
Rameez Wajid
Computer Science Department, University of Colorado Boulder, USA.
RAMEEZ.WAJID@COLORADO.EDU

Asad Ullah Awan
Department of Electrical and Computer Engineering, Technical University of Munich, Germany.
ASAD.AWAN@TUM.DE

Majid Zamani
Computer Science Department, University of Colorado Boulder, USA.
Computer Science Department, LMU Munich, Germany.
MAJID.ZAMANI@COLORADO.EDU

Editors: R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, M. Kochenderfer

Abstract

Formal synthesis of controllers for stochastic control systems with unknown models is a challenging problem. In this paper, we focus on safety controller synthesis for nonlinear stochastic control systems. The approach consists of a learning step followed by a controller synthesis scheme using control barrier functions. In the learning phase, we employ Gaussian processes (GP) to learn models of unknown stochastic control systems in the presence of both process and measurement noises. In the controller synthesis phase, we compute control barrier functions together with their corresponding controllers based on the learned GP and quantify lower bounds on the probabilities of safety satisfaction for the original unknown systems equipped with the synthesized controllers. Finally, the effectiveness of the proposed approach is illustrated on a room temperature control and a vehicle lane-keeping example.

Keywords: Synthesis, safety controllers, stochastic systems with unknown models, Gaussian processes, control barrier functions

1. Introduction

Designing safety controllers for safety-critical applications is an important problem. Here, safety is considered in the sense of preventing the system from reaching a given unsafe set. The general approaches for synthesizing a safety controller require accurate mathematical models of the system dynamics. However, closed-form models derived from first principles for many real-world systems are complex or even not available, and hence one cannot use model-based techniques for such systems. Hence, the design of safety controllers is much more challenging for systems with unknown or partially known models.

Approaches based on Barrier functions (Prajna et al. (2007)) have been promising for synthesizing safety controllers. These discretization-free approaches usually formulate the search for barrier functions as sum-of-squares (SOS) optimization problems which are computed using existing semidefinite programming (SDP) solvers (Ames et al. (2019); Borrmann et al. (2015)). Barrier functions can also be leveraged to synthesize controllers for complex logic specifications (Yang et al. (2020); Li and Belta (2019)). Unfortunately, approaches based on barrier functions require a precise mathematical model of the system which may not be available.
Recently, Gaussian processes (GPs) have emerged as a learning-based technique for modelling unknown dynamical systems which allow for a quantification of uncertainty for the learned model (Williams and Rasmussen (2006)). The uncertainty quantification provides out-of-sample performance guarantees, making the GPs attractive tools in control applications like adaptive control (Chowdhary et al. (2014)), feedback-linearization (Umlauft et al. (2017)), and policy through reinforcement learning for robotic applications (Akametalu et al. (2014)). An accurate GP regression model can often be constructed using only a relatively small number of training samples. This property makes GPs more desirable with respect to other data-driven approaches such as those based on scenario convex problems (SCP) (Calafiore and Campi (2006)), which require large numbers of samples for providing out-of-sample performance guarantees (Salamati et al. (2021); Berger et al. (2021)).

Related Work: Recently, there have been some results to combine GPs with control barrier functions for safety controller synthesis of unknown nonlinear control-affine systems. The work in Jagtap et al. (2020a) uses GPs to model unknown continuous-time control-affine dynamics and then uses the learned GPs to compute control barrier certificates together with their corresponding controllers satisfying safety specifications. The work in Castañeda et al. (2021) uses GP regression to learn model uncertainties for control-affine systems with known nominal dynamics. The GPs are then used to adjust control barrier certificates, earlier derived from the nominal dynamics. Another approach has been proposed to combine GP learning with abstraction-based techniques for partially known stochastic systems (Jackson et al. (2020, 2021)). However, none of these existing approaches can synthesize safety controllers for fully unknown stochastic systems without discretizing state sets, while considering both process and measurement noises simultaneously.

In this paper, we provide a scheme to synthesize safety controllers for nonlinear stochastic control systems with unknown dynamics. First, we use the Gaussian process regression to learn a model of the unknown stochastic system with a probabilistic guarantee on the model accuracy. Specifically, we use the improved Gaussian process upper confidence bound (IGP-UCB) (Chowdhury and Gopalan (2017)) for establishing the probabilistic closeness between the learned GP and the original unknown model. Then, we construct a control barrier certificate together with the corresponding controller using the Counterexample Guided Inductive Synthesis framework (CEGIS) (Ravanbakhsh and Sankaranarayanan (2015)). The synthesized controller is shown to satisfy the specified safety specification on the original system with an a priori chosen confidence bound. Our approach is one of the first attempts that accounts for both process and observation noises in the controller synthesis process for unknown stochastic systems. We use a room temperature control example and a vehicle lane-keeping scenario to illustrate the effectiveness of the proposed results.

2. Preliminaries and Problem Definition

2.1. Preliminaries

We consider the probability space \((\Omega, \mathcal{F}_\Omega, \mathbb{P})\), where \(\Omega\) is the sample space, \(\mathcal{F}_\Omega\) is a sigma-algebra consisting of subsets of \(\Omega\) as events, and \(\mathbb{P}\) is the probability measure that assigns probability to those events. Random variables \(X\) are assumed to be measurable functions of form \(X : (\Omega, \mathcal{F}_\Omega) \rightarrow (S_X, \mathcal{F}_X)\). Any random variable induces a probability measure on \((S_X, \mathcal{F}_X)\) as \(Prob\{A\} = \mathbb{P}_\Omega \{X^{-1}(A)\}\) for any \(A \in \mathcal{F}_X\).
2.2. Notations

We denote the set of positive integers by \(\mathbb{N} := \{1, 2, 3, \ldots\} \) and the set of non-negative integers by \(\mathbb{N}_0 := \{0, 1, 2, \ldots\} \). The set of real, positive real, and non-negative real numbers are denoted by \(\mathbb{R} \), \(\mathbb{R}_{>0} \), and \(\mathbb{R}_{\geq 0} \), respectively. We use \(\mathbb{R}^n \) to denote an \(n \)-dimensional Euclidean space and the space of real matrices with \(n \) rows and \(m \) columns is denoted by \(\mathbb{R}^{n \times m} \). The \((n \text{-dimensional}) \) multivariate normal distribution is denoted by \(\mathcal{N}(\mu, C) \) with mean vector \(\mu \in \mathbb{R}^n \) and covariance matrix \(C \in \mathbb{R}^{n \times n} \). We use the notation \(\bigcap_{i=1}^n M_i \) for the conjunction of events \(M_1, \ldots, M_n \).

A Hilbert space of square integrable functions which includes functions of the form \(h(x) = \sum_i \alpha_i k(x, x_i) \), where \(\alpha_i \in \mathbb{R} \), \(x, x_i \in X \subset \mathbb{R}^n \), is called a reproducing kernel Hilbert space (RKHS) if \(k : X \times X \mapsto \mathbb{R}_{\geq 0} \) is a symmetric positive definite function called kernel. The corresponding induced RKHS norm with respect to a kernel \(k \) is denoted by \(\| h \|_k \). A more rigorous discussion on RKHS norms can be found in Paulsen and Raghupathi (2016).

A random sequence \(\varepsilon_r := \{ \varepsilon_r(t) : \Omega \mapsto W, t \in \mathbb{N}_0 \} \) is conditionally \(R \)-sub-Gaussian for a fixed constant \(R \in \mathbb{R}_{\geq 0} \) if it satisfies

\[
\forall t \in \mathbb{N}_0, \forall b \in \mathbb{R}, \quad \mathbb{E}[e^{b \varepsilon_r(t)} \mid \mathcal{F}_{t-1}] \leq e^{\left(\frac{b^2 R^2}{2}\right)},
\]

where \(\mathcal{F}_{t-1} \) is the sigma-algebra generated by the random variables \(\{\varepsilon_r(0), \varepsilon_r(1), \ldots, \varepsilon_r(t-1)\} \).

We use \(\varepsilon_r \sim \text{subG}(R) \) to denote such a random sequence.

2.3. Discrete-time stochastic control systems

We consider discrete-time stochastic control systems as the underlying models for unknown systems.

Definition 1 A discrete-time stochastic control system (dt-SCS) is characterized by a tuple \(S = (X, U, \varepsilon, f) \), where

- \(X \subseteq \mathbb{R}^n \) is a Borel space as the state space of the system. We denote by \((X, \mathcal{B}(X)) \) the measurable state space where \(\mathcal{B}(X) \) is the Borel sigma-algebra on the state space.

- \(U \subseteq \mathbb{R}^m \) is a Borel space as input space of the system.

- \(\varepsilon = [\varepsilon_1, \ldots, \varepsilon_n] \) is a vector of \(n \) independent \(\sigma \)-sub-Gaussian random sequences, i.e. \(\varepsilon_i \sim \text{subG}(\sigma) \), \(\forall i \in \{1, \ldots, n\} \), \(\sigma \in \mathbb{R}_{\geq 0} \).

- Map \(f : X \times U \mapsto X \) is a measurable function characterizing the state evolution of the system.

For a given initial state \(x(0) = x_0 \in X_0 \subseteq X \) and input sequence \(\{u(t) : \Omega \mapsto U, t \in \mathbb{N}_0\} \), the state evolution is characterized by the following difference equation:

\[
x(t + 1) = f(x(t), u(t)) + \varepsilon(t), \quad t \in \mathbb{N}_0.
\]

We assume that the safety of a dt-SCS \(S \) is enforced by a stationary policy \(u : X \mapsto U \) mapping at any time \(t \) the current state \(x(t) \) to an input \(u(t) \). For the main problem formulation, we consider the following assumptions.

Assumption 1 For a dt-SCS \(S = (X, U, f, \varepsilon) \), the map \(f : X \times U \mapsto X \) is unknown.
We also assume that the map f in S has low complexity, as measured under the reproducing kernel Hilbert space (RKHS) norm (Paulsen and Raghupathi (2016)) as follows:

Assumption 2 For a dt-SCS $S = (X,U,f,\varepsilon)$, each component of the map f has a bounded RKHS norm with respect to the kernel k, i.e. $\exists B_j \in \mathbb{R}_{\geq 0}$ s.t. $\|f_j\|_k \leq B_j$ for all $j \in \{1,\ldots,n\}$.

The RKHS has a property of being dense in the space of continuous functions for positive definite kernels over a compact domain X. This means that the kernel can arbitrarily approximate any continuous function over the compact domain X (Seeger et al. (2008)). Assumption 2 allows us to use Gaussian process regression to model f. Next, we have some assumptions on the availability of the training data-set.

Assumption 3 For a dt-SCS $S = (X,U,f,\varepsilon)$, we have access to measurements for $x(t) \in X$, $u(t) \in U$ and to the noisy observations $y(t) = x(t+1) + w(t) = f(x(t),u(t)) + \varepsilon(t) + w(t)$, $\forall t \in \mathbb{N}_0$, where $w = [w_1,\ldots,w_n]$, is a vector of n independent θ-sub-Gaussian random sequences representing the measurement noise (independent of ε), i.e. $w_i \sim \text{subG}(\theta)$, $i \in \{1,\ldots,n\}, \theta \in \mathbb{R}_{\geq 0}$.

In practice, measurements $f(x(t),u(t))$ can be acquired by simulating or running the system S from multiple initial conditions. Then, the observations $y(t)$ can be rewritten as

$$y(t) = f(x(t),u(t)) + \nu(t),$$

$t \in \mathbb{N}_0$, where $\nu = [\nu_1,\ldots,\nu_n]$ and $\nu_i \sim \text{subG}(\theta)$ with $R^2 = \theta^2 + \sigma^2$, $i \in \{1,\ldots,n\}$.

The controller synthesis problem investigated in this paper can now be stated as follows:

Problem 1 For a system dt-SCS S satisfying Assumptions 1-3, an initial set $X_0 \subset X$, and an unsafe set $X_u \subset X$, synthesize a controller that provides a lower bound on the probability that the solution process of S starting in X_0 does not reach X_u within a bounded time horizon.

3. Gaussian Process Modelling

A Gaussian process (GP) is a non-parametric probabilistic framework belonging to the kernel methods family in machine learning (Bishop (2006)). It utilizes the concept of a prior probability distribution over discrete random variables and generalizes them to an infinite space of continuous functions. Its most important application is the GP regression, which is used to model unknown nonlinear functions. A GP with a domain X_{in} is completely specified by its mean function $m : X_{in} \mapsto \mathbb{R}$ and covariance function $k : X_{in} \times X_{in} \mapsto \mathbb{R}$ written as $\mathcal{G}(m,k)$. We denote by $f \sim \mathcal{G}(m,k)$ the approximation of function f by a GP $\mathcal{G}(m,k)$. The *a-priori* distribution (i.e. before training the GP) corresponding to $f \sim \mathcal{G}(m,k)$ at any point $x \in X_{in}$ is Gaussian with the mean and covariance given by $m(x)$ and $k(x,x)$, respectively. The covariance function (also known as kernel) $k(x,x')$ is a similarity measure between any two inputs $x, x' \in X_{in}$. The kernel choice is largely problem-dependent with the linear, squared-exponential, and Matérn kernels being most commonly utilized ones. It is common to take the mean function m to be a zero-valued function, which we also assume here without loss of generality.

The GP approximation for an n-dimensional function $f : X \times U \rightarrow X$, where $X \subset \mathbb{R}^n, U \subset \mathbb{R}^m$, can be obtained by modeling each component f_j by n independent GPs i.e.,

$$f_j \sim \mathcal{G}(0,k_j),$$

(4)
where the kernel is denoted by $k_j : (X \times U) \times (X \times U) \mapsto \mathbb{R}$, $j \in \{1, 2, \ldots, n\}$, and 0 represents zero-valued function.

Suppose we collect N measurements $\{y^{(1)}, \ldots, y^{(N)}\}$ and $\{(x, u)^{(1)}, \ldots, (x, u)^{(N)}\}$, where $y^{(i)} = f((x, u)^{(i)}) + \nu^{(i)}$, $i \in \{1, 2, \ldots, N\}$, as in Assumption 3; then the posterior distribution corresponding to $f_j(x, u)$, for $j \in \{1, 2, \ldots, n\}$, at an arbitrary state $x \in X$ and input $u \in U$ is computed as a normal distribution $\mathcal{N}(\mu_j(x, u), \rho^2_j(x, u))$ with the mean and covariance given by

$$
\begin{align*}
\mu_j(x, u) &= \bar{k}^T_j \left(K_j + (1 + 2/N) \mathbf{I}_N \right)^{-1} y_j, \\
\rho^2_j(x, u) &= k_j((x, u), (x, u)) - \bar{k}^T_j \left(K_j + (1 + 2/N) \mathbf{I}_N \right)^{-1} \bar{k}_j,
\end{align*}
$$

(5)

respectively, where \mathbf{I}_N is the identity matrix, $\bar{k}_j = [k_j((x, u)^{(1)}, (x, u)), \ldots, k_j((x, u)^{(N)}, (x, u))]^T \in \mathbb{R}^N$, $y_j = [y_j^{(1)}, \ldots, y_j^{(N)}]^T \in \mathbb{R}^N$, and

$$
K_j = \begin{bmatrix}
k_j((x, u)^{(1)}, (x, u)^{(1)}) & \cdots & k_j((x, u)^{(1)}, (x, u)^{(N)}) \\
\vdots & \ddots & \vdots \\
k_j((x, u)^{(N)}, (x, u)^{(1)}) & \cdots & k_j((x, u)^{(N)}, (x, u)^{(N)})
\end{bmatrix} \in \mathbb{R}^{N \times N}.
$$

Now, the function f can be approximated by augmenting the mean and covariance functions in (5) from each GP as follows:

$$
\begin{align*}
\mu(x, u) := [\mu_1(x, u), \mu_2(x, u), \ldots, \mu_n(x, u)]^T, \\
\rho^2(x, u) := [\rho^2_1(x, u), \rho^2_2(x, u), \ldots, \rho^2_n(x, u)]^T.
\end{align*}
$$

(6)

The following lemma shows that we can quantify the upper bound on the difference between the true value $f(x, u)$ and the inferred mean $\mu(x, u)$ with a probability lower bound.

Lemma 2 Consider a dt-SCS $S = (X, U, f, \varepsilon)$ satisfying Assumptions 1-3, and a learned GP for f using N training points, having the posterior mean and covariance functions as in (5). Then, the following inclusion holds true with a confidence of at least $(1 - \delta)^n$:

$$
f(x, u) \in \{\mu(x, u) + d \mid d \in \mathcal{D}\}, \forall x \in X, \forall u \in U
$$

(7)

where, $\mathcal{D} := \{[d_1, \ldots, d_n]^T \mid d_j \in [-\beta_j \bar{\rho}_j, \beta_j \bar{\rho}_j], j \in \{1, \ldots, n\}\}$, $\beta_j = B_j + R \sqrt{2(\alpha_j + 1 + \log(1/\delta))}$, and $\bar{\rho}_j^2(x, u) = \max_{x \in X, u \in U} \rho^2_j(x, u)$.

The proof is similar to that of (Umlauft et al., 2018, Lemma 2). It follows from (Chowdhury and Gopalan, 2017, Theorem 2) by extending the scalar result that $\mu_j(x, u) - \beta_j \bar{\rho}_j(x, u) \leq f_j(x, u) \leq \mu_j(x, u) + \beta_j \bar{\rho}_j(x, u)$, $\forall x \in X, \forall u \in U$ holds with a confidence of at least $1 - \delta$ to an n-dimensional state-set.

Remark 3 Computing the information-theoretic term α_j in the expression of β_j above, which quantifies the mutual information gain between the original function and the finite data samples, is an NP-hard problem in general. For commonly used kernels, e.g., the squared-exponential or the linear kernel, α_j grows sub-linearly with the number of data samples N, as detailed in Srinivas et al. (2009). In our case-study, we circumvent this problem by directly approximating d in (7) using a Monte-Carlo approach (details in Section 5).
4. Control Barrier Functions

Here, we introduce a notion of control barrier functions which is used to find a control policy that yields a lower bound on the probability that a discrete time stochastic system avoids an unsafe set over a bounded time horizon, as formalized in the next lemma borrowed from Jagtap et al. (2020b).

Lemma 4 Consider a dt-SCS $S = (X, U, f, \varepsilon)$ as in Definition 1 and sets $X_0, X_u \subseteq X$ as the initial and unsafe sets, respectively. Suppose there exists a function $B : X \mapsto \mathbb{R}_{\geq 0}$, and constants $c \in \mathbb{R}$, $\lambda \in \mathbb{R}_{\geq 0}$, $\gamma \in \mathbb{R}_{>0}$, with $\gamma > \lambda$, such that

$$B(x) \leq \lambda, \quad \forall x \in X_0, \quad (8)$$
$$B(x) > \gamma, \quad \forall x \in X_u, \quad (9)$$

and $\forall x \in X, \exists u \in U$, such that

$$\mathbb{E}[B(x(t+1)) \mid x(t) = x, u(t) = u] - B(x(t)) \leq c. \quad (10)$$

Then, under a control policy u associated with B (cf. existential quantifier in condition (10)), the lower bound on the probability that the solution process of S starting from any initial state $x_0 \in X_0$ does not reach X_u in a bounded time horizon $[0, T]$ is given by

$$\mathbb{P}\{x(t) \not\in X_u, \forall t \in [0, T] \subset \mathbb{N}_0 \mid x(0) = x_0\} \geq 1 - \frac{\lambda + \max(0, c)T}{\gamma}. \quad (11)$$

Remark 5 Condition (10) in Lemma 4 implicitly gives rise to a (stationary) control policy $u : X \mapsto U$ according to the existential quantifier on the input for any state $x \in X$.

For a dt-SCS with unknown map f, we derive a lower bound on the probability that the solution process does not enter an unsafe set in a bounded time horizon via a learned GP using data as described in Section 3.

Theorem 6 Consider a dt-SCS $S = (X, U, f, \varepsilon)$ satisfying Assumptions 1-3, a learned Gaussian process model with the posterior mean μ and covariance $\sigma^2(\cdot)$ as given in (6), and the result in Lemma 2. Let $X_0, X_u \subset X$ represent the initial and unsafe sets for S, respectively. Suppose there exists a function $B : X \mapsto \mathbb{R}_{\geq 0}$, constants $c \in \mathbb{R}$, $\lambda \in \mathbb{R}_{\geq 0}$, $\gamma \in \mathbb{R}_{>0}$, with $\gamma > \lambda$, such that

$$B(x) \leq \lambda, \quad \forall x \in X_0, \quad (12)$$
$$B(x) > \gamma, \quad \forall x \in X_u, \quad (13)$$

and $\forall x \in X, \exists u \in U$ such that $\forall d \in \mathcal{D}$,

$$\mathbb{E}[B(\mu(x(t), u(t)) + d + \varepsilon(t)) \mid x(t) = x, u(t) = u] - B(x(t)) \leq c, \quad (14)$$

where \mathcal{D} is the set defined in (7). Then, under a control policy u associated with B (cf. existential quantifier in (14)), the following inequality, which provides the lower bound on the probability that the solution process of S starting from any initial state $x_0 \in X_0$ does not reach X_u within a bounded time horizon $[0, T]$, holds with a confidence of at least $(1 - \delta)^n$

$$\mathbb{P}\{x(t) \not\in X_u, \forall t \in [0, T] \subset \mathbb{N}_0 \mid x(0) = x_0\} \geq (1 - \frac{\lambda + \max(0, c)T}{\gamma}). \quad (15)$$
Proof From the result in Lemma 2, we have that the inclusion \(f(x, u) \in \{ \mu(x, u) + d \mid d \in D \}, \forall x \in X, \forall u \in U \), holds with a confidence of at least \((1 - \delta)^n\). Together with (14), this implies that the condition:
\[
\forall x \in X, \exists u \in U \text{ such that,}
\]
\[
E[B(f(x(t), u(t)) + \varepsilon(t)) \mid x(t) = x, u(t) = u] - B(x(t)) \leq c,
\]
holds true with a confidence of at least \((1 - \delta)^n\).

It then follows from Lemma 4 that the inequality
\[
\mathbb{P}\{x(t) \not\in X_u, \forall t \in [0, T] \subset \mathbb{N}_0 \mid x(0) = x_0\} \geq (1 - \frac{\lambda + \max(0, c)T}{\gamma}).
\]
holds with a confidence of at least \((1 - \delta)^n\).

4.1. Calculation of barrier certificate

The computation of a control barrier function (if existing) for a dt-SCS is a difficult task, in general. However, if the input set of a dt-SCS is assumed to be finite, i.e. \(U = \{u_1, u_2, \ldots, u_k\} \), where \(u_i \in \mathbb{R}^m, i \in \{1, 2, \ldots, k\} \), then the search for a parametric control barrier function and its associated control policy becomes tractable. We employ the Counterexample Guided Inductive Synthesis framework (CEGIS) which has recently become popular for the synthesis of barrier functions (Solar-Lezama et al. (2006); Jagtap et al. (2020a)). The following lemma, adapted from (Jagtap et al., 2020a, Lemma 4.4), provides feasibility conditions that, if satisfied, guarantee the existence of a control barrier function for the unknown system using its learned GP.

Lemma 7 Consider a dt-SCS \(S = (X, U, f, \varepsilon) \) satisfying Assumptions 1-3, where \(U = \{u_1, \ldots, u_k\} \) with \(u_i \in \mathbb{R}^m, \forall i \in \{1, 2, \ldots, k\} \). Let \(X_0, X_u \subset X \). Suppose there exists a function \(B : X \mapsto \mathbb{R}_{\geq 0} \), and constants \(c \in \mathbb{R}, \lambda \in \mathbb{R}_{\geq 0}, \gamma \in \mathbb{R}_{\geq 0} \), where \(\gamma > \lambda \), such that the following expression holds
\[
\bigwedge_{x \in X_0} B(x) \leq \lambda \bigwedge_{x \in X_u} B(x) > \gamma \bigwedge_{x \in X} \left(\bigvee_{u \in U} \left(\bigwedge_{d \in D} E[B(\mu(x, u) + d + \varepsilon) \mid x, u] - B(x) \leq c\right) \right). \tag{18}
\]
Then, \(B \) satisfies the conditions in Theorem 6 and any \(u : X \mapsto U \) defined as “for any \(x \in X \) pick \(u \in U \) satisfying \(E[B(\mu(x, u) + d + \varepsilon)] - B(x) \leq c \) for an arbitrary \(d \in D \)” is the corresponding control policy.

To employ the CEGIS framework for the computation of \(B(x) \) as in Lemma 7, one can consider a function of the parametric form \(B(a, x) = \sum_{i=1}^p a_i b_i(x) \) with user-defined basis functions \(b_i(x) \) and unknown coefficients \(a_i \in \mathbb{R}, i \in \{1, 2, \ldots, p\} \). Now, one can re-write the feasibility expression from Lemma 7 based on coefficients \(a_i \).

The coefficients \(a_i \) can be efficiently found using Satisfiability Modulo Theories (SMT) solvers (De Moura and Björner (2008); Gao et al. (2013)). Detailed discussions on the CEGIS approach can be found in Jagtap et al. (2020b).
5. Case Study

5.1. Room temperature control

The safety controller synthesis approach was tested on a model, taken from Meyer et al. (2017), for temperature regulation of a circular building of three connected rooms. We define the dt-SCS for this model as \(S = (X, U, f, \varepsilon) \), where \(X = [0, 45]^3 \), \(U = \{0, 0.6\}^3 \), and for each \(x = [x_1, x_2, x_3] \in X \), and \(u = [u_1, u_2, u_3] \in U \),

\[
f_i(x, u) := x_i + \alpha(x_{i+1} + x_{i-1} - 2x_i) + \beta(T_e - x_i) + \eta(T_h - x_i)u_i,
\]

\(i \in \{1, 2, 3\} \), where \(f_i \) represents the \(i \)th component of \(f \), \(x_i \) represents the temperature (in degrees Celsius) of the \(i \)th room, \(x_{i+1} \) and \(x_{i-1} \) represent the temperatures of the neighbouring rooms (with \(x_0 = x_3 \) and \(x_4 = x_1 \)), \(u_i \) represents the heater input of the \(i \)th room. The finite set \(U \) corresponds to the heater off and on configurations respectively. The constant \(T_h = 50^\circ C \) is the heater temperature, \(T_e = -1^\circ C \) is the ambient temperature, and constants \(\alpha = 0.045 \), \(\beta = 0.0045 \), and \(\eta = 0.09 \) are heat exchange coefficients. The process noise is a vector \(\varepsilon = [\varepsilon_1, \varepsilon_2, \varepsilon_3] \), with \(\varepsilon_i \sim \text{subG}(0.01), i \in \{1, 2, 3\} \).

For the safety specification, we consider an initial state set \(X_0 = [21, 22]^3 \), and an unsafe region \(X_u = [0, 20]^3 \cup [23, 45]^3 \). For the formal synthesis of a safety controller, first, we model the unknown maps \(f_i, i \in \{1, 2, 3\} \), by training three independent GPs. For each GP \(f_i \sim \mathcal{GP}(0, k_i) \), the kernel \(k_i \) is the squared-exponential function (Srinivas et al. (2009)), defined as

\[
k_i((x, u), (x', u')) = \sigma^2_{f_i} \exp(-\frac{||[x, u] - [x', u']||^2}{2\sigma^2_{\varepsilon_i}}),
\]

where \(\sigma_{f_i} \) and \(\sigma_{\varepsilon_i} \) are the hyper-parameters of the kernel. We assume a measurement noise sequence \(w_i \sim \text{subG}(1.01) \). We collect \(N = 200 \) samples of \(x, u, \) and \(y_i = f_i(x, u) + \varepsilon_i + w_i = f_i(x, u) + \nu_i \) (as in Assumption 3), where \(\nu_i \sim \text{subG}(R) \), \(R = \sqrt{0.01^2 + 1.0071^2}, i \in \{1, 2, 3\} \), by simulating the system from multiple initial conditions and inputs chosen randomly from a uniform distribution. Using MATLAB’s \texttt{fitrgp} module, we obtain the hyper-parameters of the kernel functions, resulting in \(\sigma^2_{f_1} = 560.97 \), \(\sigma^2_{f_2} = 560.98 \), \(\sigma^2_{f_3} = 560.95 \), \(\sigma_{\varepsilon_1} = 1963.70 \), \(\sigma_{\varepsilon_2} = 1963.71 \), and \(\sigma_{\varepsilon_3} = 1963.66 \). As mentioned in Remark 3, computing the information-theoretic term \(\alpha \) is a hard problem in general. Thus, we employ Monte-Carlo approach (Asmussen and Glynn (2007)) to obtain a probability bound on the accuracy of the
learned GP provided in Lemma 2. For a fixed error bound $\beta_i \rho_i = 0.01$ (i.e. $D = [-0.01, 0.01]^3$) on the distance between the actual map $f_i(x, u)$ and the learned map $\mu_i(x, u)$, we obtain a probability interval for (7) as $[0.9987, 0.9999]$ with a confidence of $1 - 10^{-10}$ using 10^6 realizations. The lower bound $(1 - \delta)^3$ in Lemma 2 can thus be chosen as 0.9987.

In the next step, a polynomial-type control barrier function is obtained using the CEGIS approach as described in Section 4.1. The barrier function is computed as

$$B(x) = 9.506219 x_1^2 + 11.369872 x_2^2 + 11.847413 x_3^2 - 8.073953 x_1 x_2 - 9.339144 x_1 x_3 + 13.856766 x_2 x_3 - 35.793193 x_1 - 16.10336 x_2 - 10.319252 x_3 + 662.86428,$$

resulting in $\lambda = 0.5$, $\gamma = 11$, and $c = -0.55$. The corresponding control policy is chosen as

$$u(x) = \arg \min_{u \in U} ||u||, \text{ subject to: } \mathbb{E}[B(\mu(x, u) + d + \varepsilon)] - B(x) \leq c,$$

for an arbitrarily chosen $d \in [-0.01, 0.01]^3$. For a bounded time horizon $[0, T]$, where $T = 5s$, this results in a probability lower bound of 0.9545 in (15) that holds with a confidence of at least 9999%. Figure 1(a) shows a few realizations of the evolution of temperature of the three rooms under this policy and Figure 1(b) shows the satisfaction of the last condition of the barrier certificate for the learned model.

5.2. Vehicle model

Here, we consider a vehicle lane keeping example in which the constant velocity kinematic single-track model of a vehicle (BMW 320i) is used. The discrete-time version of the dynamics (Jagtap et al. (2020b)) is formulated as a dt-SCS $S = (X, U, f, \varepsilon)$ where $X = [0, 50] \times [-6, 6] \times [-0.05, 0.05] \times [-0.1, 0.1], U = \{-0.5, 0, 0.5\}$, and for each $x = [x_1, x_2, x_3, x_4] \in X$, and $u \in U$,

$$f_1(x, u) := x_1 + \tau_s v \cos(x_4),$$
$$f_2(x, u) := x_2 + \tau_s v \sin(x_4),$$
$$f_3(x, u) := x_3 + \tau_s u,$$
$$f_4(x, u) := x_4 + \tau_s v \frac{v}{\omega_{wb}} \tan(x_3).$$

States x_1 and x_2 are the (Cartesian) position coordinates, x_3 is the steering angle, and x_4 is the heading angle of the vehicle. The constants in the above equations are sampling time $\tau_s = 0.01$ s, forward velocity $v = 10$ m/s, and length of wheel base $l_{wb} = 2.578$ m. The process noise is $\varepsilon = [\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4]$, where each $\varepsilon_i \sim \text{subG}(0.01), i \in \{1, 2, 3, 4\}$.

For the safety specification, we consider an initial state set $X_0 = [0, 5] \times [-0.1, 0.1] \times [-0.05, 0.05] \times [-0.01, 0.01]$, and an unsafe set $X_u = X_{u1} \cup X_{u2}$ where $X_{u1} = [0, 50] \times [-6, -2] \times [-0.05, 0.05] \times [-0.1, 0.1]$, and $X_{u2} = [0, 50] \times [2, 6] \times [-0.05, 0.05] \times [-0.1, 0.1]$.

We model the unknown maps $f_i, i \in \{1, 2, 3, 4\}$, by training four independent GPs. For each GP $f_i \sim \mathcal{GP}_i(0, k_i)$, the kernel k_i is the squared-exponential function (Srinivas et al. (2009)). We collect $N = 500$ samples of x, u, and $y_i = f_i(x, u) + \varepsilon_i + w_i = f_i(x, u) + \nu_i$ (as in Assumption 3), where $\nu_i \sim \text{subG}(R)$, $R = \sqrt{0.01^2 + 1.004^2}, i \in \{1, 2, 3, 4\}$, by simulating the system from multiple initial conditions and inputs chosen randomly from a uniform distribution. As in the previous case study, we obtain the hyper-parameters of the kernel functions using MATLAB’s fitrgp module, resulting in $\sigma^2_{f_1} = 55.2606, \sigma^2_{f_2} = 165.8472, \sigma^2_{f_3} = 1499.86, \sigma^2_{f_4} = 0.0423, \sigma^2_{\nu_1} = 107.4961, \sigma^2_{\nu_2} = 359.8126, \sigma^2_{\nu_3} = 3653.275,$ and $\sigma^2_{\nu_4} = 0.1461$. Using the Monte-Carlo sampling approach,
SAFETY CONTROLLERS USING GP LEARNING

Figure 2: Vehicle lane following control for a fixed error bound $\beta_i\rho_i = 0.1$ (i.e. $D = [-0.1, 0.1]^4$) on the distance between the actual map $f_i(x, u)$ and the learned map $\mu_i(x, u), i \in \{1, \ldots, 4\}$, we obtain a probability interval for (7) as $[0.9201, 0.9371]$ with a confidence of $1 - 10^{-10}$ using 10^6 realizations. The lower bound $(1 - \delta)^3$ can be thus chosen as 0.9201. In the next step a polynomial control barrier function given below was obtained using the CEGIS approach as described in Section 4.1:

$$B(x) = 90.45852x_1^2 + 19166.082475x_2^3 - 53595.4041x_3^2 + 185791.32465x_4^2 - 1879.96065x_1x_2$$
$$- 1896.165937x_1x_3 - 271.77839x_1x_4 - 7526.572264x_2x_3 + 6769.374605x_2x_4$$
$$+ 26855.30431x_3x_4 - 1744.956593x_1 + 22161.708246x_2 - 69823.820245x_3$$
$$+ 2474.137174x_4 + 5847.015382,$$

resulting in $\lambda = 0.5, \gamma = 37610, and c = 469.3125$. The corresponding control policy is chosen as

$$u(x) = \arg \min_{u \in U} ||u||, \text{ subject to: } \mathbb{E}[B(\mu(x, u) + d + \varepsilon)] - B(x) \leq c,$$

for an arbitrarily chosen $d \in [-0.1, 0.1]^4$. For a bounded time horizon $[0, T]$, where $T = 4s$, this results in a probability lower bound 0.9501 in (15) that holds with a confidence of at least 0.9201. Figure 2(a) shows a few realizations of the position of the vehicle under this control policy and Figure 2(b) shows the last condition of barrier certificate for the learned model.

6. Conclusions

In this work, we proposed a discretization-free approach for formal synthesis of safety controllers for fully unknown stochastic systems using Gaussian process learning and control barrier certificates. In the future, we aim to extend this approach to include more complex properties. Also, we plan on exploring the idea of computation of the barrier certificates using constrained Gaussian processes which allows us to combine the learning and the barrier computation steps simultaneously while preserving the formal guarantees.
Acknowledgments
This work was supported in part by the NSF under grant CNS-2039062 and the H2020 ERC Starting Grant AutoCPS (grant agreement No 804639).

References

