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AbstractÐ Underactuation is a core challenge associated with
controlling soft and continuum robots, which possess theoreti-
cally infinite degrees of freedom, but few actuators. However,
m actuators may still be used to control a dynamic soft robot in
an m-dimensional output task space. In this paper we develop
a task-space control approach for planar continuum robots
that is robust to modeling error and requires very little sensor
information. The controller is based on a highly underactuated
discrete rod mechanics model in maximal coordinates and does
not require conversion to a classical robot dynamics model form.
This promotes straightforward control design, implementation
and efficiency. We perform input-output feedback linearization
on this model, apply sliding mode control to increase robustness,
and formulate an observer to estimate the full state from
sparse output measurements. Simulation results show exact
task-space reference tracking behavior can be achieved even
in the presence of significant modeling error, inaccurate initial
conditions, and output-only sensing.

I. INTRODUCTION

Continuously flexible robotic structures (continuum robots

and soft robots) have great potential as highly dynamic

manipulators and locomotors that use their inherent elastic

energy storage to operate efficiently, perform stable and

safe contact tasks, and adapt to uncertain environments.

However, this great potential comes with the challenge of

controlling an infinitely high degree-of-freedom system with

a very limited number of actuators and sparse sensing. In

this paper we add to the recent discussion around control of

highly underactuated soft robotic structures by developing an

approach for task-space dynamic control using discrete rod

models.

A. Dynamic Modeling

Dynamic models for simulation and control of soft and

continuum robots can be broadly categorized by (1) how

the geometry of the robot is represented, and (2) how the

equations of motion are formulated and solved [1], [2].

On the one hand, many models represent the continuum

dynamics on a set of minimal coordinates, such as segment

curvatures [3] [4], actuator lengths [5], strains [6], [7],
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parameterized curves [8] or virtual rigid-link joint angles [9].

The equations are then formulated on the basis of a principle

of mechanics, such as Lagrangian dynamics, and ultimately

represented in a classical rigid-link robot dynamics form such

as

D(θ, θ̇)θ̈ +C(θ, θ̇) +G(θ) = τ (1)

where θ ∈ R
N is a minimal set of generalized coordinates

that describe the robot configuration, and τ ∈ R
N is a set of

actuation inputs (i.e. the model is fully actuated). To arrive

at such a model for a continuum or soft robot, one must

often apply a very coarse approximation scheme, e.g. by

assuming constant curvature over an entire actuated segment.

The advantages of such coarsely approximated models are

1) computational efficiency (for larger N , the equations

in (1) are difficult to form analytically and expensive to

solve) and 2) straightforward adaptation of conventional

controller design approaches for fully actuated rigid-link

robots onto continuum robots [9]. The main drawback of

this strategy is that it ignores the underactuated dynamics

that cause variations in curvature across actuated segments.

These underactuated dynamics may be important to account

for in modeling and control if one wishes to increase control

bandwidth and more fully exploit the dynamic potential of

soft/continuum robots.

In contrast, another category of continuum robot modeling

first expresses the dynamics in a continuous form, described

as a set of nonlinear partial differential equations in arc

length and time [10], [1], based on the dynamic theories

of Cosserat rods, Kirchhoff rods (unshearable, inextensi-

ble), or planar elastica. The solution to the PDEs is then

approximated with various numerical methods. Models of

this type are typically highly resolved in space (i.e. they

are underactuated - there are many more model DOF than

actuators), which allows more accurate dynamic simula-

tion, and they typically describe the time evolution of a

redundant set of variables (larger than the degrees of free-

dom) satisfying certain constraints of compatibility, i.e. they

employ a maximal coordinates approach. (Certain choices

for numerical discretization of the PDEs are equivalent to

pseudo-rigid-body models and so-called discrete elastic rod

models [11], [12] as we show later). A prevalent viewpoint

in continuum and soft robotics research is that such highly

resolved, maximal coordinate models are useful for simu-

lation, but difficult to exploit for control (e.g. [7]) because

1) they are underactuated (which complicates control) and

2) they not expressed in the classic minimal form (1). In



this paper, we would like to promote the contrary view:

underactuated maximal coordinate models obtained from

discrete mechanics models or discretization of a continuous

PDE are suitable for control design and efficient control

implementation, particularly in task space.

B. Control

The majority of work on dynamic control of continuum

manipulators assumes a fully actuated model (e.g [13], [14],

[9]) in minimal coordinates such as piecewise constant curva-

tures. Some recent work has considered control with under-

actuated models using parametric curves [8], or reduced

order models generated from general 3D finite element

simulations [15], [3], [16], while early continuum robot

control work acknowledged and modeled the underactuated

dynamics [17], formulating linear boundary control laws that

sought to stabilize the system and reduce vibration. Perhaps

the most closely related work to this paper is [18] which

recently showed that m actuators are sufficient to control

an underactuated soft robot in an m degree of freedom task

space. This was done by leveraging the operational space

dynamics formulation and projecting the required actuation

torques into a lower dimensional space using muscle syner-

gies.

We believe the input-output feedback linearization part

of our controller might be numerically equivalent to the

operational-space control in [18]. However, the formulation

herein may facilitate a more straightforward implementation

and efficient computation, since our constrained Lagrangian

model (or equivalently the discretized PDE model) never

needs to be explicitly expressed in either minimal coordinates

or operational space, nor does it need to consider muscle

synergies. In addition, robustness and state estimation were

left to future work in [18]. Herein we contribute toward those

goals by proposing a sliding mode outer-loop controller and a

passive observer design. We additionally include simulations

with parametric modeling error and limited sensing.

C. Contributions

In the following sections we present a control design for

soft robots based on constrained Lagrangian model for dis-

crete elastic rods in maximal of coordinates. This approach

allows the model to be easily constructed and implemented

programmatically for large numbers of links, and we show

that it is equivalent to a first-principles PDE-based approach.

The approach also exhibits a high degree of efficiency for

fast, computationally-lean solving. We also present an input-

output feedback linearization control design methodology

that is augmented by a sliding mode outer loop that provides

robustness to parametric uncertainty. To provide the full state

estimate needed for the controller we propose an observer to

reconstruct the unmeasured states of the model from very

few measurements by exploiting the stable zero dynamics

(or internal dynamics) of the system. Finally, we verify the

entire approach in simulation using the parameters of a 2-

DOF soft robot prototype. The approach is demonstrated to

be robust by achieving exact task space tracking even in the

presence of non-negligible modeling error and output-only

sensing.

II. DYNAMIC MODEL

A. PDE Perspective

The dynamics of a classical Kirchhoff rod in 2D are

described by the following set of nonlinear partial differential

equations [19]:

p′ =

[

cos θ
sin θ

]

θ′ = u

n′ + f = ρAp̈

ζ ′ + p′ × n+ ℓ = ρIθ̈

(2)

where ′ denotes a derivative with respect to arc length, s, ˙
denotes a derivative with respect to time, t, p(s, t) ∈ R

2 is

the position along the rod, θ(s, t) ∈ R is the tangent angle

measured counterclockwise from the global x axis, u(s, t) ∈
R is the curvature, n(s, t) ∈ R

2 is the internal force, ζ ∈ R

is the internal moment about z (out of the plane, counter-

clockwise positive), ρ is the material density, A is the cross

sectional area, I is the second area moment of the cross

section, f(s, t) ∈ R
2 is an external distributed force, and

ℓ(s, t) ∈ R is an external distributed moment.

The equations in (2) are incomplete until a constitutive

law is formulated to relate u and ζ.

The following viscoelastic model is commonly assumed:

ζ = EIu+BIu̇ (3)

where E is Young’s modulus, I is the second area moment of

the cross section, and B is a damping modulus. Substituting

this into (2), we get a complete PDE set in terms of state

variables p, θ, and n:

p′ =

[

cos θ
sin θ

]

n′ + f = ρAp̈

EIθ′′ +BIθ̇′′ +

[

− sin θ
cos θ

]⊤

n+ ℓ = ρIθ̈

(4)

An intuitive and symmetric discretization strategy for these

PDE’s is to assume a set of N + 1 ordered equally-spaced

nodes in arc length, {s0 s1 s2 . . . sN} (over the total length

L) where positions pi and moments ζi naturally live at each

node, while forces ni and angles θi naturally live on the

N edges (or links) halfway between nodes i − 1 and i as

shown in Figure 1 (left). Assuming a constant step size h =
si − si−1, centered approximations for the first and second

derivatives in arc length can then be applied, resulting in

(pi − pi−1) /h =

[

cos θi
sin θi

]

(ni+1 − ni) /h+ f(si) = ρAp̈i

EI(θi−1 − 2θi + θi+1)/h
2 +

BI(θ̇i−1 − 2θ̇i + θ̇i+1)/h
2 +

[

− sin θi
cos θi

]⊤

ni + ℓ(si) = ρIθ̈i

(5)



Fig. 1. An arbitrary section of a rod from a to s along σ is shown on the left. The distributed forces and moments are represented as f and l respectively.
The internal forces and moments are represented as n and ζ respectively. On the right, the internal forces n and moments ζ are indicated on the links and
nodes on ether side of the ith node of a set of discrete links. The dots represent the nodes at position p and the dashed lines represent the ªlinksº of the
system. The tangent angle of each link is indicated by θ.

The system in (5) is a set of differential algebraic equations

with index 3 (the number of differentiations required to

obtain differential equations for all state variables). There

are no derivatives for the ni variables, and the first equation

in the list is an algebraic constraint. One can reduce the index

by writing the derivatives of the constraint equations:

pi − pi−1 = h

[

cos θi
sin θi

]

ṗi − ṗi−1 = h

[

− sin θi
cos θi

]

θ̇i

p̈i − p̈i−1 = h

[

− cos θi
− sin θi

]

θ̇2i + h

[

− sin θi
cos θi

]

θ̈i

(6)

Then enforcing the second derivative of the constraints along

with the original differential equations in the DAE set, one

obtains an index-1 DAE system which can be written as:

p̈i−1 − p̈i + h

[

− sin θi
cos θi

]

θ̈i = h

[

cos θi
sin θi

]

θ̇2i

ni+1 − ni + fi = mp̈i

k(θi−1 − 2θi + θi+1) +

b(θ̇i−1 − 2θ̇i + θ̇i+1) +

h

[

− sin θi
cos θi

]⊤

ni + ℓi = Jθ̈i

(7)

where m = hρA is the mass associated with each node,

J = hρI is the density weighted second area moment

integrated over the discrete length h, k = EI/h and b =
BI/h are equivalent rotational spring and damping constants

associated with the joints, fi = hf(si) is the effective

external force applied at each node, and ℓi = hℓ(si) is the

effective external moment applied at each link.

The equations in (7) are applicable for i = 1...N − 1. If

the robot has a fixed base at s = 0 we may take p0, ṗ0, p̈0,

θ0, and θ̇0 to be prescribed values. If the robot has a free

distal end, we may prescribe

−nN + fN =
m

2
p̈N

k(θN−1 − θN ) + b(θ̇N−1 − θ̇N ) +

h

[

− sin θN
cos θN

]⊤

nN + ℓN = Jθ̈N ,

(8)

since there is no material beyond sn to provide mass or exert

internal force or moment on the proximal material.

The discretized and index-reduced PDE is essentially

equivalent to an ODE in the positions and angles because

the system can be directly solved for their second derivatives

by eliminating the internal forces. Since the reduced index

system only enforces the second derivative of the constraints,

direct integration of all the coordinates in time can result

in constraint drift during numerical simulation. There are

numerous strategies available to reduce such drift (such as

Baumgarte stabilization), but these are unnecessary for this

model. The pi and ṗi which satisfy the constraints can be

determined as a function of the θi and θ̇i recursively from

(6). Thus, for simulation purposes, we may use θ1 . . . θN
and θ̇1 . . . θ̇N as a minimal set of state variables to be

integrated in time, and simply extract θ̈1 . . . θ̈N from the

full solution of the maximal coordinate model (7). This strat-

egy combines the advantages of maximal coordinates (ease

of expression, programming, and computational efficiency)

with the advantages of minimal coordinates (impossibility

of constraint drift). We aim to show in this paper that

such maximal coordinate models are also convenient for

formulating dynamic controllers directly in task space.

B. Constrained Lagrangian Perspective

The above dynamic model formulated from the original

Kirchhoff rod PDEs is equivalent to a multibody dynamics

model that can be generated using either a Newton-Euler

approach or a constrained Lagrangian approach. Writing

down the equivalent constrained Lagrangian model will help

us express the equations in a compact well-known form

that will facilitate straightforward programming, efficient

numerical solution, and controller design.

Consider a dynamic system in q subject to constraints

ϕ(q) = 0. Its associated Lagrangian is

L(q, q̇,λ) = T − V + ϕ(q)⊤λ

where T is kinetic energy, and V is potential energy, and λ

are the Lagrange multipliers. The equations of motion are

then
d

dt

(

∂L

∂q̇

)

−
∂L

∂q
+A⊤λ = Q



and

ϕ(q) = 0

where A = ∂φ(q)
∂q , and Q collects any non-conservative

generalized forces that do not arise from the constraints. This

forms an index-3 DAE of a form equivalent to (5). Taking

the first and second derivatives of the constraint equations,

we get

Aq̇ = 0, Aq̈ = γ

where γ = −Ȧq̇. Then the equivalent index-1 dynamic

system can be written as
[

M A⊤

A 0

] [

q̈
λ

]

=

[

F
γ

]

(9)

where F contains all the unconstrained generalized forces.

This helps realize and organize the structure of the large

system formed by (7). By inspection, we can see that the

equations in (7) have exactly this form. The generalized

coordinates are q =
[

p⊤
1 θ1 ... p⊤

N θN
]⊤

. The Lagrangian

corresponding to our spatially discretized PDE system is

L =
1

2

N−1
∑

i=1

mṗ⊤

i ṗi +
m

4
ṗ⊤

N ṗN +
1

2

N
∑

i=1

Jθ̇2i

−
1

2

N
∑

i=1

k (θi − θi−1)
2
+ ϕ(q)⊤λ.

(10)

The Lagrange multiplier vector λ =
[

n⊤
1 . . . n⊤

N

]⊤
is

the set of internal link forces, and the constraint equations

ϕ(q) =
[

ϕ⊤

1 . . . ϕ⊤

N

]⊤

= 0 are given by

ϕi = h

[

cos θi
sin θi

]

− pi + pi−1

for i = 1...n. The generalized forces Q consist of damping

moments and externally applied forces and moments. These

terms manifest in F as detailed below.

The n× n matrix M is diagonal and given by the Euler-

Lagrange equation as

M = diag(m,m, J,m,m, J, ...,m/2,m/2, J)

The matrix A is sparse and defined by the constraint equa-

tions. It can be built row by row by specifying only the

nonzero entries. The submatrix of A consisting of rows 2i−1
to 2i and columns 3i− 5 to 3i is given as:

[

1 0 0 −1 0 −h sin θi
0 1 0 0 −1 h cos θi

]

for i = 2...n, and the corresponding rows 2i− 1 to 2i of the

vector γ are

hθ̇2i

[

cos θi
sin θi

]

.

If the rod is cantilevered with a prescribed p0(t), this implies

a prescribed p̈0(t), and the upper left 2×3 of A is
[

−1 0 −h sin θ1
0 −1 h cos θ1

]

while the first 2 rows of γ are

hθ̇21

[

cos θ1
sin θ1

]

− p̈0

Finally, rows 3i− 2 to 3i of the vector F are specified as
[

fi
k(θi−1 − 2θi + θi+1) + b(θ̇i−1 − 2θ̇i + θ̇i+1) + ℓi

]

for i = 1...n− 1 (letting θ0 have a prescribed value), while

the last two rows of F corresponding to the distal end are
[

fN
k(θN−1 − θN ) + b(θ̇N−1 − θ̇N ) + ℓi

]

.

This completes all the blocks defining the constrained La-

grangian form of the model in (9), consistent with the

discretized Kirchhoff rod PDE in (5). The linear system (9)

is sparse with a structure that can be efficiently solved in

O(n) time using standard linear solvers, such as MATLAB’s

mldivide( ). Without optimization the link accelerations are

computed on the order of 1 millisecond for N = 40 in

MATLAB. As discussed before, for simulation purposes, the

link angle accelerations are extracted from this solution,

integrated in time, and used to recursively compute the posi-

tions and velocities. This avoids the constraint drift problem

typically associated with maximal coordinate formulations.

C. Robot Actuation

It is straightforward to include typical soft robot actuation

methods into the model above. In a tendon actuated robot,

the kth tendon exerts tension Tk at the point were it is

distally attached (suppose at node i), offset from the elastic

center of stiffness by some distance rk. This creates a torque

τk = Tkrk applied as an external moment ℓi applied at node

i, and added into the appropriate row of F. As discussed in

[10], the tendon also creates an applied force in the tangential

direction at the attachment point, as well as a distributed

load along the length, always orthogonal to the tangent and

proportional to the curvature. However, in the planar case,

the combined effect of these point and distributed tendon

forces only influences the local axial component of internal

force. They do not affect the local transverse component of

internal force or the internal moment along the length, and

thus do not affect curvature or dynamic shape. Thus, it is

common (e.g in [13]) to treat the actuation as consisting

only of a point moment at the attachment point for simplicity,

while understanding that the true internal force is simply the

model predicted internal force minus the collective tendon

tension in the axial direction. We note that in 3D, this

simplification no longer holds [10], but that fact does not

affect the applicability of the approach in this paper.

In a planar fluid-powered soft robot, a pressurized chamber

exerts the same set of forces and moments as a tendon,

but in the opposite direction. (the two models are slightly

different in 3D, however, as detailed in [1].) Thus, for either a

planar fluid-powered robot or a planar tendon-actuated robot,

we can model the actuation of a pressurized chamber or a

tensioned tendon as a point moment τk applied at its distal

termination point along the robot, as is commonly done.



D. Full Model for Control

Considering then an arbitrary set of m actuation torques

u ∈ R
m, we find that the full model for control takes the

form
[

M A⊤

A 0

] [

q̈
λ

]

=

[

F
γ

]

+

[

B
0

]

u (11)

where B ∈ R
3N×m is a sparse matrix with a one placed

in element (3i, k) if actuator k applies a torque at node i,
and u ∈ R

m is the vector of actuator torque inputs. We

note that it is possible to eliminate λ from (11) and arrange

it in a form similar to (1), with a different right hand side

due to the underactuation. However, the resulting analytical

expressions are highly inconvenient for large N , and task-

space controller design is easily facilitated in the form (11)

as we show in the next section.

III. CONTROLLER DESIGN

In this section we formulate an output control design based

on the model of (11). Consider that we want to control an

output y ∈ R
m which is some linear function of q, such

that y = Cq for some matrix C ∈ R
m×3N . Task space

outputs are easily described in this way because the pose at

the end-effector (or any other point) is included in q.

A. Input-Output Feedback Linearization

Using the Lagrangian dynamics form, the second deriva-

tive of the output can then be expressed as a linear function

of the actuation torques as follows:

ÿ = [C 0]

[

q̈
λ

]

= ÿ0 + Ju

where

ÿ0 = [C 0]

[

M A⊤

A 0

]−1 [

F
γ

]

is the output acceleration that would occur in the absence of

any actuation input, and

J = [C 0]

[

M A⊤

A 0

]−1 [

B
0

]

is a m×m dynamic Jacobian matrix relating actuator torque

to output acceleration. Note that computation of ÿ0 and J
does not require inversion of the large system matrix, but

can be done with a much less expensive linear solve. The

term

[C 0]

[

M A⊤

A 0

]−1

can be efficiently computed with MATLAB’s right matrix

divide, or similar function, and is merely solving m sparse

linear systems. Feedback linearization of the output is then

accomplished by the inner loop control law:

u = J−1(a− ÿ0) (12)

where a is symbolic of the desired output acceleration and

serves as the new control input that will be specified by an

outer loop control policy. Thus the feedback linearization

transforms the nonlinear input-output dynamics into a set of

decoupled double integrators.

B. Inertial Coupling and Singularities

Note that such feedback linearization can be done only if

there is strong inertial coupling [20] between the actuation

and the output. This corresponds to J being nominally

nonsingular. Strong inertial coupling in this model arises

from the inextensibility constraints of the Kirchhoff rod PDE,

although J may become singular in certain configurations

due to the robot’s kinematic singularities. If J does loose

rank in a particular configuration, we can replace the inverse

in (13) with the Moore-Penrose pseudo-inverse. More gener-

ally, we can use a damped pseudo-inverse that will prevent

large commanded actuation torques and guard against ill-

conditioning around any singularities:

u =
(

J⊤J+ βI
)−1

J⊤(a− ÿ0) (13)

where β is a small damping parameter and can be chosen to

balance tracking accuracy against mitigation of singularities.

C. Linear outer-loop control

If r(t) is the reference we desire the output to track, then a

outer-loop linear control law with feedforward acceleration:

a = r̈− kdė− kpe (14)

will drive the output error e = h− r asymptotically to zero,

with second order behavior according to our choice of PD

gains kp and kd. However, classical feedback linearization,

when combined with such a linear outer control loop, is

known to suffer from poor robustness to model parameter

uncertainty [21]. Our preliminary simulations showed that

with this approach, even very small changes to the modelled

Young’s modulus caused the controlled continuum robot

system to become unstable.

D. Sliding Mode Control

A sliding mode control approach can greatly improve ro-

bustness while preserving the basic structure and advantages

of the input-output feedback linearization above. We define

a sliding variable s in terms of the output error as follows:

s = ė+ αe

for α > 0. Thus, driving s to zero eventually enforces stable

first-order output error dynamics with time constant 1/α. To

derive a control which robustly drives s to zero, consider the

Lyapunov function

V =
1

2
s⊤s

Its derivative

V = s⊤ṡ

is forced to be negative definite (even under some finite

distrubance or parametric error in the model) if we can

choose the control input to achieve ṡ = −k sgn s, where

k is a gain related to the expected amount of disturbance,

and sgn takes the element-wise sign of a vector. So sliding

mode control should enforce

ṡ = ÿ − r̈+ αė = −k sgn (ė+ αe)



Fig. 2. The overall structure of the control system.

Since we can dictate ÿ = a using the input-output feedback

linearization above, the sliding mode controller is then equiv-

alent to replacing the linear outer loop control (14) with the

nonlinear control law

a = r̈− αė− k sgn (ė+ αe) (15)

The well-studied ªchatteringº phenomenon sometimes

caused by the discontinuity in the sgn (ė+ αe) function can

be eliminated by various means (conventionally deadband,

boundary layer, etc.). In our implementation we simply

replace sgn with a continuous approximation, such as the

Gauss error function erf (c(ė+ αe)) where c encodes the

steepness of the transition from −1 to 1.

E. Stable Zero Dynamics

Since the open loop system is passive, consisting of only

of inertial, capacitive, and dissipative elements, the system’s

zero dynamics are stable. The transient oscillations of the

zero dynamics will decay at their natural rate, and any

steady-state oscillations will simply consist of the passive

system’s response to the frequency content of the reference

trajectory, and the controller additionally stabilizes the output

error. A full analysis of closed loop stability is outside the

scope of this paper, but Theorem 1 in [20] (relevant to

input-output feedback linearization with a linear outer loop

controller) gives us hope that conditions for stability may

be derived for our modified sliding mode approach in future

work.

F. Force-Based Observer

The inner-loop feedback linearization described above

requires knowledge of the full robot state q and q̇. While

high-resolution shape sensors can provide this information,

typical low-cost continuum robots have much more limited

sparse sensing. Suppose that we can only sense the position

p and velocity ṗ at a subset of the model nodes (say

k of them), and designate the set of sensed positions as

z = [. . .p⊤

i . . . ]⊤ ∈ R
2k for all nodes i where measurements

are available. A conceptually intuitive observer design simply

augments a forward dynamics simulation with external forces

that are controlled to drive the estimated positions to their

measured values. Thus the observer takes the form
[

M A(q̃)⊤

A(q̃) 0

] [

¨̃q

λ̃

]

=

[

F0(q̃, ˙̃q) +Bu+ g

γ(q̃, ˙̃q)

]

(16)

Fig. 3. Prototype pneumatic 2-DOF soft robot. Configuration shown with
negative bending at the distal end and positive bending at the proximal end.

TABLE I

SIMULATED MODEL PARAMETERS

EI (Nm2) BI (Nm2s) ρA (kg/m) ρI (kg m) L (m) N

0.14 0.003 0.8 0 0.275 20

where g ∈ R
3n is a sparse vector containing a force gi ∈ R

2

in elements (3i−2 : 3i−1) whenever pi and ṗi are measured

by a sensor:

gi = Ld(ṗi − ˙̃pi) + Lp (pi − p̃i)

with positive observer gains Lp, and Ld. This simple law

cannot destabilize the observer system because it is passive,

implementing a virtual spring and damper tied between the

measured and estimated positions. Since the zero dynamics

are stable, the estimated state will converge to the true state

over time in the absence of model error. In the presence of

modeling error, the stable zero dynamics guarantee a stable

observer.

Figure 2 illustrates the resulting overall structure of the

control approach. The sliding mode control consists of the

nonlinear outer loop controller (15) with the input-output

feedback linearization (13). The feedback linearization relies

on the full state estimate from the observer (16) based on all

of the sensed data z while the outer loop controller relies

only on sensed output y

IV. SIMULATION OF SOFT ROBOT CONTROL

We tested our nonlinear controller/observer combination

numerically in simulation using a model for a pneumatic

soft robot prototype shown in Figure 3. The prototype is 3D

printed with 85A shore hardness Ninjaflex TPU (Ninjatek)

filament using a Flexion Extruder (Diabase Engineering)

mounted on a Lulzbot TAZ6. It has embedded pneumatic

chambers designed to give the robot two actuated degrees of

freedom in the plane. In our model, the actuation manifests

as a torque τ1 applied at the distal tip, and another τ2
applied at the midpoint. In preliminary testing with the

TABLE II

CONTROLLER PARAMETERS

β α k c Lp Ld

0.1 40 80 40 0.5 0.1



Fig. 4. Snapshots of the dynamic robot behavior during the circle task
after the tracking error has converged to zero (after 0.2 seconds).

prototype, we identified appropriate physical constants and

model parameters. These are listed in Table I. Note that while

ρI is not really zero, it is small for most slender robots,

and the model can be calibrated accurately enough assuming

ρI = 0. (Note that this causes no problem in the model. Even

though M is singular, the larger system matrix in (11) is still

full rank).

We implemented our controller/observer approach in

Simulink, and the parameters used in the outer-loop con-

troller and observer are listed in Table II. While the feedback

linearization block and the observer assumed the model

parameters in Table I, the simulated robot plant model used

different parameters to simulate parameteric modeling error

and assess controller robustness. The simulated robot had a

10% greater density and 10% lower stiffness and damping

constants than the controller and observer assumed. The only

output measurement used in the controller and observer was

the tip position and velocity (i.e. z = y = pN ), representing

a very minimal sensing scenario, and the observer initial

conditions were set differently than the robot model. Thus

these numerical experiments simulate a practical scenario

with limited sensor information, unknown initial conditions,

and non-negligible model inaccuracy.

We performed two reference tracking experiments where

the robot is commanded to follow a tip trajectory in space.

The reference trajectories were designed to be dynamically

significant by containing frequency content in the range of

the first two modal frequencies of the underactuated robot

dynamics (approx. 3.5 Hz and 19 Hz). The first trajectory

of tracking a point moving around the red circle shown in

Figure 4 at a frequency of 5 Hz. The second task is to follow

a point moving sinusoidally back and forth along the red line

(again at 5 Hz) as shown in Figure 5.

A. Results

Figures 4 and 5 show the dynamic robot behavior execut-

ing each task once the tracking error has converged to zero

(i.e. after about 0.2 seconds). Figures 6 and 7 detail the error

Fig. 5. Snapshots of the dynamic robot behavior during the line following
task after the tracking error has converged to zero (after 0.2 seconds).

Fig. 6. Top: The desired reference trajectory is compared to the robot
output for the circle tracking task. Bottom: The control torques indicate
that significant inertial dynamics are being overcome.

convergence behavior and the actuator torques commanded

by the sliding mode controller. The state estimation error

does not converge to zero because of the model differences

between the observer and the robot, but the reference tracking

error goes to zero in spite of this due to the robustness of

the sliding mode controller.

The snapshots in Figure 5 are timed to show the same

task-space points on subsequent passes moving left and right.

The fact that there are several pairs of snapshots with the

same end-effector location but different body deformations

indicates the significance of the inertial dynamics in this task.

The presence of non-sinusoidal torque signals in Figures 6

and 7 also indicate that significant inertial dynamics and

couplings between the actuated DOFs are being overcome.



Fig. 7. Top: The desired reference trajectory is compared to the robot output
for the cyclical line tracking task. Bottom: The control torques indicate that
significant inertial dynamics and couplings between the actuated DOFs are
being overcome.

V. CONCLUSIONS

We have presented a constrained Lagrangian modeling

approach that was shown to be equivalent to a first-principles

PDE classical Kirchhoff rod model. The construction of the

constrained model was shown with 3N maximal coordinates,

2N constraint equations, and 2N unknown constraint forces.

Based on the maximal coordinate form of this model, we

derived an input-output feedback linearization control ap-

proach that maps the small number of actuation torques of

the highly underactuated system to the second time-derivative

of the output coordinates of interest, leveraging the strong

inertial coupling present in the model. Singularities were

addressed with a damped pseudo-inverse approach to this

mapping. The feedback linearization was augmented with a

sliding mode approach to drive the error to zero in the face

of parametric uncertainties. This resulted in a robust control

law. Finally an observer was formulated from the constrained

model formulation by augmenting it with corrective virtual

external forces based on the errors in the measured and

expected states.

Simulations of a 2-DOF soft robot prototype demonstrated

the salient features of the modeling, model-based control

design, and observer design in performing two dynamic

position tracking tasks: the tip position of the robot tracing

a circle and a line at a frequency that induces significant

dynamic loads. These results showed robustness to parameter

differences between the plant and controller as well as

excellent tracking performance.
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