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Abstract: Datasets displaying temporal dependencies abound in science and engineering applica-

tions, with Markov models representing a simplified and popular view of the temporal dependence

structure. In this paper, we consider Bayesian settings that place prior distributions over the param-

eters of the transition kernel of a Markov model, and seek to characterize the resulting, typically

intractable, posterior distributions. We present a Probably Approximately Correct (PAC)-Bayesian

analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions,

bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to

model misspecification, and their variational approximations do not suffer the usual problems of

over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties

of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of

example Markov models, and also consider the situation where the Markov model is misspecified.

Keywords: ergodicity; Markov chain; probably approximately correct; variational Bayes

1. Introduction

This paper presents probably approximately correct (PAC)-Bayesian bounds on vari-
ational Bayesian (VB) approximations of fractional or tempered posterior distributions
for Markov data generation models. Exact computation of either standard or tempered
posterior distributions is a hard problem that has, broadly speaking, spawned two classes
of computational methods. The first, Markov chain Monte Carlo (MCMC), constructs
ergodic Markov chains to approximately sample from the posterior distribution. MCMC is
known to suffer from high variance and complex diagnostics, leading to the development
of variational Bayesian (VB) [1] methods as an alternative in recent years. VB methods
pose posterior computation as a variational optimization problem, approximating the
posterior distribution of interest by the ‘closest’ element of an appropriately defined class
of ‘simple’ probability measures. Typically, the measure of closeness used by VB methods
is the Kullback–Leibler (KL) divergence. Excellent introductions to this so-called KL-VB
method can be found in [2–4]. More recently, there has also been interest in alternative
divergence measures, particularly the α-Rényi divergence [5–7], though in this paper, we
focus on the KL-VB setting.

Theoretical properties of VB approximations, and in particular asymptotic frequentist
consistency, have been studied extensively under the assumption of an independent and
identically distributed (i.i.d.) data generation model [4,8,9]. On the other hand, the
common setting where data sets display temporal dependencies presents unique challenges.
In this paper, we focus on homogeneous Markov chains with parameterized transition
kernels, representing a parsimonious class of data generation models with a wide range of
applications. We work in the Bayesian framework, focusing on the posterior distribution
over the unknown parameters of the transition kernel. Our theory develops PAC bounds
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that link the ergodic and mixing properties of the data generating Markov chain to the
Bayes risk associated with approximate posterior distributions.

Frequentist consistency of Bayesian methods, in the sense of concentration of the
posterior distribution around neighborhoods of the ‘true’ data generating distribution,
have been established in significant generality, in both the i.i.d. [10–12] and in the non-i.i.d.
data generation setting [13,14]. More recent work [14–16] has studied fractional or tempered
posteriors, a class of generalized Bayesian posteriors obtained by combining the likelihood
function raised to a fractional power with an appropriate prior distribution using Bayes’
theorem. Tempered posteriors are known to be robust against model misspecification: in
the Markov setting we consider, the associated stationary distribution as well as mixing
properties are sensitive to model parameterization. Further, tempered posteriors are known
to be much simpler to analyze theoretically [14,16]. Therefore, following [14–16] we focus
on tempered posterior distributions on the transition kernel parameters, and study the rate
of concentration of variational approximations to the tempered posterior. Equivalently, as
shown in [16] and discussed in Section 1.1, our results also apply to so-called α-variational
approximations to standard posterior distributions over kernel parameters. The latter are
modifications of the standard KL-VB algorithm to address the well-known problem of
overconfident posterior approximations.

While there have been a number of recent papers studying the consistency of ap-
proximate variational posteriors [5,8,15] in the large sample limit, rates of convergence
have received less attention. Exceptions include [9,15,17], where an i.i.d. data generation
model is assumed. [15] establishes PAC-Bayes bounds on the convergence of a varia-
tional tempered posterior with fractional powers in the range [0, 1), while [9] considers
the standard variational posterior case (where the fractional power equals 1). [17], on the
other hand, establishes PAC-Bayes bounds for risk-sensitive Bayesian decision making
problems in the standard variational posterior setting. The setting in [15] allows for model
misspecification and the analysis is generally more straightforward than that in [9,17]. Our
work extends [15] to the setting of a discrete-time Markov data generation model.

Our first results in Theorem 1 and Corollary 1 of Section 2 establish PAC-Bayes bounds for
sequences with arbitrary temporal dependence. Our resultsgeneralize [15], [Theorem 2.4] to the
non-i.i.d. data setting in a straightforward manner. Note that Theorem 1 also recovers ([16],
[Theorem 3.3]), which is established under different ‘existence of test’ conditions. Our
objective in this paper is to explicate how the ergodic and mixing properties of the Markov
data generating process influences the PAC-Bayes bound. The sufficient conditions of our
theorem, bounding the mean and variance of the log-likelihood ratio of the data, allows for
developing this understanding, without the technicalities of proving the existence of test
conditions intruding on the insights.

In Section 3, we study the setting where the data generating model is a stationary
α-mixing Markov chain. Stationarity means that the Markov chain is initialized with the
invariant distribution corresponding to the parameterized transition kernel, implying all
subsequent states also follow this marginal distribution. The α-mixing condition ensures
that the variance of the likelihood ratio of the Markov data does not grow faster than linear
in the sample size. Our main results in this setting are applicable when the state space
of the Markov chain is either continuous or discrete. The primary requirement on the
class of data generating Markov models is for the log-likelihood ratio of the parameterized
transition kernel and invariant distribution to satisfy a Lipschitz property. This condition
implies a decoupling between the model parameters and the random samples, affording
a straightforward verification of the mean and variance bounds. We highlight this main
result by demonstrating that it is satisfied by a finite state Markov chain, a birth-death
Markov chain on the positive integers, and a one-dimensional Gaussian linear model.

In practice, the assumption that the data generating model is stationary is unlikely to
be satisfied. Typically, the initial distribution is arbitrary, with the state distribution of the
Markov sequence converging weakly to the stationary distribution. In this setting, we must
further assume that the class of data generating Markov chains are geometrically ergodic.



Entropy 2021, 23, 313 3 of 39

We show that this implies the boundedness of the mean and variance of the log-likelihood
ratio of the data generating Markov chain. Alternatively, in Theorem 4 we directly impose
a drift condition on random variables that bound the log-likelihood ratio. Again, in this
more general nonstationary setting, we illustrate the main results by showing that the
PAC-Bayes bound is satisfied by a finite state Markov chain, a birth-death Markov chain
on the positive integers, and a one-dimensional Gaussian linear model.

In preparation for our main technical results starting in Section 2 we first note relevant
notations and definitions in the next section.

1.1. Notations and Definitions

We broadly adopt the notation in [15]. Let the sequence of random variables
Xn = (X0, . . . , Xn) ⊂ R

m×(n+1) represent a dataset of n + 1 observations drawn from

a joint distribution P
(n)
θ0

, where θ0 ∈ Θ ⊆ R
d is the ‘true’ parameter underlying the data

generation process. We assume the state space S ⊆ R
m of the random variables Xi is either

discrete-valued or continuous, and write {x0, . . . , xn} for a realization of the dataset. We
also adopt the convention that 0 log(0/0) = 0.

For each θ ∈ Θ, we will write p
(n)
θ as the probability density of P

(n)
θ with respect

to some measure Q(n), i.e., p
(n)
θ :=

dP
(n)
θ

dQ(n) , where Q(n) is either Lebesgue measure or the

counting measure. Unless stated otherwise, all probabilities, expectations and variances,

which we represent as P, E[X] and Var[X], are with respect to the true distribution P
(n)
θ0

.

Let π(θ) be a prior distribution with support Θ. The αte-fractional posterior is defined as

πn,αte |Xn(dθ) :=
e−αtern(θ,θ0)(Xn)π(dθ)
∫

e−αtern(θ,θ0)(Xn)π(dθ)
, (1)

where, for θ0, θ ∈ Θ, rn(θ, θ0)(·) := log

(

p
(n)
θ0

(·)

p
(n)
θ (·)

)

, is the log-likelihood ratio of the corre-

sponding density functions, and αte ∈ (0, ∞) is a tempering coefficient. Setting αte = 1
recovers the standard Bayesian posterior. Note that we will use superscripts to distinguish
different quantities that are referred to just as α in the literature.

The Kullback–Leibler (KL) divergence between distributions P, Q is defined as

K(P, Q) :=
∫

X
log

(

p(x)

q(x)

)

p(x)dx,

where p, q are the densities corresponding to P, Q on some sample space X . In particular,
the KL divergence between the distributions parameterized by θ0 and θ is

K(P
(n)
θ0

, P
(n)
θ ) :=

∫

log





p
(n)
θ0

(x0, . . . , xn)

p
(n)
θ (x0, . . . , xn)



p
(n)
θ0

(x0, . . . , xn)dx0 · · · dxn

=
∫

rn(θ, θ0)(x0, . . . , xn)pn
θ0
(x0, . . . , xn)dx0 · · · dxn. (2)

The αre-Rényi divergence Dαre(P
(n)
θ , P

(n)
θ0

) is defined as

Dαre (P
(n)
θ , P

(n)
θ0

) :=
1

αre − 1
log

∫

exp(−αrern(θ, θ0)(x0, . . . , xn))p
(n)
θ0

(x0, . . . , xn)dx0 · · · dxn, (3)

where αre ∈ (0, 1). As αre → 1, the αre-Rényi divergence recovers the KL divergence.
Let F be some class of distributions with support in R

d and such that any distribution
P in F is absolutely continuous with respect to the tempered posterior: P ≪ πn,αte |Xn .
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Many choices of F exist; for instance (see also [15]), F can be the set of Gaussian
measures, denoted FΦ

id :

FΦ
id = {Φ(dθ; µ, Σ) : µ ∈ R

d, Σd×d ∈ P.D.}, (4)

where P.D. references the class of positive definite matrices. Alternately, F can be the family
of mean-field or factored distributions where the components θi of θ are independent of each
other. Let π̃n,αte |Xn be the variational approximation to the tempered posterior, defined as

π̃n,αte |Xn := arg min
ρ∈F

K(ρ, πn,αte |Xn) (5)

It is easy to see that finding π̃n,αte |Xn in Equation (5) is equivalent to the following optimiza-
tion problem:

π̃n,αte |Xn := arg max
ρ∈F

[

∫

rn(θ, θ0)(x0, . . . , xn)ρ(dθ)−
(

αte
)−1K(ρ, π)

]

. (6)

Setting αte = 1 again recovers the usual variational solution that seeks to approximate
the posterior distribution with the closest element of F (the right-hand side above is
called the evidence lower bound (ELBO)). Other settings of αte constitute αte-variational
inference [16], which seeks to regularize the ‘overconfident’ approximate posteriors that
standard variational methods tend to produce.

Our results in this paper focus on parametrized Markov chains. We term a Markov
chain as ‘parameterized’ if the transition kernel pθ(·|·) is parametrized by some θ ∈ Θ ⊆
R

d. Let q(0)(·) be the initial density (defined with respect to the Lebesgue measure over

R
m) or initial probability mass function. Then, the joint density is p

(n)
θ (x0, . . . , xn) =

q(0)(x0)∏
n−1
i=0 pθ(xi+1|xi); recall, this joint density p

(n)
θ (x0, . . . , xn) corresponds to the walk

probability of a time-homogeneous Markov chain. We assume that corresponding to each

transition kernel pθ , θ ∈ Θ, there exists an invariant distribution q
(∞)
θ ≡ qθ that satisfies

qθ(x) =
∫

pθ(x|y)qθ(dy) ∀x ∈ R
m, θ ∈ Θ.

We will also use qθ to designate the density of the invariant measure (as before,
this is with respect to the Lebesgue or counting measure for continuous or discrete state
spaces, respectively). A Markov chain is stationary if its initial distribution is the invariant
probability distribution, that is, X0 ∼ qθ .

Our results in the ensuing sections will be established under strong mixing condi-
tions [18] on the Markov chain. Specifically, recall the definition of the α-mixing coefficients
of a Markov chain {Xn}:

Definition 1 (α-mixing coefficient). Let Mj
i denote the σ-field generated by the Markov chain

{Xk : i ≤ k ≤ j} parameterized by θ ∈ Θ. Then, the α-mixing coefficient is defined as

αk = sup
t>0

sup
(A,B)∈Mt

−∞×M∞
t+k

|Pθ(A ∩ B)− Pθ(A)Pθ(B)|. (7)

Informally speaking, the α-mixing coefficients {αk} measure the dependence between
any two events A (in the ‘history’ σ-algebra) and B (in the ‘future’ σ-algebra) with a time
lag k. We note that we do not use superscripts to identify these α parameters, since they are
the only ones with subscripts, and can be identified through this.
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2. A Concentration Bound for the α
re-Rényi Divergence

The object of analysis in what follows is the probability measure π̃n,αte |Xn(θ), the
variational approximation to the tempered posterior. Our main result establishes a bound
on the Bayes risk of this distribution; in particular, given a sequence of loss functions
ℓn(θ, θ0), we bound

∫

ℓn(θ, θ0)π̃n,αte |Xn(θ)dθ. Following recent work in both the i.i.d. and

dependent sequence settings [14–16], we will use ℓn(θ, θ0) = Dαre(P
(n)
θ , P

(n)
θ0

), the αre-Rényi

divergence between P
(n)
θ and P

(n)
θ0

as our loss function. Unlike loss functions like Euclidean
distance, Rényi divergence compares θ and θ0 through their effect on observed sequences,
so that issues like parameter identifiability no longer arise. Our first result generalizes [15],
[Theorem 2.1] to a general non-i.i.d. data setting.

Proposition 1. Let F be a subset of all probability distributions on Θ. For any αre ∈ (0, 1),
ǫ ∈ (0, 1) and n ≥ 1, the following probabilistic uniform upper bound on the expected αre-Rényi
divergence holds:

P

[

sup
ρ∈F

∫

Dαre(P
(n)
θ , P

(n)
θ0

)ρ(dθ) ≤ αre

1 − αre

∫

rn(θ, θ0)ρ(dθ) +
K(ρ, π) + log( 1

ǫ )

1 − αre

]

≥ 1 − ǫ. (8)

The proof of Proposition 1 follows easily from [15], and we include it in Appendix B.1.1
for completeness. Mirroring the comments in [15], when ρ = π̃n,αte this result is pre-
cisely [14, Theorem 3.4]. We also note from [14] that ∀ αre, β ∈ (0, 1] αre-Rényi divergences

are all equivalent through the following inequality
αre(1−β)
β(1−αre)

Dβ ≤ Dαre ≤ Dβ ∀ αre ≤ β.

Hence, for the subsequent results, we simplify by assuming that αte = αre. This proba-
bilistic bound implies the following PAC-Bayesian concentration bound on the model risk
computed with respect to the fractional variational posterior:

Theorem 1. Let F be a subset of all probability distributions parameterized by Θ, and assume
there exist ǫn > 0 and ρn ∈ F such that

i.
∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) =

∫

E[rn(θ, θ0)]ρn(dθ) ≤ nǫn,

ii.
∫

Var(rn(θ, θ0))ρn(dθ) ≤ nǫn, and
iii. K(ρn, π) ≤ nǫn.

Then, for any αre ∈ (0, 1) and (ǫ, η) ∈ (0, 1)× (0, 1),

P





∫

Dαre(P
(n)
θ , P

(n)
θ0

)π̃n,αre(dθ|X(n)) ≤
(αre + 1)nǫn + αre

√

nǫn
η − log(ǫ)

1 − αre



 ≥ 1 − ǫ − η. (9)

The proof of Theorem 1 is a generalization of [15] (Theorem 2.4) to the non-i.i.d. setting,
and a special case of [16] (Theorem 3.1), where the problem setting includes latent variables.
We include a proof for completeness. As noted in [15], the sufficient conditions follow
closely from [13] and we will show that they hold for a variety of Markov chain models.

A direct corollary of Theorem 1 follows by setting η = 1
nǫn

, ǫ = e−nǫn and using the

fact that e−nǫn ≥ 1
nǫn

. Note that Equation (9) is vacuous if η + ǫ > 1. Therefore, without

loss of generality, we restrict ourselves to the condition 2
nǫn

< 1.

Corollary 1. Assume ∃ ǫn > 0, ρn ∈ F such that the following conditions hold:

i.
∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) =

∫

E[rn(θ, θ0)]ρn(dθ) ≤ nǫn ,

ii.
∫

Var(rn(θ, θ0))ρn(dθ) ≤ nǫn , and
iii. K(ρn, π) ≤ nǫn.
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Then, for any αre ∈ (0, 1),

P

[

∫

Dαre(P
(n)
θ , P

(n)
θ0

)π̃n,αre(dθ|X(n)) ≤ 2(αre + 1)ǫn

1 − αre

]

≥ 1 − 2

nǫn
. (10)

We observe that Theorem 1 and Corollary 1 place no assumptions on the nature of
the statistical dependence between data points. However, verification of the sufficient
conditions is quite hard, in general. One of our key contributions is to verify that under
reasonable assumptions on the smoothness of the transition kernel, the sufficient conditions
of Theorem 1 and Corollary 1 are satisfied by ergodic Markov chains.

Observe that the first two conditions in Corollary 1 ensure that the distribution ρn

concentrates on parameters θ ∈ Θ around the true parameter θ0, while the third condition
requires that ρn not diverge from the prior π rapidly as a function of the sample size n. In
general, verifying the first and third conditions is relatively straightforward. The second
condition, on the other hand, is significantly more complicated in the current setting of
dependent data, as the variance of rn(θ, θ0) includes correlations between the observations
{X0, . . . , Xn}. In the next section, we will make assumptions on the transition kernels (and
corresponding invariant densities) that ’decouple’ the temporal correlations and the model
parameters in the setting of strongly mixing and ergodic Markov chain models, and allow
for the verification of the conditions in Corollary 1. Towards this, Propositions 2 and 3
below characterize the expectation and variance of the log-likelihood ratio rn(·, ·) in terms
of the one-step transition kernels of the Markov chain. First, consider the expectation of
rn(·, ·) in condition (i).

Proposition 2. Fix θ1, θ2 ∈ Θ and consider the parameterized Markov transition kernels pθ1
and

pθ2
, and initial distributions q

(0)
θ1

and q
(0)
θ2

. Let p
(n)
θ1

and p
(n)
θ2

be the corresponding joint probability
densities; that is,

p
(n)
θj

(x0, . . . , xn) = q
(0)
θj

(x0)
n

∏
i=1

pθi
(xi|xi−1) (11)

for j ∈ {1, 2}. Then, for any n ≥ 1, the log-likelihood ratio rn(θ2, θ1) satisfies

Eθ1
[rn(θ2, θ1)] =

n

∑
i=1

Eθ1

[

log

(

pθ1
(Xi|Xi−1)

pθ2
(Xi|Xi−1)

)]

+ Eθ1
[Z0], (12)

where Z0 := log

(

q
(0)
θ1

(X0)

q
(0)
θ2

(X0)

)

. The expectation in the first term is with respect to the joint density

function pθ1
(y, x) = pθ1

(y|x)q(i−1)
θ1

(x) where the marginal density satisfies

q
(i−1)
θ1

(x) =

{
∫

p
(i−1)
θ1

(x0, . . . , xi−2, x)dx0 · · · dxi−2 for i > 1, and

q
(0)
θ1

(x) for i = 1.

If the Markov chain is also stationary under θ1, then Equation (12) simplifies to

Eθ1
[rn(θ2, θ1)] = nEθ1

[

log

(

pθ1
(X1|X0)

pθ2
(X1|X0)

)]

+ Eθ1
[Z0]. (13)

Notice that Eθ1
[rn(θ2, θ1)] is precisely the KL divergence, K(P

(n)
θ1

, P
(n)
θ2

). Next, the
following proposition uses [19] (Lemma 1.3) to upper bound the variance of the log-
likelihood ratio.

Proposition 3. Fix θ1, θ2 ∈ Θ and consider parameterized Markov transition kernels pθ1

and pθ2
, with initial distributions q

(0)
θ1

and q
(0)
θ2

. Let p
(n)
θ1

and p
(n)
θ2

be the corresponding joint
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probability densities of the sequence (x0, . . . , xn), and q
(i)
θj

the marginal density for i ∈ {1, . . . , n}
and j ∈ {1, 2}. Fix δ > 0 and, for each i ∈ {1, . . . , n}, define

C
(i)
θ1,θ2

:=
∫

∣

∣

∣

∣

log

(

pθ1
(xi|xi−1)

pθ2
(xi|xi−1)

)∣

∣

∣

∣

2+δ

pθ1
(xi|xi−1)q

(i−1)
θ1

(xi−1)dxidxi−1.

Similarly, define Z0 := log

(

q
(0)
θ1

(X0)

q
(0)
θ2

(X0)

)

, and D1,2 := Eθ1
|Z0|2+δ. Suppose the Markov chain

corresponding to θ1 is α-mixing with coefficients {αk}. Then,

Var(rn(θ1, θ2)) <
n

∑
i,j=1

(

4

n
+ 2nδ/2(C

(i)
θ1,θ2

+ C
(j)
θ1,θ2

+

√

C
(i)
θ1,θ2

C
(j)
θ1,θ2

)

)

(

α
δ/(2+δ)
|i−j|−1

)

+
n

∑
i=1

(

4

n
+ 2nδ/2(C

(i)
θ1,θ2

+ D1,2 +

√

C
(i)
θ1,θ2

D1,2)

)

(

α
δ/(2+δ)
i−1

)

(14)

+ Cov(Z0, Z0). (15)

Note that this result holds for any parameterized Markov chain. In particular, when

the Markov chain is stationary, C
(i)
θ1,θ2

= C
(1)
θ1,θ2

∀ i and ∀θ ∈ Θ, and Equation (14) simplifies
to

Var(rn(θ1, θ2)) < n

(

4

n
+ 6nδ/2C

(1)
θ1,θ2

)

(

∑
k≥0

α
δ/(2+δ)
k

)

+

(

4

n
+ 2nδ/2(C

(1)
θ1,θ2

+ D1,2 +

√

C
(1)
θ1,θ2

D1,2)

)(

∑
k≥1

α
δ/(2+δ)
k

)

+ Cov(Z0, Z0). (16)

If the sum ∑k≥0 α
δ/(2+δ)
k is infinite, the bound is trivially true. For it to be finite, of course,

the coefficients αk must decay to zero sufficiently quickly. For instance, Theorem A.1.2
shows that if the Markov chain is geometrically ergodic, then the α-mixing coefficients are
geometrically decreasing. We will use this fact when the Markov chain is non-stationary, as
in Section 4. In the next section, however, we first consider the simpler stationary Markov
chain setting where geometric ergodic conditions are not explicitly imposed. We also note

that unless only a finite number of αk are nonzero, the sum ∑k≥0 α
δ/(2+δ)
k is infinite when

δ = 0, and our results will typically require δ > 0.

3. Stationary Markov Data-Generating Models

Observe that the PAC-Bayesian concentration bound in Corollary 1 specifically re-
quires bounding the mean and variance of the log-likelihood ratio rn(θ, θ0). We ensure this
by imposing regularity conditions on the log-ratio of the one-step transition kernels and
the corresponding invariant densities. Specifically, we assume the following conditions
that decouple the model parameters from the random samples, allowing us to verify the
bounds in Corollary 1.

Assumption 1. There exist positive functions M
(1)
k (·, ·) and M

(2)
k (·), k ∈ {1, 2, . . . , m} such

that for any parameters θ1, θ2 ∈ Θ, the log of the ratio of one-step transition kernels and the log of
the ratio of the invariant distributions satisfy, respectively,

| log pθ1
(x1|x0)− log pθ2

(x1|x0)| ≤
m

∑
k=1

M
(1)
k (x1, x0)| f

(1)
k (θ2, θ1)| ∀ (x0, x1), and (17)
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| log qθ1
(x)− log qθ2

(x)| ≤
m

∑
k=1

M
(2)
k (x)| f

(2)
k (θ2, θ1)| ∀ x. (18)

We further assume that for some δ > 0, the functions f
(1)
k , f

(2)
k and M

(1)
k satisfy the following:

i. there exist constants C
(t)
k and measures ρn ∈ F such that

∫

| f
(t)
k (θ, θ0)|2+δρn(dθ) <

C
(t)
k
n

for t ∈ {1, 2}, n ≥ 1 and k ∈ {1, 2, . . . , m}, and

ii. there exists a constant B such that
∫

M
(1)
k (x1, x0)

2+δ pθj
(x1|x0)q

(0)
θj

(x0)dx1dx0 < B, k ∈
{1, . . . , m} and j ∈ {1, 2}.

The following examples illustrate Equations (17) and (18) for discrete and continuous
state Markov chains.

Example 1. Suppose {X0, . . . , Xn} is generated by the birth-death chain with parameterized
transition probability mass function,

pθ(j|i) =
{

θ if j = i − 1,

1 − θ if j = i + 1.

In this example, the parameter θ denotes the probability of birth. We shall see that, m = 3:

M
(1)
1 (X1, X0) = I[X1=X0+1], M

(1)
2 (X1, X0) = I[X1=X0−1], and M

(1)
3 (X1, X0) = 1. We also

define M
(2)
1 (X0) = 1, and set M

(2)
2 (X0) and M

(2)
3 (X0) both to X0 − 1. Let f

(1)
1 (θ, θ0) =

log
[

θ0
θ

]

, f
(1)
2 (θ, θ0) = log

[

1−θ0
1−θ

]

, f
(1)
3 (θ, θ0) = 0, f

(2)
1 (θ, θ0) = − f

(2)
3 (θ, θ0) = log

[

1−θ0
1−θ

]

,

and f
(2)
2 (θ, θ0) = log

[

θ0
θ

]

. The derivation of these terms and that they satisfy the conditions of

Assumption 1 is provided in the proof of Proposition 6.

Example 2. Suppose {X0, . . . , Xn} is generated by the ‘simple linear’ Gauss–Markov model

Xn = θXn−1 + Wn,

where {Wn} is a sequence of i.i.d. standard Gaussian random variables. Then, m = 2, with

M
(1)
1 (Xn, Xn−1) = |XnXn−1|, M

(1)
2 (Xn, Xn−1) = X2

n, M
(2)
1 (x) = x2

2 and M
(2)
2 (X) = 0. Cor-

responding to these, we have f
(1)
1 (θ, θ0) = (θ − θ0), f

(1)
2 (θ, θ0) = (θ2

0 − θ2), f
(2)
1 (θ0, θ0) =

(θ2
0 − θ2) and f

(2)
2 (θ0, θ0) = 0. The derivation of these quantities and that these satisfy the

conditions of Assumption 1 under appropriate choice of ρn is shown in the proof of Proposition 10.

Note that assuming the same number m of M
(1)
k and M

(2)
k involves no loss of gener-

ality, since these functions can be set to 0. Both Equations (17) and (18) can be viewed as
generalized Lipschitz-smoothness conditions, recovering the usual Lipschitz-smoothness

when m = 1 and when f
(t)
k is Euclidean distance. Our generalized conditions are

useful for distributions like the Gaussian, where Lipschitz smoothness does not apply.

From Jensen’s inequality we have
∫

| f
(t)
k (θ, θ0)|ρn(dθ)| ≤

[

∫

| f
(t)
k (θ, θ0)|2+δρn(dθ)

] 1
2+δ

,

and Assumption 1(i) above implies that for some constant C > 0 and k ∈ {1, 2, . . . , m}, t ∈
{1, 2},

∫

| f
(t)
k (θ, θ0)|ρn(dθ) ≤ C

n1/(2+δ)
<

C√
n

. (19)

Assumption 1(i) is satisfied in a variety of scenarios, for example, under mild assumptions

on the partial derivatives of the functions f
(t)
k . To illustrate this, we present the following

proposition.
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Proposition 4. Let f (θ, θ0) be a function on a bounded domain with bounded partial derivatives
with f (θ0, θ0) = 0. Let {ρn(·)} be a sequence of probability densities on θ such that Eρn [θ] = θ0

and Varρn [θ] =
σ2

n for some σ > 0. Then, for some C > 0,

∫

| f (θ, θ0)|2+δρn(dθ) <
C

n
. (20)

Proof. Define ∂θ f (θ, θ0) := ∂ f (θ,θ0)
∂θ as the partial derivative of the function f . By the mean

value theorem, | f (θ, θ0)| = |θ − θ0||∂θ f (θ∗, θ0)|, for some θ∗ ∈ [min{θ, θ0}, max{θ, θ0}].
Since the partial derivatives are bounded, there exists L ∈ R such that ∂θ f (θ∗, θ0) < L, and
∫

| f (θ, θ0)|2+δρn(dθ) < L2+δ
∫

|θ − θ0|2+δρn(dθ). Choose G > 0 be such that |θ| < G, then
∣

∣

∣

θ−θ0
2G

∣

∣

∣

2+δ
<

∣

∣

∣

θ−θ0
2G

∣

∣

∣

2
. Therefore,

∫

|θ − θ0|2+δρn(dθ) < (2G)2+δVar
[

θ
2G

]

< (2G)δ σ2

n . Now

choosing (2G)δσ2 as C completes the proof.

If ∂θ f
(t)
k is continuous and Θ is compact, then ∂θ f

(t)
k is always bounded. Furthermore,

observe that if E
[

M
(1)
k (X1, X0)

2+δ
]

< B, without loss of generality we can use Jensen’s

inequality to conclude that, for all 0 < a < 2 + δ, E
[

M
(1)
k (X1, X0)

a
]

< B
a

2+δ < B.

We can now state the main theorem of this section.

Theorem 2. Let {X0, . . . , Xn} be generated by a stationary, α-mixing Markov chain parametrized
by θ0 ∈ Θ. Suppose that Assumption 1 holds and that the α-mixing coefficients satisfy

∑k≥1 α
δ/(2+δ)
k < +∞. Furthermore, assume that K(ρn, π) ≤ √

nC for some constant C > 0.

Then, the conditions of Corollary 1 are satisfied with ǫn = O
(

max( 1√
n

, nδ/2

n )
)

.

Theorem 2 is satisfied by a large class of Markov chains, including chains with count-
able and continuous state spaces. In particular, if the Markov chain is geometrically ergodic,

then it follows from Equation (A4) (in the appendix) that ∑k≥1 α
δ/(2+δ)
k < +∞. Observe

that in order to achieve O( 1√
n
) convergence, we need δ ≤ 1. Key to the proof of Theorem 2

is the fact that the variance of the log-likelihood ratio can be controlled via the application
of Assumption 1 and Proposition 3. Note also that as δ decreases, satisfying the condition

∑k≥1 α
δ/(2+δ)
k requires the Markov chain to be faster mixing.

We now illustrate Theorem 2 for a number of Markov chain models. First, consider a
birth-death Markov chain on a finite state space.

Proposition 5. Suppose the data-generating process is a birth-death Markov chain, with one-
step transition kernel parametrized by the birth probability θ0 ∈ Θ. Let F be the set of all Beta
distributions. We choose the prior to be a Beta distribution. Then, the conditions of Theorem 2 are

satisfied and ǫn = O
(

1√
n

)

.

Proof. The proof of Proposition 5 follows from the more general Proposition 8, by fixing the
initial distribution to the invariant distribution under θ0. Therefore it has been omitted. We
simply refer to the proof of Proposition 8 under a more general setup in Appendix B.3.

The birth-death chain on the finite state space is, of course, geometrically ergodic and
the α-mixing coefficients αk decay geometrically. Note that the invariant distribution of
this Markov chain is uniform over the state space, and consequently this is a particularly
simple example. A more complicated and more realistic example is a birth-death Markov
chain on the nonnegative integers. We note that if the probability of birth θ in a birth-death
Markov chain on positive integers is greater than 0.5, then the Markov chain is transient,
and consequently, not ergodic. Hence, our prior should be chosen to have support within
(0, 0.5). For that purpose, we define the class of scaled beta distributions.
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Definition 2 (Scaled Beta). If X is a beta distribution on with parameters a and b, then Y is said
to be a scaled beta distribution with same parameters on the interval (c, m + c) if

Y = mx + c ; (m, c) ∈ R
2

and in that case, the pdf of Y is obtained as

f (y) =







1
mBeta(a,b)

(

y−c
m

)a−1(

1 − y−c
m

)b−1
if y ∈ (c, m + c),

0 otherwise.
.

Here, E[Y] = m a
a+b + c and Var[Y] = m2 ab

(a+b)2(a+b+1)
. For the birth-death chain, we

set m = 0.5 and c = 0 giving it support on (0, 1
2 ). Setting m = 2 and c = −1 gives a beta

distribution rescaled to have support on (−1, 1).

Proposition 6. Suppose the data-generating process is a positive recurrent birth-death Markov
chain on the positive integers parameterized by the birth probability θ0 ∈ (0, 1

2 ). Further let F be

the set of all Beta distributions rescaled to have support (0, 1
2 ). We choose the prior to be a scaled

Beta distribution on (0, 1/2) with parameters a and b. Then, the conditions of Theorem 2 are

satisfied with ǫn = O
(

1√
n

)

.

Proof. The proof of Proposition 6 (for the stationary case) follows from the more general
Proposition 9 (the nonstationary case) by fixing the initial distribution to the invariant
distribution under θ0. We omit the proof and simply refer to the proof of Proposition 9
under a more general setup in Appendix B.3.

Unlike with the finite state-space, the invariant distribution now depends on the
parameter θ ∈ Θ, and verification of the conditions of the proposition is more involved.
In Appendix A.2, we prove that the class of scaled beta distributions satisfy the condition
K(ρn, π) ≤ nǫn when the prior π is a beta or an uniform distribution. This fact will allow
us to prove the above propositions.

Both Proposition 5 and Proposition 6 assume a discrete state space. The next example
considers a strictly stationary simple linear model (as defined in Example 2), which has a
continuous, unbounded state space.

Proposition 7. Suppose the data-generating model is a stationary simple linear model:

Xn = θ0Xn−1 + Wn, (21)

where {Wn} are i.i.d. standard Gaussian random variables and |θ0| < 1. Suppose that F is the
class of all beta distributions rescaled to have the support (−1, 1). Then, the conditions of Theorem 2

are satisfied with ǫn = O
(

1√
n

)

.

Proof. This is a special case of the more general non-stationary simple linear model
which is detailed in Proposition 10. Therefore, the proof of the fact that the simple linear
model satisfies Assumption 1 when starting from stationarity is deferred to the proof
of Proposition 10. The simple linear model with |θ0| < 1 has geometrically decreasing
(and therefore summable) α-mixing coefficients as a consequence of [20] (eq. (15.49))
and Theorem A.1.2. Combining these two facts, it follows that the conditions of Theorem 2
are satisfied.

Observe that Theorem 1 (and Corollary 1) are general, and hold for any dependent
data-generating process. Therefore, there can be Markov chains that satisfy these, but do
not satisfy Assumption 1 which entails some loss of generality. However, as our examples
demonstrate, common Markov chain models do indeed satisfy the latter assumption.
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4. Non-Stationary, Ergodic Markov Data-Generating Models

We call a time-homogeneous Markov chain non-stationary if the initial distribu-
tion q(0) is not the invariant distribution. There are two sets of results in this setting:
in Theorem 3 and Theorem 4 we explicitly impose the α-mixing condition, while in The-
orem 5 we impose a f -geometric ergodicity condition (Definition A.1.2 in the appendix).
As seen in Equation (A4) (in the appendix) if the Markov chain is also geometrically er-

godic, then ∀ δ > 0, ∑ α
δ/(2+δ)
k < ∞. This condition can be relaxed, albeit at the risk of

more complicated calculations that, nonetheless, mirror those in the geometrically ergodic
setting. A common thread through these results is that we must impose some integrability

or regularity conditions on the functions M
(1)
k .

First, in Theorem 3 we assume that the M
(1)
k functions in Assumption 1 are uniformly

bounded and that the α-mixing condition is satisfied. This result holds for both discrete
and continuous state space settings.

Theorem 3. Let {X0, . . . , Xn} be generated by an α-mixing Markov chain parametrized by θ0 ∈ Θ

with transition probabilities satisfying Assumption 1 and with known initial distribution q(0). Let

{αk} be the α-mixing coefficients under θ0, and assume that ∑k≥1 α
δ/(2+δ)
k < +∞. Suppose that

there exists B ∈ R such that supx,y |M
(1)
k (x, y)| < B for all k ∈ {1, 2, . . . , m} in Assumption

1. Furthermore, assume that there exists ρn ∈ F such that K(ρn, π) ≤ √
nC for some constant

C > 0. If the initial distribution q(0) satisfies Eq(0) |M
(2)
k (X0)|2 < +∞ for all k ∈ {1, 2, . . . , m},

then the conditions of Corollary 1 are satisfied with ǫn = O
(

max( 1√
n

, nδ/2

n )
)

.

The following result in Proposition 8 illustrates Theorem 3 in the setting of a finite
state birth-death Markov chain.

Proposition 8. Suppose the data-generating process is a finite state birth-death Markov chain,
with one-step transition kernel parametrized by the birth probability θ0. Let F be the set of all Beta
distributions. We choose the prior on θ0 to be a Beta distribution. Then, the conditions of Theorem 3

are satisfied with ǫn = O
(

1√
n

)

for any initial distribution q(0).

Theorem 3 also applies to data generated by Markov chains with countably infinite
state spaces, so long as the class of data-generating Markov chains is strongly ergodic and
the initial distribution has finite second moments. The following example demonstrates
this in the setting of a birth-death Markov chain on the positive integers, where the initial
distribution is assumed to have finite second moments.

Proposition 9. Suppose the data-generating process is a birth-death Markov chain on the non-
negative integers, parameterized by the probability of birth θ0 ∈ (0, 1

2 ). Further let F be the set

of all Beta distributions rescaled upon the support (0, 1
2 ). Let q(0) be a probability mass function

on non-negative integers such that ∑
∞
i=1 i2q(0)(i) < +∞. We choose the prior to be a scaled Beta

distribution on (0, 1/2) with parameters a and b. Then, the conditions of Theorem 3 are satisfied

with ǫn = O
(

1√
n

)

.

Since continuous functions on a compact domain are bounded, we have the following
(easy) corollary (stated without proof).

Corollary 2. Let {X0, . . . , Xn} be generated by an α-mixing Markov chain parametrized by
θ0 ∈ Θ on a compact state space, and with initial distribution q(0). Suppose the α-mixing coefficients

satisfy ∑k≥1 α
δ/(2+δ)
k < +∞, and that Assumption 1 holds with continuous functions M

(1)
k (·, ·),

k ∈ {1, 2, . . . , m}. Furthermore, assume that there exists ρn such that K(ρn, π) ≤ √
nC for some

constant C. Then, Theorem 3 is satisfied with ǫn = O
(

max( 1√
n

, nδ/2

n )
)

.
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In general, the M
(1)
k functions will not be uniformly bounded (consider the case of

the Gauss–Markov simple linear model in Example 2), and stronger conditions must be
imposed on the data-generating Markov chain itself. The following assumption imposes a
‘drift’ condition from [21]. Specifically, [21] (Theorem 2.3) shows that under the conditions
of Assumption 2, the moment generating function of an aperiodic Markov chain {Xn} can
be upper bounded by a function of the moment generating function of X0. Together with
the α-mixing condition, Assumption 2 implies that this Markov data generating process
satisfies Corollary 1.

Assumption 2. Consider a Markov chain {Xn} parameterized by θ0 ∈ Θ. Let Mn
−∞ de-

note the σ-field generated by {X−∞, . . . , Xn−1, Xn}. Denote the stochastic process {Mk
n} :=

{M
(1)
k (Xn, Xn−1)}; recall M

(1)
k , for each k = 1, . . . , m1, are defined in Assumption 1. For each

k = 1, . . . , m, assume the process {Mk
n} satisfies the following conditions:

• The drift condition holds for {Mk
n}, i.e., E

[

Mk
n − Mk

n−1|Mn−1
−∞ , Mk

n−1 > a
]

≤ −ǫ for some

ǫ, a > 0.

• For some λ > 0 and D > 0, E
[

eλ(Mk
n−Mk

n−1)|Mn−1
−∞

]

≤ D.

Under this drift condition, the next theorem shows that Corollary 1 is satisfied.

Theorem 4. Let {X0, . . . , Xn} be generated by an aperiodic α-mixing Markov chain parametrized
by θ0 ∈ Θ and initial distribution q(0). Suppose that Assumption 1 and Assumption 2 hold, and that

the α-mixing coefficients satisfy ∑k≥1 α
δ/(2+δ)
k < +∞. Furthermore, assume K(ρn, π) ≤ √

nC

for some constant C > 0. If
∫

eλM
(1)
k (y,x)pθ0

(y|x)q(0)1 (x)dx < +∞ for all k = 1, . . . , m1, then the

conditions of Corollary 1 are satisfied with ǫn = O
(

max( 1√
n

, nδ/2

n )
)

.

Verifying the conditions in Theorem 4 can be quite challenging. Instead, we sug-
gest a different approach that requires f -geometric ergodicity. Unlike the drift condition
in Assumption 2, f -geometric ergodicity additionally requires the existence of a petite
set. As noted before, geometric ergodicity implies α-mixing with geometrically decaying
mixing coefficients. As with Theorem 4, we assume for simplicity that the Markov chain is
aperiodic.

Theorem 5. Let {X0, . . . , Xn} be generated by an aperiodic Markov chain parametrized by
θ0 ∈ Θ with known initial distribution q(0), and assumed to be V-geometrically ergodic for

some V : Rm → [1, ∞). Suppose that Assumption 1 holds and
∫

M
(1)
k (y, x)2+δ pθ0

(y|x)dy <

V(x) ∀ k, x and some δ > 0. Furthermore, assume that K(ρn, π) ≤ √
nC for some constant

C > 0. If the initial distribution q(0) satisfies Eq(0) [V(X0)] < +∞, then the conditions of Corollary

1 are satisfied with ǫn = O
(

max( 1√
n

, nδ/2

n )
)

.

The following Proposition 10 shows, the simple linear model satisfies Theorem 5 when
the parameter θ0 is suitably restricted.

Proposition 10. Consider the simple linear model satisfying the equation

Xn = θ0Xn−1 + Wn, (22)

where {Wn} are i.i.d. standard Gaussian random variables and |θ0| < 2
1

4+2δ −1 for δ > 0. Let F be
the space of all scaled Beta distributions on (−1, 1) and suppose the prior π is a uniform distribution

on (−1, 1). Then, the conditions of Theorem 5 are satisfied with ǫn = O
(

max( 1√
n

, nδ/2

n )
)

, if the

initial distribution q(0) satisfies Eq(0) [X
4+2δ
0 ] < +∞.
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5. Misspecified Models

We show next how our results can be extended to the misspecified model setting.
Assume that the true data generating distribution is parametrized by θ0 6∈ Θ. Let θ∗n :=

arg minθ∈Θ K(P
(n)
θ0

, P
(n)
θ ) represent the closest parametrized distribution in the variational

family to the data-generating distribution. Further, assume our usual conditions:

i.
∫

E[rn(θ, θ∗n)]ρn(dθ) ≤ nǫn,
ii.

∫

Var(rn(θ, θ∗n))ρn(dθ) ≤ nǫn.

Now, since rn(θ, θ0) = rn(θ, θ∗n) + rn(θ∗n, θ0), we have

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ E[rn(θ0, θ∗n)] + nǫn. (23)

Similarly, decomposing the variance it follows that

Var[rn(θ, θ0)] = Var[rn(θ, θ∗n)] + Var[rn(θ
∗
n, θ0)] + 2Cov[rn(θ, θ∗n), rn(θ

∗
n, θ0)]. (24)

Using the fact that 2ab ≤ a2 + b2 on the covariance term 2Cov[rn(θ, θ∗n), rn(θ∗n, θ0)] =
2E[(rn(θ, θ∗n)− E[rn(θ, θ∗n)])(rn(θ∗n, θ0)− E[rn(θ∗n, θ0)])], we have

Var[rn(θ, θ0)] ≤ 2Var[rn(θ, θ∗n)] + 2Var[rn(θ
∗
n, θ0)]. (25)

Integrating both sides with respect to ρn(dθ) we get

∫

Var[rn(θ, θ0)]ρn(dθ) ≤ 2
∫

Var[rn(θ, θ∗n)]ρn(dθ) + 2
∫

Var[rn(θ
∗
n, θ0)]ρn(dθ)

≤ 2nǫn + 2Var[rn(θ
∗
n, θ0)]. (26)

Consequently, we arrive at the following result:

Theorem 6. Let F be a subset of all probability distributions parameterized by Θ. Let θ∗n =

arg minθ∈Θ K(P
(n)
θ0

, P
(n)
θ ) and assume there exist ǫn > 0 and ρn ∈ F such that

i.
∫

E[rn(θ, θ∗n)]ρn(dθ) ≤ nǫn,
ii.

∫

Var(rn(θ, θ∗n))ρn(dθ) ≤ nǫn, and
iii. K(ρn, π) ≤ nǫn.

Then, for any αre ∈ (0, 1) and (ǫ, η) ∈ (0, 1)× (0, 1),

P

[

∫

Dαre(P
(n)
θ , P

(n)
θ0

)π̃n,αre(dθ|X(n)) ≤

(αre + 1)nǫn + E[rn(θ0, θ∗n)] + αre
√

2nǫn+2Var[rn(θ∗n ,θ0)]
η − log(ǫ)

1 − αre

]

≥ 1 − ǫ − η. (27)

The proof of this theorem is straightforward and follows from the proof of Theorem 1
by plugging in the upper bounds for KL-divergence from Equation (23), and variance from
Equation (26) to Equation (A13). A sketch of the proof is presented in the appendix.

6. Conclusions

Concentration of the KL-VB model risk, in terms of the expected αre-Rényi divergence,
is well established under the i.i.d. data generating model assumption. Here, we extended
this to the setting of Markov data generating models, linking the concentration rate to the
mixing and ergodic properties of the Markov model. Our results apply to both stationary
and non-stationary Markov chains, as well as to the situation with misspecified models.
There remain a number of open questions. An immediate one is to extend the current
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analysis to continuous-time Markov chains and Markov jump processes, possibly using
uniformization of the continuous time model. Another direction is to extend this to
the setting of non-homogeneous Markov chains, where analogues of notions such as
stationarity are less straightforward. Further, as noted in the introduction, [14] establish
PAC-Bayes bounds under slightly weaker ‘existence of test functions’ conditions, while
our results are established under the stronger conditions used by [15] for the i.i.d. setting.
Weakening the conditions in our analysis is important, but complicated. A possible path is
to build on results from [22], who provides conditions form the existence of exponentially
powerful test functions exist for distinguishing between two Markov chains. It is also
known that there exists a likelihood ratio test separating any two ergodic measures [23].
However, leveraging these to establish the PAC-Bayes bounds for the KL-VB posterior is
a challenging effort that we leave to future papers. Finally it is of interest to generalize
our PAC-bounds to posterior approximations beyond KL-variational inference, such as αre-
Rényi posterior approximations [6], and loss-calibrated posterior approximations [24,25].

Author Contributions: Formal analysis, I.B.; Investigation, I.B.; Methodology, I.B., V.A.R. and H.H.;

Resources, V.A.R. and H.H.; Validation, V.A.R. and H.H. All authors have read and agreed to the

published version of the manuscript.

Funding: National Science Foundation : IIS-1816499; DMS-1812197.

Acknowledgments: Rao and Honnappa acknowledge support from NSF DMS-1812197. In addition,

Rao acknowledges NSF IIS-1816499 for supporting this project.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Technical Desiderata

Appendix A.1. Definitions Related to Markov Chains

As noted before, ergodicity plays an acute role in establishing our results. We con-
solidate various definitions used throughout the paper in this appendix. Recall that we
assume the parameterized Markov chain possesses an invariant probability density or
mass function qθ under parameter θ ∈ Θ. Our results in Section 4 also rely on the ergodic
properties of the Markov chain, and we assume that the Markov chain is f -geometrically
ergodic [20] (Chapter 15). First, refer to the definition of the functional norm ‖ · ‖ f , from
Definition A.1.1,

Definition A.1.1 ( f -norm). The functional norm in f -metric of a measure v, or the f -norm of
v is

‖v‖ f = sup
g:|g|< f

∣

∣

∣

∣

∫

gdv

∣

∣

∣

∣

, (A1)

where f and g are any two functions.

An immediate consequence of this definition is that if f1, f2 are two functions such
that f1 < f2 (i.e., for all points in the support of the functions), then

‖v‖ f1
≤ ‖v‖ f2

. (A2)

Now that we have defined the ‖ · ‖ f norm, we can now define f -geometric ergodicity.
In the following, we assume the Markov chain is positive Harris; see [20] for a definition.
This is a mild and fairly standard assumption in Markov chain theory.
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Definition A.1.2 ( f -geometric ergodicity). For any function f , Markov chain {Xn} parameter-
ized by θ ∈ Θ is said to be f -geometrically ergodic if it is positive Harris and there exists a constant
r f > 1, that depends on f , such that for any A ∈ B(X),

n

∑
n=1

rn
f

∥

∥

∥

∥

Pθ(Xn ∈ A|X0 = x)−
∫

A
qθ(y)dy

∥

∥

∥

∥

f

< ∞. (A3)

It is straightforward to see that this is equivalent to

∥

∥

∥

∥

Pθ(Xn ∈ A|X0 = x)−
∫

qθ(y)dy

∥

∥

∥

∥

f

≤ Cr−n
f

for an appropriate constant C (which may depend on the state x), that is, the Markov chain
approaches steady state at a geometrically fast rate. If a Markov chain is f -geometrically
ergodic for f ≡ 1, then, it is simply termed as geometrically ergodic. It is straightforward to
see (via Theorem A.1.2 in the Appendix) that a geometrically ergodic Markov chain is also
α-mixing, with mixing coefficients satisfying

∑
k≥0

αυ
k < ∞ ∀ υ > 0, (A4)

showing that, under geometric ergodicity, the α-mixing coefficients raised to any positive
power υ are finitely summable. We note here that the most standard procedure to establish
f -geometric ergodicity for any Markov chain is through the verification of the drift condi-
tion. The drift condition is a sufficient condition for a Markov chain to be f -geometrically
ergodic, as long as there exists a set (called petite set) towards which the Markov chain
drifts to (see Assumption A.1.1 in the appendix). If a Markov chain is f -geometrically
ergodic with f ≡ V, for some particular function V, then we call it V-geometrically ergodic.

We defined V-geometric ergodicity in the previous sections. In this section, we provide
a sufficient condition for a Markov chain to be V-geometrically ergodic. First, we recall the
definition of resolvent from [20] (Chapter 5).

Definition A.1.3 (Resolvent). Let n ∈ {0, 1, 2, . . . } and qn be such that qn ≥ 0 ∀ n and

∑
∞
n=1 qn = 1. Note that qn can be thought of being a probability mass function for a random

variable "q" taking values on non-negative integers. Then, the resolvent of a Markov chain with
respect to q is given by Kq(x, A) where,

Kq(x, A) =
∞

∑
n=0

qnP(Xn ∈ A|X0 = x). (A5)

Then, the definition of petite sets follows (see, for Reference, [20] (Chapter 5)).

Definition A.1.4 (Petite Sets). Let X0, . . . , Xn be n samples from a Markov chain taking values
on the state space X . Let C be a set. We shall call C to be vq petite if

Kq(x, B) ≥ υq(B)

for all x ∈ C and B ∈ B(X ), and a non-trivial measure υq on B(X ), and a probability mass
function q on {1, 2, 3, . . . }

Now, let ∆V(x) := E[V(Xn)|Xn−1 = x]− V(x) for V : S → [1, ∞).
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Assumption A.1.1 (Drift condition). [20] (Chapter 5) Suppose the chain {Xn} is, aperiodic and
ψ-irreducible . Let there exists a petite set C, constants b < ∞, β > 0, and a non-trivial function
V : S → [1, ∞) satisfying

∆V(x) ≤ −βV(x) + bIx∈C ∀x ∈ S. (A6)

If a Markov chain drifts towards a petite set then it is V-geometrically ergodic. Sup-
pose, for simplicity, that V(x) = |X|. Then, the drift condition becomes E[|Xn‖Xx−1]−
|Xn−1| = −β|Xn| + bIXn∈C. The left hand side of this equation represents the
change in the state of the Markov chain in one time epoch. Thus, the condition in
Assumption A.1.1 essentially states that the Markov chain drifts towards a petite set
C and then, once it reaches that set, moves to any point in the state space with at least some
probability independent of C.

Theorem A.1.1 (Geometrically ergodic theorem). Suppose that {Xn} is satisfies
Assumption A.1.1. Then, the set SV = {x : V(x) < ∞} is absorbing, i.e., Pθ(X1 ∈ SV |X0 =
x) = 1 ∀x ∈ SV , and full, i.e., ψ(Sc

V) = 0. Furthermore, ∃ constants r > 1, R < ∞ such that,
for any A ∈ B(S),

∥

∥

∥

∥

Pθ(Xn ∈ A|X0 = x)−
∫

A
qθ(y)dy

∥

∥

∥

∥

V

≤ Rr−nV(x). (A7)

Any aperiodic and ψ-irreducible Markov chain satisfying the drift condition is geomet-
rically ergodic. A consequence of Equation (A2) is that if, {Xn} is V-geometrically ergodic,
then for any other function U, such that |U| < V, it is also U-geometrically ergodic. In
essence, a geometrically ergodic Markov chain is asymptotically uncorrelated in a precise
sense. Recall ρ-mixing coefficients defined as follows. Let A be a sigma field and L2(A) be
the set of square integrable, real valued, A measurable functions.

Definition A.1.5 (ρ-mixing coefficient). Let Mj
i denote the sigma field generated by the

measures Xk, where i ≤ k ≤ j. Then,

ρk = sup
t>0

sup
( f ,g)∈L2(Mt

−∞)×L2(M∞
t+k)

|Corr( f , g)|, (A8)

where Corr is the correlation function.

Theorem A.1.2. If Xn is geometrically ergodic, then it is α-mixing. That is, there exists a constant
c > 0 such that αk = O(e−ck).

Proof. By [26] (Theorem 2) it follows that a geometrically ergodic Markov chain is
asymptotically uncorrelated with ρ-mixing coefficients (see Definition A.1.5) that sat-
isfy ρk = O(e−ck). Furthermore, it is well known that [18,26] αk ≤ 1

4 ρk, implying

αk = O(e−ck).

Appendix A.2. Bounding the KL-Divergence between Beta Distributions

The following results will be utilized in the proofs of Propositions 8–10.

Lemma A.2.1. Let θ0 ∈ (0, 1). Let, ρn be a sequence of Beta distributions with parameters
an = nθ0 and bn = n(1 − θ0). Let π denote an uniform distribution, U(0, 1). Then, K(ρn, π) <
C + 1

2 log(n), for some constant C > 0.

Proof. Without loss of generality, we can assume an > 1 and bn > 1. The same form of the
result can be obtained in all the other cases, by appropriate use of the bounds presented in
the proof. We write the KL divergence K(ρn, π) as

∫

log
( ρn

π

)

ρn(dθ). Since π is uniform,
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π(θ) = 1 whenever θ ∈ (0, 1). Hence, the KL-divergence can be written as the negative of

the entropy of ρn

∫ 1
0 log(ρn(θ))ρn(dθ), which can be written as

K(ρn, π) = (an − 1)ψ(an) + (bn − 1)ψ(bn)− (an + bn − 2)ψ(an + bn)

− log Beta(an, bn), (A9)

where ψ is the digamma function. Using Stirling’s approximation on Beta(an, bn) yields,

Beta(an, bn) =
√

2π
aan−1/2

n bbn−1/2
n

(an + bn)an+bn−1/2
(1 + o(1)).

Hence, setting C1 = log(2
√

π), we can write − log Beta(an, bn) as,

− log Beta(an, bn) = C1 − (an −
1

2
) log(an)− (bn −

1

2
) log(bn)

+ (an + bn −
1

2
) log(an + bn) + log(1 + o(1)).

From [27] we have that log(x) − 1
x < ψ(x) < log(x) − 1

2x ∀ x > 0. Since we assumed

an > 1 and bn > 1, the fact that ψ(x) < log(x)− 1
2x implies

(an − 1)ψ(an) < (an − 1) log(an)−
an − 1

2an
and,

(bn − 1)ψ(bn) < (bn − 1) log(bn)−
bn − 1

2bn
.

Finally, using the fact that log(x)− 1
x < ψ(x), we get,

−(an + bn − 2)ψ(an + bn) < −(an + bn − 2) log(an + bn) +
an + bn − 2

an + bn
.

Therefore, after much cancellation, the KL-divergence

(an − 1)ψ(an) + (bn − 1)ψ(bn)− (an + bn − 2)ψ(an + bn)− log Beta(an, bn)

can be upper bounded by

−1

2
log(an)−

1

2
log(bn) +

3

2
log(an + bn) +

an + bn − 2

an + bn
− an − 1

2an
− bn − 1

2bn
.

Now, plugging in the values of an and bn, we get Plugging in the values of an and bn, we
get as upper bound for the KL-divergence as,

K(ρn, π) < −1

2
log(nθ0)−

1

2
log(n(1 − θ0)) +

3

2
log(n) +

n − 2

n
− nθ0 − 1

2nθ0
− n(1 − θ0)− 1

2n(1 − θ0)

=
1

2
log(n)− 1

2
(log(θ0) + log(1 − θ0)) + 3 − 2

n
− 1

2nθ0
− 1

2n(1 − θ0)

< C +
1

2
log(n),

for some large enough positive constant C. This completes our proof.

Proposition A.2.1. Let θ0 ∈ (0, 1). Let, ρn be a sequence of Beta distributions with parameters
an = nθ0 and bn = n(1 − θ0). Let π denote an Beta distribution, with parameters (a, b). Then,
K(ρn, π) < C + 1

2 log(n), for some constant C > 0.



Entropy 2021, 23, 313 18 of 39

Proof. Without loss of generality, we assume a > 1 and b > 1. As mentioned in the proof
of Lemma A.2.1, the other cases follows similarly. We write the KL-divergence between ρn

and π as,

K(ρn, π) =
∫

log
(ρn

π

)

ρn(dθ) =
∫

log
(ρn

U

)

ρn(dθ) +
∫

log

(

U

π

)

ρn(dθ),

where, U is an uniform distribution on (0, 1). We analyze the second term in the above
expression. The second term can be written as,

∫

log

(

U

π

)

ρn(dθ) =
∫

log





1
1

Beta(a,b)
θa−1(1 − θ)b−1



ρn(dθ)

= C1 − (a − 1)
∫

log(θ)ρn(dθ)− (b − 1)
∫

log(1 − θ)ρn(dθ),

where C1 is log(Beta(a, b)). Since, ρn follows a Beta distribution with parameters an = nθ0

and bn = n(1 − θ0), we get that,

∫

log

(

U

π

)

ρn(dθ) = C1 − (a − 1)[ψ(an)− ψ(an + bn)]− (b − 1)[ψ(bn)− ψ(an + bn)]

Since, log(x)− 1
x < ψ(x) < log(x)− 1

2x , looking at the term [ψ(an)− ψ(an + bn)], we get
that,

−[ψ(an)− ψ(an + bn)] = −[ψ(nθ0)− ψ(nθ0 + n(1 − θ0))]

= −[ψ(nθ0)− ψ(n)].

Using the lower bound on ψ(nθ0) and the upper bound on ψ(n), we get

−[ψ(an)− ψ(an + bn)] < − log(nθ0) +
1

nθ0
+ log(n)− 1

2n

= − log(θ0) +
2 − θ0

2nθ0
.

Furthermore, similarly, we get that,

−[ψ(bn)− ψ(an + bn)] < − log(1 − θ0) +
2 − (1 − θ0)

2n(1 − θ0)
.

Therefore it follows that

max{−(a − 1)[ψ(an)− ψ(an + bn)],−(b − 1)[ψ(bn)− ψ(an + bn)]}

< max

{

(a − 1)

[

− log(θ0) +
2 − θ0

2nθ0

]

, (b − 1)

[

− log(1 − θ0) +
2 − (1 − θ0)

2n(1 − θ0)

]}

< C,

for a large positive constant C. Using the above bounds, we finally show that,

C1 − (a − 1)[ψ(an)− ψ(an + bn)]− (b − 1)[ψ(bn)− ψ(an + bn)]

< C1 + 2C,

which can be upper bounded by C′ for some large constant C′. Finally, we upper bound
∫

log
( ρn

U

)

ρn(dθ) by Lemma A.2.1 thereby completing the proof.
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Appendix B. Proofs of Main Results

Appendix B.1. Proofs for A Concentration Bound for the αre-Rényi Divergence

Appendix B.1.1. Proof of Proposition 1

We start by recalling the variational formula of Donsker and Varadhan [28].

Lemma B.1.1 (Donsker-Varadhan). For any probability distribution function π on Θ, and for
any measurable function h : Θ → R, if

∫

ehdπ < ∞, then

log
∫

ehdπ = sup
ρ∈M+(Θ)

{

∫

hdρ −K(ρ, π)

}

(A10)

Now, fix αre ∈ (0, 1), and θ ∈ Θ. First, observe that by the definition of the αre-Rényi
divergence we have

E
(n)
θ0

[exp(−αrern(θ, θ0))] = exp[−(1 − αre)Dαre(P
(n)
θ , P

(n)
θ0

)]

Multiplying both sides of the equation by exp[(1 − αre)Dαre(P
(n)
θ , P

(n)
θ0

) and integrating

with respect to (w.r.t.) π(θ) it follows that

∫

E
(n)
θ0

[

exp
(

−αrern(θ, θ0) + (1 − αre)Dαre(P
(n)
θ , P

(n)
θ0

)
)]

π(dθ) = 1, or

E
(n)
θ0

[

∫

exp
(

−αrern(θ, θ0) + (1 − αre)Dαre(P
(n)
θ , P

(n)
θ0

)
)

π(dθ)

]

= 1.

Define h(θ) := −αrern(θ, θ0) + (1 − αre)Dαre(P
(n)
θ , P

(n)
θ0

). Then, applying Lemma B.1.1 to
the integrand on the left hand side (l.h.s.) above, it follows that

E
(n)
θ0

[

exp

(

sup
ρ∈M+(Θ)

[

∫

h(θ)ρ(dθ)−K(ρ, π)

]

)]

= 1.

Multiply both sides of this equation by ǫ > 0 to obtain

E
(n)
θ0

[

exp

(

sup
ρ∈M+(Θ)

[

∫

h(θ)ρ(dθ)−K(ρ, π) + log(ǫ)

]

)]

= ǫ.

Now, by Markov’s inequality, we have

P
(n)
θ0

[

sup
ρ∈M+(Θ)

∫

(−αrern(θ, θ0) + (1 − αre)Dαre (P
(n)
θ , P

(n)
θ0

))ρ(dθ)−K(ρ, π) + log(ǫ) ≥ 0

]

≤ ǫ. (A11)

Thus, it follows via complementation that

P
(n)
θ0

[

∀ρ ∈ F (Θ)
∫

Dαre(P
(n)
θ , P

(n)
θ0

)ρ(dθ) ≤ αre

(1 − αre)

∫

rn(θ, θ0)ρ(dθ)+
K(ρ, π)− log(ǫ)

1 − αre

]

≥ 1 − ǫ,

thereby completing the proof.

Appendix B.1.2. Proof of Theorem 1

Recall the definition of the fractional posterior and the VB approximation,

πn,αre |Xn =
exp−αrern(θ,θ0)(Xn) π(dθ)
∫

exp−αrern(γ,θ0)(Xn) π(dγ)
, π̃n,αre |Xn = arg min

ρ∈F
K(ρ, πn,αre |X(n)).
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It follows by definition of the KL divergence that

π̃n,αre |Xn = arg min
ρ∈F

{

−αre
∫

rn(θ, θ0)ρ(dθ) +K(ρ, π)

}

, (A12)

where π is the prior distribution. Following Proposition 1 it follows that for any ǫ > 0

∫

Dαre(P
(n)
θ , P

(n)
θ0

)π̃(dθ|Xn) ≤ αre

(1 − αre)

∫

rn(θ, θ0)ρ(dθ) +
K(ρ, π)− log(ǫ)

1 − αre
,

with probability 1 − ǫ. We fix an η ∈ (0, 1). Using Chebychev’s inequality, we have

P
(n)
θ0

[

αre

1 − αre

∫

rn(θ, θ0)ρn(dθ) ≥ αre

1 − αre

∫

E[rn(θ, θ0)]ρn(dθ)

+
αre

1 − αre

√

Var[
∫

rn(θ, θ0)ρn(dθ)]

η
+

K(ρn, π)

1 − αre

]

= P
(n)
θ0

[

αre

1 − αre

∫

rn(θ, θ0)ρn(dθ)− αre

1 − αre

∫

E[rn(θ, θ0)]ρn(dθ)− K(ρn, π)

1 − αre

≥ αre

1 − αre

√

Var[
∫

rn(θ, θ0)ρn(dθ)]

η

]

≤
Var
[

αre

1−αre

∫

rn(θ, θ0)ρn(dθ)− αre

1−αre

∫

E[rn(θ, θ0)]ρn(dθ)− K(ρn ,π)
1−αre

]

(αre)2

(1−αre)2

Var[
∫

rn(θ,θ0)ρn(dθ)]
η

.

Note that αre

1−αre

∫

E(rn(θ, θ0))ρn(dθ) and
K(ρn ,π)

1−αre are constants with respect to the data,
implying

Var

[

αre

1 − αre

∫

rn(θ, θ0)ρn(dθ)− αre

1 − αre

∫

E[rn(θ, θ0)]ρn(dθ)− K(ρn, π)

1 − αre

]

=
(αre)2

(1 − αre)2
Var

[

∫

rn(θ, θ0)ρn(dθ)

]

.

Therefore, we have

P
(n)
θ0

[

αre

1 − αre

∫

rn(θ, θ0)ρn(dθ) ≥ αre

1 − αre

∫

E[rn(θ, θ0)]ρn(dθ)

+
αre

1 − αre

√

Var[
∫

rn(θ, θ0)ρn(dθ)]

η
+

K(ρn, π)

1 − α

]

≤ η.

From Proposition 1, with probability 1 − ǫ the following holds

∫

Dαre(P
(n)
θ , P

(n)
θ0

)π̃n,αre |Xn(dθ) ≤ αre
∫

rn(θ, θ0)ρn(dθ) +K(ρn, π)− log(ǫ)

1 − αre
.
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Therefore, with probability 1 − η − ǫ the following statement holds

∫

Dαre(P
(n)
θ , P

(n)
θ0

)π̃n,αre |Xn(dθ) ≤ αre

1 − αre

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) (A13)

+
αre

1 − αre

√

Var[
∫

rn(θ, θ0)ρn(dθ)]

η

+
K(ρn, π)− log(ǫ)

1 − αre
.

Next, we observe that

Var

[

∫

rn(θ, θ0)ρn(dθ)

]

= E
(n)
θ0

[

∣

∣

∣

∣

∫

rn(θ, θ0)ρn(dθ)− E

[

∫

rn(θ, θ0)ρn(dθ)

]∣

∣

∣

∣

2
]

≤
∫

Var[rn(θ, θ0)]ρn(dθ),

by a straightforward application of Jensen’s inequality to the inner integral on the left hand
side. Finally, following the hypotheses (i), (ii) and (iii), we have,

∫

Dαre (P
(n)
θ , P

(n)
θ0

)π̃n,αre |Xn (dθ) ≤ αre

1 − αre

∫

(

K(P
(n)
θ0

, P
(n)
θ ) +

√

∫

Var[rn(θ, θ0)]ρn(dθ)

η

)

ρn(dθ)

+
1

αre
(K(ρn, π)− log(ǫ))

≤
αre(ǫn +

√

nǫn
η )

1 − αre
+

nǫn − log(ǫ)

1 − αre
,

thereby concluding the proof.

Appendix B.1.3. Proof of Proposition 2

We define Yi := log

(

pθ1
(Xi |Xi−1)

pθ2
(Xi |Xi−1)

)

for i = 1, . . . , n, and Z0 = log

(

q
(0)
1 (X0)

q
(0)
2 (X0)

)

. Then,

using the Markov property we can see that the Kullback–Leibler divergence between

the joint distributions P
(n)
θ1

and P
(n)
θ2

satisfies K
(

P
(n)
θ1

, P
(n)
θ2

)

= ∑
n
i=1 Eθ1

[Yi] + Eθ1
[Z0]. If the

Markov chain {Xi} is stationary under θ1, so is {Yi}. Hence Yi
d
= Y1 and the above equation

reduces to,

K
(

P
(n)
θ1

, P
(n)
θ2

)

= nEθ1
[Y1] + Eθ1

[Z0]. (A14)

Appendix B.1.4. Proof of Proposition 3

First, recall the following result from [19].

Lemma B.1.2. [19] (Lemma 1.2) Let X−∞, . . . , X1, X2, . . . be an α-mixing Markov chain with
α-mixing coefficients given by αk. Let Mb

a be the sigma-field generated by the subsequence
(Xa, Xa+1, . . . , Xb). Let ηt ∈ Mt

−∞ and τt ∈ M∞
t+k be adapted random variables such that

|ηt| ≤ 1, |τt| ≤ 1. Then,

sup
t

sup
ηt ,τt

|E[ηtτt]− E[ηt]E[τt]| ≤ 4αk. (A15)

This lemma provides an upper bound on the covariance of events η and τ, as shown
next.
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Lemma B.1.3. Let η ∈ Mt
−∞ τ ∈ M∞

t+k be such that, E|η|2+δ ≤ C1, E|τ|2+δ ≤
C2 for some δ > 0. Then, for a fixed n < +∞, we have

|Eητ − EηEτ| ≤
(

4

n
+ 2nδ/2(C1 + C2) + 2nδ/2

√

C1C2

)

α
2δ/(2+δ)
k . (A16)

Proof. Let N < +∞ be a fixed number. We get from the triangle inequality that

|Eητ − EηEτ| ≤ |Eητ I[|η|≤N,|τ|≤N] − Eη I[|η|≤N]Eτ I[|τ|≤N]| (A17)

+ |Eητ I[|η|≥N,|τ|≤N] − Eη I[|η|≥N]Eτ I[|τ|≤N]|
+ |Eητ I[|η|≤N,|τ|≥N] − Eη I[|η|≤N]Eτ I[|τ|≥N]|
+ |Eητ I[|η|≥N,|τ|≥N] − Eη I[|η|≥N]Eτ I[|τ|≥N]|.

Multiplying and dividing the first term by N2 and applying Lemma B.1.2, we get
|Eητ I[|η|≤N,|τ|≤N] − Eη I[|η|≤N]Eτ I[|τ|≤N]| ≤ 4N2αk. For the second term, if |τ| ≤ N, then
τ ≤ N and τ ≥ −N. Plugging this in the second term we get,

|Eητ I[|η|≥N,|τ|≤N]−Eη I[|η|≥N]Eτ I[|τ|≤N]| ≤
∣

∣

∣
NEη I[|η|≥N + N

[

Eη I[|η|≥N]

]∣

∣

∣
(A18)

= 2N|Eη I[|η|≥N]|. (A19)

Since |η| ≥ N, we have 1 ≤ |η|1+δ

N1+δ . Following this,

|2NEη I[|η|≥N]| ≤ 2N

∣

∣

∣

∣

E

[ |η|2+δ

N1+δ
I[|η|≥N]

]∣

∣

∣

∣

(A20)

≤ 2N
1

N1+δ
|Eη2+δ| ≤ 2

C1

Nδ
. (A21)

Similarly, we can also write for the third term, |Eητ I[|η|≤N,|τ|≥N] − Eη I[|η|≤N]Eτ I[|τ|≥N]| ≤
2 C2

Nδ . Finally, for the last term we get that by Cauchy-Schwarz inequality,

|Eητ I[|η|≥N,|τ|≥N] − Eη I[|η|≥N]Eτ I[|τ|≥N]| ≤
√

Var
[

η I[|η|≥N]

]

Var
[

τ I[|τ|≥N]

]

(A22)

< 2

√

Var
[

η I[|η|≥N]

]

Var
[

τ I[|τ|≥N]

]

(A23)

≤ 2

√

E
[

η2 I[|η|≥N]

]

E
[

τ2 I[|τ|≥N]

]

. (A24)

Since |η| > N, 1 <
|η|δ
Nδ . Similarly, 1 <

|τ|δ
Nδ . Plugging these in the previous equation, we

get,

√

E
[

η2 I[|η|≥N]

]

E
[

τ2 I[|τ|≥N]

]

≤
√

1

N2δ
E
[

|η|2+δ I[|η|≥N]

]

E
[

|τ|2+δ I[|τ|≥N]

]

(A25)

≤ 1

Nδ

√

C1C2. (A26)

Combining the four upper bounds above, we get,

|Eητ − EηEτ| ≤ 4N2αk +
2

Nδ
(C1 + C2) +

2

Nδ

√

C1C2. (A27)
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Now, in particular, setting N = n−1/2α
−1/(2+δ)
k it follows that

|Eητ − EηEτ| ≤ 4

n
α

δ/(2+δ)
k + 2nδ/2α

δ/(2+δ)
k (C1 + C2) + 2nδ/2α

δ/(2+δ)
k

√

C1C2 (A28)

=

(

4

n
+ 2nδ/2(C1 + C2) + 2nδ/2

√

C1C2

)

α
δ/(2+δ)
k . (A29)

Lemma B.1.4. Let {Xt} be an α-mixing Markov chain with mixing coefficient αk. Further assume
that E|Xt|2+δ ≤ C1 and E|Xt+k|2+δ ≤ C2 for some δ > 0. Then, for any t and any n > 0

|Cov(Xt, Xt+k)| ≤
(

4

n
+ 2nδ/2(C1 + C2) + 2nδ/2

√

C1C2

)

α
δ/(2+δ)
k . (A30)

Proof. Set η = Xt, τ = Xt+k in Lemma B.1.3.

We also need to establish the following technical lemma.

Lemma B.1.5. Let {Xt} be an α-mixing Markov Chain with mixing coefficients {αt}. Then the

process {Yt} where Yt := log

(

pθ0
(Xt |Xt−1)

pθ(Xt |Xt−1)

)

is also α-mixing with mixing coefficients {α̃t} where

α̃t = αt−1.

Proof. By Zi denote the paired random measure (Xi, Xi−1). Let Mj
i denote the sigma

field generated by the measures Xk, where i ≤ k ≤ j. By G j
i denote the sigma field

generated by the measures Zk, where i ≤ k ≤ j. Let C ∈ Mj
i−1. Then, C can be expressed

as (Ci−1 × Ci × · · · × Cj). for Ci−1 ∈ Mi−1
i−1, Ci ∈ Mi

i . . . and so on. Now, consider a

map. T
j
i : (Ci−1 × Ci × · · · × Cj) −→ (Ci−1 × Ci × Ci × · · · × Cj−1 × Cj−1 × Cj). Note that,

T
j
i (C) ∈ G j

i . It is easy to see that G j
i = T

j
i (M

j
i−1) ∪M∗j

i−1, where T
j
i (M

j
i−1) is obtained by

applying the map T
j
i to each element of Mj

i−1. If we assume this latter set to be the range

and Mj
i−1 to be the domain, then, by construction, T

j
i is a bijection. Furthermore, the two

classes are made of disjoint sets, i.e., if A ∈ T
j
i (M

j
i−1) and A∗ ∈ M∗j

i−1, then A ∩ A∗ = φ.

Furthermore, note that Mj∗
i−1 is made of impossible sets. i.e., P(A∗) = 0 ∀ A∗ ∈ Mj∗

i−1.
Now consider the α-mixing coefficients for Zi. By definition, it is given by

αz
k = sup

i

sup
A∈G i

−∞ ,B∈G∞
i+k

|P(A ∩ B)− P(A)P(B)|

= sup
i

sup
A∈G i

−∞ ,B∈G∞
i+k

|P((Ao ∪ A∗) ∩ (Bo ∪ B∗))− P((Ao ∪ A∗))P((Bo ∪ B∗))|.

where,

A = (Ao ∪ A∗) B = (Bo ∪ B∗)
Ao ∈ T i

−∞(Mi
−∞) A∗ ∈ M∗i

−∞

Bo ∈ T∞
i+k−1(M∞

j+k−1) B∗ ∈ M∗∞
j+k−1.

Then, the expression for the α-mixing coefficient can be reduced into

αz
k = sup

i

sup
Ao∈Ti

−∞(Mi
−∞),Bo∈T∞

i+k−1(M∞
i+k−1)

|P(Ao ∩ Bo)− P(Ao)P(Bo)|.
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Note that, by bijection property of T
j
i , we can find A′ ∈ Mi

−∞ and B′ ∈ M∞
i+k−1 such that

αz
k = sup

i

sup
A′∈Mi

−∞ ,B′∈M∞
i+k−1

|P(Ti
−∞(A′) ∩ T∞

i+k−1(B′))− P(Ti
−∞(A′))P(T∞

i+k−1(B′))|.

= αk−1.

Now, log

(

pθ0
(Xn |Xn−1)

pθ(Xn |Xn−1)

)

is just a function of the paired Markov chain Zi, therefore it has

α-mixing coefficient αk−1.

We now proceed to the proof of Proposition 3. Let {Xk} be a stationary α-mixing
Markov chain under θ1 with mixing coefficients {αk}. Observe that the log-likelihood can
be expressed as

rn(θ2, θ1) =
n

∑
i=1

log

(

pθ1
(Xi|Xi−1)

pθ2
(Xi|Xi−1)

)

+ log

(

q
(0)
1 (X0)

q
(0)
2 (X0)

)

≡
n

∑
i=1

Yi + Z0.

Therefore, the variance of the log-likelihood ratio is simply

Varθ1
[rn(θ2, θ1)] = Varθ1

[

n

∑
i=1

Yi + Z0

]

=
n

∑
i,j=1

Covθ1
(Yi, Yj) +

n

∑
i=1

Covθ1
(Yi, Z0) + Covθ1

(Z0, Z0).

It follows from Lemma B.1.5 that {Yk} is a stochastic process with α-mixing coefficients
αk−1. Therefore, using Lemma B.1.4 we have

|Covθ1
(Yi, Yj)| = |Eθ1

YiYj − Eθ1
YiEθ1

Yj|

<

(

4

n
+ 2nδ/2(Eθ1

|Yi|2+δ + Eθ1
|Yj|2+δ

+
√

Eθ1
|Yi|2+δEθ1

|Yj|2+δ)

)

α
δ/(2+δ)
|j−i|−1

=

(

4

n
+ 2nδ/2(C

(i)
θ1,θ2

+ C
(j)
θ1,θ2

+

√

C
(i)
θ1,θ2

C
(j)
θ1,θ2

)

)

α
δ/(2+δ)
|j−i|−1

.

Similarly, as above we can also say

|Covθ1
(Yi, Z0)| <

(

4

n
+ 2nδ/2(C

(i)
θ1,θ2

+ D1,2 +

√

C
(i)
θ1,θ2

D1,2)

)

(

α
δ/(2+δ)
i−1

)

Combining, the two upper bounds above, we get the first result:

Varθ1

[

rn(θ2, θ1)

]

<

n

∑
i,j=1

(

4

n
+ 2nδ/2(C

(i)
θ1,θ2

+ C
(j)
θ1,θ2

+

√

C
(i)
θ1,θ2

C
(j)
θ1,θ2

)

)

(

α
δ/(2+δ)
|i−j|−1

)

+
n

∑
i=1

(

4

n2
+ 2nδ/2(C

(i)
θ1,θ2

+ D1,2 +

√

C
(i)
θ1,θ2

D1,2)

)

(

α
δ/(2+δ)
i−1

)

+ Var[Z0, Z0].
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If {Xi} is stationary under θ1, so is {Yi}. Therefore, Eθ1
|Yi|2+δ = Eθ1

|Y1|2+δ = C
(1)
θ1,θ2

∀ i,
and

n

∑
i,j=1

Covθ1
(Yi, Yj) ≤

n

∑
i,j=1

(

4

n
+ 6nδ/2C

(1)
θ1,θ2

)

α
δ/(2+δ)
|j−i|−1

≤ n

(

4

n
+ 6nδ/2C

(1)
θ1,θ2

)

(

∑
h≥1

α
δ/(2+δ)
h−1

)

. (A31)

Again, using Lemma B.1.4 on Covθ1
(Yi, Z0), yields

n

∑
i=1

Covθ1
(Yi, Z0) ≤

(

4

n
+ 2nδ/2(Cθ + D1,2 +

√

Cθ D1,2)

)

(

∑
h≥1

α
δ/(2+δ)
h

)

. (A32)

Finally, using Equations (A31) and (A32) we have

Varθ1
[rn(θ2, θ1)] ≤ n

(

4

n
+ 6nδ/2C

(1)
θ1,θ2

)

(

∑
h≥1

α
δ/(2+δ)
h−1

)

+

(

4

n
+ 2nδ/2(C

(1)
θ1,θ2

+ D1,2 +

√

C
(1)
θ1,θ2

D1,2)

)(

∑
h≥1

α
δ/(2+δ)
h

)

+ Covθ1
(Z0, Z0).

Appendix B.2. Proofs for Stationary Markov Data-Generating Models

Proof of Theorem 2

Part 1: Verifying condition (i) of Corollary 1.

We substitute the true parameter θ0 for θ1 and θ for θ2. We also set q
(0)
1 to be the

invariant distribution of the Markov chain under θ0, q0, and q
(0)
2 as the invariant distribution

of the Markov chain under θ, qθ . Applying the fact that these Markov chains are stationary
to Proposition 2, we have

K(P
(n)
θ0

, P
(n)
θ ) = nE

[

log

(

pθ0
(X1|X0)

pθ(X1|X0)

)]

+ E[Z0],

≤ n
m

∑
j=1

E
[

M
(1)
j (X1, X0)

]

| f
(1)
j (θ, θ0)|+

m

∑
k=1

E[M
(2)
k (X0)]| f

(2)
k (θ, θ0)|, (A33)

where the inequality follows from Assumption 1. Therefore, it follows that

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ n

m

∑
j=1

E
[

M
(1)
j (X1, X0)

]

∫

| f
(1)
j (θ, θ0)|ρn(dθ)

+
m

∑
k=1

E[M
(2)
k (X0)]|

∫

f
(2)
k (θ, θ0)|ρn(dθ).

By Assumption 1(i), it follows that

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ n

m

∑
j=1

E
[

M
(1)
j (X1, X0)

] C√
n
+

m

∑
k=1

E[M
(2)
k (X0)]

C√
n
≤ nǫ

(1)
n ,
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where ǫ
(1)
n = O

(

1√
n

)

.

Part 2: Verifying condition (ii) of Corollary 1. Again, using Proposition 3 along with the fact
that the Markov chain is stationary we have

Var[rn(θ, θ0)] ≤ n

(

4

n
+ 6nδ/2C

(1)
θ0,θ

)

(

∑
k≥0

α
δ/(2+δ)
k

)

+

(

4

n2
+ 2nδ/2(C

(1)
θ0,θ + Dθ0,θ +

√

C
(1)
θ0,θ Dθ0,θ)

)(

∑
k≥1

α
δ/(2+δ)
k

)

+ Var[Z0].

It then follows that

∫

Var[rn(θ, θ0)]ρn(dθ) ≤ n

(

4

n
+ 6nδ/2

∫

C
(1)
θ0,θρn(dθ)

)

(

∑
k≥1

α
δ/(2+δ)
k−1

)

+
∫

Var[Z0]ρn(dθ)

+

(

4

n2
+ 2nδ/2(

∫

C
(1)
θ0,θρn(dθ)

+
∫

Dθ0,θρn(dθ) +
∫

√

C
(1)
θ0,θ Dθ0,θρn(dθ))

)(

∑
k≥1

α
δ/(2+δ)
k

)

.

First, consider the term
∫

C
(1)
θ0,θρn(θ), and observe that

∫

C
(1)
θ0,θρn(dθ) =

∫

E log

∣

∣

∣

∣

pθ0
(X1|X0)

pθ(X1|X0)

∣

∣

∣

∣

2+δ

ρn(dθ).

By Assumption 1, we have

∫

E log

∣

∣

∣

∣

pθ0
(X1|X0)

pθ(X1|X0)

∣

∣

∣

∣

2+δ

ρn(dθ) ≤
∫

E

[

m

∑
j=1

M
(1)
j (X1, X0)| f

(1)
k (θ, θ0)|

]2+δ

ρn(dθ).

Since the function x 7→ x2+δ is convex, we can apply Jensen’s inequality to obtain,

(

m

∑
j=1

M
(1)
j (X1, X0)| f

(1)
k (θ, θ0)|

)2+δ

≤ m1+δ
m

∑
k=1

M
(1)
j (X1, X0)

2+δ| f
(1)
k (θ, θ0)|2+δ.

Therefore, it follows that

∫

E log

∣

∣

∣

∣

pθ0
(X1|X0)

pθ(X1|X0)

∣

∣

∣

∣

2+δ

ρn(dθ) ≤ m1+δ
m

∑
k=1

E[M
(1)
k (X1, X0)

2+δ]

×
∫

| f
(1)
k (θ, θ0)|2+δρn(dθ).

By Assumption 1,
∫

| fk(θ, θ0)|2+δρn(dθ) < C
n and E[M

(1)
k (X1, X0)

2+δ] < B, implying that

∫

C
(1)
θ0,θρn(dθ) ≤ m1+δ

m

∑
k=1

B
C

n
= m2+δ BC

n
.
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Since
(

∑k≥0 α
δ/(2+δ)
k

)

< ∞, it follows that
(

4
n + 6nδ/2

∫

C
(1)
θ0,θρn(dθ)

)(

∑k≥1 α
δ/(2+δ)
k−1

)

=

O( nδ/2

n ). Similarly, we can show that
∫

Dθ0,θρn(dθ) = O( 1
n ), and

∫

Var[Z0]ρn(dθ) = O( 1
n ).

For the final term
∫

√

C
(1)
θ0,θ Dθ0,θρn(dθ), use the Cauchy-Schwarz inequality to obtain

the upper bound
(

∫

C
(1)
θ0,θρn(dθ)

∫

Dθ0,θρn(dθ)
)1/2

which is also of order O( 1
n ). Combining

all of these together we have

∫

Var[rn(θ, θ0)]ρn(dθ) ≤ nǫ
(2)
n ,

for some ǫ
(2)
n = O( nδ/2

n ).

Since K(ρn, π) <
√

nC = n C√
n

, it follows that K(ρn, π) < nǫ
(3)
n , where ǫ

(3)
n =

O(1/
√

n) as before. Finally, by choosing ǫn = max(ǫ
(1)
n , ǫ

(2)
n , ǫ

(3)
n ), our theorem is proved.

Appendix B.3. Proofs for Non-Stationary, Ergodic Markov Data-Generating Models

Appendix B.3.1. Proof of Theorem 3

Part 1: Verifying condition (i) of Corollary 1: As in the proof of Theorem 2 substitute the

true parameter θ0 for θ1 and θ for θ2 in . We also set q
(0)
1 and q

(0)
2 to the distribution q(0).

Applying Proposition 2 to the corresponding transition kernels and initial distribution we
have,

K(P
(n)
θ0

, P
(n)
θ ) =

n

∑
i=1

E

[

log

(

pθ0
(Xi|Xi−1)

pθ(Xi|Xi−1)

)]

+ E

[

log

(

D(X0)

D(X0)

)]

(A34)

=
n

∑
i=1

E

[

log

(

pθ0
(Xi|Xi−1)

pθ(Xi|Xi−1)

)]

.

Now, applying Assumption 1, we can bound the previous equation as follows,

K(P
(n)
θ0

, P
(n)
θ ) ≤

n

∑
i=1

E

[

m

∑
k=1

M
(1)
k (Xi, Xi−1)| f

(1)
k (θ, θ0)|

]

=
n

∑
i=1

m

∑
k=1

E
[

M
(1)
k (Xi, Xi−1)

]

| f
(1)
k (θ, θ0)|. (A35)

Since M
(1)
k ’s are bounded there exists a constant Q so that,

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ Q

∫ n

∑
i=1

m

∑
k=1

| f
(1)
k (θ, θ0)|ρn(dθ)

= Qn
m

∑
k=1

∫

| f
(1)
k (θ, θ0)|ρn(dθ).

By Assumption 19 in Assumption 1, it follows that

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ Qn

m

∑
k=1

C√
n
= nmQ

C√
n
= nǫ

(1)
n ,

for some ǫ
(1)
n = O( 1√

n
).

Part 2: Verifying condition (ii) of Corollary 1: As in the previous part, Z0 = 0, implying
that Dθ,θ0

. Applying Proposition 3 and integrating with respect to ρn, we obtain
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∫

Var[rn(θ, θ0)]ρn(dθ) ≤
n

∑
i=1

(

4

n
+ 2nδ/2

∫

C
(i)
θ0,θρn(dθ)

)

(

α
δ/(2+δ)
i−1

)

+
n

∑
i,j=1

(

4

n
+ 2nδ/2(

∫

C
(i)
θ0,θρn(dθ) +

∫

C
(j)
θ0,θρn(dθ) +

∫

√

C
(i)
θ0,θC

(j)
θ0,θρn(dθ))

)

×
(

α
δ/(2+δ)
|i−j|−1

)

. (A36)

First, consider the term
∫

C
(i)
θ0,θρn(dθ). Using Assumption 1, we can upper bound C

(i)
θ0,θ as,

C
(i)
θ0,θ ≤ E

[

m

∑
k=1

M
(1)
k (Xi, Xi−1)| f

(1)
k (θ, θ0)|

]2+δ

≤
m

∑
k=1

m1+δE

[

(

M
(1)
k (Xi, Xi−1)| f

(1)
k (θ, θ0)|

)2+δ
]

(by Jensen’s inequality)

=
m

∑
k=1

m1+δE
[

M
(1)
k (Xi, Xi−1)

2+δ
]

| f
(1)
k (θ, θ0)|2+δ.

Since M
(1)
k ’s are upper bounded by Q, it follows from the previous expression that, C

(i)
θ0,θ ≤

∑
m
k=1 m1+δQ2+δ| f

(1)
k (θ, θ0)|2+δ.

Hence, from Assumption 1, we get,

∫

C
(i)
θ0,θρn(dθ) ≤

m

∑
k=1

m1+δQ2+δ
∫

| f
(1)
k (θ, θ0)|2+δρn(dθ) ≤ (mQ)2+δ C

n
.

Using the upper bound above, we can say for an L large enough,
∫

C
(i)
θ0,θρn(dθ) ≤

L
n . Next, by the Cauchy-Schwarz inequality, we have that

∫

√

C
(i)
θ0,θC

(j)
θ0,θρn(dθ)) <

√

∫

C
(i)
θ0,θρn(dθ)

∫

C
(j)
θ0,θρn(dθ)) ≤ L

n . Thus, we have the following upper bound.

∫

Var[rn(θ, θ0)]ρn(dθ) ≤
n

∑
i=1

(

4

n
+ 2nδ/2 L

n

)

(

α
δ/(2+δ)
i−1

)

+
n

∑
i,j=1

(

4

n
+ 2nδ/2(

L

n
+

L

n
+

L

n
)

)

(

α
δ/(2+δ)
|i−j|−1

)

=

(

4

n
+ 2nδ/2 L

n

)

(

n

∑
i=1

α
δ/(2+δ)
i−1

)

+

(

4

n
+ 6nδ/2 L

n

)

(

n

∑
i,j=1

α
δ/(2+δ)
|i−j|−1

)

.

Since ∑
n
i,j=1 α

δ/(2+δ)
|i−j|−1

< n ∑k≥1 α
δ/(2+δ)
k−1 < ∞, we have that for some ǫ

(2)
n = O( nδ/2

n ),

∫

Var[rn(θ, θ0)]ρn(dθ) < nǫ
(2)
n .

Since K(ρn, π) ≤ √
nC, following the concluding argument in Theorem 2 completes the

proof.
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Appendix B.3.2. Proof of Proposition 8

We verify Assumption 1 and the proof follows from Theorem 3. For i ∈ {1, 2, . . . , K − 1},

pθ(j|i) =
{

θ if j = i − 1,

1 − θ if j = i + 1.

If i = 0 or i = K, then the Markov chain goes back to 1 or K − 1, respectively, with
probability 1. With the convention log 0

0 = 0, the log ratio of the transition probabilities
becomes,

| log pθ0
(X1|X0)− log pθ(X1|X0)| = I[X1=X0+1] log

(

θ0

θ

)

+ I[X1=X0−1] log

(

1 − θ0

1 − θ

)

.

In this case, m = 2. M
(1)
1 (X1, X0) = I[X1=X0+1] and M

(1)
2 (X1, X0) = I[X1=X0−1], both of

which are bounded. Let f
(1)
1 (θ, θ0) := log

(

θ0
θ

)

suppose f
(1)
2 (θ, θ0) := log

(

1−θ0
1−θ

)

.

The stationary distribution qθ(i) =
1
K ∀ i ∈ 1, 2, . . . , K. Hence the log of the ratio of

the invariant distribution becomes

log q0(x)− log qθ(x) = 0, (A37)

and we can set M
(2)
i (·) := 1 and f

(2)
i (·, ·) := 0 for i ∈ {1, 2}. Thus, to prove the concen-

tration bound for this Markov chain it is enough to assume that δ = 1 and show that
∫

[ f
(1)
1 (θ, θ0)]

3ρn(dθ) < C
n and

∫

[ f
(1)
2 (θ, θ0)]

3ρn(dθ) < C
n for some constant C > 0.

As given, {ρn} is a sequence of beta probability distribution functions, with parameters
an, bn that satisfy the constraint an

an+bn
= θ0. Specifically, we choose an = nθ0 and (therefore)

bn = n(1 − θ0). Thus, we get the following,

∫

| f
(1)
1 (θ, θ0)|3ρn(dθ) =

∫

∣

∣

∣

∣

log

(

θ0

θ

)∣

∣

∣

∣

3

ρn(dθ)

<

∫

∣

∣

∣

∣

θ0

θ
− 1

∣

∣

∣

∣

3

ρn(dθ)

=
1

Beta(an, bn)

∫ 1

0

∣

∣

∣

∣

θ0 − θ

θ

∣

∣

∣

∣

3

θan−1(1 − θ)bn−1dθ.

Since θ0, θ ∈ (0, 1), so is |θ0−θ|
2 , giving |θ0 − θ|3 < 2(θ0 − θ)2. We use that fact to arrive at

∫

| f
(1)
1 (θ, θ0)|3ρn(dθ) ≤ 2

Beta(an, bn)

∫ 1

0
(θ0 − θ)2θan−4(1 − θ)bn−1dθ

=
2Beta(an − 3, bn)

Beta(an, bn)

(an − 3)(bn)

(an + bn − 3)2(an + bn − 2)
.

From our choice of an and bn,
2Beta(an−3,bn)

Beta(an ,bn)
= O(1), and plugging the values of an and

bn into
(an−3)(bn)

(an+bn−3)2(an+bn−2)
, we get

(an−3)(bn)
(an+bn−3)2(an+bn−2)

= 1
n
(θ0− 3

n )(1−θ0)

(1− 3
n )

2(1− 2
n )

, which is upper

bounded by C1
n for some constant C1 > 0. Hence,

∫

| f
(1)
1 (θ, θ0)|3ρn(dθ) <

C1

n
.

Similarly, we can also show that,

∫

| f
(1)
2 (θ, θ0)|3ρn(dθ) <

C2

n
.
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Finally, from Proposition A.2.1, we get that K(ρn, π) < C+ 1
2 log(n) for some large constant

C. Hence, K(ρn, π) < C3
√

n for some constant C3 > 0. Choosing C = max(C1, C2, C3), we
satisfy all the conditions of Assumption 1 and Theorem 3.

Appendix B.3.3. Proof of Proposition 9

For the purpose of this proof, we choose ρn’s with scaled Beta distribution with
parameters an = n(θ0/2) and bn = n(1 − θ0/2). Since, ρn is a scaled Beta distribution with
the scaling factors m = 0.5 and c = 0, the pdf of ρn is given by

ρn(θ) =
2

Beta(an, bn)
(2θ)an(1 − 2θ)bn

Since this is a scaled distribution, Eρn [θ] = 2 an
an+bn

= θ0 and there exists a constant σ > 0,

Varρn [θ] =
σ2

n . Now, we analyse the transition probabilities. For i ∈ {1, 2, . . . }, the Birth-
Death process has transition probabilities

pθ(j|i) =
{

θ if j = i − 1,

1 − θ if j = i + 1.

If i = 0, then the Markov chain goes to 1 with probability 1. Hence with the convention
log 0

0 = 0 the ratio of the log of the transition probabilities becomes,

| log pθ0
(X1|X0)− log pθ(X1|X0)| = I[X1=X0+1] log

[

θ0

θ

]

+ I[X1=X0−1] log

[

1 − θ0

1 − θ

]

.

In this case, m = 3. M
(1)
1 (X1, X0) = I[X1=X0+1] and M

(1)
2 (X1, X0) = I[X1=X0−1]. De-

fine M
(1)
3 (X1, X0) := 1. All these random variables are bounded. Define f

(1)
1 (θ, θ0) :=

log
[

θ0
θ

]

, f
(1)
2 (θ, θ0) := log

[

1−θ0
1−θ

]

and f
(1)
3 (θ, θ0) := 0. Similarly as in the proof on Proposi-

tion 8,

∫

[ f
(1)
1 (θ, θ0)]

3ρn(dθ) <
C1

n
, and

∫

[ f
(1)
2 (θ, θ0)]

3ρn(dθ) <
C2

n
.

The stationary distribution is given by qθ(i) = ( θ
1−θ )

i−1qθ(1) ∀ i ∈ 1, 2, . . ., so that qθ(i) =

(1 − θ)( θ
1−θ )

i−1 Hence the log of the ratio of the invariant distribution becomes

log q0(i)− log qθ(i) = log

[

1 − θ0

1 − θ

]

+ (i − 1) log

[

θ0

θ

]

− (i − 1) log

[

1 − θ0

1 − θ

]

(A38)

We define M
(2)
1 (X0) := 1, and M

(2)
2 (X0) = M

(2)
3 (X0) := X0 − 1. We can write

Eq(0) [M
(2)
2 (X0)]

2 = ∑
∞
i=1(i − 1)2q(0)(i) < ∑

∞
i=1 i2q(0)(i). We have chosen q(0) such that

∑
∞
i=1 i2q(0)(i) is bounded. Hence, Eq(0) [M

(2)
2 (X0)]

2 < ∞. To verify Assumption i define,

f
(2)
1 (θ, θ0) = − f

(2)
3 (θ, θ0) := log

[

1−θ0
1−θ

]

, and define f
(2)
2 (θ, θ0) := log

[

θ0
θ

]

. Therefore fol-

lowing the proof of Proposition 8,

∫

| f
(2)
1 (θ, θ0)|3ρn(dθ) =

∫

| f
(2)
3 (θ, θ0)|3ρn(dθ) =

∫

| f
(1)
2 (θ, θ0)|3ρn(dθ) <

C2

n
, and ,

∫

| f
(2)
2 (θ, θ0)|3ρn(dθ) =

∫

| f
(1)
1 (θ, θ0)|3ρn(dθ) <

C1

n
.
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Finally, we take the KL-divergence K(ρn, π). ρn follows a scaled Beta distribution on
(0, 1/2) with parameters an = n(θ0/2) and bn = n(1− θ0/2), while π follows a scaled Beta
distribution on (0, 1/2) with parameters a and b. Thus,

K(ρn, π) =
∫ 1

2

0
log

(

ρn(θ)

π(θ)

)

ρn(dθ),

which, by substituting t = 2θ, we get,

K(ρn, π) = 2
∫ 1

0
log

(

ρn(t)

π(t)

)

ρn(dt).

∫ 1
0 log

(

ρn(t)
π(t)

)

ρn(dt) is the KL-divergence between a Beta distribution with parameters an and

bn and a Beta distribution with parameters a and b. An application of Proposition A.2.1 gives
us for a constant C1 > 0,

∫ 1

0
log

(

ρn(t)

π(t)

)

ρn(dt) < C1 +
1

2
log(n).

Hence we can say, K(ρn, π) < 2
[

C1 +
1
2 log(n)

]

. Thus, we now get that for some constant

C3 > 0,

K(ρn, π) < C3

√
n.

Choosing C = max(C1, C2, C3) we satisfy all of the conditions of Assumption 1 and thus
by Theorem 3, we are complete the proof.

Appendix B.3.4. Proof of Theorem 4

Part 1: Verifying condition (i) of Corollary 1 As in the proof of Theorem 2 substitute the

true parameter θ0 for θ1 and θ for θ2. We also set our initial distributions q
(0)
1 and q

(0)
2 to the

known initial distribution q(0). A method similar to Equation (A35), yields

K(P
(n)
θ0

, P
(n)
θ ) ≤

n

∑
i=1

m

∑
k=1

E
[

M
(1)
k (Xi, Xi−1)

]

| f
(1)
k (θ, θ0)|.

Because M
(1)
k s satisfy Assumption 2, it follows by the application of Theorem 2.3, [21] that

∃ λ > 0 such that for any 0 < κ ≤ λ, and for some ζ ∈ (0, 1) possibly depending upon λ,

E

[

eκM
(1)
k (Xi ,Xi−1)

∣

∣

∣

∣

X1, X0] ≤ ζ i−1eκM
(1)
k (X1,X0) +

1 − ζ i

1 − ζ
Deκa for all i > 1.

We rewrite E
[

M
(1)
k (Xi, Xi−1)|X1, X0

]

as follows:

E
[

M
(1)
k (Xi, Xi−1)|X1, X0

]

=
E[κM

(1)
k (Xi, Xi−1)|X1, X0]

κ

≤ E[eκM
(1)
k (Xi ,Xi−1)|X1, X0]

κ
.
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Therefore, ∑
n
i=1 E

[

M
(1)
k (Xi, Xi−1)

]

can be upper bounded as,

n

∑
i=1

E
[

M
(1)
k (Xi, Xi−1)

]

=
n

∑
i=1

E
[

κM
(1)
k (Xi, Xi−1)|X1, X0

]

κ−1

≤
n

∑
i=1

[

ζ i−1EeκM
(1)
k (X1,X0) +

1 − ζ i

1 − ζ
Deκa

]

κ−1.

Since, ζ ∈ (0, 1), ζ i < 1. Hence, we can write that,

n

∑
i=1

[

ζ i−1EeκM
(1)
k (X1,X0) +

1 − ζ i

1 − ζ
Deκa

]

κ−1 ≤
n

∑
i=1

[

ζ i−1EeκM
(1)
k (X1,X0) +

1

1 − ζ
Deκa

]

κ−1

=

[

1 − ζn

1 − ζ
EeκM

(1)
k (X1,X0) +

n

1 − ζ
Deκa

]

κ−1

≤ nL,

for a large constant L. Therefore
∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) can be upper bounded as follows,

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤

∫ m

∑
k=1

nL| f
(1)
k (θ, θ0)|ρn(dθ)

=
m

∑
k=1

nL
∫

| f
(1)
k (θ, θ0)|ρn(dθ).

By Assumption 1,
∫

| f
(1)
k (θ, θ0)|ρn(dθ) < C

n , hence,

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ nL

C√
n

.

Hence, for some ǫ
(1)
n = O( 1√

n
), we have obtained that,

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ nǫ

(1)
n .

Part 2: Verifying condition (ii) of Corollary 1: Similar to as in the proof of Theorem 3, we
upper bound

∫

Var[rn(θ, θ0)]ρn(dθ) by

∫

Var[rn(θ, θ0)]ρn(dθ) ≤
n

∑
i,j=1

(

4

n
+ 2nδ/2

(

∫

C
(i)
θ0,θρn(dθ) +

∫

C
(j)
θ0,θρn(dθ) (A39)

+
∫

√

C
(i)
θ0,θC

(j)
θ0,θρn(dθ)

))

(

α
δ/(2+δ)
|i−j|−1

)

(A40)

+
n

∑
i=1

(

4

n
+ 2nδ/2

∫

C
(i)
θ0,θρn(dθ)

)

(

α
δ/(2+δ)
i−1

)

,

where Cθ0,θ is upper bounded as

C
(i)
θ0,θ ≤

m

∑
k=1

m1+δE
[

M
(1)
k (Xi, Xi−1)

]2+δ
| f

(1)
k (θ, θ0)|2+δ.

There exists a constant Cδ depending upon δ such that,

[M
(1)
k ]2+δ(Xi, Xi−1) =

κ2+δ[M
(1)
k ]2+δ(Xi, Xi−1)

2+δ

κ2+δ

≤ eκM
(1)
k (Xi ,Xi−1) + Cδ

κ2+δ
.
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By expressing E
[

M
(1)
k (Xi, Xi−1)

2+δ
]

= E
[

E
[

M
(1)
k (Xi, Xi−1)

2+δ|X1, X0

]]

and following a

method similar to the previous part, we get,

E
[

M
(1)
k (Xi, Xi−1)

2+δ
]

≤

[

ζ iEeκM
(1)
k (X1,X0) + 1−ζ i

1−ζ Deκa

]

+ Cδ

κ2+δ
.

The fact that 0 < ζ < 1 implies that 0 < ζ i < ζ. This gives us the following,

E
[

M
(1)
k (Xi, Xi−1)

2+δ
]

≤

[

ζEeκM
(1)
k (X1,X0) + 1

1−ζ Deκa

]

+ Cδ

κ2+δ
.

Since κ < λ, by the application of Jensen’s inequality, we get

E
[

M
(1)
k (Xi, Xi−1)

2+δ
]

≤

[

ζEeλM
(1)
k (X1,X0) + 1

1−ζ Deκa

]

+ Cδ

κ2+δ

=

[

ζ
∫

eλM
(1)
k (x1,x0)pθ0

(x1|x0)D(x0)dx1dx0 +
1

1−ζ Deκa

]

+ Cδ

κ2+δ
.

We know that
∫

| f
(1)
k (θ, θ0)|2+δρn(dθ) < C

n . Thus, following Assumption 1 we can say that,

for a large constant L,
∫

C
(i)
θ0,θρn(dθ) ≤ L

n . The rest of the proof follows similarly as in the

proof of Theorem 3, and we obtain an ǫ
(2)
n = O( nδ/2

n ), such that,

∫

Var[rn(θ, θ0)]ρn(dθ) < nǫ
(2)
n .

Since, K(ρn, π) ≤ √
nC, similar arguments as in the proof of Theorem 2 holds. The theorem

is thus proved.

Appendix B.3.5. Proof of Theorem 5

Part 1: Verifying condition (i) of Corollary 1 As in the proof of Theorem 2 substitute

the true parameter θ0 for θ1 and θ for θ2. We also set q
(0)
1 and q

(0)
2 to the known initial

distribution q(0). Similar to the steps leading to Equation (A35), we get

K(P
(n)
θ0

, P
(n)
θ ) ≤

n

∑
i=1

m

∑
k=1

E
[

M
(1)
k (Xi, Xi−1)

]

| f
(1)
k (θ, θ0)|.

Consider the term E
[

M
(1)
k (Xi, Xi−1)

]

. With q
(i−1)
θ0

the marginal distribution of Xi−1, we

have

E
[

M
(1)
k (Xi, Xi−1)

]

=
∫

M
(1)
k (xi, xi−1)pθ0

(xi|xi−1)q
(i−1)
θ0

(xi−1)dxidxi−1.

E
[

M
(1)
k (Xi, Xi−1)

]

=
∫

M
(1)
k (xi, xi−1)pθ0

(xi|xi−1)pi−1
θ0

(xi−1|x0)q
(0)
θ0

(x0)dx0dxidxi−1

Recall that the marginal density satisfies q
(i−1)
θ0

(xi−1) =
∫

pi−1
θ0

(xi−1|x0)q
(0)
θ0

(x0)d(x0),

where pi
θ0
(·|x0) is the i-step transition probability. Then

E
[

M
(1)
k (Xi, Xi−1)

]

=
∫

E
[

M
(1)
k (Xi, xi−1)|xi−1

]

pi−1
θ0

(xi−1|x0)q
(0)
θ0

(x0)dx0dxi−1.
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Since the Markov chain {Xn} satisfies Assumption A.1.1, we know by the application of
Theorem A.1.1 that {Xn} is V-geometrically ergodic. Hence, ∃ τ < 1, R < ∞ such that
∀ | f | < V

|
∫

f (xi−1)pi−1
θ0

(xi−1|x0)dxi−1 −
∫

f (xi−1)qθ0
(xi−1)dxi−1| < RV(x0)τ

i−1,

where qθ0
is the stationary distribution, implying that

∫

f (xi−1)pi−1
θ0

(xi−1|x0)dxi−1 <

∫

f (xi−1)qθ0
(xi−1)dxi−1 + RV(x0)τ

i−1.

By the application of Jensen’s inequality we get
(

E
[

M
(1)
k (Xi, Xi−1)|Xi−1

])2+δ
≤

E
[

M
(1)
k (Xi, Xi−1)

2+δ|Xi−1

]

< V(Xi−1). Since V(·) ≥ 1, it follows from the previous

expression that E
[

M
(1)
k (Xi, Xi−1)|Xi−1

]

< V(Xi−1)
1/(2+δ) ≤ V(Xi−1). Thus, setting

f (x) = E
[

M
(1)
k (Xi, Xi−1)|Xi−1 = x

]

, we obtain

E
[

M
(1)
k (Xi, Xi−1)

]

<

∫

[

E
[

M
(1)
k (Xi, Xi−1)|Xi−1

]

qθ0
(xi)dxi−1 + RV(x0)τ

i−1
]

q(0)(x0)dx0

= E[M
(1)
k (X1, X0)] + τi−1

∫

RV(x0)q
(0)(x0)dx0.

Summing from i = 1 to n, we get

n

∑
i=1

E
[

M
(1)
k (xi, xi−1)

]

< nE[M
(1)
k (X1, X0)] +

n

∑
i=1

τi−1
∫

RV(x0)q
(0)(x0)dx0

= nE[M
(1)
k (X1, X0)] +

1 − τn

1 − τ

∫

RV(x0)q
(0)(x0)dx0.

This gives us the following bound on
∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ):

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤

m

∑
k=1

[

nE[M
(1)
k (X1, X0)] +

1 − τn

1 − τ

∫

RV(x0)D(x0)dx0

]

×
∫

| f
(1)
k (θ, θ0)|ρn(dθ).

By Assumption 1,
∫

| f
(1)
k (θ, θ0)|ρn(dθ) < C√

n
. Hence, we can rewrite the previous expres-

sion as

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤

m

∑
k=1

[

nE[M
(1)
k (X1, X0)] +

1 − τn

1 − τ

∫

RV(x1)D(x1)dx1

]

C√
n

= nm

[

E[M
(1)
k (X1, X0)] +

1 − τn

n(1 − τ)

∫

RV(x0)D(x0)dx0

]

C√
n

.

Since, τ < 1, 0 < 1 − τn < 1, and we rewrite the previous equation as,

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ nm

[

E[M
(1)
k (X1, X0)] +

1

n(1 − τ)

∫

RV(x0)D(x0)dx0

]

C√
n

.

Hence, there exists an ǫ
(1)
n = O( 1√

n
) such that

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ nǫ

(1)
n .



Entropy 2021, 23, 313 35 of 39

Part 2: Verifying condition (ii) of Corollary 1: Similar to as in the proof of Theorem 3, we upper
bound

∫

Var[rn(θ, θ0)]ρn(dθ) by

∫

Var[rn(θ, θ0)]ρn(dθ) ≤
n

∑
i,j=1

(

4

n
+ 2nδ/2

(

∫

C
(i)
θ0,θρn(dθ) +

∫

C
(j)
θ0,θρn(dθ) (A41)

+
∫

√

C
(i)
θ0,θC

(j)
θ0,θρn(dθ)

))

(

α
δ/(2+δ)
|i−j|−1

)

(A42)

+
n

∑
i=1

(

4

n
+ 2nδ/2

∫

C
(i)
θ0,θρn(dθ)

)

(

α
δ/(2+δ)
i−1

)

,

where Cθ0,θ is upper bounded as

C
(i)
θ0,θ ≤

m

∑
k=1

m1+δE
[

M
(1)
k (Xi, Xi−1)

]2+δ
| f

(1)
k (θ, θ0)|2+δ.

Since E
[

M
(1)
k (Xi, Xi−1)

2+δ|Xi−1

]

< V(Xi−1), by a similar application of V-geometric er-

godicity, we can say that, ∃ 0 < τ < 1, such that

E
[

M
(1)
k (Xi, Xi−1)

]2+δ
≤ nE[M

(1)
k (X1, X0)]

2+δ + τi−1
∫

RV(x0)D(x0)dx0,

which, by the fact that τi−1 < τ, gives us,

E
[

M
(1)
k (Xi, Xi−1)

]2+δ
≤ E[M

(1)
k (X1, X0)]

2+δ + τ
∫

RV(x0)D(x0)dx0.

By Assumption 1, we know that,
∫

| f
(1)
k (θ, θ0)|2+δρn(dθ) < C

n . Hence, for a large constant

L,
∫

C
(i)
θ0,θρn(dθ) ≤ L

n . We also see that since the chain is geometrically ergodic, by the

application of Equation (A4), ∑k≥1 α
δ/(2+δ)
k < +∞. The rest of the proof follows similarly

as in the proof of Theorem 3, and we obtain an ǫ
(2)
n = O( nδ/2

n ), such that,

∫

Var[rn(θ, θ0)]ρn(dθ) < nǫ
(2)
n .

Since, K(ρn, π) ≤ √
nC, similar arguments as in the proof of Theorem 2 holds. The theorem

is thus proved.

Appendix B.3.6. Proof of Proposition 10

For the purpose of the proof, we choose ρn’s with scaled Beta distribution with

parameters an = n 1+θ0
2 and bn = n 1−θ0

2 . Since, ρn is a scaled Beta distribution with the
scaling factors m = 2 and c = −1, the pdf of ρn is given by

ρn(θ) =
1

2Beta(an, bn)

(

1 + θ

2

)an
(

1 − θ

2

)bn

Since this is a scaled distribution, Eρn [θ] = 2 an
an+bn

− 1 = θ0 and there exists a constant

σ > 0, Varρn [θ] =
σ2

n . We now analyse the log-ratio of the transition probabilities for the
Markov chain,

log pθ0
(Xn|Xn−1)− log pθ(Xn|Xn−1) = 2XnXn−1(θ − θ0) + X2

n−1(θ
2
0 − θ2).
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Observe that in this setting, M
(1)
1 (Xn, Xn−1) = |XnXn−1| and M

(1)
2 (Xn, Xn−1) = X2

n. Next,
using the fact that

E[|Xn|2+δ|Xn−1] = E[|Xn − θ0Xn−1 + θ0Xn−1|2+δ|Xn−1],

and by an application of triangle inequality, we obtain

E[|Xn|2+δ|Xn−1] ≤ E
[

(|Xn − θ0Xn−1|+ |θ0Xn−1|)2+δ|Xn−1

]

= E

[

(

2
|Xn − θ0Xn−1|+ |θ0Xn−1|

2

)2+δ

|Xn−1

]

= E

[

22+δ

( |Xn − θ0Xn−1|+ |θ0Xn−1|
2

)2+δ

|Xn−1

]

.

Now by using Jensen’s inequality we get,

E[|Xn|2+δ|Xn−1] ≤ E

[

22+δ

( |Xn − θ0Xn−1|2+δ + |θ0Xn−1|2+δ

2

)

|Xn−1

]

= 21+δE
[

|Xn − θ0Xn−1|2+δ|Xn−1

]

+ 21+δ|θ0Xn−1|.

We know if Y ∼ N(µ, σ2), then E|Y − µ|p = σp 2
p
2 Γ(

p+1
2 )

√
π

. Consequently,

E[|Xn|2+δ|Xn−1] ≤ 21+δ

[

2
2+δ

2 Γ( 3+δ
2 )

√
π

]

+ 21+δ|θ0Xn−1|2+δ. (A43)

It follows that,

E[M
(1)
1 (Xn, Xn−1)

2+δ|Xn−1] ≤ 21+δ

[

2
2+δ

2 Γ( 3+δ
2 )

√
π

]

|Xn−1|2+δ + 21+δ|θ0|2+δ|Xn−1|4+2δ

≤
(

21+δ

[

2
2+δ

2 Γ( 3+δ
2 )

√
π

]

+ 21+δ|θ0|2+δ

)

(|Xn−1|4+2δ + 1).

Since θ0 < 1, we can say,

E[M
(1)
1 (Xn, Xn−1)

2+δ|Xn−1] ≤
(

21+δ

[

2
2+δ

2 Γ( 3+δ
2 )

√
π

]

+ 21+δ

)

(|Xn−1|4+2δ + 1).

Define a constant Cδ :=

(

21+δ

[

2
2+δ

2 Γ( 3+δ
2 )

√
π

]

+ 21+δ

)

. The above term then becomes,

E[M
(1)
1 (Xn, Xn−1)

2+δ|Xn−1] ≤ Cδ(|Xn−1|4+2δ + 1).

Next we analyse the term M
(1)
2 (Xn, Xn−1).

E
[

M
(1)
2 (Xn, Xn−1)

2+δ|Xn−1

]

= E[X4+2δ
n−1 |Xn−1]

= X4+2δ
n−1

≤ Cδ(X4+2δ
n−1 + 1).
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Then, defining V(x) := Cδ(x4+2δ + 1) it follows that,

E[V(Xn)|Xn−1] = E
[

Cδ(X4+2δ
n + 1)|Xn−1

]

.

Using a technique similar to Equation (A43) we get,

E
[

Cδ(X4+2δ
n + 1)|Xn−1

]

≤
[

Cδ(2
3+2δ

[

2
4+2δ

2 Γ( 5+2δ
2 )

√
π

]

+ 23+2δ|θ0Xn−1|4+2δ + 1)

]

.

Define another constant C′
δ := Cδ

(

23+2δ

[

2
4+2δ

2 Γ( 5+2δ
2 )

√
π

]

− 23+2δ|θ0|4+2δ + 1

)

. Since δ > 0,

2
4+2δ

2 Γ( 5+2δ
2 )

√
π

> 1. Furthermore, since |θ0| < 1, so is |θ0|4+2δ. Hence,

23+2δ

[

2
4+2δ

2 Γ( 5+2δ
2 )

√
π

]

− 23+2δ|θ0|4+2δ
> 0.

Hence, we have shown that,

E[V(Xn)|Xn−1] ≤ (23+2δ|θ0|4+2δ)Cδ(X4+2δ
n−1 + 1) + C′

δ.

Since |θ0| < 2
1

4+2δ −1, 23+2δ|θ0|4+2δ < 1, and we can express the above equation as,

E[V(Xn)|Xn−1] ≤ V(Xn−1) + C′
δ.

Define the set C(m) := {x : |x|4+2δ + 1 ≤ m}. From Proposition 11.4.2, [20], for a large
enough m, C(m) forms a petite set. Thus, we have proved that V(x) as defined in this

example satisfies Assumption A.1.1, and {Xn} is V-geometrically ergodic. The f
(1)
j ’s

corresponding to Assumption 1 are given by f
(1)
1 (θ, θ0) = (θ − θ0) and f

(1)
2 (θ, θ0) =

(θ2
0 − θ2). Therefore, it follows that,

∂θ f
(1)
1 = 1,

∂θ f
(1)
2 = −2θ and

−2 < −2θ < 2.

Since f
(1)
1 (θ0, θ0) = f

(1)
2 (θ0, θ0) = 0, We just showed that they also have bounded partial

derivatives. We also know that |θ| < 1. Hence, by Proposition 4 f
(1)
j ’s satisfy the conditions

of Assumption 1.
The invariant distribution for the simple linear model Markov-chain under parameter

θ is given by a gaussian distribution with mean 0 and variance 1
1−θ2 . In other words,

qθ(x) =
1√
2π

e−
1−θ2

2 x2
.

Analyzing the log likelihood yields,

log q0(x)− log qθ(x) = − x2

2
(1 − θ2

0) +
x2

2
(1 − θ2)

=
x2

2
(θ2

0 − θ2).
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Let f
(2)
1 (θ0, θ0) = (θ2

0 − θ2) and f
(2)
1 (θ0, θ0) = 0. Since f

(2)
1 (θ0, θ0) = f

(1)
2 (θ0, θ0), by follow-

ing arguments similar as before, can conclude that f
(2)
1 (θ0, θ0) also satisfies the requirements

of Assumption 1. Let M
(2)
1 (x) = x2

2 and define M
(2)
2 (x) := 1. Let X0 ∼ q

(0)
1 . As long as

∫

x4+2δq
(0)
1 (x)dx < ∞, we satisfy all the conditions required for Theorem 5. Finally we need

to verify the condition that K(ρn, π) < C
√

n for some constant C > 0. The KL-divergence
∫

log
(

ρn(θ)
π(θ)

)

ρn(dθ) becomes,

K(ρn, π) =
∫ 1

−1
log

(

1

2Beta(an, bn)

(

1 + θ

2

)an
(

1 − θ

2

)bn
)

× 1

2Beta(an, bn)

(

1 + θ

2

)an
(

1 − θ

2

)bn

dθ.

Substituting, y = 1+θ
2 , we get,

K(ρn, π) =
∫ 1

0
log

(

1

2Beta(an, bn)
(y)an(1 − y)bn

)

1

2Beta(an, bn)
(y)an(1 − y)bn dy

=
∫ 1

0
log

(

1

2

)

1

Beta(an, bn)
(y)an(1 − y)bn dy

+
∫ 1

0
log

(

1

Beta(an, bn)
(y)an(1 − y)bn

)

1

Beta(an, bn)
(y)an(1 − y)bn .

The first term integrates up to log(1/2). The second term is the KL-divergence between

a Uniform and Beta distribution with parameters an = n 1+θ0
2 and bn = n(1 − 1+θ0

2 ) and
support [0, 1]. Following Lemma A.2.1 it follows that K(ρn, π) is upper bounded by,

K(ρn, π) < log(1/2) + C1 +
1

2
log(n) < C

√
n,

for some large constant C. This completes the proof.

Appendix B.4. Proofs for Misspecified Models

Proof of Theorem 6

As in the proof of Theorem 1, following Equation (A13), we note that,

∫

Dαre(P
(n)
θ , P

(n)
θ0

)π̃n,αre |Xn(dθ) ≤ αre

1 − αre

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ)

+
αre

1 − αre

√

Var[
∫

rn(θ, θ0)ρn(dθ)]

η
+

K(ρn, π)− log(ǫ)

1 − αre
. (A44)

Following from Equations (23) and (26), we get that,

∫

K(P
(n)
θ0

, P
(n)
θ )ρn(dθ) ≤ E[rn(θ0, θ∗n)] + nǫn,

and

∫

Var[rn(θ, θ0)]ρn(dθ) ≤ 2nǫn + 2Var[rn(θ
∗
n, θ0)].

Plugging these into Equation (A44), we are done.
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