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We present a new machine learning-based Monte Carlo event generator using generative adver-
sarial networks (GANs) that can be trained with calibrated detector simulations to construct a
vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our
framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector
simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering
data along with existing parametrizations for detector simulation, with uncertainty quantification
based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof
of concept to mitigate theory bias in inferring vertex-level event distributions needed to reconstruct
physical observables.

I. INTRODUCTION

Since the early 1970s, Monte Carlo event generators
(MCEGs) have played a vital role in facilitating stud-
ies of quantum chromodynamics (QCD) in high-energy
scattering processes. From the experimental perspec-
tive, MCEGs are a crucial part of the procedure used
for modeling the detector response folded into measured
quantities (“detector-level”) to extract the true energies
and momenta of final state particles as produced at the
interaction point (“vertex-level”). The development of
modern MCEGs, such as PYTHIA [1], HERWIG [2], and
SHERPA [3], has been driven by a combination of high-
precision experimental data and theoretical inputs. The
latter have involved a mix of perturbative QCD methods,
describing the dynamics of quarks and gluons at short
distances, and phenomenological models that map the
transition from quarks and gluons to observable hadrons,
as well as nonperturbative inputs such as parton distri-
bution functions for applications involving hadrons in the
initial state [4–9].

While the theoretical assumptions are usually well jus-
tified, an approach that mixes data with a model for
the underlying physical law which we wish to infer can
potentially lead to biased results. Moreover, the need
to correct for detector effects typically becomes increas-
ingly difficult in higher dimensions and prevents a faithful
reconstruction of vertex-level events in a model indepen-
dent way. In this work we present a novel approach to
build an event-level interpolation tool based on machine
learning (ML) that avoids theoretical assumptions about

the femtometer-scale physics, and discuss a strategy to
correct for detector effects at the event level.

An important application where this approach is par-
ticularly needed is in the context of spin physics in
inclusive, semi-inclusive and exclusive electron–nucleon
scattering. Here, various spin configurations among
the initial state particles are prepared in order to ex-
plore detailed emergent features of quarks and gluons
inside hadrons at modern accelerator facilities, such as
COMPASS at CERN, Jefferson Lab, and the future
Electron-Ion Collider. Unfortunately, existing theory-
based MCEGs are still in their infancy, and at present no
MCEG is able to reproduce, even qualitatively, all possi-
ble spin asymmetries in these reactions. The reliance on
the theory-based MCEGs to extract physics information
from these types of measurements inherently introduces
biases, which only new developments in the theory be-
hind the MCEGs can mitigate.

In this paper we present an alternative strategy to un-
fold detector effects by constructing an ML-based event
generator (MLEG) using generative adversarial networks
(GANs) [10], which have been increasingly utilized re-
cently in high-energy physics applications as a tool for
fast Monte Carlo simulations [11–17]. A detailed sur-
vey of MLEGs for physics event generation can be found
in Ref. [18]. A crucial feature of GANs (and gen-
erative models in general) is their ability to generate
synthetic data by learning from real samples without
explicitly knowing the underlying physical laws of the
original system. We present a case study for inclu-
sive electron–nucleon deep-inelastic scattering (DIS) with
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realistic pseudodata generated from phenomenological
models. We first train the MLEG that can faithfully
reproduce the phase space of inclusive DIS, along with
uncertainty quantification stemming from finite statis-
tics and model architectures. Subsequently, we imple-
ment detector effects using an effective parametrization
of detectors and train the MLEG and folding algorithms
to simulated detector-level DIS events. For the first time
a closure test for reconstructing vertex-level DIS events,
free of theoretical assumptions, is also performed.
The results provide a new opportunity for experimen-

tal data analysis to use the GAN approach to build
theory-free event generators which mitigate biases in-
duced in reconstructing physical observables from ex-
perimental data. Moreover, the technique provides a
new form of data representation that can be easily dis-
tributed, in contrast to the traditional data representa-
tion via histograms that are limited for processes with
high-dimensional phase space.
We begin the discussion in Sec. II with a schematic

overview of the MLEG training with our GAN-based
event-level interpolator. This is followed in Sec. III by
a description of the ML detector surrogate that we use
in order to simulate the effects of real particle detectors.
The application to inclusive electron-proton DIS is dis-
cussed in Sec. IV, where we examine GAN training both
with and without detector effects. Finally, in Sec. V we
summarize our findings and discuss future extensions and
applications.

II. GAN-BASED EVENT-LEVEL

INTERPOLATOR

A schematic view of the training workflow of our
MLEG GAN is illustrated in Fig. 1, where, as usual,
the GAN model is composed of a generator and a dis-

criminator. The generator converts noise through a deep
neural network into event-level features, which is cus-
tomized by a given reaction. The generated event fea-
tures are then passed into a detector simulator to convert
them as “trial” detector-level events. The discriminator
learns through another deep neural network to differenti-
ate the true detector-level event samples from ones pro-
duced by the generator and the detector simulator. The
GAN training evolves as the generator and discriminator
compete adversarially, each updating their parameters
during the training process. Eventually, the generator is
able to produce synthetic samples that the discriminator
can no longer distinguish from the real samples, at which
point the training of the MLEG is complete.
Although GANs have demonstrated impressive re-

sults in various applications, including generating near-
realistic images [19], music [20], and videos [21], training
a successful GAN model is known to be notoriously dif-
ficult. Many GAN models suffer from major problems,
such as mode collapse, non-convergence, model param-
eter oscillation, destabilization, vanishing gradient, and

over-fitting due to unbalanced training of the generator
and discriminator. Approaches and techniques to address
these general problems have been proposed and discussed
recently in the literature [22–26].
Unlike common GAN applications, such as the gener-

ation of realistic high resolution images, the success of
our GAN application as nuclear and high-energy physics
event generators relies on its ability to faithfully repro-
duce correlations among the particles’ momenta, which
are increasingly difficult in higher (greater than one or
two) dimensions. At the same time, the corresponding
multidimensional momentum distributions or histograms
display rapid changes in the phase space that span sev-
eral orders of magnitude. The challenge is then to design
suitable GAN architectures capable of reproducing all of
the correlations among the particles, along with a faithful
reproduction of the multidimensional histograms across
the phase space. In Sec. IV we will discuss in detail
about how to customize this for the specific application
of inclusive DIS.

III. ML DETECTOR SURROGATE

Experimental data, provided in the form of final state
particle momenta, are affected by distortions introduced
by experimental detectors. A correction procedure is usu-
ally necessary to extract the true information from the
measured cross sections and provide the vertex-level dis-
tributions used in physics analysis. Such detector effects
have multiple causes, including limited acceptance, finite
resolution, efficiency distortion, and bin migrations due
to radiation and rescattering. Corrections are commonly
taken into account using unfolding procedures that at-
tempt to correct for the detector effects at the histogram
level, which requiring ad hoc corrections for each type of
observable.
In order to demonstrate that our framework is real-

izable in a real experimental analysis, such detector ef-
fects must be incorporated. For this purpose, we use the
open source eic-smear software package [27], which was
developed at Brookhaven National Laboratory as a fast
simulation tool for the future Electron-Ion Collider [28],
with smearing capability for quantities such as momen-
tum, energy, polar and azimuthal angles, and provides a
simplified parametrization of the response of the detec-
tors. This was used to simulate a simplified version of
the H1 and ZEUS detectors with unsegmented 4π accep-
tance, which made it suitable for our proof of concept
problem.
We develop ML-based detector surrogates using a

secondary conditional GAN, as illustrated in Fig. 2.
The idea is to train a conditional generator simulating
the smearing effect of the detector by converting input
vertex-level event features and noise into detector-level
event features, as dictated by eic-smear. To do this we
build training samples using trial vertex-level guess event
samples and the associated eic-smear detector-level sam-
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FIG. 1. Schematic view of the MLEG GAN training framework. The MLEG (dashed box) uses a generator which transforms
noise into event-level features. The generator is concatenated with a detector simulator to mimic synthetic detector-level event
features. The deep neural network based discriminator compares detector-level event features in order to build gradients to
update the generator of the MLEG.
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FIG. 2. Schematic view of the ML detector surrogate, where a generator converts input vertex-level event features and noise
to detector-level event features. The training samples are obtained from guess vertex-level samples and the corresponding
detector-level samples using a detector simulator. The discriminator (right hand side of the figure) is trained simultaneously
with vertex-level and detector-level event features in order to minimize the dependence of the generator on the input vertex-level
guess samples.

ples to train the conditional GAN. Once the conditional
GAN is trained, the ML detector surrogate (represented
by the dashed box in Fig. 2) can be integrated as the
detector simulator in Fig. 1. It is worth noting that
for a more realistic description of detector effects, the

eic-smear parametrization should be replaced by a full
GEANT-based detector model [29]. However, its inte-
gration within our MLEG models using standard ML li-
braries is beyond the scope of the present analysis, and
will be the subject of future work.
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IV. APPLICATION TO INCLUSIVE

ELECTRON-PROTON SCATTERING

In this section we describe the application of our
MLEG strategy to the inclusive unpolarized DIS of
electrons (with four-momentum k) from protons (four-
momentum P ). Our goal is solely to produce the
scattered electron phase space, labeled by the four-
momentum k′. As a surrogate for real experimental
data, we use pseudodata generated from the Jefferson
Lab Angular Momentum (JAM) Collaboration’s global
QCD analysis framework [30] that has been tuned to de-
scribe world data on inclusive DIS and other high-energy
scattering processes.
The inclusive electron DIS samples are generated at

a center of mass energy of 318.2 GeV, compatible with
HERA kinematics, by integrating the 2-dimensional dif-
ferential cross section dσ /dx dQ2, computed at next-
to-leading order in perturbative QCD using importance
sampling, and unweighting events over a very dense bin-
ning in (x,Q2)-space. Each event is transformed into an
outgoing electron momentum in the HERA laboratory
frame by generating an azimuthal angle relative to the
beam axis sampled from a uniform distribution. While
our ultimate goal is to apply this approach to real data,
this case study provides unique insights of our ML work-
flow and allows us to identify challenges in formulating a
suitable feature space to be learned by the model.
When training the GAN solely using the electron mo-

mentum in the laboratory frame as event features, the
generator was found to create electron samples that vio-
late momentum conservation near the edge of the phase
space, and the model was not sensitive enough to pre-
vent the production of these samples [31]. To alleviate
this problem and aid the training, we use a change of
variables that enhances the discriminator awareness in
these difficult regions. Specifically, we define the scaled
variables

ν1 = ln
(
(k′0 − k′z)/1GeV

)
, (1a)

ν2 = ln
(
(2Ee − k′0 − k′z)/1GeV

)
, (1b)

where Ee is the incident electron energy, and k′0 and k′z
are the scattered electron energy and longitudinal mo-
mentum, respectively. In Eqs. (1) the energies and mo-
menta in the arguments of the log are explicitly in units
of GeV. These variables can be easily inverted into the
original momentum space. In particular, the variable ν2
changes rapidly as the energy of the outgoing electron ap-
proaches its limit, allowing the discriminator to be aware
of such region.
In the following, we present details of our chosen ML

architecture used for the event-level interpolation and the
ML detector surrogate.

• MLEG: The input to the generator in Fig. 1 is
a 100-dimensional white noise array centered at 0
with unit standard deviation. The generator net-
work consists of 5 hidden dense layers, with 512

neurons per layer, activated by a leaky Rectified
Linear Unit (ReLU) function. The number of lay-
ers and neurons are optimized to balance execu-
tion time and convergence. The last hidden layer
is fully connected to a 2-neuron output correspond-
ing to the variables ν1 and ν2, activated by a linear
function representing the generated features. The
corresponding discriminator also consists of 5 hid-
den dense layers with 512 neurons per layer, op-
timized as for the generator, and activated by a
leaky ReLU function. To avoid overfitting, a 10%
dropout rate is applied to each hidden layer. The
last hidden layer is fully connected to a single-
neuron output, where “1” indicates a true event
and “0” a fake event. The discriminator D is
trained to give D(F ) = 1 for each training sam-

ple F , and D(F̃ ) = 0 for each sample F̃ produced
by the generator.

• ML detector surrogate: The detector surrogate
model is based on a conditional GAN architec-
ture [32]. As shown in Fig. 2, we have a genera-
tor that receives vertex-level input in addition to a
100-dimensional white noise centered at 0 with unit
standard deviation. The generator learns to fold
the inputs and produce detector-level events that
mimic the detector response dictated by eic-smear.
By conditioning the model on vertex-level event
features we can enforce learning the correlations
between vertex- and detector-level events as op-
posed to learning a deterministic mapping between
inputs and outputs. As for the MLEG, the gener-
ator will produce a 2-neuron output corresponding
to the detector-level variables ν1 and ν2, activated
by a linear function representing the generated fea-
tures, and the discriminator will similarly produce
“0” or “1” for training and generated samples, re-
spectively. In both the generator and discrimina-
tor architectures of the ML detector surrogate, we
use the same number of hidden layers, neurons,
dropout rates, and activation functions as in our
MLEG. A similar idea of using a GAN for detector
effects has been proposed by Bellagente et al. [33],
where, in contrast to our folding procedure, parton-
level data are mapped to detector-level data using
a conditional GAN model.

For both of our GAN architectures we adopt the least
squares GAN (LSGAN) [34], which replaces the cross
entropy loss function in the discriminator of a regular
GAN by a least squares term,

min
D

V (D) =
1

2
〈(D(x)− b)2〉x∼PT

+
1

2
〈(D(G(x̃))− a)2〉x̃∼PG

,

(2)

min
G

V (G) =
1

2
〈(D(G(x))− c)2〉x∼PG

, (3)
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where PG denotes the distribution of the generated sam-
ples and PT is the distribution of the training samples.
As a result, by setting b−a = 2 and b−c = 1, minimizing
the loss function of the LSGAN implies minimizing the
Pearson χ2 divergence. For the conditional model, the
objective functions can be defined as

min
D

V (D) =
1

2

〈
(D(x|y)− b)2

〉
x∼PT , y∼Pv

+
1

2

〈
(D(G(x̃|y))− a)2

〉
x̃∼PG, y∼Pv

,

(4)

min
G

V (G) =
1

2

〈
(D(G(x|y))− c)2

〉
x∼PG, y∼Pv

, (5)

where Pv denotes the conditioned vertex-level samples
that are fed as inputs to the ML detector surrogate. The
main advantage of the LSGAN is that by penalizing the
samples that are far from the decision boundary, the gen-
erator is prompted to generate samples closer to the man-
ifold of the true samples.
Our networks are trained adversarially for 100,000

epochs, where an epoch is defined as one pass through
the training data set. For the optimizer, in both cases
we use Adam [36] with a 10−4 learning rate, β1 = 0.5,
and β2 = 0.9. To balance the generator and discrimina-
tor training, the training ratio is set to 5.

A. GAN training without detector effects

As a first step in our numerical analysis, we train the
MLEG using the DIS pseudodata samples without de-
tector effects in order to establish the baseline agreement
between training and synthetic data, without the compli-
cations introduced by the detector folding. In Fig. 3 we
compare the training and synthetic normalized inclusive
ep phase space distributions for the scattered electron in
the variables ν1 and ν2. The uncertainty bands are gen-
erated by taking the standard deviation of 10 indepen-
dently trained GANs, where for each case the training
samples are prepared using the bootstrapping procedure
(taking random samples with replacement).
It is useful here to define the “pull” metric between the

training (JAM) and synthetic (GAN) data by

pull =
E
[
P(O|bin)

]
GAN

− E
[
P(O|bin)

]
JAM√

V
[
P(O|bin)

]
GAN

+V
[
P(O|bin)

]
JAM

, (6)

where E[P(O|bin)] and V[P(O|bin)] are the expectation
values and variances of the discrete probability density P
of an observable O. As expected, the synthetic distribu-
tions for ν1 and ν2 match well with the distributions from
the training samples, within the statistical uncertainties,
since for these variables the deviation from the training
set is explicitly disfavored by the discriminator. Also
shown in Fig. 3 are distributions of derived quantities
that are physically relevant for the DIS process, namely,

0.0

0.5

1.0

No Detector Effects

MLEG

JAM data

pull

−4 −2 0

ν1

−5

0

5

0.05

0.10

0.15

0.0 2.5 5.0

ν2

10
−5

10
−2

0 500 1000

Q2 (GeV2)

−5

0

5

10
−2

10
1

0.0 0.2 0.4 0.6

x

FIG. 3. Comparison of distributions of training and de-
rived variables from JAM training samples (black circles) and
GAN-generated synthetic data (yellow bands) for the case of
no detector effects; the band size reflects the uncertainty eval-
uated using the bootstrap procedure (see text). The bottom
of each panel shows the pull distributions (red circles) defined
in Eq. (6), with the two horizontal dotted lines corresponding
to ±1σ.

the four-momentum transfer squared, Q2 = −(k − k′)2,
and the Bjorken scaling variable x = Q2/2P · (k − k′).
While these observables are obtained by nonlinear trans-
formations of the original variables ν1 and ν2, the result
accurately reconstructs the matching, within uncertain-
ties, with the corresponding spectra from the training
data.

In Fig. 4 we illustrate the reduced inclusive ep DIS
cross section, σep

r (in practice the reaction involved
positrons scattering from protons), as a function of Q2

in multiple bins of x for the HERA data [35] and for the
parametrization of the data from the JAM global QCD
analysis [30]. These are compared with the reduced cross
sections reconstructed by the GAN.Within the statistical
uncertainties, the empirical results are well reproduced
by the MLEG simulation in most of the regions of the
phase space. Note that the agreement between the JAM
fit and the HERA data deteriorates at the largest Q2

values for each fixed-x spectrum due to the vanishing of
the phase space. Nonetheless, the GAN is able to follow
the pattern of the phase space distribution, such as the
approximate scaling behavior, as well as the drop around
the edges of the phase space. This result is quite nontriv-
ial since the relationship between the variables that are
learned (ν1, ν2) and the DIS variables (x, Q2) is nonlin-
ear, and it demonstrates the ability of the GAN to learn
accurately the underlying probability distribution of the
phase space.
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FIG. 4. Comparison of the reduced inclusive ep cross section
σep
r versus Q2 at fixed values of Bjorken-x from the HERA

collider [35] (red circles) with data generated from the JAM
global QCD analysis [30] (black solid lines) and the trained
GAN (yellow bands). No detector effects are included, and
for clarity the cross sections are scaled by a factor 2i, with i

ranging from i = 0 for the highest-x value to i = 17 for the
lowest-x value.

B. GAN training with detector effects

Having established a baseline agreement for our MLEG
framework, we proceed to include detector effects, as
would be in actual experimental situations, which in-
evitably increases the complexity of the analysis. As
discussed above, we train separately an ML detector sur-
rogate using a detector parametrization provided by the
eic-smear software. For the trial vertex-level event sam-
ples we use directly the samples from the JAM global
QCD analysis instead of the flat phase space so as to
optimize the GAN training. However, we stress that in
principle the model architecture for the detector surro-
gate can be trained with any samples.

In Fig. 5 we show the vertex- and detector-level dis-
tributions for ν1 and ν2, where significant distortions are
observed for the latter. An issue regarding the change of
variables in Eqs. (1) is that after smearing the detector-
level k′z variable can exceed the physical limit given by
the incident beam energy Ee, rendering the transforma-
tion singular for those unphysical cases. However, since
the change of variables, in particular for ν2, is solely de-
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FIG. 5. Comparison of training features at the vertex level
(generated, blue histograms) and detector level (smeared,
green histograms) with the MLEG generated synthetic data
(red histograms). The insets illustrate the local smearing ef-
fect at the points indicated by the green vertical dashed lines.

signed to increase the detector awareness in the difficult
regions, we can replace Ee in Eqs. (1) by the maximum
energy found for the detector-level samples to achieve the
same goal, and avoid the singularity of the variable trans-
form. This disparity, however, creates an impression of
higher levels of distortion in the ν2 variable compared
to ν1.
We also illustrate the smearing effects by focusing on

small intervals in ν1 and ν2, as shown in the Fig. 5 insets,
to indicate the nontrivial distortion that is taking place
across the phase space. Included in Fig. 5 are the cor-
responding predictions from the detector-level GAN out-
put, which shows very good agreement with the training
samples. Note that there are regions where GANs do not
match precisely with eic-smear, namely, the tail regions
at small and large ν2, which correspond to the edges of
the reaction phase space. For the scope of this study, the
GAN output represents a reasonable true detector proxy,
allowing us to carry out the vertex-level learning closure
test and validate the proof of principle of our MLEG
framework.
With the ML detector surrogate we proceed with train-

ing the MLEG with detector effects. In Fig. 6 we show
similar results as in Fig. 3, but this time with detector
effects included. As expected, the variables ν1 and ν2 are
well reproduced, since the discriminator supervises on
these variables during the training. Similarly, the pre-
dicted DIS variables x and Q2 at the detector level are
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FIG. 6. As in Fig. 3, but with detector effects present.
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FIG. 7. As in Fig. 3, but with all the variables inferred by
the unfolding procedure.

well reproduced within the uncertainties.

As the final step, we examine the quality of the MLEG
at the vertex level by analysing the direct output of its
generator, and plot in Fig. 7 the corresponding vertex-
level distributions. Relative to the detector level, the
vertex-level distributions are observed to have, on aver-
age, larger values for the pull than those in Fig. 6. This is
expected since we do not directly supervise at the vertex
level, but instead these are inferred quantities. A more
detailed examination of this is shown in Fig. 8, where we
plot the reduced cross sections as in Fig. 4, but in the
presence of detector effects. As expected, the uncertain-
ties increase due to the detector effects.

One particular region where the deviations from the
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FIG. 8. As in Fig. 4, but with the synthetic reduced cross
sections generated by the GAN including detector effects and
unfolding.

true result become larger compared to Fig. 4 are those at
lowQ2 and high x (see, for instance, the low-Q2 region for
the x = 0.01 and 0.02 bins). The difficulty in accurately
inferring this region can be traced back to the accuracy
in reproducing ν2 in Fig. 7 around ν2 ∼ 0. To see this
more clearly, in Fig. 9 we plot ν2 as a function of Q2

at various fixed values of x. As x increases, the range
of ν2 increases covering the negative ν2 regions for lower
values of Q2. The observed deviations in Fig. 7 around
ν2 ∼ 0 can be understood by observing the corresponding
regions in Fig. 6 where the detector-level distribution is
compatible with zero. In this case, the inference of the
underlying vertex-level distribution is ill-defined.

We can understand such an effect by considering the
extreme scenario where the detector does not observe a
particle at all, or converts the vertex-level samples into
flat noise. Clearly, in such a situation the vertex-level
distribution is not recoverable. In the present situation,
some regions of the phase space are subjected to some de-
gree to such extreme effects, while other regions are not.
Other than those ill-defined regions, one can see that
within the uncertainties the synthetic reduced cross sec-
tions are in agreement with the true vertex-level cross sec-
tions. This can be seen as confirmation that our MLEG
training passes the closure test in the presence of detector
effects.
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FIG. 9. Kinematical relation between the ν2 variable and Q2

at several different values of x.

V. SUMMARY AND OUTLOOK

We have presented a new approach based on generative
adversarial networks to extract physics observables from
pseudodata in a physics agnostic manner. To illustrate
the strategy, we developed a GAN-based MLEG capable
of generating synthetic data that mimic inclusive deep-
inelastic ep scattering pseudodata generated in the kine-
matics of the ZEUS and H1 experiments at HERA. To
demonstrate the veracity of our approach we performed
a closure test, extracting the original phase space distri-
butions from synthetic particle four-momenta.

To simulate real experimental scenarios, we introduced
distortions into the analysis that would be induced by a
real detector, implementing a resolution smearing func-
tion, and after repeating the test obtained good agree-
ment between original and extracted phase space dis-
tributions. Pulls quantified the uncertainty associated
with the unfolding procedure, showing not only that we
were able to extract the desired physics observables, but
also obtain an uncertainty quantification for the unfold-

ing procedure. To our knowledge, this is the first time
that detector effects have been unfolded from pseudodata
on an event basis.
While our long term goal remains to construct an

MLEG for real experimental events across multiple chan-
nels involving multiple particles in the final state for QCD
studies, the present analysis is a necessary and impor-
tant proof of concept that demonstrates the viability of
applying ML techniques to mitigate theoretical bias in
experimental data analysis. Despite the fact that in our
analysis we have effectively utilized only two-dimensional
degrees of freedom to be reproduced by the MLEG, our
main result is that it is possible to unfold detector ef-
fects at the event level. From the ML point of view,
a larger number of particles in the final state amounts
to a larger feature space. It is expected, therefore, that
an extension of our proposed idea to include additional
particles in the final state is feasible, provided that the
number of final state particles remains moderate. This
is the case, for example, in semi-inclusive and exclusive
electron-nucleon scattering.
As an obvious improvement, and in view of its appli-

cation to data analysis, we envision the implementation
of a more realistic detector simulator based on GEANT
to further study this technology. We expect that the
use of our framework in ep scattering will be a valuable
complementary tool for nuclear and particle physics
programs at current and planned facilities, such as
Jefferson Lab [37] and the Electron-Ion Collider [38].
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