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Abstract— Underactuation is a core challenge associated with
controlling soft and continuum robots, which possess theoreti-
cally infinite degrees of freedom, but few actuators. However,
m actuators may still be used to control a dynamic soft robot in
an m-dimensional output task space. In this paper we develop
a task-space control approach for planar continuum robots
that is robust to modeling error and requires very little sensor
information. The controller is based on a highly underactuated
discrete rod mechanics model in maximal coordinates and does
not require conversion to a classical robot dynamics model form.
This promotes straightforward control design, implementation
and efficiency. We perform input-output feedback linearization
on this model, apply sliding mode control to increase robustness,
and formulate an observer to estimate the full state from
sparse output measurements. Simulation results show exact
task-space reference tracking behavior can be achieved even
in the presence of significant modeling error, inaccurate initial
conditions, and output-only sensing.

I. INTRODUCTION

Continuously flexible robotic structures (continuum robots
and soft robots) have great potential as highly dynamic
manipulators and locomotors that use their inherent elastic
energy storage to operate efficiently, perform stable and
safe contact tasks, and adapt to uncertain environments.
However, this great potential comes with the challenge of
controlling an infinitely high degree-of-freedom system with
a very limited number of actuators and sparse sensing. In
this paper we add to the recent discussion around control of
highly underactuated soft robotic structures by developing an
approach for task-space dynamic control using discrete rod
models.

A. Dynamic Modeling

Dynamic models for simulation and control of soft and
continuum robots can be broadly categorized by (1) how
the geometry of the robot is represented, and (2) how the
equations of motion are formulated and solved [1], [2].
On the one hand, many models represent the continuum
dynamics on a set of minimal coordinates, such as segment
curvatures [3] [4], actuator lengths [5], strains [6], [7],
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parameterized curves [8] or virtual rigid-link joint angles [9].
The equations are then formulated on the basis of a principle
of mechanics, such as Lagrangian dynamics, and ultimately
represented in a classical rigid-link robot dynamics form such
as

D(6,0)0 +C(0,0)+G(0) =T (1)

where 8 € RY is a minimal set of generalized coordinates
that describe the robot configuration, and 7 € R is a set of
actuation inputs (i.e. the model is fully actuated). To arrive
at such a model for a continuum or soft robot, one must
often apply a very coarse approximation scheme, e.g. by
assuming constant curvature over an entire actuated segment.
The advantages of such coarsely approximated models are
1) computational efficiency (for larger N, the equations
in (1) are difficult to form analytically and expensive to
solve) and 2) straightforward adaptation of conventional
controller design approaches for fully actuated rigid-link
robots onto continuum robots [9]. The main drawback of
this strategy is that it ignores the underactuated dynamics
that cause variations in curvature across actuated segments.
These underactuated dynamics may be important to account
for in modeling and control if one wishes to increase control
bandwidth and more fully exploit the dynamic potential of
soft/continuum robots.

In contrast, another category of continuum robot modeling
first expresses the dynamics in a continuous form, described
as a set of nonlinear partial differential equations in arc
length and time [10], [1], based on the dynamic theories
of Cosserat rods, Kirchhoff rods (unshearable, inextensi-
ble), or planar elastica. The solution to the PDEs is then
approximated with various numerical methods. Models of
this type are typically highly resolved in space (i.e. they
are underactuated - there are many more model DOF than
actuators), which allows more accurate dynamic simula-
tion, and they typically describe the time evolution of a
redundant set of variables (larger than the degrees of free-
dom) satisfying certain constraints of compatibility, i.e. they
employ a maximal coordinates approach. (Certain choices
for numerical discretization of the PDEs are equivalent to
pseudo-rigid-body models and so-called discrete elastic rod
models [11], [12] as we show later). A prevalent viewpoint
in continuum and soft robotics research is that such highly
resolved, maximal coordinate models are useful for simu-
lation, but difficult to exploit for control (e.g. [7]) because
1) they are underactuated (which complicates control) and
2) they not expressed in the classic minimal form (1). In



this paper, we would like to promote the contrary view:
underactuated maximal coordinate models obtained from
discrete mechanics models or discretization of a continuous
PDE are suitable for control design and efficient control
implementation, particularly in task space.

B. Control

The majority of work on dynamic control of continuum
manipulators assumes a fully actuated model (e.g [13], [14],
[9]) in minimal coordinates such as piecewise constant curva-
tures. Some recent work has considered control with under-
actuated models using parametric curves [8], or reduced
order models generated from general 3D finite element
simulations [15], [3], [16], while early continuum robot
control work acknowledged and modeled the underactuated
dynamics [17], formulating linear boundary control laws that
sought to stabilize the system and reduce vibration. Perhaps
the most closely related work to this paper is [18] which
recently showed that m actuators are sufficient to control
an underactuated soft robot in an m degree of freedom task
space. This was done by leveraging the operational space
dynamics formulation and projecting the required actuation
torques into a lower dimensional space using muscle syner-
gies.

We believe the input-output feedback linearization part
of our controller might be numerically equivalent to the
operational-space control in [18]. However, the formulation
herein may facilitate a more straightforward implementation
and efficient computation, since our constrained Lagrangian
model (or equivalently the discretized PDE model) never
needs to be explicitly expressed in either minimal coordinates
or operational space, nor does it need to consider muscle
synergies. In addition, robustness and state estimation were
left to future work in [18]. Herein we contribute toward those
goals by proposing a sliding mode outer-loop controller and a
passive observer design. We additionally include simulations
with parametric modeling error and limited sensing.

C. Contributions

In the following sections we present a control design for
soft robots based on constrained Lagrangian model for dis-
crete elastic rods in maximal of coordinates. This approach
allows the model to be easily constructed and implemented
programmatically for large numbers of links, and we show
that it is equivalent to a first-principles PDE-based approach.
The approach also exhibits a high degree of efficiency for
fast, computationally-lean solving. We also present an input-
output feedback linearization control design methodology
that is augmented by a sliding mode outer loop that provides
robustness to parametric uncertainty. To provide the full state
estimate needed for the controller we propose an observer to
reconstruct the unmeasured states of the model from very
few measurements by exploiting the stable zero dynamics
(or internal dynamics) of the system. Finally, we verify the
entire approach in simulation using the parameters of a 2-
DOF soft robot prototype. The approach is demonstrated to
be robust by achieving exact task space tracking even in the

presence of non-negligible modeling error and output-only
sensing.

II. DYNAMIC MODEL
A. PDE Perspective

The dynamics of a classical Kirchhoff rod in 2D are
described by the following set of nonlinear partial differential

equations [19]:
/ _ |cos@
P = lsing

0 =u 2)
n' 4 f = pAp
C+p' xn+0=plf

where ’ denotes a derivative with respect to arc length, s,
denotes a derivative with respect to time, t, p(s,t) € R? is
the position along the rod, 6(s,t) € R is the tangent angle
measured counterclockwise from the global x axis, u(s,t) €
R is the curvature, n(s,t) € R? is the internal force, ¢ € R
is the internal moment about z (out of the plane, counter-
clockwise positive), p is the material density, A is the cross
sectional area, I is the second area moment of the cross
section, f(s,t) € R? is an external distributed force, and
{(s,t) € R is an external distributed moment.

The equations in (2) are incomplete until a constitutive
law is formulated to relate » and (.

The following viscoelastic model is commonly assumed:

¢ = EIu+ BI4 3)

where F is Young’s modulus, I is the second area moment of
the cross section, and B is a damping modulus. Substituting
this into (2), we get a complete PDE set in terms of state

variables p, 0, and n:
/ _ |cos@
P = lsing

n' +f = pAp (4)

EI0" + BIO" + {_ sin 0
cos 6
An intuitive and symmetric discretization strategy for these
PDE’s is to assume a set of N + 1 ordered equally-spaced
nodes in arc length, {sg s1 s2 ... sy} (over the total length
L) where positions p; and moments (; naturally live at each
node, while forces n; and angles 6; naturally live on the
N edges (or links) halfway between nodes ¢ — 1 and 7 as
shown in Figure 1 (left). Assuming a constant step size h =
S; — 8;—1, centered approximations for the first and second
derivatives in arc length can then be applied, resulting in

cos 0;
(Miy1 —n;) /h+1£(s;) = pAp;
BI(0;_1 —20; 4 0;11)/h* +
|: sin 61

T ..
] n+/{=plo

.
cos b; } ni + £(si) = pI0;
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An arbitrary section of a rod from a to s along o is shown on the left. The distributed forces and moments are represented as f and [ respectively.

The internal forces and moments are represented as n and ¢ respectively. On the right, the internal forces n and moments ¢ are indicated on the links and
nodes on ether side of the i*" node of a set of discrete links. The dots represent the nodes at position p and the dashed lines represent the “links” of the

system. The tangent angle of each link is indicated by 6.

The system in (5) is a set of differential algebraic equations
with index 3 (the number of differentiations required to
obtain differential equations for all state variables). There
are no derivatives for the n; variables, and the first equation
in the list is an algebraic constraint. One can reduce the index
by writing the derivatives of the constraint equations:

[cos 6,
Pi —Pi-1=h _sinei]
L _h_—sin&- i, ©)
P: Pi—-1 = | COSQZ' 7
.. .. . [—cosb;] -5 —sinb;
Pi —Pi-1=h _—sin@i} 0i +h [ cos 0; } 0;

Then enforcing the second derivative of the constraints along
with the original differential equations in the DAE set, one
obtains an index-1 DAE system which can be written as:
.. .. —sin6;| ; , |cosO;| 4o
I { cosb; } 0i=h [sin@} 0;
n;y1 —n; +§ =mp;
k(0i—1 —20; +0;41) + (7)
b(0i—1 — 20; + 0;11) +
[— sin 6;

T
cos 0;

where m = hpA is the mass associated with each node,
J = hpl is the density weighted second area moment
integrated over the discrete length h, k = EI/h and b =
BI/h are equivalent rotational spring and damping constants
associated with the joints, f; = hf(s;) is the effective
external force applied at each node, and ¢; = h{(s;) is the
effective external moment applied at each link.

The equations in (7) are applicable for ¢+ = 1...N — 1. If
the robot.has a fixed base at s = 0 we may take pg, Po, Po,
6o, and 6, to be prescribed values. If the robot has a free
distal end, we may prescribe

m.
—ny +fx = EL

k(On—1—0n) +b(On_1 —0n) + (8)

sinfy] "
_ N s
h|:COSQN:| ny + 4y = JOy,

since there is no material beyond s,, to provide mass or exert
internal force or moment on the proximal material.

The discretized and index-reduced PDE is essentially
equivalent to an ODE in the positions and angles because
the system can be directly solved for their second derivatives
by eliminating the internal forces. Since the reduced index
system only enforces the second derivative of the constraints,
direct integration of all the coordinates in time can result
in constraint drift during numerical simulation. There are
numerous strategies available to reduce such drift (such as
Baumgarte stabilization), but these are unnecessary for this
model. The p; and p; which satisfy the constraints can be
determined as a function of the 6; and 91 recursively from
(6). Thus, for simulation purposes, we may use 6;
and 91 éN as a minimal set of state variables to be
integrated in time, and simply extract él éN from the
full solution of the maximal coordinate model (7). This strat-
egy combines the advantages of maximal coordinates (ease
of expression, programming, and computational efficiency)
with the advantages of minimal coordinates (impossibility
of constraint drift). We aim to show in this paper that
such maximal coordinate models are also convenient for
formulating dynamic controllers directly in task space.

... On

B. Constrained Lagrangian Perspective

The above dynamic model formulated from the original
Kirchhoff rod PDEs is equivalent to a multibody dynamics
model that can be generated using either a Newton-Euler
approach or a constrained Lagrangian approach. Writing
down the equivalent constrained Lagrangian model will help
us express the equations in a compact well-known form
that will facilitate straightforward programming, efficient
numerical solution, and controller design.

Consider a dynamic system in q subject to constraints
¢(q) = 0. Its associated Lagrangian is

L(q,gX\) =T -V +¢(q) " A

where T is kinetic energy, and V' is potential energy, and A
are the Lagrange multipliers. The equations of motion are

then d (OL\ oL
) AT =
dt (361) Jq TATA=Q



and

¢(q) =0

where A = %ﬁf), and Q collects any non-conservative
generalized forces that do not arise from the constraints. This
forms an index-3 DAE of a form equivalent to (5). Taking
the first and second derivatives of the constraint equations,
we get

Aq=0, Ag=~
where ¥ = —Agq. Then the equivalent index-1 dynamic
system can be written as
M AT][g F
M= ©
A 0] (A ~y

where F' contains all the unconstrained generalized forces.
This helps realize and organize the structure of the large
system formed by (7). By inspection, we can see that the
equations in (7) have exactly this form. The generalized
coordinates are g = [p; 61 ... py GN]T. The Lagrangian
corresponding to our spatially discretized PDE system is

L N1 - |

== T .i m. . 1 J92

5 ;mpzp + 4PNPN+2; :
L (10)

2
3 Z k(0 —0_1)" + ¢(q) T A
i=1

The Lagrange multiplier vector A = [n{ ... an is

the set of internal link _rforces, and the constraint equations
o(q) = {(75? ¢—1H = 0 are given by

cos 0;
d)i =h |:51H9Z:| —Pi +Pi-1
for ¢ = 1...n. The generalized forces Q consist of damping
moments and externally applied forces and moments. These
terms manifest in F' as detailed below.

The n x n matrix M is diagonal and given by the Euler-

Lagrange equation as
M = diag(m, m, J,m,m, J,...m/2,m/2,.J)

The matrix A is sparse and defined by the constraint equa-
tions. It can be built row by row by specifying only the
nonzero entries. The submatrix of A consisting of rows 2¢;—1
to 2¢ and columns 37 — 5 to 37 is given as:

1 0 0 -1 0 —hsinb,;

[0 1 0 0 -1  hcost; ]

for i = 2...n, and the corresponding rows 2: — 1 to 27 of the
vector 7y are
- |cos6;
ho; [sin 91} :

If the rod is cantilevered with a prescribed po(t), this implies
a prescribed pg(t), and the upper left 2x3 of A is

—1 0 —hsinb,
0 —1  hcosb

while the first 2 rows of ~ are

h@% [cos 01} o

sin 61

Finally, rows 37 — 2 to 37 of the vector F are specified as

f;
[k(@i_l —20; + 0;41) + b(0i_1 —20; + 0,11 + el}
for ¢« = 1...n — 1 (letting 6y have a prescribed value), while
the last two rows of F' corresponding to the distal end are

| b |

k(@N_l —0n) + b(eN—l —0n)+ 4|

This completes all the blocks defining the constrained La-
grangian form of the model in (9), consistent with the
discretized Kirchhoff rod PDE in (5). The linear system (9)
is sparse with a structure that can be efficiently solved in
O(n) time using standard linear solvers, such as MATLAB’s
mldivide( ). Without optimization the link accelerations are
computed on the order of 1 millisecond for N = 40 in
MATLAB. As discussed before, for simulation purposes, the
link angle accelerations are extracted from this solution,
integrated in time, and used to recursively compute the posi-
tions and velocities. This avoids the constraint drift problem
typically associated with maximal coordinate formulations.

C. Robot Actuation

It is straightforward to include typical soft robot actuation
methods into the model above. In a tendon actuated robot,
the k' tendon exerts tension 7T}, at the point were it is
distally attached (suppose at node ), offset from the elastic
center of stiffness by some distance r. This creates a torque
T, = Ty applied as an external moment ¢; applied at node
i, and added into the appropriate row of F. As discussed in
[10], the tendon also creates an applied force in the tangential
direction at the attachment point, as well as a distributed
load along the length, always orthogonal to the tangent and
proportional to the curvature. However, in the planar case,
the combined effect of these point and distributed tendon
forces only influences the local axial component of internal
force. They do not affect the local transverse component of
internal force or the internal moment along the length, and
thus do not affect curvature or dynamic shape. Thus, it is
common (e.g in [13]) to treat the actuation as consisting
only of a point moment at the attachment point for simplicity,
while understanding that the true internal force is simply the
model predicted internal force minus the collective tendon
tension in the axial direction. We note that in 3D, this
simplification no longer holds [10], but that fact does not
affect the applicability of the approach in this paper.

In a planar fluid-powered soft robot, a pressurized chamber
exerts the same set of forces and moments as a tendon,
but in the opposite direction. (the two models are slightly
different in 3D, however, as detailed in [1].) Thus, for either a
planar fluid-powered robot or a planar tendon-actuated robot,
we can model the actuation of a pressurized chamber or a
tensioned tendon as a point moment 73 applied at its distal
termination point along the robot, as is commonly done.



D. Full Model for Control

Considering then an arbitrary set of m actuation torques
u € R™, we find that the full model for control takes the

form
M AT][g] [F B
IR OE
where B € R3V*™ is a sparse matrix with a one placed
in element (3¢, k) if actuator k applies a torque at node 4,
and u € R™ is the vector of actuator torque inputs. We
note that it is possible to eliminate A from (11) and arrange
it in a form similar to (1), with a different right hand side
due to the underactuation. However, the resulting analytical
expressions are highly inconvenient for large N, and task-
space controller design is easily facilitated in the form (11)
as we show in the next section.

(1)

IIT. CONTROLLER DESIGN

In this section we formulate an output control design based
on the model of (11). Consider that we want to control an
output y € R™ which is some linear function of q, such
that y = Cq for some matrix C € R™*3N_ Task space
outputs are easily described in this way because the pose at
the end-effector (or any other point) is included in q.

A. Input-Output Feedback Linearization

Using the Lagrangian dynamics form, the second deriva-
tive of the output can then be expressed as a linear function
of the actuation torques as follows:

y=[C 0] m — 50+ Ju

where o1
. M A F
so=ic o 4
is the output acceleration that would occur in the absence of
any actuation input, and

eofd 4] [

A 0 0

is a m x m dynamic Jacobian matrix relating actuator torque
to output acceleration. Note that computation of y, and J
does not require inversion of the large system matrix, but
can be done with a much less expensive linear solve. The

term S
M A
coly %]
can be efficiently computed with MATLAB’s right matrix
divide, or similar function, and is merely solving m sparse

linear systems. Feedback linearization of the output is then
accomplished by the inner loop control law:

u=J"(a-Jo) (12)

where a is symbolic of the desired output acceleration and
serves as the new control input that will be specified by an
outer loop control policy. Thus the feedback linearization
transforms the nonlinear input-output dynamics into a set of
decoupled double integrators.

B. Inertial Coupling and Singularities

Note that such feedback linearization can be done only if
there is strong inertial coupling [20] between the actuation
and the output. This corresponds to J being nominally
nonsingular. Strong inertial coupling in this model arises
from the inextensibility constraints of the Kirchhoff rod PDE,
although J may become singular in certain configurations
due to the robot’s kinematic singularities. If J does loose
rank in a particular configuration, we can replace the inverse
in (13) with the Moore-Penrose pseudo-inverse. More gener-
ally, we can use a damped pseudo-inverse that will prevent
large commanded actuation torques and guard against ill-
conditioning around any singularities:

u=(J7J+80) I (a— o) (13)

where [ is a small damping parameter and can be chosen to
balance tracking accuracy against mitigation of singularities.

C. Linear outer-loop control

If r(t) is the reference we desire the output to track, then a
outer-loop linear control law with feedforward acceleration:

a=r1—kqé—kpe (14)

will drive the output error e = h — r asymptotically to zero,
with second order behavior according to our choice of PD
gains k, and kq. However, classical feedback linearization,
when combined with such a linear outer control loop, is
known to suffer from poor robustness to model parameter
uncertainty [21]. Our preliminary simulations showed that
with this approach, even very small changes to the modelled
Young’s modulus caused the controlled continuum robot
system to become unstable.

D. Sliding Mode Control

A sliding mode control approach can greatly improve ro-
bustness while preserving the basic structure and advantages
of the input-output feedback linearization above. We define
a sliding variable s in terms of the output error as follows:

s=¢&-+ ae

for a > 0. Thus, driving s to zero eventually enforces stable
first-order output error dynamics with time constant 1/«. To
derive a control which robustly drives s to zero, consider the
Lyapunov function

1
— —ar
V 255

Its derivative
V=s's

is forced to be negative definite (even under some finite
distrubance or parametric error in the model) if we can
choose the control input to achieve § = —ksgns, where
k is a gain related to the expected amount of disturbance,
and sgn takes the element-wise sign of a vector. So sliding
mode control should enforce

S=y—F+aé=—ksgn(é+ ae)
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Fig. 2. The overall structure of the control system.

Since we can dictate y = a using the input-output feedback
linearization above, the sliding mode controller is then equiv-
alent to replacing the linear outer loop control (14) with the
nonlinear control law

a=1—«aé—ksgn(é+ ae)

The well-studied “chattering” phenomenon sometimes
caused by the discontinuity in the sgn (é + «e) function can
be eliminated by various means (conventionally deadband,
boundary layer, etc.). In our implementation we simply
replace sgn with a continuous approximation, such as the
Gauss error function erf (¢(€é + ae)) where ¢ encodes the
steepness of the transition from —1 to 1.

15)

E. Stable Zero Dynamics

Since the open loop system is passive, consisting of only
of inertial, capacitive, and dissipative elements, the system’s
zero dynamics are stable. The transient oscillations of the
zero dynamics will decay at their natural rate, and any
steady-state oscillations will simply consist of the passive
system’s response to the frequency content of the reference
trajectory, and the controller additionally stabilizes the output
error. A full analysis of closed loop stability is outside the
scope of this paper, but Theorem 1 in [20] (relevant to
input-output feedback linearization with a linear outer loop
controller) gives us hope that conditions for stability may
be derived for our modified sliding mode approach in future
work.

FE. Force-Based Observer

The inner-loop feedback linearization described above
requires knowledge of the full robot state q and q. While
high-resolution shape sensors can provide this information,
typical low-cost continuum robots have much more limited
sparse sensing. Suppose that we can only sense the position
p and velocity p at a subset of the model nodes (say
k of them), and designate the set of sensed positions as
z=1[..p; ...]T € R% forall nodes i where measurements
are available. A conceptually intuitive observer design simply
augments a forward dynamics simulation with external forces
that are controlled to drive the estimated positions to their
measured values. Thus the observer takes the form

[ M A@T} {q] _ [Fo(q, Q) +Bu+tg

_ 16
A@ o ||a (@ & (10

Fig. 3.

Prototype pneumatic 2-DOF soft robot. Configuration shown with
negative bending at the distal end and positive bending at the proximal end.

TABLE I
SIMULATED MODEL PARAMETERS

EI (Nm?) | BI (Nm?s) | pA (kg/m)
0.14 0.003 0.8

L(@m) | N
0.275 | 20

pl (kg m)
0

where g € R3" is a sparse vector containing a force g; € R?
in elements (3i—2 : 3i—1) whenever p; and p; are measured
by a sensor:

gi = La(Pi — D;) + L, (pi — i)

with positive observer gains L,, and Lg. This simple law
cannot destabilize the observer system because it is passive,
implementing a virtual spring and damper tied between the
measured and estimated positions. Since the zero dynamics
are stable, the estimated state will converge to the true state
over time in the absence of model error. In the presence of
modeling error, the stable zero dynamics guarantee a stable
observer.

Figure 2 illustrates the resulting overall structure of the
control approach. The sliding mode control consists of the
nonlinear outer loop controller (15) with the input-output
feedback linearization (13). The feedback linearization relies
on the full state estimate from the observer (16) based on all
of the sensed data z while the outer loop controller relies
only on sensed output y

IV. SIMULATION OF SOFT ROBOT CONTROL

We tested our nonlinear controller/observer combination
numerically in simulation using a model for a pneumatic
soft robot prototype shown in Figure 3. The prototype is 3D
printed with 85A shore hardness Ninjaflex TPU (Ninjatek)
filament using a Flexion Extruder (Diabase Engineering)
mounted on a Lulzbot TAZ6. It has embedded pneumatic
chambers designed to give the robot two actuated degrees of
freedom in the plane. In our model, the actuation manifests
as a torque 71 applied at the distal tip, and another 7o
applied at the midpoint. In preliminary testing with the

TABLE I
CONTROLLER PARAMETERS

B8 «a k c | Lp | Lq
0.1 | 40 | 80 | 40 | 0.5 | 0.1
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Fig. 4. Snapshots of the dynamic robot behavior during the circle task

after the tracking error has converged to zero (after 0.2 seconds).

prototype, we identified appropriate physical constants and
model parameters. These are listed in Table 1. Note that while
pI is not really zero, it is small for most slender robots,
and the model can be calibrated accurately enough assuming
pI = 0. (Note that this causes no problem in the model. Even
though M is singular, the larger system matrix in (11) is still
full rank).

We implemented our controller/observer approach in
Simulink, and the parameters used in the outer-loop con-
troller and observer are listed in Table II. While the feedback
linearization block and the observer assumed the model
parameters in Table I, the simulated robot plant model used
different parameters to simulate parameteric modeling error
and assess controller robustness. The simulated robot had a
10% greater density and 10% lower stiffness and damping
constants than the controller and observer assumed. The only
output measurement used in the controller and observer was
the tip position and velocity (i.e. z =y = py), representing
a very minimal sensing scenario, and the observer initial
conditions were set differently than the robot model. Thus
these numerical experiments simulate a practical scenario
with limited sensor information, unknown initial conditions,
and non-negligible model inaccuracy.

We performed two reference tracking experiments where
the robot is commanded to follow a tip trajectory in space.
The reference trajectories were designed to be dynamically
significant by containing frequency content in the range of
the first two modal frequencies of the underactuated robot
dynamics (approx. 3.5 Hz and 19 Hz). The first trajectory
of tracking a point moving around the red circle shown in
Figure 4 at a frequency of 5 Hz. The second task is to follow
a point moving sinusoidally back and forth along the red line
(again at 5 Hz) as shown in Figure 5.

A. Results

Figures 4 and 5 show the dynamic robot behavior execut-
ing each task once the tracking error has converged to zero
(i.e. after about 0.2 seconds). Figures 6 and 7 detail the error

X 2-DOF Dynamic Position Tracking

reference trajectory

y (m)
o

-0.1

-0.15

Fig. 5. Snapshots of the dynamic robot behavior during the line following
task after the tracking error has converged to zero (after 0.2 seconds).
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Fig. 6. Top: The desired reference trajectory is compared to the robot
output for the circle tracking task. Bottom: The control torques indicate
that significant inertial dynamics are being overcome.

convergence behavior and the actuator torques commanded
by the sliding mode controller. The state estimation error
does not converge to zero because of the model differences
between the observer and the robot, but the reference tracking
error goes to zero in spite of this due to the robustness of
the sliding mode controller.

The snapshots in Figure 5 are timed to show the same
task-space points on subsequent passes moving left and right.
The fact that there are several pairs of snapshots with the
same end-effector location but different body deformations
indicates the significance of the inertial dynamics in this task.
The presence of non-sinusoidal torque signals in Figures 6
and 7 also indicate that significant inertial dynamics and
couplings between the actuated DOFs are being overcome.
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Fig. 7. Top: The desired reference trajectory is compared to the robot output
for the cyclical line tracking task. Bottom: The control torques indicate that
significant inertial dynamics and couplings between the actuated DOFs are
being overcome.

V. CONCLUSIONS

We have presented a constrained Lagrangian modeling
approach that was shown to be equivalent to a first-principles
PDE classical Kirchhoff rod model. The construction of the
constrained model was shown with 3N maximal coordinates,
2N constraint equations, and 2N unknown constraint forces.
Based on the maximal coordinate form of this model, we
derived an input-output feedback linearization control ap-
proach that maps the small number of actuation torques of
the highly underactuated system to the second time-derivative
of the output coordinates of interest, leveraging the strong
inertial coupling present in the model. Singularities were
addressed with a damped pseudo-inverse approach to this
mapping. The feedback linearization was augmented with a
sliding mode approach to drive the error to zero in the face
of parametric uncertainties. This resulted in a robust control
law. Finally an observer was formulated from the constrained
model formulation by augmenting it with corrective virtual
external forces based on the errors in the measured and
expected states.

Simulations of a 2-DOF soft robot prototype demonstrated
the salient features of the modeling, model-based control
design, and observer design in performing two dynamic
position tracking tasks: the tip position of the robot tracing
a circle and a line at a frequency that induces significant
dynamic loads. These results showed robustness to parameter
differences between the plant and controller as well as
excellent tracking performance.
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