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Abstract

Phase field models for ductile fracture have gained significant attention in the last two decades due to their ability in
mplicitly tracking the nucleation and propagation of cracks. However, most crack phase field formulations for elastoplastic
olids focus only on the effects of plastic deformation, and do not consider the different multi-axial stress states that may arise
n practical designs. In this work, a thermodynamically consistent phase field approach coupled with finite strain plasticity,
onsidering multi-axial stress states is presented. In order to account for the coupling between plasticity and stress states,
he Stress-Weighted Ductile Fracture Model (SWDFM) is utilized. The SWDFM represents a criterion for predicting ductile
rack initiation under both monotonic and cyclic loadings based on histories of an internal plastic variable, stress triaxiality,
nd the Lode angle parameter. The excellent performance of the SWDFM for predicting ductile crack initiation motivates
or its incorporation into a phase field approach for predicting both crack initiation and propagation through degradation of
he fracture toughness. Moreover, based on the second law of thermodynamics, exact requirements are imposed on the rate
t which the fracture toughness can evolve. A novel function for degrading the plastic yield surface during the evolution of
amage is introduced. This function, in line with experimental observations, leads to an accumulation of plastic deformation
n damaged regions of a solid, and avoids numerical instabilities arising from concentrations of large plastic deformations in
everely damaged regions. For validating the proposed model, results of computational simulations are compared to data from
elected tests considering different multi-axial stress states. Comparisons of the numerical results with data from laboratory
xperiments demonstrate the capabilities of the proposed framework.
2022 Elsevier B.V. All rights reserved.

eywords: Phase field fracture; Ductile fracture; Finite strain plasticity; Stress triaxiality; Lode angle

1. Introduction

Ductile fracture in solids is one of the most common failure mechanisms, and its study is of great importance in
ngineering applications for predicting the load capacity, and for preventing crack-induced failure. The investigation
f fracture dates back to the seminal work of Griffith [1] studying brittle fracture of materials, who stated that a
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crack originates in a solid when the amount of stored strain energy reaches a critical value known as the energy
release rate or fracture toughness, reflecting the amount of energy required to create a unit area of crack surface.
Unlike brittle fracture, which usually occurs abruptly and at small deformations, ductile fracture exhibits a more
involved behavior before cracking such as considerable plastic dissipation, hardening, and necking, which causes
failure to occur at relatively large strains. As a result, the prediction of failure mechanisms due to crack initiation
and propagation in elastoplastic solids is a challenging task.

Among many methods, the phase field approach to fracture, a smeared crack modeling technique, has gained
ignificant attention in the last two decades. The phase field approach originated in the mechanics community
ased on a variational formulation of brittle fracture by Francfort and Marigo [2], and was later employed for
umerical solutions by Bourdin et al. [3]. The phase field approach implicitly tracks the propagation of a crack
hrough the evolution of an order parameter (the crack phase field) that transitions smoothly between sound and
ully cracked material points. As a result, unlike for discrete crack models where displacement jumps are introduced
n the kinematical description [4–9], the tedious task of tracking the crack surface is avoided.

Following the concepts of fracture mechanics, Miehe et al. [10,11] proposed a gradient damage theory based
n a geometrical approximation of the crack surface, leading to a thermodynamically consistent approach to phase
eld fracture combined with an irreversibility constraint for the order parameter. In addition, Miehe et al. [11],
ased on the spectral decomposition of the strain tensor, introduced a mechanism for distinguishing crack response
nder tensile and compressive forces. To capture an asymmetric fracture response in tension and compression and
o avoid crack interpenetration, Amor et al. [12] also used a form of spherical and deviatoric decomposition of
he strain energy. Borden et al. [13], Bourdin et al. [14], Remacle et al. [15], and Geelen et al. [16] extended the
hase field model to represent fracture in dynamic conditions, and they showed its capability in modeling crack
ranching without a need for ad hoc criteria. Miehe and Schänzel [17], Talamini et al. [18], and Swamynathan et al.
19] outlined a phase field framework for modeling fracture in polymers. Phase field models for brittle fracture of
hells were proposed by Reinoso et al. [20] and Kiendl et al. [21]. To study the failure mechanism of geological
aterials, Choo and Sun [22] suggested a phase field model considering the effects of confining pressure and strain

ate, and Zhou et al. [23] presented a new formulation for compressive-shear fracture in brittle rock-like materials.
ulti-physics phase field formulations were proposed by Zhang et al. [24] for modeling fracture in silicon electrodes,

nd by Cheng et al. [25] for capturing crack patterns induced by thermal spalling in concrete. Recently, Wu et al.
26] provided an extensive overview of the available phase field formulations for fracture in both quasi-static and
ynamic conditions.

For modeling ductile fracture, different phase field frameworks for elastoplastic materials have been pro-
osed. Borden et al. [27] developed a finite strain ductile phase field formulation based on micro-force balance
aws. In their formulation, the plastic yield surface is degraded with the ongoing evolution of fracture, leading to an
ccumulation of plastic deformation while avoiding nonphysical elastic deformation in damaged regions of a solid.
urthermore, in order to avoid damage accumulation at small plastic deformations, they assumed that the plastic
train energy acts as an additional crack driving force once it exceeds a threshold value. Most recently, Li et al.
28] revisited the same concept. However, in their formulation the energy threshold value is not constant, rather it
volves with the stress and strain state inside the body. Ambati et al. [29,30] related the evolution of fracture to
lasticity by degrading the toughness of material points exhibiting large plastic deformations, a concept that is in
ine with experimental observations. Yin and Kaliske [31] associated the growth of damage to the evolution of a
lastic strain measure, assuming that the local fracture toughness decreases due to increasing plastic deformations.

similar concept was also extended to the geometrically nonlinear setting by Han et al. [32], where in addition to
he degradation of the fracture toughness, the plastic strain energy drives the evolution of cracks. Recently, Alessi
t al. [33] compared selected available ductile phase field models and investigated the coupling between plasticity
nd the phase field evolution.

For many materials exhibiting ductile fracture, the occurring large deformations as well as the localization of
eformations invalidate the assumption of the small strain theory. Hence, the proper kinematical description of
eformations demands for a formulation in the geometrical exact regime. However, compared to formulations
n the small strain regime, few approaches for ductile phase field fracture under finite deformation have been
roposed. As pointed out, Ambati et al. [30], Borden et al. [27], and Han et al. [32] have extended the ductile phase
eld framework to a finite deformation setting. Furthermore, Miehe et al. [34] incorporated a thermodynamically

onsistent framework of ductile phase field fracture into a formulation of gradient thermo-plasticity in the finite
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deformation regime. In their work, the crack driving forces are based on the mass specific elastic and plastic works,
and barrier functions are defined to hinder the evolution of damage at low levels of elastic and plastic deformations.
Aldakheel et al. [35] combined an elastoplastic constitutive model for porous media with a phase field approach for
finite strain deformations, and showed the capabilities of the proposed method in capturing experimentally observed
cup-cone failure mechanisms.

It is well understood that ductile fracture in elastoplastic materials, especially in metals, happens at micro-
evel where nucleation of small defects such as micro-cracks and micro-voids, concentrated mostly in regions with
arge plastic deformations, initiates the crack formation. Micro-voids grow and coalesce to form larger voids, and
onsequently realize their effects at the macro-scale, leading to a loss of stiffness and finally rupture [36,37]. In
ddition to the amount of plastic deformation, the mechanism of micro-void growth is affected to a great extent
y the multi-axial stress state inside the body. McClintock [38] and Rice and Tracey [39] highlighted the influence
f the hydrostatic stress component on the ductile behavior of metals through theoretical studies of growth of
oids embedded in plastically deforming solids. Following a continuum damage model, Lemaitre [40] and La Rosa
t al. [41] observed that fracture criteria should depend on the hydrostatic stress. Experiments done by Norris et al.
42], Oyane et al. [43], and Bao and Wierzbicki [44] also indicated the critical importance of the level of hydrostatic
tress in changing the mechanism of fracture. Accordingly, in order to accurately capture the ductile fracture of
aterials, models should consider a coupling between the macroscopic stress state, the plastic deformation, and the

volution of damage. However, in contrast to these findings, except for a few models [27,28,35,45], most ductile
hase field formulations focus only on the effects of plastic deformation, while they do not consider different
ulti-axial stress states that may arise in practical designs.
On the other hand, independently of phase field crack developments, many continuum ductile fracture models

rovide an estimate for the local initiation of fracture by linking the damage evolution to both plasticity and the
tress state [46–49]. In these models, a damage field variable calculated based on the stress and strain histories
ounts towards the inception of cracks. Johnson and Cook [50] introduced a damage model depending on the strain
ate, the temperature, and the pressure, and they concluded that fracture is heavily influenced by the hydrostatic
ressure compared to the other two factors. Following the work of Gurson [51], Tvergaard and Needleman [36]
roposed a model coupling the evolution of damage to plasticity and the stress state through void growth. Despite
ffering a connection between the evolution of damage, plasticity and the stress intensity, most of the prior studies
ere concerned with a limited range of the stress and strain states, and loading conditions. To overcome this

hortcoming, most recently and based on previous work of Smith et al. [52], the Stress-Weighted Ductile Fracture
odel (SWDFM) [53] was proposed. The SWDFM represents a criterion for predicting ductile crack initiation

ased on the mechanism of micro-void growth and coalescence under both monotonic and cyclic loadings. In this
odel, a damage quantity, which is calculated based on histories of plastic strain and stress, signals the inception of

racture once its value attains a critical limit. Unlike prior continuum damage models, the SWDFM was validated
gainst experimental results with large plastic strains, considering multi-axial stress conditions [53,54].

The excellent performance of the SWDFM for predicting ductile crack initiation alongside its micro-mechanically
ased formulation motivates for a combination with the phase field method for predicting the propagation of cracks.
his is the focus of this work. We present a phase field approach to ductile fracture based on the SWDFM accounting

or different types of multi-axial stress states and large inelastic deformations, formulated in a geometrically exact
etting. To this end, we follow a micro-mechanically motivated approach, deriving all governing equations from
icro-force balance laws alongside the first and second laws of thermodynamics within the finite strain regime.
he SWDFM initiation criterion is incorporated into the model for predicting both crack initiation and propagation

hrough the degradation of the resistance to ductile fracture in line with previous studies [31,32,55,56]. From the
econd law of thermodynamics, and based on the dissipation inequality, restrictions are imposed on the rate at which
he fracture toughness can evolve.

We start our investigation in Section 2, describing the finite strain kinematics, the phase field approximation
o fracture, and the derivation of the balance laws of the governing equations in terms of a general potential
unctional. The hyperelastic–plastic constitutive model specific to this work, governing the stress and the fracture
esponses of a solid, is presented in Section 3. The degradation of the fracture toughness, and its coupling to the
WDFM are also investigated in this Section. The strong and weak forms of the governing equations and the
nite element implementation are shown in Section 4. Section 5 contains a representative numerical study of tests
onsidering different multi-axial stress states, including a comparison of the numerical results with data from real
orld experiments. Finally, Section 6 concludes with a summary.
3
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Fig. 1. Finite deformation of a solid with a discontinuity. The body at time t ⊂ R+ undergoes a deformation ϕ(X, t), which maps the
reference material point X ∈ V0, onto the current material point x ∈ V such that x = ϕ(X, t).

2. Framework

2.1. Finite strain kinematics

The reference configuration of a body of interest with an internal discontinuity boundary S0 is denoted by
V0 ⊂ Rnd and its surface with A0 ⊂ Rnd−1, with nd ∈ {2, 3} as the spatial dimension. The corresponding current
configuration is shown by V ⊂ Rnd with the discontinuity S and surface A ⊂ Rnd−1. The position vectors at the
reference and current configurations are denoted by X and x, respectively. The body in time interval of [0, t] ⊂ R+

undergoes a deformation ϕ(X, t) : V0 × [0, t] → Rnd, which maps the reference material points (X ∈ V0) onto the
current material points (x ∈ V ) such that x = ϕ(X, t), as visualized in Fig. 1. We denote derivatives with respect
to the reference frame as

(•),X =
∂

∂X
(•) and Div(•) =

∂

∂X
· (•) , (1)

nd derivatives with respect to the coordinates in the spatial configuration as

(•),x =
∂

∂x
(•) and div(•) =

∂

∂x
· (•). (2)

urthermore, d
dt (•) = ˙(•) denotes the material time derivative. We also recall the definition of the deformation

radient as F := ϕ,X (X, t), with its determinant J := det(F) > 0 known as the Jacobian of transformation.
Furthermore, for an elastoplastic response we assume the existence of an intermediate, in general incompatible,
stress-free configuration, which leads to a local multiplicative decomposition of the deformation gradient [57,58]
into an elastic Fe part and a plastic Fp part as

F = Fe Fp. (3)

We define the elastic Eulerian logarithmic strain tensor

εe
=

1
2 ln

(
be) . (4)

In this equation, be
= Fe FeT is the elastic left Cauchy–Green strain tensor, whose Lie derivative is defined as

L be
= ḃe

− l be
− belT (5)
v

4
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Fig. 2. Reference configuration of a solid with a sharp crack surface S0, and its regularized approximation using the phase field parameter
. The length scale parameter l controls the length over which the crack is diffused.

ith the help of the spatial velocity gradient l = Ḟ F−1. Furthermore, we decompose l into its symmetric and
kew-symmetric parts as

D = sym(l) =
1
2

(
l + lT)

and ω = skew(l) =
1
2

(
l − lT)

, (6)

ith D denoting the rate of deformation tensor, and ω denoting the spin tensor.
We describe the behavior of the fracturing solid by the displacement field u := x − X defined on the set

u(X) ∈
{
u | u(X) = ū ∀X ∈ A0u

}
. (7)

he surface A0 is decomposed into A0u and A0t, where the displacement field satisfies the Dirichlet boundary
onditions on A0u with given values of ū, and the Neumann-type boundary conditions defined over A0t with

prescribed values of the traction. Dirichlet and Neumann boundary conditions are also defined over Au and At
in the deformed configuration as depicted in Fig. 1.

2.2. Phase field approximation

To study the evolution of a crack inside a solid, we introduce the time-dependent crack phase field d, illustrated
in Fig. 2, which distinguishes between an intact (d = 0) versus a fully damaged (d = 1) material point and is
defined on the set

d(X) ∈
{
d | d(X) ∈ [0, 1], ḋ(X) ≥ 0 ∀X ∈ V0

}
. (8)

The condition ḋ(X) ≥ 0 follows physical considerations, and it guarantees that internal discontinuities evolve
in an irreversible manner [11]. Accounting for reversibility might be required under special circumstances such
as cyclic loadings or for brittle materials that can retain their full strength even after experiencing loads close to
failure limits [59]. However, since in this initial study we are concerned with ductile behavior of materials under
monotonic loadings, the crack irreversibility is a logical assumption.

Next, following [60] we approximate the energy required to create a diffusive fracture surface as∫
S0

Gc dS0 ≈

∫
V0

Gcγ dV0 (9)

with the help of Gc the critical fracture energy per unit area in the reference configuration. Moreover, the crack
surface density per unit reference volume function γ [10,11], depending on the crack phase field and its gradient,
is defined as

γ (d, d,X ; l) =
1
c0

(
1
l
Γ (d) + ld,X · d,X

)
. (10)

Therein, Γ (d) is the geometric crack function, which characterizes the homogeneous and local evolution of the
crack phase field [61], and l is a regularization parameter, known as the phase field length scale parameter which
5
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controls the diffusive crack width. Furthermore, c0 = 4
∫ 1

0

√
Γ (d̂) dd̂ is the scaling parameter introduced such that

the sharp crack surface is recovered for a vanishing length scale parameter, i.e.,

lim
l→0

∫
V0

Gcγ dV0 =

∫
S0

Gc dS0. (11)

In this work, we follow the geometrical approximation of a crack surface shown in [10] and assume a crack surface
density function in the form

γ (d, d,X ; l) =
1
2

(
1
l

d2
+ ld,X · d,X

)
. (12)

s shown later on, this definition of the crack surface density leads to a strong form of the governing equation
nvolving second-order derivatives of d. Hence, models employing this form of γ are known as second-order phase
eld theories [62].

.3. Balance laws

Since the process of material degradation is governed by physical mechanisms at the micro level, where micro-
orces cause the evolution of micro-voids, we formulate the (quasi-static) balance laws for micro-forces alongside
he first and second laws of thermodynamics following [63,64]. We start with the balance laws derived in the
eference configuration V0 with boundary A0. The derivation of these laws in the deformed configuration V can be
one in a similar manner. It is worth mentioning that although the equations are derived over V0, they can also be
erived for any subset P0 ⊂ V0, as shown in [27].

alance of mass. Assuming that mass of the system is conserved at all times, the balance of mass in its local form
n the reference configuration is

ρ̇0 = 0 in V0. (13)

herein, ρ0 is the mass density per unit reference volume. Defining ρ := J−1ρ0 as the mass density per unit current
olume, the local balance of mass in the current configuration is stated as

ρ̇ + ρ div(u̇) = 0 in V . (14)

alance of linear momentum. The balance of linear momentum in the reference configuration is written as
d
dt

∫
V0

ρ0u̇ dV0 =

∫
V0

B dV0 +

∫
A0

T N dA0 → Div(P) + B = ρ0ü in V0 , (15)

with T N = P N denoting the traction force acting on the surface of the reference configuration. In this equation,
P is the first Piola–Kirchhoff stress tensor, N is the outward unit normal vector at the boundary of the reference
onfiguration, and B is the body force per unit volume of the reference configuration. Writing the equation in the
urrent configuration, the local form leads to

div(σ ) + J−1 B = ρ ü in V (16)

ith σ =
1
J P FT denoting the Cauchy stress tensor.

Balance of angular momentum. The balance of momentum of momentum in the reference configuration is expressed
as

d
dt

∫
V0

X × ρ0u̇ dV0 =

∫
V0

X × B dV0 +

∫
A0

X × P N dA0 → P FT
= F PT in V0. (17)

imilarly, the balance of angular momentum in the deformed configuration leads to the symmetry of the Cauchy
tress tensors, i.e.,

σ = σ T in V . (18)

icro-force balance law. For the micro-force balance law, we assume that the phase field is characterized by an
ntrinsic micro-force π (X, t), and an extrinsic micro-force acting on the body h(X, t). Furthermore, we assume the
6
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existence of a micro-force traction vector ξ (X, t), such that ξ · N is the external micro-force acting on the surface
of the body A0. We then get the micro-force balance law in the reference configuration as∫

A0

ξ · N dA0 +

∫
V0

h dV0 +

∫
V0

π dV0 = 0 → Divξ + h + π = 0 in V0. (19)

irst law of thermodynamics. Restricting the discussion to the adiabatic and isothermal case, the energy balance is
ritten as

d
dt

∫
V0

( 1
2ρ0u̇ · u̇ + ρ0e0

)
dV0 =

∫
V0

B · u̇ dV0 +

∫
A0

P N · u̇ dA0 +

∫
A0

(ξ · N)ḋ dA0 +

∫
V0

hḋ dV0 , (20)

ith e0 denoting the internal energy per unit reference mass and ḋ as the rate-of-work conjugate to the micro-forces.
omplementing this equation with (13), (15), (17), (19), and by using the divergence theorem for the boundary

erms, the equation in the reference configuration is transformed to∫
V0

ρ0ė0 dV0 =

∫
V0

P : Ḟ dV0 +

∫
V0

ξ · ḋ,X dV0 −

∫
V0

π ḋ dV0 (21)

hich in the local form becomes

ρ0ė0 = P : Ḟ + ξ · ḋ,X − π ḋ in V0. (22)

econd law of thermodynamics. With θ as the absolute temperature of the system, s0 the referential entropy per
nit mass, r the heat source per unit reference mass, and q the heat flux in the reference configuration, the second
aw of thermodynamics is stated as

d
dt

∫
V0

ρ0s0 dV0 ≥

∫
V0

ρ0r
θ

dV0 −

∫
A0

q · N
θ

dA0 , (23)

here again by using the divergence theorem for the boundary term the local form follows as

ρ0ṡ0θ ≥ ρ0r − Divq +
q · θ,X

θ
in V0. (24)

or isothermal and adiabatic processes, i.e., assuming r = 0, q = 0, and θ,X = 0, the local form of the second law
ransforms into

ρ0ṡ0θ ≥ 0 in V0. (25)

ext, the Helmholtz free energy ψ is introduced by means of the Legendre-transformation

e0 := ψ + θs0. (26)

aking θ̇ = 0 and putting (26) back into (25), while utilizing (22), we get to

P : Ḟ + ξ · ḋ,X − π ḋ − ρ0ψ̇ ≥ 0 in V0 , (27)

hich can be similarly expressed as

τ : D + ξ · ḋ,X − π ḋ − ρ0ψ̇ ≥ 0 in V0 (28)

n terms of the Kirchhoff stress tensor τ = P FT. We assume a stored energy functional of the form

E =

∫
V0

Ψ (c) dV0 (29)

ith Ψ (c) = ρ0ψ(c). Here c := {εe, α, d, d,X ,Gc} is the set of constitutive state variables, with the Eulerian
ogarithmic strain tensor εe as one of the state variables. As shown later on, this choice alongside the use of α as the
calar internal plastic variable is two-fold: First it allows for use of the well-established volumetric and deviatoric
ecomposition of the elastic strain energy, a concept that has been used widely in the small strain regime, and
econd, it facilitates a straightforward extension of small strain plasticity models to the finite strain regime. Finally,

Gc is considered as a variable to reflect the evolution of the fracture toughness.
The material time derivative of the internal energy is obtained as

ρ0ψ̇(εe, α, d, d,X ,Gc) = Ψ̇ =
∂Ψ

e : ḃe
+
∂Ψ

α̇ +
∂Ψ

ḋ +
∂Ψ

· ḋ,X +
∂Ψ

Ġc. (30)

∂b ∂α ∂d ∂d,X ∂Gc

7
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Using (5) and after some simplifications, this time derivative reduces to

Ψ̇ =
∂Ψ

∂be : Lvbe
+ 2

∂Ψ

∂be be
: l +

∂Ψ

∂α
α̇ +

∂Ψ

∂d
ḋ +

∂Ψ

∂d,X
· ḋ,X +

∂Ψ

∂Gc
Ġc. (31)

ombination with (28) yields

(τ − 2
∂Ψ

∂be be) : D + (−π −
∂Ψ

∂d
)ḋ + (ξ −

∂Ψ

∂d,X
) · ḋ,X −

∂Ψ

∂be : Lvbe
−
∂Ψ

∂α
α̇ −

∂Ψ

∂Gc
Ġc ≥ 0 , (32)

nd employing the Coleman–Noll procedure [65] results in

τ = 2
∂Ψ

∂be be , π = −
∂Ψ

∂d
, ξ =

∂Ψ

∂d,X
. (33)

or the Kirchhoff stress, this reduces to (see [66] for reference)

τ = 2
∂Ψ

∂be be
=
∂Ψ

∂εe :
∂lnbe

∂be be
=
∂Ψ

∂εe . (34)

With these equations, we define the reduced total dissipation functional as

D := Dp
−
∂Ψ

∂Gc
Ġc ≥ 0. (35)

In this equation, Dp is the plastic dissipation defined as

Dp
:= −

∂Ψ

∂be : Lvbe
− Aα̇ (36)

here we have introduced the thermodynamical force A :=
∂Ψ
∂α

conjugate to α. After some straightforward
manipulations, the plastic dissipation can be expressed in terms of the Kirchhoff stress as

Dp
:= τ :

(
−

1
2Lvbe) (be)−1

− Aα̇. (37)

3. Constitutive relations

We propose the Helmholtz free energy function with a general form

ρ0ψ(εe, α, d, d,X ,Gc) = Ψ = g(d)Ψ e
+

(εe) + Ψ e
−

(εe) + Ψ p(α) + Ψ f(d, d,X ,Gc) (38)

depending on the set of state variables c := {εe, α, d, d,X ,Gc}. Therein, Ψ e
+

and Ψ e
−

are the positive and
negative elastic strain energies following the volumetric and deviatoric decomposition of [12] defined to capture the
asymmetric fracture response in tension and compression. In this work we use

Ψ e
+

(εe) =
1
2κ⟨tr εe

⟩
2
+

+ µεe
dev : εe

dev and Ψ e
−

(εe) =
1
2κ⟨tr εe

⟩
2
−

(39)

here the bulk modulus κ and the shear modulus µ are materials parameters related to the Young’s modulus E ,
nd the Poisson’s ratio ν through

κ =
E

3 (1 − 2ν)
and µ =

E
2 (1 + ν)

. (40)

The deviatoric part of a second order tensor with I as the identity tensor is given as (•)dev = dev(•) = (•)− 1
3 tr (•)I ,

and positive and negative bracket operations are defined for any real number as

⟨•⟩± :=
• ± | • |

2
. (41)

he degradation function g(d) is employed for representing the loss of stiffness at the macroscopic level and the
hange of stress responses with evolution of damage [67]. The degradation function is a monotonically decreasing
unction, and it satisfies the properties

g(d = 0) = 1 , g(d = 1) = 0 ,
∂g

⏐⏐⏐⏐ = 0. (42)

∂d d=1

8



S. Abrari Vajari, M. Neuner, P.K. Arunachala et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115467

w
i

a

T
i

T
c
m
w

The first two conditions include the limit states for unbroken and fully cracked stages. The last property also ensures
that as d → 1 the crack driving force attains an ultimate value [68]. In this work we employ a degradation function
of the form

g(d) = (1 − d)2 (43)

here a small positive value (≈ 10−4) is added to the function to circumvent the full degradation of Ψ e
+

as well as
ll posedness of equations at a fully broken stage [11,59,69]. Moreover, in this form ∂g

∂d at d = 0 is non-zero, as if
that was not the case a uniform phase field of d = 0 would satisfy the governing equations for any state of strain
nd crack nucleation would never occur.

For the plastic strain energy we propose an exponential form

Ψ p(α) = Q∞[α +
1
b

(exp(−bα) − 1)] , (44)

where Q∞ and b are two material parameters defining the plastic behavior of the solid, fitted based on experimental
data.

For the crack surface energy we follow the geometrical approximation introduced earlier to the form

Ψ f(d, d,X ,Gc) = Gcγ (d, d,X ). (45)

For brittle fracture, Gc is commonly taken as a constant material parameter, independent of the loading conditions.
In this work for ductile fracture, however, it is assumed that Gc degrades as a result of the stress and the
inelastic strain induced in the material by the external loading. Similar ideas have been used for fatigue crack
modeling [70], as well as alternative approaches for ductile fracture [31,32,55,56]. In ductile models, the degradation
of Gc establishes a mechanism between plasticity and fracture, assuming that the evolution of a plastic strain
measure degrades the crack resisting force through reduction of Gc, and hence, damage concentrates in regions
with high values of plastic deformations. However, most phase field formulations focus only on the effects of
plastic deformation, and do not consider the wide range of multi-axial stress states that a solid might experience.
Accordingly, we propose a fracture toughness degradation function F , governing the evolution of Gc in the form

Gc = F G0
c , (46)

in which G0
c is a material constant reflecting the initial crack resistance. The exact form of F related to the history

of a material and state of stress and strain will be determined in the next section. However, based on physical
considerations we assume that

0 ≤ F ≤ 1 , (47)

i.e., the fracture toughness Gc cannot exceed its initial value G0
c , and it cannot take nonphysical negative values.

Furthermore, considering (35) and requiring that both dissipative parts should be greater or equal to zero, we
write

−
∂Ψ

∂Gc
Ġc ≥ 0. (48)

Based on the defined energy functional ∂Ψ
∂Gc

=
∂Ψ f

∂Gc
= γ , which is always a positive value, (48) boils down to

Ġc ≤ 0. (49)

his condition puts another restriction on the toughness degradation function and requires it to be non-increasing,
.e.,

Ḟ ≤ 0. (50)

his condition states that fracture toughness can only degrade over time (or at most stay constant) and no healing
an take place. This is also in line with the physical requirement that cracks do not heal (i.e., ḋ ≥ 0). It is worth
entioning that although this property arises from formulating (35) in a too restrictive manner, since in this work
e are dealing with monotonic loadings, (50) is a reasonable assumption.
9
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3.1. Plastic constitutive model

For the proposed model, a plasticity model with purely isotropic hardening, purely kinematic hardening, or a
ombination of the two can be used. However, since in this work we are concerned with behavior of materials under
onotonic loadings, an associative isotropic elastoplastic constitutive model based on the von Mises flow theory
ith exponential isotropic hardening is employed. We assume isochoric plastic deformation, i.e.,

det(Fp) = 1. (51)

he yield function is defined as

φ(τ ,A) := ∥dev(τ )∥ − gy(d)
√

2
3

[
τ0 + A

]
. (52)

ollowing the specific form of the elastic strain energy (39) for the Kirchhoff stress tensor (34), (52) reduces to

φ(τ ,A) := g(d)∥2µεe
dev∥ − gy(d)

√
2
3

[
τ0 + A

]
. (53)

Therein, material parameter τ0 is the initial yield stress, and gy(d) is the yield surface degradation function with
he same properties as g(d) defined in (42). The degradation of the yield surface leads to an accumulation of plastic
train in damaged regions (i.e., material points with d ≥ 0) while nonphysical elastic deformations are avoided,
hich is in line with experimental results as discussed in [27,32]. In addition, this yield surface degradation follows
ther continuum damage models that incorporate the accumulation of damage into the constitutive response such
s Gurson’s void growth model [51], in which the evolution of damage induces a shrinkage of the yield surface.

However, a degrading yield surface might lead to numerical difficulties. Han et al. [32] mentioned that in order to
aintain computational stability for material points with value of d close to 1, the evolution of plastic deformation

hould be terminated, since otherwise the model may experience huge amounts of plastic deformation concentrated
n severely damaged parts. As a result, to overcome this issue we propose a yield surface degradation function of
he form

gy(d) = (1 − gy
∞

)(1 − d)2
+ gy

∞
(54)

ith gy
∞ denoting a residual value. For small values of d, gy(d) ≈ g(d) as a result of which both the stress tensor and

he plastic yield surface degrade at a similar rate. Therefore, for a yielding material point, the stress state remains
n the yield surface and plastic deformation will accumulate. On the other hand, for material points characterized
y large values of d, gy

∞ leads to gy(d) > g(d) which results in a slower degradation of the plastic yield surface
ompared to the degradation of the stress tensor based on g(d). Consequently, for severely damaged regions the
tress state moves back inside the yield surface, thus limiting future plastic deformation.

emark 1. Choosing gy
∞ = 1 results in gy(d) = 1, as used in [29–31], where the plastic yield surface is not

egraded with the evolution of damage and material points may undergo elastic unloading. In contrast, setting
gy

∞ = 0 results in the same function as the degrading function, i.e., gy(d) = g(d), and thereby reduces the
ormulation to a plastic yield surface used in [27,71], which may cause excessive plastic deformation to concentrate
n severely damaged regions. To overcome these issues, in this work a value of gy

∞ = 0.8 is used which gives
easonable results and helps to avoid numerical difficulties.

For describing the evolution of the plastic deformation and the internal variable, and in order to ensure a positive
lastic dissipation (36), in line with the restrictive requirement on the dissipation functional (35), the principle of
aximum plastic dissipation is employed. Following this principle, a Lagrange functional of the form

L := τ :
( 1

2Lvbe) (be)−1
+ Aα̇ + λ̇φ (55)

is defined, where λ̇ is a plastic Lagrange multiplier enforcing the elastic region φ(τ ,A) ≤ 0. The necessary
conditions of this stationary principle results in the flow rule(

−
1
2Lvbe) (be)−1

= λ̇
∂φ

∂τ
(56)

s well as the evolution equation of the plastic internal variable

α̇ = −λ̇
∂φ

(57)

∂A

10
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and the so-called loading–unloading conditions (Karush–Kuhn–Tucker conditions)

λ̇ ≥ 0 , φ ≤ 0 , λ̇φ = 0 (58)

or the plastic multiplier λ̇. By considering plastic isotropy [72,73], zero plastic spin is assumed in the form

ωp
= skew

(
Ḟp

(Fp)−1
)

= 0 (59)

nd after simplifications, the flow rule (56) can be expressed as

Ḟp
(Fp)−1

= λ̇ReT ∂φ

∂τ
Re , (60)

here we have used the polar decomposition

Fe
= ReUe (61)

ith Re as the elastic rotation tensor and Ue as the elastic right stretch tensor.

.2. Degradation of the fracture toughness: Stress-weighted ductile fracture model

A realistic description of ductile fracture requires a close coupling between macro and micro level phenomena,
nd should account for the stress state as well as plastic strain intensity. Accordingly, this section covers a micro-
echanically motivated criterion based on the history of stress and strain states for ductile crack initiation and its

ncorporation into the phase field model for predicting both crack initiation and advancement.

.2.1. Fracture initiation criterion based on the stress-weighted ductile fracture model
The Stress-Weighted Ductile Fracture Model (SWDFM) [53], an uncoupled damage formulation [46,47], is

ncorporated into the phase field framework. Uncoupled damage models provide an estimate for the local initiation
f fracture by driving the damage evolution with stress and strain states [38,39,44], where a damage field variable
ignals the inception of a crack when its value exceeds a critical limit. However, in these models the evolution of
he damage variable is uncoupled from constitutive response of the material, and hence these models do not account
or deterioration of stiffness with evolution of damage.

Similar to other uncoupled damage methods, in SWDFM a damage quantity, DSWDFM, is calculated based on
istories of plastic strain and stress, and its rate form is given as

ḊSWDFM = f (I1, J2, J3, α̇). (62)

n this equation I1 = tr(τ ) is the first invariant of the Kirchhoff stress tensor, J2 =
1
2 tr

(
τ 2

dev

)
is the second invariant

of the deviatoric part of the Kirchhoff stress tensor, J3 = det (τ dev) is the third invariant of the deviatoric part of
the Kirchhoff stress tensor, and α̇ is the rate of the plastic internal variable. For SWDFM, this dependency on the
invariants is expressed using the stress triaxiality and the Lode angle parameter. The stress triaxiality T is defined
as

T :=
τm

√
3J2

, (63)

with τm =
1
3 I1 as the hydrostatic Kirchhoff stress. The Lode angle parameter ζ is related to the Lode angle θ , and

is defined as

ζ := cos(3θ ) =
3
√

3J3

2(J2)3/2 . (64)

he Lode angle parameter is in the range −1 ≤ ζ ≤ 1, and it distinguishes between the type of stress states,
.g., axisymmetric tensile (ζ = 1), axisymmetric compressive (ζ = −1), or pure shear (ζ = 0) states.

With these quantities, similar to the analytical formulation of Rice and Tracey [39], and following the work
f Smith et al. [52], specific form of the SWDFM is written as

f (T, ζ, α̇) = C
([

exp(1.3T ) −
1

exp(−1.3T )
]

exp(K(|ζ | − 1))
)
α̇. (65)
B
11
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Parameters C, B, and K are material constants, which are calibrated based on experimental tests [54]. Parameter
C is inversely related to deformation capacity of the body, where a higher value causes the damage to grow faster.
The term involving B, distinguishes between void growth and shrinkage rates, where B > 1 biases the damage rate
towards positive levels of stress triaxiality. This parameter is also used to model the response of the material under
cyclic loadings [53]. The parameter K reflects the influence of the Lode angle parameter and can take positive or
negative values.

Finally, using (65) the damage quantity is defined in the form

DSWDFM = C
∫ α

0

([
exp(1.3T ) −

1
B

exp(−1.3T )
]

exp(K(|ζ | − 1))
)

dα ≤ 1 (66)

hich indicates the initiation of a crack as soon as DSWDFM = 1.

.2.2. Combination of the stress-weighted ductile fracture and phase field models
For the proposed framework, Gc is assumed to be a non-constant property, depending on the loading conditions

nd the stress–strain history of the material. Similar concepts have been used in the literature [31,32,55,56]; however,
hey mostly concentrate on the effects of plastic deformations, and do not account for stress triaxiality and the Lode
ngle parameter. To account for the latter, we incorporate the SWDFM approach in (46) for degrading the fracture
esistance, and propose a fracture degradation function of the form

F := (1 − F∞)(1 − DSWDFM)2
+ F∞ (67)

where similar to the degradation function, a residual positive value F∞ (≈10−1) is used to avoid numerical
ifficulties arising from full degradation of the fracture toughness.

This approach has several advantages: (i) through degradation of fracture toughness damage concentrates in
egions with high values of DSWDFM a quantity that takes into account plastic deformation, stress triaxiality and the
ode angle parameter. As a result, evolution of damage is coupled with evolution of stress–strain states; (ii) the
se of the SWDFM in context of the phase field formulation allows the transformation of the uncoupled SWDFM
riterion to a more realistic coupled formulation where evolution of damage affects the constitutive response of the
aterial through degradation of stiffness and shrinkage of the plastic yield surface; (iii) this proposition allows the

se of the SWDFM originally developed as a criterion for ductile crack initiation, as a method for predicting crack
nception and propagation.

Due to the integration of the SWDFM and the phase field model into a coupled framework, the material
arameters C, B, and K are in general different from those reported for the uncoupled SWDFM in [54,74,75].
owever, for the calibration process, a similar procedure as discussed in [54] can be used. Accordingly, first a

oading condition with ζ = 1 is studied using an axisymmetric specimen loaded in monotonic tension. Given high
evel of stress triaxiality, even for B ̸= 1,

(
exp(1.3T ) −

1
B exp(−1.3T )

)
≈ exp(1.3T ). Consequently parameter C

can be adjusted independently based on the point of fracture identified by the sudden drop in the measured load–
displacement curve. Under cyclic loadings, parameter B can be identified, and a third test with an intermediate
value of the Lode angle parameter may be used to calibrate K. However, since in this work we are concerned with
monotonic loadings, in line with [53], a value of B = 2 is used throughout this work. Furthermore, as shown in
Section 5 we use a value of K = 0.5 for all the examples, which is again in line with the value reported in [53]
based on experimental tests. As a result, two out of the three parameters required for the SWDFM are assumed
fixed in this work, which as discussed in [53], renders the proposed model to be significantly easier to calibrate and
apply.

Remark 2. In the present work, the value of G0
c is chosen such that the numerical results match the test data in

capturing the experimental peak load. The first reason for this is that the geometrical approximation of the crack
surface (9) alongside the length scale parameter l, cause the crack resistance parameter G0

c to be different from
the so called Griffith energy release rate determined commonly from experiments. Secondly, introduction of the
SWDFM into the evolution of Gc couples the phase field parameters to those of the SWDFM, which might require
a set of specific experiments to determine the parameters. As a result, further investigation is needed to relate the

0
Gc parameter to a material parameter found by experimental tests.
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3.3. Restrictions on the fracture toughness degradation function

Following the second law of thermodynamics and for the first time, to the best of our knowledge, we impose
n exact requirement on the degradation of fracture toughness. Following (35) the reduced dissipation function is
xpressed as

τ :
(
−

1
2Lvbe) (be)−1

− Aα̇ ≥ γ ḞG0
c . (68)

Using the flow rule (56) and the evolution equation for the internal plastic variable (57), this inequality is reformed
into

λ̇

(
τ :

∂φ

∂τ
+ A

∂φ

∂A

)
≥ γ ḞG0

c . (69)

Following the specific form of the yield function given in (52), this turns into

λ̇

(
τ :

dev(τ )
∥dev(τ )∥

− gy(d)
√

2
3A

)
≥ γ ḞG0

c . (70)

By adding and subtracting gy(d)
√

2
3τ0 and using the fact that τ :

dev(τ )
∥dev(τ )∥ = ∥dev(τ )∥, the inequality is stated as

λ̇φ + λ̇gy(d)
√

2
3τ0 ≥ γ ḞG0

c . (71)

However, based on the KKT conditions λ̇φ = 0, the relation simplifies into

λ̇gy(d)
√

2
3

τ0

G0
c

≥ γ Ḟ . (72)

inally (assuming γ ̸= 0) the rate of fracture toughness degradation function should satisfy the inequality

Ḟ ≤
λ̇gy(d)
γ

(√
2
3

τ0

G0
c

)
. (73)

s apparent from this equation, requirement (50) is a special case of this more general condition. Constraint (73)
s the thermodynamic requirement, however, since in this work we are dealing with monotonic loading and do not
onsider crack healing, the stricter condition (50) is enforced. On the other hand, accounting for crack healing under
pecial circumstances such as cyclic loading might be formulated based on the less restricting equation (73).

. Governing equations and finite element implementation

.1. Strong form of the governing equations

Inserting the results of (33) into (16), and assuming quasi-static loading without body forces B = 0, we obtain
the strong form of the equilibrium equation

div(σ ) = 0 in V (74)

with the Cauchy stress σ =
1
J τ and the Kirchhoff stress τ defined in (34).

From (19), and assuming h = 0, the strong form of the crack phase field equation is obtained as

Div(
∂Ψ f

∂d,X
) =

∂g
∂d

Ψ e
+

+
∂Ψ f

∂d
in V0 (75)

hich by using the specific form of fracture energy in (45), becomes

Div(Gc l d,X ) =
∂g

Ψ e
+

Gc d in V0. (76)

∂d + l

13
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4.2. Requirements for crack irreversibility

To enforce an irreversibility of crack growth for brittle fracture, Miehe et al. [11] introduced a history functional
f the form

H(εe, t) := max
t̂≤t

Ψ e
+

(εe, t̂) (77)

hich replaces Ψ e
+

in the governing equation. This idea was extended by Yin and Kaliske [31] to ductile fracture,
xpressing the governing equation as

Div(Gc l d,X ) =
∂g
∂d

H +
Gc

l
d in V0 (78)

here in contrast to [11], Gc is assumed to be a changing variable, which can stay constant or decrease depending
n the evolution of a plastic measure. However, for the most general case of an increasing or decreasing fracture
oughness Gc, the use of a history functional might violate the inequality ḋ ≥ 0, as (77) is not a sufficient condition
o satisfy the crack irreversibility. To illustrate this issue, we consider an example and without loss of generality
ssume d,X = 0, leading to the phase field equation (78) over V0 of the form

2(1 − d)H =
F G0

c

l
d (79)

here we have used (43) and (46). After straightforward calculations, the evolution of the phase field parameter is
iven as

ḋ =
2 l G0

c

(
ḢF − HḞ

)(
2 l H + F G0

c

)2 . (80)

ccordingly, the crack irreversibility requirement reduces into

ḢF − HḞ ≥ 0. (81)

ue to its nature Ḣ ≥ 0, and if we enforce the strong requirement (50) on Ḟ , (81) is satisfied a priori. However, if
e use the exact requirement (73) for Ḟ , (81) might not be satisfied in general. As a result, we conclude that for the
ost general case use of the history variable approach with an evolving fracture toughness does not guarantee the

rack irreversibility. Hence, to circumvent such a violation, in the present work the crack irreversibility requirement
s satisfied node-wise with a primal–dual active set strategy [76].

.3. Weak form of the governing equations

Using the method of weighted residuals and by multiplying (74) with the test function of the displacement field
u, we obtain∫

V
div(σ ) · δu dV = 0. (82)

fter simplifications this leads to∫
At

σ n · δu dA −

∫
V

σ : δu,x dV = 0 , (83)

ith n as the outward unit vector normal to At , the surface in the deformed configuration over which the
eumann-type boundary conditions are defined.
Similarly we can find the weak form of the crack equation as∫

V0

(
Div(Gcld,X ) −

∂g
∂d

Ψ e
+

−
Gc

l
d
)
δd dV0 = 0 , (84)

here δd is the test field for the phase field. After some simplifications we obtain∫ (
F G0

c l d,X · δd,X +
∂g

Ψ e
+
δd +

FG0
c dδd

)
dV0 = 0 , (85)
V0 ∂d l
14
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where we have used the fact that

d,X · N = 0 on A0. (86)

his boundary condition is imposed to enforce the crack evolution by mechanical loads only and no other external
ources, indicating that crack phase field is passive in nature and external driving via boundary conditions is not
llowed [10,77–79]. Furthermore, in (85) the gradient of the crack phase field, the term responsible for diffusing
he crack surface, is multiplied by the toughness degradation function F . Accordingly, if F → 0, the gradient term
anishes, which in turn would make the formulation mesh sensitive. As a result, as shown in (67), a residual value
∞ is required to obtain a mesh objective formulation.

.4. Finite element implementation

The spatial discretization of the weak from is performed by means of the Galerkin method. We discretize the
isplacement field within an element as

ui =

Nnode∑
A=1

N Aū A
i , (87)

here N A is the shape function used for the displacement field at node A, and ū A
i is the i th component of the nodal

value of the displacement vector at node A. Similarly, in a Bubnov Galerkin context, we choose an approximation
for the test displacement field as

δui =

Nnode∑
A=1

N Aδū A
i (88)

and its derivative with respect to x j is approximated as

δui , j =

Nnode∑
A=1

N A
, jδū

A
i . (89)

Using the discretized fields, the residual form of the mechanical problem at node A and direction i reads as

(Ru)A
i =

nd∑
j=1

(∫
At

σi j n j N A dA −

∫
V
σi j N A

, j dV
)
. (90)

Next, we discretize the crack phase field within an element using discrete nodal values with a form

d =

Nnode∑
A=1

N Ad̄ A (91)

where N A is the shape function at node A, and d̄ A is the corresponding value of the phase field parameter at that
node. Furthermore, for the derivative of this field with respect to X I we can write

d,I =

Nnode∑
A=1

N A
,I d̄ A. (92)

Using the same shape functions for the test fields leads to

δd =

Nnode∑
A=1

N Aδd̄ A and δd,I =

Nnode∑
A=1

N A
,I δd̄

A. (93)

As a result, the residual form of the crack problem at node A is obtained as

(Rd )A
=

∫ ( nd∑
F G0

c ld,I N A
,I +

∂g
∂d

Ψ e
+

N A
+

FG0
c

l
d N A

)
dV0. (94)
V0 I=1
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4.5. Finite strain plasticity return mapping algorithm

The numerical integration of the constitutive relations is done using the so-called elastic predictor/plastic corrector
lgorithm, commonly also called the “Stress Return Algorithm (Return Mapping)”. Following this procedure
utlined in, e.g., [66], we assume that for each time interval [tn, tn+1], the initial state defined by εe

n , αn , and
Fn is known. The configuration at time tn+1 is obtained from the incremental displacement field, and leads to the
urrent deformation gradient Fn+1. The incremental deformation gradient F∆ is defined as

F∆ := Fn+1 F−1
n . (95)

ext, for determining whether the load increment is elastic or elastoplastic, we assume an elastic trial state with
trial
n+1 = αn and

be trial
n+1 = F∆be

n FT
∆ , (96)

omputing the value of be
n from the known value of εe

n . With the trial value of the left Cauchy–Green strain tensor
t hand, the trial elastic Eulerian logarithmic strain tensor is computed as

εe trial
n+1 =

1
2 ln

(
be trial

n+1

)
. (97)

he trial value of the Kirchhoff stress tensor (34) considering the specific form of the elastic strain energy (39) is
alculated as

τ trial
n+1 = g(d)

(
κ⟨tr εe trial

n+1 ⟩+ I + 2µ(εe trial
n+1 )dev

)
+ κ⟨tr εe trial

n+1 ⟩− I . (98)

Using the trial values, the yield function is evaluated as

φtrial
n+1 = ∥dev(τ trial

n+1)∥ − gy(d)
√

2
3

[
τ0 + Atrial

n+1

]
(99)

ith

Atrial
n+1 = Q∞[1 − exp(−bαtrial

n+1)]. (100)

f φtrial
n+1 ≤ 0 the load increment is purely elastic, and the elastic trial is accepted as the updated configuration.

therwise, if φtrial
n+1 > 0, the trial state is not admissible, i.e., the load increment is elastoplastic and a plastic corrector

s computed. Therefore, the plastic strain increment as well as updated values of τ n+1 and An+1 are computed, such
hat the stress state is projected back on the yield surface. Those increments are determined by discretization of the
volution equations for the plastic flow rule (60) and the internal variable (57). A backward Euler discretization of
he evolution equation (57) leads to

αn+1 = αn +

√
2
3∆λ. (101)

Using a backward exponential integrator for (60) leads to

Fp
n+1 = Re T

n+1 exp
(
∆λ

∂φ

∂τ

⏐⏐⏐⏐
n+1

)
Re

n+1 Fp
n , (102)

here the isochoric nature of the plastic deformation, i.e., det(Fp) = 1, for pressure insensitive flow potentials is
carried over exactly for a traceless flow vector, ∂φ

∂τ
. A substantial simplification of the return–mapping algorithm

can be achieved by rewriting this equation equivalently in terms of the logarithmic elastic strain measure as

εe
n+1 = εe trial

n+1 − ∆λ
∂φ

∂τ

⏐⏐⏐⏐
n+1

(103)

which for the yield function in this work simplifies into

εe
n+1 = εe trial

n+1 − ∆λNn+1 (104)

with

Nn+1 =
dev(τ n+1)

. (105)

∥dev(τ n+1)∥
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As it is evident from the equations, use of the elastic logarithmic strain has led to a simple evolution equation that
resembles its small strain counterpart. With these values we can find the updated forces as

An+1 = Q∞

[
1 − exp

(
−b

(
αn +

√
2
3∆λ

))]
(106)

and

τ n+1 = τ trial
n+1 − 2g(d)µ∆λN trial

n+1 (107)

where we have used the fact that

Nn+1 = N trial
n+1 =

dev(τ trial
n+1)

∥τ trial
n+1∥

. (108)

Finally we can form the consistency condition and write

φn+1 = ∥dev(τ n+1)∥ − gy(d)
√

2
3

[
τ0 + An+1

]
= 0. (109)

his equation can be solved for the value of incremental plastic multiplier ∆λ which is then used in (101) and
(104) to update the state and bring it back to the yield surface.

5. Numerical results

The proposed phase field model is validated by means of a numerical study of experimental tests, considering
different levels of stress triaxiality and the Lode angle parameter. Fig. 3 schematically depicts the resulting levels
of stress triaxiality T , and values of the Lode angle parameter ζ at the respective location of crack initiation for
different, commonly employed experimental tests.

In this work, for assessing the proposed model considering different values of T and ζ , we investigate

• two different geometries of the Cylindrical Notched Tension (CNT) test performed by Kanvinde and Deierlein
[74], characterized by a moderate to high stress triaxiality and an axisymmetric stress state with the Lode
angle parameter of ζ = 1 at the center of specimen where the crack initiates,

• the Grooved Plate (GP) test done by Terashima and Deierlein [75], characterized by a high stress triaxiality
with ζ = 0 at the location of crack initiation, i.e., midpoint of the notched region,

• the Blunt Notch (BN) test investigated by Ziccarelli [54], for a combination of low to moderate stress triaxiality,
and an intermediate Lode angle parameter in the range of 0 < ζ < 1 at the location of crack initiation.

The subsequently presented numerical results are obtained using RACCOON [80,81], see also [56,82], a
massively parallel finite element library developed upon MOOSE [83]. For the time stepping procedure within the
incremental-iterative nonlinear solution algorithm, we follow a staggered scheme similar to [11,84], where at each
loading step the equilibrium equation (90) and the phase field equation (94) are decoupled and solved alternately.
In this scheme at each loading step, while the phase field is held constant, initially the equilibrium equation is
solved for the displacement field with the help of the Newton–Raphson method. Next the displacement field is held
constant and the crack evolution equation is solved using PETSc’s variational inequality solver [76]. The simulation
advances to the next loading step when the residual of the equilibrium equation is less than a prescribed threshold.
We also mention that another technique for solving the governing equations is the monolithic scheme, in which
equations are solved for all the unknowns simultaneously. However, due to robustness issues encountered in our
numerical simulations, also documented in [26], we utilize the staggered scheme in this work.

For identifying the material parameters for each test, the elastoplastic parameters, i.e., constants E , ν, τ0, Q∞,
and b, are calibrated first such that the behavior of the solid before cracking (pre-peak behavior) is captured. For
calibrating the rest of the parameters, i.e., G0

c , C, B, and K, the fracture response of the material is considered. For
hese parameters, the method outlined in Section 3.2.2 is utilized.

.1. Cylindrical notched tension (CNT) test

The first considered example is the Cylindrical Notched Tension (CNT) test. CNT tests, as a result of the

pecimen geometry, are widely used to investigate ductile fracture under axisymmetric stress states with Lode
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c

a

Fig. 3. Level of stress triaxiality and Lode angle parameter at fracture locus for various common experimental tests.
Source: Adopted from [53].

Fig. 4. Geometry of the CNT specimen. For the loading, the top and bottom surfaces of the specimen are pulled vertically in a displacement
ontrolled manner.

ngle parameters close to unity, i.e., ζ ≈ 1, and moderate to high values of stress triaxiality at the location
of crack initiation. The test setup of the CNT test alongside the loading conditions are illustrated in Fig. 4. As
discussed in [53,85], an increase in the ratio dUN/rN leads to higher values of the stress triaxiality at the center of
the specimen where the crack initiates. Accordingly, to capture different level of stress triaxiality, we consider two
different geometries, characterized by rN = 1.59 mm and rN = 3.18 mm. The employed geometrical dimensions
for the two cases are summarized in Table 1.

In the finite element model, axisymmetry and vertical symmetry are exploited. For both geometries, quadrilateral
elements with a characteristic element size of 0.04 mm in areas where the crack is expected to propagate are used.

In line with the suggestions made in [10,61,86] that the length scale parameter should be at least twice the size

18
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Table 1
Dimensions for the CNT specimens with small and large notch radii.

dUN (mm) dNR (mm) rN (mm) h (mm) dUN (mm) dNR (mm) rN (mm) h (mm)

12.7 6.35 1.59 25.4 12.7 6.35 3.18 25.4

Table 2
Parameters for the CNT tests.

A572 Grade 50 steel

E (GPa) ν (–) τ0 (MPa) Q∞ (MPa) b (–) G0
c (N/mm) C (–) B (–) K (–)

205 0.3 345 380 18 95 0.9 2 0.5

A709 Grade 70 steel

E (GPa) ν (-) τ0 (MPa) Q∞ (MPa) b (–) G0
c (N/mm) C (–) B (–) K (–)

205 0.3 551 310 14 100 0.28 2 0.5

Fig. 5. Computed and experimental (conducted by Kanvinde and Deierlein [74]) load–displacement curves for the CNT specimen with
N = 1.59 mm for (a) the A572 Grade 50 steel and (b) the A709 Grade 70 steel. Markers shown on the load–displacement curve
orrespond to the evaluation plots shown in Fig. 9.

f elements, a length scale of l = 0.25 mm is used. Furthermore, to demonstrate the suitability of the model for
different materials, two different grades of structural steel, namely the A572 Grade 50 steel and the A709 Grade
70 steel, are investigated. The employed material properties for the two different materials were calibrated based
on experimental results and they are summarized in Table 2.

The obtained load–displacement curves for the geometries with rN = 1.59 mm and rN = 3.18 mm alongside
he experimental data for both materials are presented in Figs. 5 and 6, respectively. A good agreement between
he simulated results and the experiments is obtained. The proposed framework accurately captures the fracture
nitiation and propagation by using a set of parameters that only depend on the used material and not the geometry
f the specimen or the stress state at the crack initiation location. Furthermore, Fig. 5b demonstrates the mesh
bjectivity of the proposed framework for three levels of finite element refinements with element sizes of 0.04 mm,
.02, and 0.01 mm.

The evolution of the crack phase field d and the internal plastic variable α at the location of crack initiation,
.e., the center of the specimen, for selected CNT tests are shown in Fig. 7. The introduction of the yield surface
egradation function gy(d) in (54) leads to an accumulation of plastic strain at damaged material points, which is
n line with experimental observations [27,32]. Furthermore, parameter gy

∞ prevents the accumulation of plastic
eformation for severely damaged material points, which in turn maintains the computational stability of the

imulations.
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r

Fig. 6. Computed and experimental (conducted by Kanvinde and Deierlein [74]) load–displacement curves for the CNT tests with

N = 3.18 mm for (a) the A572 Grade 50 steel and (b) the A709 Grade 70 steel. Markers shown on the load–displacement curve
correspond to the evaluation plots shown in Fig. 10.

Fig. 7. Evolution of the crack phase field d and the internal plastic strain variable α at the location of crack initiation for (a) the rN = 1.59 mm
specimen with the A572 Grade 50 steel and (b) the rN = 3.18 mm specimen with the A709 Grade 70 steel.

Figs. 8a and 8b depict the radial distribution of the stress triaxiality and the Lode angle parameter along the
plane of vertical symmetry of the specimen for the A572 Grade 50 steel once the phase field parameter attains a
value of d = 0.05 and a macroscopic crack starts to form. This figure illustrates the axisymmetric stress state of
the CNT tests with ζ ≈ 1, as well as the influence of the value of rN in producing moderate to high levels of stress
triaxiality at the center of the specimens. Similarly, Figs. 8c and 8d depict the radial distribution of the internal
plastic variable and the SWDFM damage quantity. Unlike the stress triaxiality, the internal plastic variable attains
its maximum value at the outer surface of the specimen. The SWDFM accounts for the combined effects of the
plastic deformation and the stress state, and leads to an accurate prediction of the crack initiation at the center of
the specimen, which is in line with experimental observations. Figs. 9 and 10 show selected stages of the evolution
of the crack phase field until complete failure for the A572 Grade 50 steel for both geometries. In both cases, the
crack initiates at the center of the specimen, where triaxiality attains its maximum, and it propagates in the radial

direction until final rupture.
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i

Fig. 8. Radial distribution of (a) the stress triaxiality T , (b) the Lode angle parameter ζ , (c) the internal plastic variable α, and (d) the
SWDFM damage quantity DSWDFM over the center line of the CNT specimens for the A572 Grade 50 steel once d = 0.05 at the crack
nitiation location.

Fig. 9. Evolution of contour plots of the fracture phase field for the specimen with rN = 1.59 mm for the A572 Grade 50 steel at
displacements of (a) 0.67 mm, (b) 0.68 mm, (c) 0.72 mm, and (d) 0.83 mm.
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Fig. 10. Evolution of contour plots of the fracture phase field for the specimen with rN = 3.18 mm for the A572 Grade 50 steel at
isplacements of (a) 0.95 mm, (b) 0.96 mm, (c) 1.03 mm, and (d) 1.16 mm.

Table 3
Dimensions for the GP specimen.

wUN (mm) h (mm) t (mm) wNR (mm) rN (mm)

9.53 25.4 19.05 2.54 2.03

Table 4
Parameters for the GP test.

E (GPa) ν (–) τ0 (MPa) Q∞ (MPa) b (–) G0
c (N/mm) C (–) B (–) K (–)

205 0.3 240 265 14 85 0.17 0.5 2

5.2. Grooved Plate (GP) test

The CNT tests discussed in the previous section allow for investigating different levels of stress triaxiality.
owever, they are limited to axisymmetric stress states with ζ ≈ 1. To investigate stress states characterized by a

Lode angle parameter close to zero at the location of crack initiation, Grooved Plate (GP) tests are used, cf. Fig. 3.
Accordingly, for assessing the proposed model, the GP test performed by Terashima and Deierlein [75] on steel of
grade A36 is investigated in this example. The geometry of a GP specimen and the loading conditions are visualized
in Fig. 11. A specimen for the GP test is characterized by two smooth notches along its depth. As a consequence
of the geometry, the stress state in the vicinity of the crack tip is characterized by nearly plane strain conditions.
Similar to the CNT tests, the level of stress triaxiality experienced at the crack initiation location can be adjusted
by changing the specimen geometry, namely the notch aspect ratio rN

wNR
[53,75]. The dimensions for the specimen

used in the investigated GP test are summarized in Table 3.
For the finite element simulation, the symmetry of the specimen is exploited, and accordingly, only one eighth

of the body is modeled. Brick elements with an approximate size of 0.07 mm are used in regions where crack is
expected to propagate. For the crack phase field, a length scale parameter of l = 0.25 mm is used. The parameters

sed for this test are listed in Table 4.
Fig. 12a illustrates the obtained load–displacement response where a good agreement with the experimental

ata is shown. In particular, the pre-peak behavior is captured perfectly by the proposed framework, whereas the
oad–displacement curve in the early post peak region is slightly underestimated by the model, which however, is

ainly attributed to the assumed simplistic form of the plasticity model. For the stage of final rupture, again a perfect
greement, characterized by a virtually identical slope of the load–displacement curve, is observed. Fig. 12b depicts
he distribution of the stress triaxiality T and the Lode angle parameter ζ along the thickness of the specimen once
22
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Fig. 11. Geometry of the GP specimen. For the loading, the top and bottom surfaces of the specimen are pulled vertically in a displacement
controlled manner.

the crack phase field attains a value of d = 0.05, and a macroscopic crack starts to form. A high value of stress
riaxiality in combinations with a nearly zero Lode angle parameter are observed at the crack initiation location.

Finally, Figs. 13 and 14, respectively depict the resulting crack patterns and the internal plastic variable for
ifferent stages of the test. As apparent, the crack initiates at the center of the specimen, where the stress triaxiality
ttains a high value, and it propagates in both depth and thickness directions. Interestingly, the evolution of the
nternal plastic variable shows that α is highest not at the crack initiation location but at the free surface, i.e., the
roove tip, of the specimen.

.3. Blunt Notch (BN) test

The CNT and GP tests studied are characterized by moderate to high level of stress triaxiality as well as ζ ≈ 1 and
≈ 0, respectively. Therefore, to investigate comparatively low to moderate levels of stress triaxiality, i.e., T < 1,

ombined with Lode angle parameters in the range 0 < ζ < 1, Blunt Notch (BN) tests are used. In particular,
e investigate a test performed by Ziccarelli [54] on A913 Grade 65 steel. The geometry of the studied BN test

pecimen alongside the loading conditions are shown in Fig. 15. Similar to the CNT and the GP tests, the stress
riaxiality and the Lode angle parameter can be adjusted by modifying the geometry, specifically by changing the
otch radius rN and the horizontal distance between the loading point and the notch tip wN. The dimensions for
he investigated BN specimen are listed in Table 5.

For the finite element simulations, two-fold symmetry is exploited. Accordingly, one fourth of the body is
odeled using brick elements with an approximate size of 0.26 mm in those areas where the crack is expected

o propagate. For the crack phase field, a length scale parameter of l = 0.6 mm is used. The employed parameters
or this example are summarized in Table 6.
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s
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Fig. 12. (a) Computed and experimental (conducted by Terashima and Deierlein [75]) load–displacement curves for the GP test and (b)
distribution of the stress triaxiality T and the Lode angle parameter ζ from the center of specimen to the groove tip once d = 0.05. Markers
hown on the load–displacement curve correspond to the evaluation plots shown in Figs. 13 and 14.

Fig. 13. Evolution of contour plots of the fracture phase field for the GP test at displacements of (a) 1.14 mm, (b) 1.18 mm, (c) 1.22 mm,
nd (d) 1.26 mm.

Fig. 14. Evolution of contour plots of the internal plastic variable α for the GP test at displacements of (a) 1.14 mm, (b) 1.18 mm, (c)
1.22 mm, and (d) 1.26 mm.
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Fig. 15. Geometry of the BN test. For the loading, top and bottom edges of the holes are moved vertically in a displacement controlled
manner.

Table 5
Dimensions for the BN test.

w (mm) h (mm) t (mm) wP (mm) wN (mm) wND (mm)

63.5 60.96 12.7 12.7 25.4 6.35

hG (mm) hI (mm) hP (mm) rD (mm) rP (mm) rN (mm)

12.7 5.08 36.07 1.59 6.35 0.79

Table 6
Parameters for the BN test.

E (GPa) ν (–) τ0 (MPa) Q∞ (MPa) b (–) G0
c (N/mm) C (–) B (–) K (–)

205 0.3 410 245 18 265 0.65 0.5 2

Fig. 16a shows the predicted load–displacement curve together with the experimental data. The considered
isplacement is taken to be the vertical movement of the holes, as visualized in Fig. 15. A good agreement between
he simulated results and the experimental data is stated.

Fig. 16b shows the evolution of the stress triaxiality and the Lode angle parameter at the tip of the notch located
n the plane of symmetry until the crack phase field reaches d = 0.05. A moderate value of stress triaxiality

alongside an intermediate Lode angle parameter are visible.
The evolution of damage in the specimen is visualized in Fig. 17. For this example, the crack initiates at the tip of

the notched hole on the plane of symmetry, and then as expected, propagates horizontally and outward towards the
free surface and reaches the drilled hole. In this example, unlike the other two examples, the crack does not initiate
at the location with the highest level of stress triaxiality, rather it starts from the location where a combination of
the stress triaxiality and large plastic deformation leads to crack nucleation. Fig. 18 depicts the distribution of the
stress triaxiality and the internal plastic variable when d ≈ 1 at the notch tip. This demonstrates the capability of
he SWDFM in accounting for not only the stress state but also the plastic deformation experienced by material

oints for predicting different ductile crack mechanisms.
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s

Fig. 16. (a) Computed and experimental (conducted by Ziccarelli [54]) load–displacement curves for the BN test and (b) evolution of the
tress triaxiality T , and the Lode angle parameter ζ at the tip of the notch located on the plane of symmetry in the BN specimen until

d = 0.05 at crack initiation location. Markers shown on the load–displacement curve correspond to the evaluation plots shown in Fig. 17.

Fig. 17. Evolution of contour plots of the fracture phase field for the BN test at displacements of (a) 4.38 mm, (b) 4.70 mm, (c) 5.50 mm,
and (d) 6.70 mm.

Fig. 18. Distribution of the stress triaxiality T and the internal plastic variable α for the BN test when d ≈ 1 at the notch tip.
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6. Conclusion

In this work, we proposed a phase field framework for predicting crack initiation and propagation in elastoplastic
olids experiencing multi-axial stress states under finite, inelastic deformations. To this end, we followed a micro-
echanically motivated approach for deriving the governing equations, accompanied with the first and second laws

f thermodynamics. The proposed framework assumes a close coupling between the history of the material and the
volution of damage through degradation of the fracture toughness. To account for different multi-axial stress states,
he degradation of the fracture toughness is coupled with the Stress-Weighted Ductile Fracture Model (SWDFM).
his allows for accurately predicting fracture initiation and advancement in solids, while accounting for both plastic
eformation and stress state inside the body. To avoid nonphysical elastic deformations in damaged regions, a
egradation function for the plastic yield surface is employed. In addition to shrinking the plastic yield surface,
his degradation function circumvents numerical difficulties arising from an excessive accumulation of plastic
eformation in severely damaged regions. Furthermore, following the second law of thermodynamics, restrictions
ere enforced on the rate at which the fracture toughness can degrade.
The capabilities of the proposed model were validated in a numerical study covering a wide range of stress and

train states. In particular, the Cylindrical Notched Tension (CNT) test, the Grooved Plate (GP) test and the Blunt
otch (BN) test have been investigated. Special emphasis was put on the comparison with experimental results

rom real world experiments. Thereby, it was shown that the ductile fracture response observed in different tests
re accurately captured by only using a set of material-specific parameters.

Regarding future research endeavors, possible extensions of the proposed model include ductile fracture under
yclic loadings, taking into account kinematic hardening effects. Such extensions are currently pending.
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