Model (SWDFM).
This allows for accurately predicting fracture initiation and advancement in solids, while accounting for both plastic
deformation and stress state inside the body. To avoid nonphysical elastic deformations in damaged regions, a
degradation function for the plastic yield surface is employed. In addition to shrinking the plastic yield surface,
this degradation function circumvents numerical difficulties arising from an excessive accumulation of plastic
deformation in severely damaged regions. Furthermore, following the second law of thermodynamics, restrictions
were enforced on the rate at which the fracture toughness can degrade.

The capabilities of the proposed model were validated in a numerical study covering a wide range of stress and
strain states. In particular, the Cylindrical Notched Tension (CNT) test, the Grooved Plate (GP) test and the Blunt
Notch (BN) test have been investigated. Special emphasis was put on the comparison with experimental results
from real world experiments. Thereby, it was shown that the ductile fracture response observed in different tests
are accurately captured by only using a set of material-specific parameters.

Regarding future research endeavors, possible extensions of the proposed model include ductile fracture under
cyclic loadings, taking into account kinematic hardening effects. Such extensions are currently pending.
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