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Abstract: Datasets displaying temporal dependencies abound in science and engineering applica-
tions, with Markov models representing a simplified and popular view of the temporal dependence
structure. In this paper, we consider Bayesian settings that place prior distributions over the param-
eters of the transition kernel of a Markov model, and seek to characterize the resulting, typically
intractable, posterior distributions. We present a Probably Approximately Correct (PAC)-Bayesian
analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions,
bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to
model misspecification, and their variational approximations do not suffer the usual problems of
over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties
of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of
example Markov models, and also consider the situation where the Markov model is misspecified.

Keywords: ergodicity; Markov chain; probably approximately correct; variational Bayes

1. Introduction

This paper presents probably approximately correct (PAC)-Bayesian bounds on vari-
ational Bayesian (VB) approximations of fractional or tempered posterior distributions
for Markov data generation models. Exact computation of either standard or tempered
posterior distributions is a hard problem that has, broadly speaking, spawned two classes
of computational methods. The first, Markov chain Monte Carlo (MCMC), constructs
ergodic Markov chains to approximately sample from the posterior distribution. MCMC is
known to suffer from high variance and complex diagnostics, leading to the development
of variational Bayesian (VB) [1] methods as an alternative in recent years. VB methods
pose posterior computation as a variational optimization problem, approximating the
posterior distribution of interest by the ‘closest” element of an appropriately defined class
of ‘simple’ probability measures. Typically, the measure of closeness used by VB methods
is the Kullback-Leibler (KL) divergence. Excellent introductions to this so-called KL-VB
method can be found in [2-4]. More recently, there has also been interest in alternative
divergence measures, particularly the a-Rényi divergence [5-7], though in this paper, we
focus on the KL-VB setting.

Theoretical properties of VB approximations, and in particular asymptotic frequentist
consistency, have been studied extensively under the assumption of an independent and
identically distributed (i.i.d.) data generation model [4,8,9]. On the other hand, the
common setting where data sets display temporal dependencies presents unique challenges.
In this paper, we focus on homogeneous Markov chains with parameterized transition
kernels, representing a parsimonious class of data generation models with a wide range of
applications. We work in the Bayesian framework, focusing on the posterior distribution
over the unknown parameters of the transition kernel. Our theory develops PAC bounds
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that link the ergodic and mixing properties of the data generating Markov chain to the
Bayes risk associated with approximate posterior distributions.

Frequentist consistency of Bayesian methods, in the sense of concentration of the
posterior distribution around neighborhoods of the ‘true’ data generating distribution,
have been established in significant generality, in both the i.i.d. [10-12] and in the non-i.i.d.
data generation setting [13,14]. More recent work [14-16] has studied fractional or tempered
posteriors, a class of generalized Bayesian posteriors obtained by combining the likelihood
function raised to a fractional power with an appropriate prior distribution using Bayes’
theorem. Tempered posteriors are known to be robust against model misspecification: in
the Markov setting we consider, the associated stationary distribution as well as mixing
properties are sensitive to model parameterization. Further, tempered posteriors are known
to be much simpler to analyze theoretically [14,16]. Therefore, following [14-16] we focus
on tempered posterior distributions on the transition kernel parameters, and study the rate
of concentration of variational approximations to the tempered posterior. Equivalently, as
shown in [16] and discussed in Section 1.1, our results also apply to so-called a-variational
approximations to standard posterior distributions over kernel parameters. The latter are
modifications of the standard KL-VB algorithm to address the well-known problem of
overconfident posterior approximations.

While there have been a number of recent papers studying the consistency of ap-
proximate variational posteriors [5,8,15] in the large sample limit, rates of convergence
have received less attention. Exceptions include [9,15,17], where an i.i.d. data generation
model is assumed. [15] establishes PAC-Bayes bounds on the convergence of a varia-
tional tempered posterior with fractional powers in the range [0,1), while [9] considers
the standard variational posterior case (where the fractional power equals 1). [17], on the
other hand, establishes PAC-Bayes bounds for risk-sensitive Bayesian decision making
problems in the standard variational posterior setting. The setting in [15] allows for model
misspecification and the analysis is generally more straightforward than that in [9,17]. Our
work extends [15] to the setting of a discrete-time Markov data generation model.

Our first results in Theorem 1 and Corollary 1 of Section 2 establish PAC-Bayes bounds for
sequences with arbitrary temporal dependence. Our resultsgeneralize [15], [Theorem 2.4] to the
non-i.i.d. data setting in a straightforward manner. Note that Theorem 1 also recovers ([16],
[Theorem 3.3]), which is established under different ‘existence of test’ conditions. Our
objective in this paper is to explicate how the ergodic and mixing properties of the Markov
data generating process influences the PAC-Bayes bound. The sufficient conditions of our
theorem, bounding the mean and variance of the log-likelihood ratio of the data, allows for
developing this understanding, without the technicalities of proving the existence of test
conditions intruding on the insights.

In Section 3, we study the setting where the data generating model is a stationary
a-mixing Markov chain. Stationarity means that the Markov chain is initialized with the
invariant distribution corresponding to the parameterized transition kernel, implying all
subsequent states also follow this marginal distribution. The a#-mixing condition ensures
that the variance of the likelihood ratio of the Markov data does not grow faster than linear
in the sample size. Our main results in this setting are applicable when the state space
of the Markov chain is either continuous or discrete. The primary requirement on the
class of data generating Markov models is for the log-likelihood ratio of the parameterized
transition kernel and invariant distribution to satisfy a Lipschitz property. This condition
implies a decoupling between the model parameters and the random samples, affording
a straightforward verification of the mean and variance bounds. We highlight this main
result by demonstrating that it is satisfied by a finite state Markov chain, a birth-death
Markov chain on the positive integers, and a one-dimensional Gaussian linear model.

In practice, the assumption that the data generating model is stationary is unlikely to
be satisfied. Typically, the initial distribution is arbitrary, with the state distribution of the
Markov sequence converging weakly to the stationary distribution. In this setting, we must
further assume that the class of data generating Markov chains are geometrically ergodic.
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We show that this implies the boundedness of the mean and variance of the log-likelihood
ratio of the data generating Markov chain. Alternatively, in Theorem 4 we directly impose
a drift condition on random variables that bound the log-likelihood ratio. Again, in this
more general nonstationary setting, we illustrate the main results by showing that the
PAC-Bayes bound is satisfied by a finite state Markov chain, a birth-death Markov chain
on the positive integers, and a one-dimensional Gaussian linear model.

In preparation for our main technical results starting in Section 2 we first note relevant
notations and definitions in the next section.

1.1. Notations and Definitions

We broadly adopt the notation in [15]. Let the sequence of random variables
X" = (Xo,.--,Xn) C R (n+1) represent a dataset of n 4+ 1 observations drawn from

a joint distribution Pé:), where ) € @ C R? is the ‘true’ parameter underlying the data

generation process. We assume the state space S C R™ of the random variables X; is either
discrete-valued or continuous, and write {xo, ..., x,} for a realization of the dataset. We
also adopt the convention that 0log(0/0) = 0.

For each § € O, we will write pé") as the probability density of P,

(n)
n) i (n) ._ 4P

to some measure Q) i.e., pg = dQ

counting measure. Unless stated otherwise, all probabilities, expectations and variances,

()

which we represent as P, E[X] and Var[X], are with respect to the true distribution Py,

(n)

with respect

, where Q(") is either Lebesgue measure or the

Let 71() be a prior distribution with support . The a'®-fractional posterior is defined as

e~ rn(8,60)(X") 7(d9)

fe atf‘rn(g 90)(Xn) (d())/ (1)

1’1 Ixte‘XVl (d@)

(n)

where, for 6,0 € ©, r,(6,6p)(-) := log (W) is the log-likelihood ratio of the corre-
Py

sponding density functions, and &’ € (0, ) is a tempering coefficient. Setting a’® = 1
recovers the standard Bayesian posterior. Note that we will use superscripts to distinguish
different quantities that are referred to just as « in the literature.

The Kullback-Leibler (KL) divergence between distributions P, Q is defined as

K(P,Q) := /X 1og<ZEj3> p(x)dx,

where p, q are the densities corresponding to P, Q on some sample space X'. In particular,
the KL divergence between the distributions parameterized by 6y and 6 is

0r-es X
IC(P(n P(n /lo Pgo—n) pég)(xo,...,xn)dxo---dxn
Xo,...,xn
= /rn(G,HO)(xO,...,xn)p’go(xo,...,xn)dxg ceodxy,. (2)

The a’®-Rényi divergence D e (Pén), Péon)) is defined as

Dlxre(P(n>, P(n)) =

1
o+ P, o log/exp(—arern(G,Ho)(xo,...,xn))pég)(xo,...,xn)dx0~~~dxn, (3)

where a’ € (0,1). As a" — 1, the a”-Rényi divergence recovers the KL divergence.
Let F be some class of distributions with support in R? and such that any distribution
P in F is absolutely continuous with respect to the tempered posterior: P < 71, yte|xn-
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Many choices of F exist; for instance (see also [15]), F can be the set of Gaussian
measures, denoted ]—"l%):

F = {®(d6;n, L) : p € R, Zy,4 € PD.}, )

where P.D. references the class of positive definite matrices. Alternately, F can be the family
of mean-field or factored distributions where the components 6; of 6 are independent of each
other. Let 7T, 4| x» be the variational approximation to the tempered posterior, defined as

Ty te| xn 7= argmin K(p, 71, yre xn ) (5)
peF

It is easy to see that finding 7, 4| x» in Equation (5) is equivalent to the following optimiza-
tion problem:

Ty e xn *= argMax [/rn(G, 00)(x0, - -, xn)p(d0) — (a°) _1IC(p, m)|. (6)
peF L

Setting a’® = 1 again recovers the usual variational solution that seeks to approximate
the posterior distribution with the closest element of F (the right-hand side above is
called the evidence lower bound (ELBO)). Other settings of ¢ constitute a’¢~variational
inference [16], which seeks to regularize the ‘overconfident” approximate posteriors that
standard variational methods tend to produce.

Our results in this paper focus on parametrized Markov chains. We term a Markov
chain as “parameterized’ if the transition kernel py(-|-) is parametrized by some 6 € © C
R?. Let (9 (-) be the initial density (defined with respect to the Lebesgue measure over

R™) or initial probability mass function. Then, the joint density is pé") (x0,---,%n) =

79 (x0) TT'Zy po(xi41|x;); recall, this joint density pén) (x0,...,xn) corresponds to the walk
probability of a time-homogeneous Markov chain. We assume that corresponding to each

(o)

transition kernel py, 6 € ©, there exists an invariant distribution g, ' = gy that satisfies

q9(x) = /Pe(xly)qg(dy) Vx € R™ 0 € @.

We will also use g¢ to designate the density of the invariant measure (as before,
this is with respect to the Lebesgue or counting measure for continuous or discrete state
spaces, respectively). A Markov chain is stationary if its initial distribution is the invariant
probability distribution, that is, Xo ~ gg.

Our results in the ensuing sections will be established under strong mixing condi-
tions [18] on the Markov chain. Specifically, recall the definition of the a#-mixing coefficients
of a Markov chain { X, }:

Definition 1 (x-mixing coefficient). Let Mi denote the o-field generated by the Markov chain
{Xk 11 < k < j} parameterized by 6 € ©. Then, the a-mixing coefficient is defined as

& = sup sup |Po(ANB) — Py(A)Py(B)]. )

>0 (A,B)e ML o x M52,

Informally speaking, the a-mixing coefficients {a; } measure the dependence between

any two events A (in the ‘history’ o-algebra) and B (in the ‘future’ o-algebra) with a time

lag k. We note that we do not use superscripts to identify these a parameters, since they are
the only ones with subscripts, and can be identified through this.
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2. A Concentration Bound for the a™-Rényi Divergence

The object of analysis in what follows is the probability measure 7, 4| xx (6), the
variational approximation to the tempered posterior. Our main result establishes a bound
on the Bayes risk of this distribution; in particular, given a sequence of loss functions
€x(8,60), we bound [ £,,(8,600)7,, e xn (0)d6. Following recent work in both the i.i.d. and

dependent sequence settings [14-16], we will use £,,(6,6p) = Dyre (Pe(n), PG(:) ), the a"-Rényi

divergence between Pg") and P(g:) as our loss function. Unlike loss functions like Euclidean
distance, Rényi divergence compares 6 and 6y through their effect on observed sequences,
so that issues like parameter identifiability no longer arise. Our first result generalizes [15],
[Theorem 2.1] to a general non-i.i.d. data setting.

Proposition 1. Let F be a subset of all probability distributions on ©. For any o™ € (0,1),
€ € (0,1) and n > 1, the following probabilistic uniform upper bound on the expected a"*-Rényi
divergence holds:

e K(p, ) +log(1
P[sup Dy (Py", Py )p(d6) < 1_are/rn(9,90)p(d9)+ G 1)_Meg(€) >1—e. ®)
pEF

The proof of Proposition 1 follows easily from [15], and we include it in Appendix B.1.1
for completeness. Mirroring the comments in [15], when p = ﬁn,ate this result is pre-
cisely [14, Theorem 3.4]. We also note from [14] that V a’, B € (0, 1] a"-Rényi divergences

are all equivalent through the following inequality 7 A= ade f?; Dg < Dgre < Dg V &' < B.
Hence, for the subsequent results, we simplify by assuming that a’® = ™. This proba-
bilistic bound implies the following PAC-Bayesian concentration bound on the model risk

computed with respect to the fractional variational posterior:

Theorem 1. Let F be a subset of all probability distributions parameterized by ©, and assume
there exist €, > 0 and pn € F such that

i | K(P, pn (d0) = [E[ru(6,600)]0n(d0) < ney,

ii. fVar rn 9 90))pn(d9) < ney, and

iii. K(pon, ) < ney.

Then, for any o™ € (0,1) and (e,17) € (0,1) x (0,1),

(a" +1)ne, + tx”f\/> log(€)

1—a'

/DW ), By e (6] X)) < >1-e—q. )

The proof of Theorem 1 is a generalization of [15] (Theorem 2.4) to the non-i.i.d. setting,
and a special case of [16] (Theorem 3.1), where the problem setting includes latent variables.
We include a proof for completeness. As noted in [15], the sufficient conditions follow
closely from [13] and we will show that they hold for a variety of Markov chain models.

A direct corollary of Theorem 1 follows by setting 17 = nln € = e~ " and using the

fact that e "¢ > % Note that Equation (9) is vacuous if # + € > 1. Therefore, without
loss of generality, we restrict ourselves to the condition nz?n <1

Corollary 1. Assume de, >0, pn € F such that the following conditions hold:
i | K(P, pn (d0) = [ E[rn(6,60)]0n(d0) < ne,,

ii. fVar rn 9 90))pn(d9) < ney , and
1ii. K(pon, ) < ney.
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Then, for any o™ € (0,1),

2(a" +1)ey
1—are - ne,

{ / Dare (P, PY) e (0] X)) < (10)

We observe that Theorem 1 and Corollary 1 place no assumptions on the nature of
the statistical dependence between data points. However, verification of the sufficient
conditions is quite hard, in general. One of our key contributions is to verify that under
reasonable assumptions on the smoothness of the transition kernel, the sufficient conditions
of Theorem 1 and Corollary 1 are satisfied by ergodic Markov chains.

Observe that the first two conditions in Corollary 1 ensure that the distribution p,
concentrates on parameters 6 € © around the true parameter 6y, while the third condition
requires that p,, not diverge from the prior 7 rapidly as a function of the sample size n. In
general, verifying the first and third conditions is relatively straightforward. The second
condition, on the other hand, is significantly more complicated in the current setting of
dependent data, as the variance of r,, (6, ) includes correlations between the observations
{Xo, ..., Xn}. In the next section, we will make assumptions on the transition kernels (and
corresponding invariant densities) that ‘"decouple’ the temporal correlations and the model
parameters in the setting of strongly mixing and ergodic Markov chain models, and allow
for the verification of the conditions in Corollary 1. Towards this, Propositions 2 and 3
below characterize the expectation and variance of the log-likelihood ratio 7, (-, ) in terms
of the one-step transition kernels of the Markov chain. First, consider the expectation of
7u(+,-) in condition (i).

Proposition 2. Fix 61,0, € © and consider the parameterized Markov transition kernels pg, and

pe,, and initial distributions q(g ) and q(o) Let pé?) and p(g:) be the corresponding joint probability

densities; that is,

n
Pl o, ) = ay) (x0) [ ] po,(ilxi1) a1

i=1

for j € {1,2}. Then, for any n > 1, the log-likelihood ratio r,,(62,01) satisfies

Po, (Xi|Xi_1)

E rn 6 ’6 = E 10
6171 (62, 61)] l; 91{ g(Pez(Xi|Xi1)

)] +Ey (7], (12)

liég) (Xo)

qég) (Xo)

where Zy := log( ) . The expectation in the first term is with respect to the joint density

function pg (y,x) = pg, (y|x)q((9’;1) (x) where the marginal density satisfies

(ifl)(x) {f pGI xo,...,xi,z, x)dxg---dx;_p fori>1,and
“ a5 (x) fori=1,

If the Markov chain is also stationary under 61, then Equation (12) simplifies to

T N ACS )
E91 [T’n(92,91)] - E91 |:1 g(P(—)z(X1|X0)>:| +E91 [ZO}- (13)

Notice that Eg, [r,(6,61)] is precisely the KL divergence, IC(PG(IH),PQ(:)). Next, the
following proposition uses [19] (Lemma 1.3) to upper bound the variance of the log-
likelihood ratio.

Proposition 3.  Fix 01,0, € © and consider parameterized Markov transition kernels pg,

and pg,, with initial distributions qgl)) and q(g ). Let p(g " and p(gz) be the corresponding joint
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probability densities of the sequence (xo, ..., Xn), and q(g? the marginal density fori € {1,...,n}

and j € {1,2}. Fix 6 > O and, for eachi € {1,...,n}, define
/’ <P9] xl‘xl 1))
91 92 Pe, xl‘xl 1)

0 x
Similarly, define Zy := IOg(q"l (Xo)

246 -
poy (xilxi_1)gf " (i )dxidixi_y.

O(x9) )’ and Dy := Ep |Zo|*™. Suppose the Markov chain
g, (X0

corresponding to 01 is a-mixing with coefficients {ay }. Then,

n

4 i ' 5/ (246
Var(ra(61,62)) < Y <n+2n5/2(c§1{92+c§392+ s, §§)92)> (/%)

ij=1
+ Z( +2n%/%( C() , T D12+ \/Cé )92D12)> (06;5152%)) (14)
+ COV(Z(), Zo). (15)

Note that this result holds for any parameterized Markov chain. In particular, when
the Markov chain is stationary, Cf()? 0, = C(gj)e2 V iand V0 € O, and Equation (14) simplifies
to

Var(rn(elr 92)) ( + 6115/2C91 92> <Z a&/ (2+9) )

4 1 / 5/ (2+9)
+ (11 +2n5/2(Cé1,>92+D1,2—|— C91 92D12 > <th /(2+ )
k>1

+COV(ZQ, Zo). (16)
If the sum ) ;¢ ai/ (2+9) is infinite, the bound is trivially true. For it to be finite, of course,
the coefficients a; must decay to zero sufficiently quickly. For instance, Theorem A.1.2
shows that if the Markov chain is geometrically ergodic, then the a-mixing coefficients are
geometrically decreasing. We will use this fact when the Markov chain is non-stationary, as
in Section 4. In the next section, however, we first consider the simpler stationary Markov

chain setting where geometric ergodic conditions are not explicitly imposed. We also note

that unless only a finite number of a; are nonzero, the sum } - wi/ 2+9)

6 = 0, and our results will typically require § > 0.

is infinite when

3. Stationary Markov Data-Generating Models

Observe that the PAC-Bayesian concentration bound in Corollary 1 specifically re-
quires bounding the mean and variance of the log-likelihood ratio r,, (6, 6y). We ensure this
by imposing regularity conditions on the log-ratio of the one-step transition kernels and
the corresponding invariant densities. Specifically, we assume the following conditions
that decouple the model parameters from the random samples, allowing us to verify the
bounds in Corollary 1.

Assumption 1. There exist positive functions Mlgl) () and M,Ez) (-), ke {1,2,...,m} such
that for any parameters 01,0, € ©, the log of the ratio of one-step transition kernels and the log of
the ratio of the invariant distributions satisfy, respectively,

m

| log po, (x1]x0) — log pg, (x1]x0)| Z x1,x0 |fk (02,601)|V (x0,x1), and ~ (17)
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m
|10gq91( ) 105’792 Z |fk 92/91)| vV ox. (18)

We further assume that for some & > 0, the functions f; 1) , fk(z) and M,El) satisfy the following:

i there exist constants C,Et) and measures p, € F such that [ |fk(t)(9, 60)|% 00, (dO) < S’
fort € {1,2},n>1andk € {1,2,...,m}, and
ii. there exists a constant B such that [ M,(cl)(x1,x0)2+‘5p9j(x1|xo)q§?) (x)dx1dxg < B, k €

{1,...,m}andj e {1,2}.

The following examples illustrate Equations (17) and (18) for discrete and continuous
state Markov chains.

Example 1.  Suppose {Xo, ..., Xy} is generated by the birth-death chain with parameterized
transition probability mass function,

=1, Bt
In this example, the parameter 0 denotes the probability of birth. We shall see that, m = 3:
MY (X1, X0) = Iix,—xo411 M3 (X1, Xo) = Iix,—x,1, and MY (X1, Xo) = 1. We also
define M 2)(Xo) = 1, and set M(Z)( Xo) and Mgz)(Xo) both to Xg — 1. Let ff”(e 6o) =
1og[ } £1(6,00) = 1og[1 90] 1(0,00) = 0, £2(6,60) = —£2(6,00) = 1og[1 90]
and f2 (9, 6p) = log [?} . The derivation of these terms and that they satisfy the conditions of
Assumption 1 is provided in the proof of Proposition 6.

Example 2. Suppose {Xo, ..., Xy} is generated by the ‘simple linear’” Gauss—Markov model
Xn = 0Xy-1+ Wa,

where {Wy,} is a sequence of i.i.d. standard Gaussian random variables. Then, m = 2, with
MUY (X, Xpo1) = [XnXn1], MY (X, Xpo1) = X2, M (x) = 5 and MIP (X) = 0. Cor-
responding to these, we have fl(l)(G, 6) = (6 — 90),f2(1)(9, 60) = (03 — 92),f1(2)(90, 6y) =
(02 — 6%) and fz(z)(Qo,Go) = 0. The derivation of these quantities and that these satisfy the
conditions of Assumption 1 under appropriate choice of py is shown in the proof of Proposition 10.

Note that assuming the same number m of M,(cl) and M,Ez) involves no loss of gener-
ality, since these functions can be set to 0. Both Equations (17) and (18) can be viewed as
generalized Lipschitz-smoothness conditions, recovering the usual Lipschitz-smoothness

when m = 1 and when fk(t) is Euclidean distance. Our generalized conditions are
useful for distributions like the Gaussian, where Lipschitz smoothness does not apply.

1
From Jensen’s inequality we have [ |fk(t) (6,600)]0n(d0)] < U |fk(t)(9, 00) >0y (de)} e
and Assumption 1(i) above implies that for some constant C > 0and k € {1,2,...,m},t €

{1,2},

(t) C C
/\fk (6,600)]0n(d) < W7 <

Assumption 1(i) is satisfied in a variety of scenarios, for example, under mild assumptions

(19)

on the partial derivatives of the functions fk(t). To illustrate this, we present the following
proposition.
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Proposition 4. Let f(6,6y) be a function on a bounded domain with bounded partial derivatives
with f(6o,00) = 0. Let {pu(-)} be a sequence of probability densities on 6 such that E,, [0] = 6

and Varp, [0] = ‘772 for some o > 0. Then, for some C > 0,

C
- (20)

170,602 pu(d0) <

Proof. Define dyf(6,6)) := w as the partial derivative of the function f. By the mean

value theorem, |£(6,600)| = |6 — 6o||9af(6*,60)|, for some 6* € [min{6, 6y}, max{6,6y}].
Since the partial derivatives are bounded, there exists L € R such that dyf(6*,6y) < L, and
[ 1£(6,00)|*+°pu(d0) < L* [|0 — 60|**°0,(d6). Choose G > 0 be such that 8] < G, then

246 2
‘% < ‘9790 . Therefore, [ |0 — 6p*"p,(d0) < (2G)2+‘5Var{%} < (ZG)‘S‘%Z. Now

G
choosing (2G)°c? as C completes the proof. [

If 99 fk(t) is continuous and © is compact, then dy fk(t) is always bounded. Furthermore,
observe that if E [Mlgl) (Xy, XO)H‘S} < B, without loss of generality we can use Jensen’s

inequality to conclude that, forall0 < a <2+, E [M,El) (X, Xo)“] < Bz < B,
We can now state the main theorem of this section.

Theorem 2. Let {Xy,..., Xn} be generated by a stationary, a-mixing Markov chain parametrized
by 0y € ©. Suppose that Assumption 1 holds and that the w-mixing coefficients satisfy

Y1 D(i/(2+5) < +oo. Furthermore, assume that K(pn, 1) < /nC for some constant C > 0.
Then, the conditions of Corollary 1 are satisfied with €, = O (max(ﬁ, #))

Theorem 2 is satisfied by a large class of Markov chains, including chains with count-
able and continuous state spaces. In particular, if the Markov chain is geometrically ergodic,
i/(2+5) < +4oc0. Observe
that in order to achieve O(ﬁ) convergence, we need < 1. Key to the proof of Theorem 2

then it follows from Equation (A4) (in the appendix) that } - «

is the fact that the variance of the log-likelihood ratio can be controlled via the application
of Assumption 1 and Proposition 3. Note also that as J decreases, satisfying the condition

Y1 vci/ 2+9) requires the Markov chain to be faster mixing.
We now illustrate Theorem 2 for a number of Markov chain models. First, consider a
birth-death Markov chain on a finite state space.

Proposition 5.  Suppose the data-generating process is a birth-death Markov chain, with one-
step transition kernel parametrized by the birth probability 8y € ©. Let F be the set of all Beta
distributions. We choose the prior to be a Beta distribution. Then, the conditions of Theorem 2 are

satisfied and e, = O (ﬁ)

Proof. The proof of Proposition 5 follows from the more general Proposition 8, by fixing the
initial distribution to the invariant distribution under 6. Therefore it has been omitted. We
simply refer to the proof of Proposition 8 under a more general setup in Appendix B.3. [

The birth-death chain on the finite state space is, of course, geometrically ergodic and
the a-mixing coefficients oy decay geometrically. Note that the invariant distribution of
this Markov chain is uniform over the state space, and consequently this is a particularly
simple example. A more complicated and more realistic example is a birth-death Markov
chain on the nonnegative integers. We note that if the probability of birth 6 in a birth-death
Markov chain on positive integers is greater than 0.5, then the Markov chain is transient,
and consequently, not ergodic. Hence, our prior should be chosen to have support within
(0,0.5). For that purpose, we define the class of scaled beta distributions.
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Definition 2 (Scaled Beta). If X is a beta distribution on with parameters a and b, then Y is said
to be a scaled beta distribution with same parameters on the interval (c, m + c) if

Y=mx+c; (mec) c R?
and in that case, the pdf of Y is obtained as

sty = Lt (5) T (- 5) T itve@mo),

0 otherwise.

Here, E[Y] = m % 4 c and Var[Y] = m?

set m = 0.5 and ¢ = 0 giving it support on (0
distribution rescaled to have support on (—1,

WZ%H)' For the birth-death chain, we

,%). Setting m = 2 and ¢ = —1 gives a beta
1).

Proposition 6. Suppose the data-generating process is a positive recurrent birth-death Markov
chain on the positive integers parameterized by the birth probability 6y € (0, %) Further let F be
the set of all Beta distributions rescaled to have support (0, 3). We choose the prior to be a scaled
Beta distribution on (0,1/2) with parameters a and b. Then, the conditions of Theorem 2 are

satisfied with €, = O(ﬁ)

Proof. The proof of Proposition 6 (for the stationary case) follows from the more general
Proposition 9 (the nonstationary case) by fixing the initial distribution to the invariant
distribution under 6y. We omit the proof and simply refer to the proof of Proposition 9
under a more general setup in Appendix B.3. [

Unlike with the finite state-space, the invariant distribution now depends on the
parameter § € ©, and verification of the conditions of the proposition is more involved.
In Appendix A.2, we prove that the class of scaled beta distributions satisfy the condition
K(pn, ) < ne, when the prior 7 is a beta or an uniform distribution. This fact will allow
us to prove the above propositions.

Both Proposition 5 and Proposition 6 assume a discrete state space. The next example
considers a strictly stationary simple linear model (as defined in Example 2), which has a
continuous, unbounded state space.

Proposition 7.  Suppose the data-generating model is a stationary simple linear model:
Xn = 00Xn—1+ Wy, (21)

where {W, } are i.i.d. standard Gaussian random variables and |0y| < 1. Suppose that F is the
class of all beta distributions rescaled to have the support (—1,1). Then, the conditions of Theorem 2

are satisfied with e, = O(ﬁ)

Proof. This is a special case of the more general non-stationary simple linear model
which is detailed in Proposition 10. Therefore, the proof of the fact that the simple linear
model satisfies Assumption 1 when starting from stationarity is deferred to the proof
of Proposition 10. The simple linear model with |6y| < 1 has geometrically decreasing
(and therefore summable) a-mixing coefficients as a consequence of [20] (eq. (15.49))
and Theorem A.1.2. Combining these two facts, it follows that the conditions of Theorem 2
are satisfied. O

Observe that Theorem 1 (and Corollary 1) are general, and hold for any dependent
data-generating process. Therefore, there can be Markov chains that satisfy these, but do
not satisfy Assumption 1 which entails some loss of generality. However, as our examples
demonstrate, common Markov chain models do indeed satisfy the latter assumption.
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4. Non-Stationary, Ergodic Markov Data-Generating Models

We call a time-homogeneous Markov chain non-stationary if the initial distribu-
tion ¢(%) is not the invariant distribution. There are two sets of results in this setting:
in Theorem 3 and Theorem 4 we explicitly impose the a-mixing condition, while in The-
orem 5 we impose a f-geometric ergodicity condition (Definition A.1.2 in the appendix).

As seen in Equation (A4) (in the appendix) if the Markov chain is also geometrically er-

godic, thenV 6 > 0, Zai/(2+5) < oo. This condition can be relaxed, albeit at the risk of

more complicated calculations that, nonetheless, mirror those in the geometrically ergodic
setting. A common thread through these results is that we must impose some integrability

(1)

or regularity conditions on the functions M, .

(

First, in Theorem 3 we assume that the Mkl) functions in Assumption 1 are uniformly
bounded and that the a-mixing condition is satisfied. This result holds for both discrete
and continuous state space settings.

Theorem 3. Let {Xy, ..., Xy} be generated by an a-mixing Markov chain parametrized by 6y € ©
with transition probabilities satisfying Assumption 1 and with known initial distribution q(©). Let

(2+9)

{ar} be the a-mixing coefficients under 6y, and assume that } j~q uci/ < +o0. Suppose that

there exists B € R such that sup, , \M,El) (x,y)| < Bforallk € {1,2,...,m} in Assumption
1. Furthermore, assume that there exists p, € JF such that K(pu, w) < \/nC for some constant
C > 0. If the initial distribution q(°) satisfies E o) |M,£2)(X0)|2 < 4ooforallk € {1,2,...,m},

then the conditions of Corollary 1 are satisfied with €, = O (max(ﬁ, #})
The following result in Proposition 8 illustrates Theorem 3 in the setting of a finite
state birth-death Markov chain.

Proposition 8. Suppose the data-generating process is a finite state birth-death Markov chain,
with one-step transition kernel parametrized by the birth probability 6y. Let F be the set of all Beta
distributions. We choose the prior on 6y to be a Beta distribution. Then, the conditions of Theorem 3

are satisfied with €, = O(ﬁ) for any initial distribution q(%).

Theorem 3 also applies to data generated by Markov chains with countably infinite
state spaces, so long as the class of data-generating Markov chains is strongly ergodic and
the initial distribution has finite second moments. The following example demonstrates
this in the setting of a birth-death Markov chain on the positive integers, where the initial
distribution is assumed to have finite second moments.

Proposition 9. Suppose the data-generating process is a birth-death Markov chain on the non-
negative integers, parameterized by the probability of birth 6y € (0, %) Further let F be the set
of all Beta distributions rescaled upon the support (0, %) Let ) be a probability mass function
on non-negative integers such that Y5>, i2q(%) (i) < 4-oc0. We choose the prior to be a scaled Beta
distribution on (0,1/2) with parameters a and b. Then, the conditions of Theorem 3 are satisfied

: _ 1
with €, = O(W)
Since continuous functions on a compact domain are bounded, we have the following
(easy) corollary (stated without proof).

Corollary 2. Let {Xo,...,Xn} be generated by an a-mixing Markov chain parametrized by
6o € © on a compact state space, and with initial distribution %), Suppose the a-mixing coefficients

satisfy Y >q ai/(H&) < 400, and that Assumption 1 holds with continuous functions M,((l) (),
k € {1,2,...,m}. Furthermore, assume that there exists p, such that K(p,, 1) < /nC for some

constant C. Then, Theorem 3 is satisfied with €, = O (max( ”m)

1
NI
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(1)

In general, the M, "’ functions will not be uniformly bounded (consider the case of
the Gauss—Markov simple linear model in Example 2), and stronger conditions must be
imposed on the data-generating Markov chain itself. The following assumption imposes a
‘drift’ condition from [21]. Specifically, [21] (Theorem 2.3) shows that under the conditions
of Assumption 2, the moment generating function of an aperiodic Markov chain {X,} can
be upper bounded by a function of the moment generating function of Xj. Together with
the a-mixing condition, Assumption 2 implies that this Markov data generating process
satisfies Corollary 1.

Assumption 2. Consider a Markov chain {X,} parameterized by 6y € ©. Let M", de-
note the o-field generated by {X_oo, .., Xu_1,Xn}. Denote the stochastic process {Mk} =
{Mlgl) (X, Xy—1)}; recall M ,for eachk =1,...,my, are defined in Assumption 1. For each
k=1,...,m, assume the process { MK} satisfies the following conditions:

e The drift condition holds for {MK}, ie., E[Mﬁ koML ME > a} < —e for some
€,a>0.
k k
e ForsomeA > 0and D >0, E[e)‘(M"_Mnfl)|M’i;}} <D.

Under this drift condition, the next theorem shows that Corollary 1 is satisfied.

Theorem 4. Let {Xo, ..., Xy} be generated by an aperiodic a-mixing Markov chain parametrized
by 0y € © and initial distribution q(0). Suppose that Assumption 1 and Assumption 2 hold, and that

the a-mixing coefficients satisfy Zk>1 0/5/ (210) Yoo, Furthermore, assume K(pn, ) < /nC

for some constant C > 0. If [ e () Pe, (y|x)q§0)( x)dx < +ooforallk =1,...,mq, then the

conditions of Corollary 1 are satisfied with €, = O(max( Nl (:1/2 ))

Verifying the conditions in Theorem 4 can be quite challenging. Instead, we sug-
gest a different approach that requires f-geometric ergodicity. Unlike the drift condition
in Assumption 2, f-geometric ergodicity additionally requires the existence of a petite
set. As noted before, geometric ergodicity implies a-mixing with geometrically decaying
mixing coefficients. As with Theorem 4, we assume for simplicity that the Markov chain is
aperiodic.

Theorem 5. Let {Xo,..., X, } be generated by an aperiodic Markov chain parametrized by
6o € © with known initial distribution q%), and assumed to be V-geometrically ergodic for

some V : R™ — [1,00). Suppose that Assumption 1 holds and fM,El)( x)2 0 pg, (y|x)dy <
V(x) ¥ k,x and some 6 > 0. Furthermore assume that IC(pn, 1) < fC for some constant
C > 0. If the initial distribution q'%) satisfies E ) [V(Xo)] < oo, then the conditions of Corollary

1 are satisfied with €, = O(max( T (;/2 ))

The following Proposition 10 shows, the simple linear model satisfies Theorem 5 when
the parameter 0 is suitably restricted.

Proposition 10. Consider the simple linear model satisfying the equation

Xn = 00Xy—1+ Whn, (22)

where {Wy, } are i.i.d. standard Gaussian random variables and |6y| < 2wz L for 6 > 0. Let F be
the space of all scaled Beta distributions on (—1,1) and suppose the prior 7t is a urziform distributiorz

on (—1,1). Then, the conditions of Theorem 5 are satisfied with €, = O (max( NCL = )) if the
initial distribution q(°) satisfies E [X3+25] < +o0.
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p

(a’ + 1)ne, + E[rn(6,0;)] + a’e\/zneﬁzvar[r” (Oi0)l log(e€)

5. Misspecified Models

We show next how our results can be extended to the misspecified model setting.
Assume that the true data generating distribution is parametrized by 6y ¢ ©. Let 0}, :=

arg mingcg K (Pé:), Pén)) represent the closest parametrized distribution in the variational

family to the data-generating distribution. Further, assume our usual conditions:

i J E[ra(60,6;)]04(d0) < ney,
ii. J Var(r,(6,0;))pn(d0) < ney.

Now, since r,(8,0p) = r,(0,0}) + rn(6;;,00), we have
[P P pu(de) < Elra@0,6;,)] + ey (23)
Similarly, decomposing the variance it follows that
Var[ry(6,60)] = Var([ru(0,0;)] + Var[rs(6,,60)] +2Cov[ru(6,6,), 2 (65, 60)].  (24)

Using the fact that 2ab < a? + b? on the covariance term 2Cov|r,(6,0;),4(05,00)] =
2E[ (1, (6,03) — Elra (6, 6)]) (1 (65, Bo) — Elra (65, 60)])], we have

Var|[r,(6,600)] < 2Var[r,(6,0;;)] + 2Var[r,(6;;, 6p)]. (25)

Integrating both sides with respect to p, (df) we get

/ Var[r(6,60)]pn(d6) < 2 / Var[ra(6,65)]on (d6) + 2 / Var[ra (6%, 60)] on (d6)
< 2ney, + 2Var[r,(6;,60)]. (26)

Consequently, we arrive at the following result:

Theorem 6. Let F be a subset of all probability distributions parameterized by ©. Let 8;, =
arg mingce IC(PéOn), Pén)) and assume there exist €, > 0 and p, € F such that

i J E[ra(6,6;)]0.(d0) < ney,

i. | Var(r,(6,6;))pn(d0) < ne,, and

ii. K(pon, ) < ney.

Then, for any o™ € (0,1) and (e,17) € (0,1) x (0,1),

| D (P et ) <

n

1 — ate 21_6—77' (27)

The proof of this theorem is straightforward and follows from the proof of Theorem 1
by plugging in the upper bounds for KL-divergence from Equation (23), and variance from
Equation (26) to Equation (A13). A sketch of the proof is presented in the appendix.

6. Conclusions

Concentration of the KL-VB model risk, in terms of the expected a"*-Rényi divergence,
is well established under the i.i.d. data generating model assumption. Here, we extended
this to the setting of Markov data generating models, linking the concentration rate to the
mixing and ergodic properties of the Markov model. Our results apply to both stationary
and non-stationary Markov chains, as well as to the situation with misspecified models.
There remain a number of open questions. An immediate one is to extend the current
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analysis to continuous-time Markov chains and Markov jump processes, possibly using
uniformization of the continuous time model. Another direction is to extend this to
the setting of non-homogeneous Markov chains, where analogues of notions such as
stationarity are less straightforward. Further, as noted in the introduction, [14] establish
PAC-Bayes bounds under slightly weaker ‘existence of test functions’ conditions, while
our results are established under the stronger conditions used by [15] for the i.i.d. setting.
Weakening the conditions in our analysis is important, but complicated. A possible path is
to build on results from [22], who provides conditions form the existence of exponentially
powerful test functions exist for distinguishing between two Markov chains. It is also
known that there exists a likelihood ratio test separating any two ergodic measures [23].
However, leveraging these to establish the PAC-Bayes bounds for the KL-VB posterior is
a challenging effort that we leave to future papers. Finally it is of interest to generalize
our PAC-bounds to posterior approximations beyond KL-variational inference, such as a"-
Rényi posterior approximations [6], and loss-calibrated posterior approximations [24,25].
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Appendix A. Technical Desiderata
Appendix A.1. Definitions Related to Markov Chains

As noted before, ergodicity plays an acute role in establishing our results. We con-
solidate various definitions used throughout the paper in this appendix. Recall that we
assume the parameterized Markov chain possesses an invariant probability density or
mass function gy under parameter § € ©. Our results in Section 4 also rely on the ergodic
properties of the Markov chain, and we assume that the Markov chain is f-geometrically
ergodic [20] (Chapter 15). First, refer to the definition of the functional norm || - ¢, from
Definition A.1.1,

Definition A.1.1 (f-norm). The functional norm in f-metric of a measure v, or the f-norm of

v is
/gdv

[0l = sup , (A1)

glgl<f

where f and g are any two functions.

An immediate consequence of this definition is that if f, f, are two functions such
that f1 < f (i.e., for all points in the support of the functions), then
ol < llvll,- (A2)
Now that we have defined the || - || norm, we can now define f-geometric ergodicity.
In the following, we assume the Markov chain is positive Harris; see [20] for a definition.
This is a mild and fairly standard assumption in Markov chain theory.
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Definition A.1.2 (f-geometric ergodicity). For any function f, Markov chain {X,} parameter-
ized by 6 € © is said to be f-geometrically ergodic if it is positive Harris and there exists a constant
r¢ > 1, that depends on f, such that for any A € B(X),

Y.
n=1

Py(Xn € AlXp = x) — /Aﬂle(y)dny < oo. (A3)

It is straightforward to see that this is equivalent to

for an appropriate constant C (which may depend on the state x), that is, the Markov chain
approaches steady state at a geometrically fast rate. If a Markov chain is f-geometrically
ergodic for f = 1, then, it is simply termed as geometrically ergodic. It is straightforward to
see (via Theorem A.1.2 in the Appendix) that a geometrically ergodic Markov chain is also
a-mixing, with mixing coefficients satisfying

Pg(Xn S A|X0 = x) — /QQ(y)dny < er:"

Y ap <oo ¥V v>0, (A4)
k>0

showing that, under geometric ergodicity, the a-mixing coefficients raised to any positive
power v are finitely summable. We note here that the most standard procedure to establish
f-geometric ergodicity for any Markov chain is through the verification of the drift condi-
tion. The drift condition is a sufficient condition for a Markov chain to be f-geometrically
ergodic, as long as there exists a set (called petite set) towards which the Markov chain
drifts to (see Assumption A.1.1 in the appendix). If a Markov chain is f-geometrically
ergodic with f = V, for some particular function V, then we call it V-geometrically ergodic.

We defined V-geometric ergodicity in the previous sections. In this section, we provide
a sufficient condition for a Markov chain to be V-geometrically ergodic. First, we recall the
definition of resolvent from [20] (Chapter 5).

Definition A.1.3 (Resolvent). Let n € {0,1,2,...} and q, be such that g, > 0 V n and
Yo1qn = 1. Note that q, can be thought of being a probability mass function for a random

" _n

variable "q” taking values on non-negative integers. Then, the resolvent of a Markov chain with
respect to q is given by K,(x, A) where,

Ky(x,A) = i gnP (X, € A|Xo = x). (A5)
n=0

Then, the definition of petite sets follows (see, for Reference, [20] (Chapter 5)).

Definition A.1.4 (Petite Sets). Let Xy, ..., X, be n samples from a Markov chain taking values
on the state space X. Let C be a set. We shall call C to be v, petite if

K;(x,B) > v4(B)

orall x € Cand B € B(X), and a non-trivial measure v, on B(X), and a probability mass
f q p Y
function gon {1,2,3,...}

Now, let AV (x) := E[V(Xy)|Xp—1 = x] = V(x) for V: S — [1,00).
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Assumption A.1.1 (Drift condition). [20] (Chapter 5) Suppose the chain { X, } is, aperiodic and
y-irreducible . Let there exists a petite set C, constants b < oo, f > 0, and a non-trivial function
V : S — [1,00) satisfying
AV (x) < —BV(x) + blyec Vx €8S. (A6)
If a Markov chain drifts towards a petite set then it is V-geometrically ergodic. Sup-
pose, for simplicity, that V(x) = |X|. Then, the drift condition becomes E[| X, || X,_1] —
|Xu—1] = —B|Xu| + blx,cc. The left hand side of this equation represents the
change in the state of the Markov chain in one time epoch. Thus, the condition in
Assumption A.1.1 essentially states that the Markov chain drifts towards a petite set
C and then, once it reaches that set, moves to any point in the state space with at least some
probability independent of C.

Theorem A.1.1 (Geometrically ergodic theorem).  Suppose that {X,} is satisfies
Assumption A.1.1. Then, the set Sy = {x : V(x) < oo} is absorbing, i.e., Py(Xq1 € Sy|Xp =
x) = 1Vx € Sy, and full, i.e., (S5,) = 0. Furthermore, 3 constants r > 1, R < co such that,
forany A € B(S),

Any aperiodic and ¢-irreducible Markov chain satisfying the drift condition is geomet-
rically ergodic. A consequence of Equation (A2) is that if, { X, } is V-geometrically ergodic,
then for any other function U, such that |U| < V, it is also U-geometrically ergodic. In
essence, a geometrically ergodic Markov chain is asymptotically uncorrelated in a precise
sense. Recall p-mixing coefficients defined as follows. Let A be a sigma field and £%(A) be
the set of square integrable, real valued, .A measurable functions.

Py(Xn € AlXp = x) —/ qg(y)dyH < Rr7"V(x). (A7)
A 14

Definition A.1.5 (p-mixing coefficient). Let M{ denote the sigma field generated by the
measures Xy, wherei < k < j. Then,

px = sup sup |Corr(f, 8)l, (A8)
20 (f,g)eL? (M) x L2 (M2

where Corr is the correlation function.

Theorem A.1.2. If X,, is geometrically ergodic, then it is a-mixing. That is, there exists a constant
¢ > 0 such that ay = O(e~k).

Proof. By [26] (Theorem 2) it follows that a geometrically ergodic Markov chain is
asymptotically uncorrelated with p-mixing coefficients (see Definition A.1.5) that sat-
isfy pr = O(e~). Furthermore, it is well known that [18,26] ax < lp;, implying
ap=O0(e ). O

Appendix A.2. Bounding the KL-Divergence between Beta Distributions

The following results will be utilized in the proofs of Propositions 8-10.

Lemma A.2.1. Let 6y € (0,1). Let, p, be a sequence of Beta distributions with parameters
an = nby and by, = n(1 — 6y). Let 7t denote an uniform distribution, U(0,1). Then, KC(pn, 1) <
C + 1 log(n), for some constant C > 0.

Proof. Without loss of generality, we can assume a, > 1 and b,, > 1. The same form of the
result can be obtained in all the other cases, by appropriate use of the bounds presented in
the proof. We write the KL divergence K(p,, 77) as [ log(2%)p,(d6). Since 7 is uniform,
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71(0) = 1 whenever 6 € (0,1). Hence, the KL-divergence can be written as the negative of
the entropy of p,, fol log(px(0))pn(d6), which can be written as

K(on, ) = (an = 1)¢p(an) + (bn — 1)p(bn) — (an + by — 2)9(an + bu)
—log Beta(ay, by), (A9)

where ¢ is the digamma function. Using Stirling’s approximation on Beta(a,, b,;) yields,

a;zln—l/Zbrbln—l/Z

(an + bn)ﬂnern*l/z

Beta(a,, by) = V27 (1+0(1)).

Hence, setting C; = log(2+/7), we can write — log Beta(ay, by, ) as,
1 1
—logBeta(ay, b,) = C1 — (a, — E) log(ay) — (by — E) log(by)
1
+ (an + by — 5) log(ay + by) +1og(1+o0(1)).

From [27] we have that log(x) — 1 < ¢(x) < log(x) — & V x > 0. Since we assumed
ay > 1and b, > 1, the fact that »(x) < log(x) — - implies

— 2x
(an — 1)p(an) < (an — 1) log(ay) — “2; ! and,
by —
(b — 1) (by) < (by — 1) log (bn) — anl.

1
x

Finally, using the fact that log(x) — =+ < ¥(x), we get,

b, —2
—(an + by —2)¢(an +bp) < —(an + by —2)log(an + by) + M.
ay + by

Therefore, after much cancellation, the KL-divergence
(an — D)p(an) + (by — 1)¢p(by) — (an + by — 2)P(an + by) — log Beta(ay, by)
can be upper bounded by

1

3 og(an) — 5 log(bu) + > log(ay + by) + 2 T2 Onm L b

a, + by 2ay 2b,

Now, plugging in the values of a,, and b;,, we get Plugging in the values of a,, and b,,, we
get as upper bound for the KL-divergence as,

n—2 mnh—1 n(l-=0)-1

1 1 3
K(on, 1) < —5log(nbo) — 5 log(n(1 — o)) + 5 log(n) + — 26y 2n(1— 6o)

2 1 1
n  2n6y 2n(1-—6))

= élog(n) - %(log(Go) +1log(1—6p)) +3 —
<C+ %log(n),

for some large enough positive constant C. This completes our proof. O

Proposition A.2.1. Let 6y € (0,1). Let, p,, be a sequence of Beta distributions with parameters

a, = nby and b, = n(1 — 6y). Let 7t denote an Beta distribution, with parameters (a,b). Then,
K(pn, 7t) < C+ }log(n), for some constant C > 0.
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Proof. Without loss of generality, we assume 2 > 1 and b > 1. As mentioned in the proof
of Lemma A.2.1, the other cases follows similarly. We write the KL-divergence between pj,
and 7t as,

K (o, 7) / log "” pn (d6) / log pn (d6) + / log( )pn(de)

where, U is an uniform distribution on (0,1). We analyze the second term in the above
expression. The second term can be written as,

/10g< >p" (46) /log(Bem( .~ 11(1—9)b1)f’"(d9)

—Ci— (a—1) [ log(6)pu(d6) — (b—1) [ log(1 —0)p, (a0),

where C; is log(Beta(a, b)). Since, p, follows a Beta distribution with parameters a,, = nfy
and b, = n(1 — 6y), we get that,

1082 ) d0) = €1 = (o= )[plar) = i+ 52)] = (0= D[p(b) — i + )

Since, log(x) — 1 < ¢(x) < log(x) — 5, looking at the term [¢(a,) — (a, + by)], we get
that,

—[p(an) = p(an +bn)] = =[(nbo) — $(nbo + n(1 - 6o))]
= —[p(nbo) —p(n)].

Using the lower bound on (1) and the upper bound on (1), we get

1 1
—[¥(an) — ¢(an + bn)] < —log(nbo) + oot log(n) — =
2—06
= —log(6y) + ZnGOO'
Furthermore, similarly, we get that,
2—(1—6

~[p(B) — plan-+ )] < ~log(1 —e0) + 5=,

Therefore it follows that
max{—(a —1)[¢(an) — P(an + bn)], = (b = 1)[¢(bn) — P(an + bn)]}
2—6 2— (1 - 90)
< max{(a -1) [— log(6p) + T }, (b—1) {— log(1 —6p) + 211(190)] }

<C,

for a large positive constant C. Using the above bounds, we finally show that,

Cr— (@ =1)[y(an) = (an +bu)] = (b= 1)[(bn) — (an + bn)]
< C;+2C,

which can be upper bounded by C’ for some large constant C’. Finally, we upper bound
[log (%) pn(d6) by Lemma A.2.1 thereby completing the proof. [
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Appendix B. Proofs of Main Results
Appendix B.1. Proofs for A Concentration Bound for the a"*-Rényi Divergence
Appendix B.1.1. Proof of Proposition 1

We start by recalling the variational formula of Donsker and Varadhan [28].

Lemma B.1.1 (Donsker-Varadhan). For any probability distribution function 1t on ©, and for
any measurable function h : @ — R, if [ e'dm < oo, then

log/ehdn = sup {/hdp - K(p, 71)} (A10)

pEM*(O)

Now, fix ™ € (0,1), and 6 € ©. First, observe that by the definition of the a"-Rényi
divergence we have

Efy [exp(~a*ru(8,80))] = exp~(1 ") Dy (5", Py

Multiplying both sides of the equation by exp[(1 — a’ )Dare(Pé”), PB(:)) and integrating

with respect to (w.r.t.) 7t(6) it follows that

/ Egy) [exp (~a"ra(6,80) + (1 — a)Dore (P, P) ) | (d0) = 1,01

B | [ exp (o (6,60) + (1 =)D (0", £) ) ()| =1

Define h(0) := —a"r,(0,600) + (1 — zx’e)Dare(Pe(n),Pe(:)). Then, applying Lemma B.1.1 to
the integrand on the left hand side (1.h.s.) above, it follows that

Eég) [exp( sup
pEM™(O)

/h(e)p(de) —K(p, n)})] ~1.

Multiply both sides of this equation by € > 0 to obtain
E((?Z) [exp( sup [/h(@)p(de) —K(p, )+ log(g)]>] —c
pEMT(O)

Now, by Markov’s inequality, we have

p;p{ sup [ (~a’r,(6,60) + (1—a"*)Dye (Py", Py))p(d6) — K(p, ) +log(e) > 0| <e. (All)

pEMT(O)

—

Thus, it follows via complementation that

re

[ € 7(©) [ Dar(2f”, B () < | ro(0,eu)ptiey + <1 B

1—a'

Z 1- €,
thereby completing the proof. O

Appendix B.1.2. Proof of Theorem 1

Recall the definition of the fractional posterior and the VB approximation,

exp—a”rn(9,9o)(X") 7t(d)
TCy,qre| X1 = fexp—a"'rn('yﬁo)(xn) n(d’)/)’

Py re|xn = argmin K(p, L, e X0 ).
peF
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It follows by definition of the KL divergence that

Ty are|xn = Arg min{—zx’e / rn(6,60)p(d0) + K(p, ) }, (A12)
pEF

where 71 is the prior distribution. Following Proposition 1 it follows that for any € > 0

; o K(p, ) —log(e)
/Dam ) p ) (d0]X™) < m/m(&%)p(wH T—ae '

with probability 1 — e. We fixan 57 € (0,1). Using Chebychev’s inequality, we have

; Qe . w’t
ry L—a [ @ e0)puta) 2 1 [ Elru@,60)lon(a0)

A’ \/Var[f rn(6,00)0n(d6)] N K(pn,n)l

1—a' N 1—a'

90 Lf;re | ro(6,60)p1 (o) —%/E[rn(e,eo)]pn(de) _W

“76

S Var[ [ r4(6,600)pn(d0)]
- 1 —_ 0(7'3 ;7

. Var[ & e [ 12(8,00)0n(d0) — 1% [ E[ra(6,60)]0n(d6) — (Pirf)}

- ()2 Var| frn 6,60)0n(d6)]
(1—are)? [

Note that %7 an J E(rn(6,60))pn(d6) and 1(P ’;ye) are constants with respect to the data,
implying

0‘7’6

Var[l_“,e [ 7@, 00)pu(de) 5 K (pn, )

1_“1’6

(6,60)]0n(d6) —

(@)
= mVar {/ (6, 60)pn (d(?)] .
Therefore, we have

1i re/E[rn(HIQO)}Pn(dQ)

o’ Var[ [ 7,(60,00)pn(d0)] K (on, 1)
+ <
1—ar 7 (R

Qe
Pfg:) |:1 —are /r"(gr GO)Pn(de) >

From Proposition 1, with probability 1 — € the following holds

2’ [ 14(6,00)0n(d0) + K(pn, ) — log(e)
1—are '

/ Dare (B§"), BY) g (d6) <
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Therefore, with probability 1 — # — € the following statement holds
(PY, Py pu () (A13)

W | Var[[ r,(6,60)pn(d0)]
1— e i

K(pn, ) — log(e)
1—are )

/Dwre(Pe(”),Pe(: ) HIXW‘X” d@

+

Next, we observe that

Var [ [rte, eo>pn<d9>] =y U [ ra®,00)pu(de) ~ E [ [ rte, eo>pn<de>}

T

by a straightforward application of Jensen’s inequality to the inner integral on the left hand
side. Finally, following the hypotheses (i), (ii) and (iii), we have,

n ) ~ a't n n Varlr, (6,09)]0,(d0
/D,Xm(Pe( ), BY) 7y e (d6) < 1_are/(IC(Pé0),P9( DUV RALL (17 0)Jen ))pn(dé))

< /Var[rn(f),@o)]Pn(dG)/

+ L (K(ow, ) — log(e))

0(1’8

re ney
< o’ (en + 0 ) ne, —log(€)

R T T—we

thereby concluding the proof. O

Appendix B.1.3. Proof of Proposition 2

. pe, (X;|Xi—1) . ©(x,
We define Y; := log(rﬁmmb) fori =1,...,n,and Zy = log (ZEO)EXzi . Then,

using the Markov property we can see that the Kullback-Leibler divergence between
the joint distributions Pé?) and Pé:) satisfies K (Pe(ln)' PG(:)) = Y.i-1 Eg, [Yi] + Eg, [Zo]. If the

Markov chain {X;} is stationary under 61, so is {Y; }. Hence Y; 2 Y, and the above equation
reduces to,

K (Pe(ln)f Pe(:)) = nEg, [Y1] + Eg, [Zo]. (A14)
O

Appendix B.1.4. Proof of Proposition 3
First, recall the following result from [19].

Lemma B.1.2. [19] (Lemma 1.2) Let X_c, ..., X1, X2, ... be an a-mixing Markov chain with
a-mixing coefficients given by ay. Let MY be the sigma-field generated by the subsequence
(Xa, Xg41,---,Xp). Let gy € ML and v € M, be adapted random variables such that
I7e] <1, || < 1. Then,

t+k

sup sup|E[n:] — E[m]E[1e]| < 4oy (A15)
t T

This lemma provides an upper bound on the covariance of events 77 and 7, as shown
next.
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Lemma B.13. Lety € M' 1 € M, be such that, E|y|*™ < Cy,E|t]*™ <
C, for some & > 0. Then, for a fixed n < +oo, we have

[Eyt — EyEt| < (4 +2n%/2(Cy + Co) + 2n9/2\/C1C ) 20/(249), (A16)

Proof. Let N < +o0 be a fixed number. We get from the triangle inequality that

Byt — EyET| < [Entljy <n jei<n) — By < ETljo<n| (A17)
+ [En Tl >N e <ny = By >N ET e <n]
FHEnTlyi<ne=n) = Enljy < BTz =]
+ BNty o e =N — By > ET]jrsn |-
Multiplying and dividing the first term by N? and applying Lemma B.1.2, we get

[Entljy <n,cj<n] — Enljy<nET]jq<n | < 4N?ay. For the second term, if |[t| < N, then
T < Nand T > —N. Plugging this in the second term we get,

Er el o< =Bl =BT e <ng)| < [NEnTjgpon + N [Enljypsn]| - (A18)
Since || > N, we have 1 < |N|1 — . Following this,
2+<5
[2NEn Iy >Ny < 2N ’ {Nws 1[n|>N]] ’ (A20)
G
2+5
gzNNM\E |<2N5. (A21)

Similarly, we can also write for the third term, [EntIjj, i<y, c|>n) — Enljjy <N ET]jrjzn| <
2%. Finally, for the last term we get that by Cauchy-Schwarz inequality,

RS MEVERS R EITES L EEY IR \/ Var [z | Var [Tleizn | (A22)

<2\/Var[171[,7>N]}Var[r1[T>Nﬂ (A23)

S 2\/E {WZIHU‘ZN]}E {T21[|T|2N]] . (A24)
Since || > N, 1 < Lol ‘ . Similarly, 1 < L=l ‘ . Plugging these in the previous equation, we
get,
1
\/E [P0y =8| E[Plieon] < Nz(sE[|’7|2+51 o [E[ [T oo (A25)
1
< VGG (A26)

Combining the four upper bounds above, we get,

2
+ /GG (A27)

2
Ent — EnEt| < 4N? = (C1+C
| nt n T’— lxk+N5( 1+ 2) N
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,1/2“](—1/(24-6)

Now, in particular, setting N = n it follows that

|Ent — EnEt| < %ai/(ZM) + Zn‘s/szi/(H‘S) (C1+C) + 2n‘5/2ai/(2+5) VvCiC  (A28)
_ (: +2n°/2(Cy + Cy) + 2n5/2m> o/ F0), (A29)

O

Lemma B.1.4. Let {X;} be an a-mixing Markov chain with mixing coefficient ay. Further assume
that B| X¢|?+° < Cy and E|X; [>T < C, for some 6 > 0. Then, for any t and any n > 0

4
ICov(Xs, Xiip)| < <n +2n%/2(Cy + Gy) + 2n5/2\/c1c2>ai/(2+5). (A30)

Proof. Setny = X, T = Xy in Lemma B.1.3. O

We also need to establish the following technical lemma.

Lemma B.1.5. Let {X;} be an a-mixing Markov Chain with mixing coefficients {a;}. Then the

process {Y;} where Y; := 10g<P90(Xz|Xt1)

O —— ) is also a-mixing with mixing coefficients {&; } where
Pe(Xt|Xt1)> g § coeffi (&}

K = Kp_1.

Proof. By Z; denote the paired random measure (X;, X;_1). Let M{ denote the sigma
field generated by the measures Xj, wherei < k < j. By g{ denote the sigma field
generated by the measures Z;, wherei <k <j. LetC € M{;l. Then, C can be expressed
as (Cj_1 X C;j x -++ X C]-). for C;_q € /\/l;:j, C € ./\/li and so on. Now, consider a
map. Tl.j P (Ciiy xCix oo xCj) = (Cig x G x Gy x -+ - x Cj_1 x Cj_1 x Cj). Note that,
Tg(C) € g{ Itis easy to see that g{ = TZJ(MLl) U M:-il, where Tij(/\/lgfl) is obtained by
applying the map Ti] to each element of /\/lLl. If we assume this latter set to be the range
and ./\/lf.;1 to be the domain, then, by construction, Tij is a bijection. Furthermore, the two
classes are made of disjoint sets, i.e., if A € TZ(MLl) and A* € Mﬁl, then AN A* = ¢.

Furthermore, note that M{il is made of impossible sets. i.e., P(A*) =0 V A* € M{il
Now consider the a-mixing coefficients for Z;. By definition, it is given by

A =sup  sup |[P(ANB) — P(A)P(B)]
i AegGl . ,BeG®

i+k
= sup sup |IP((A°UA*)N (B°UB*)) — P((A°U A™))P((B° UB"))|.
i AeG' . ,BeG®,
where,
A= (A°U A¥) B = (B°UB")
A e TE (M) A* e M*

* *00
B? € Ty (M7 q) B e Mig .
Then, the expression for the a-mixing coefficient can be reduced into

af = sup sup |P(A° N B%) — P(A°)P(B%)].

I ACET! (ML) BOETS (M, )
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Note that, by bijection property of TIJ ,wecan find A’ € M’ and B' € M3, _, such that

ap =sup  sup [P(TLo(A") Ty 1 (B') = P(TLe(A"))P(T, 4 (B))].
bAEML B'EME
= Qg—1-
Now, log (%) is just a function of the paired Markov chain Z;, therefore it has

x-mixing coefficient ;1. O

We now proceed to the proof of Proposition 3. Let { Xy} be a stationary a-mixing
Markov chain under 6; with mixing coefficients {«y }. Observe that the log-likelihood can
be expressed as

a0, 00) = Yo (L2 ) +1og @%M)

i=1 Pez( 1

n
= ZYi + Zy.
i=1

Therefore, the variance of the log-likelihood ratio is simply
n

Y Y+ Zo

i=1

= ZCOV@1 ir ] +2COV91 YI,Z0)+COV91(Zo,Zo)
i,j=1 i=1

Val‘g1 [1’;1 (92, 91 )] = Val‘g1

It follows from Lemma B.1.5 that {Y}} is a stochastic process with a-mixing coefficients
«x_1. Therefore, using Lemma B.1.4 we have

|Cove, (Y;,Y;)| = |Eq,Y;Y; — Eg, Y;Eg, Y|

4
< (n+2n5/2(E91|Yi|2+5+E91|Yj|2+5

5/(2+5)
+\/E91’Yi‘2+5E91|Yj2+5)) lj—i|—1

4 5/2(00) () (i) ~0) 507 (2+9)
( +2n°2(Coly +Cgly, +1/Cy6,Cil g, B i-1
Similarly, as above we can also say

4 i 1 5/(246
|Cov, (Y, Zo)| < (n +2n0/2(Cy)y + D1p +1/C, D1,2)> (al._g - ))

Combining, the two upper bounds above, we get the first result:

j 6/ (240
O 0 9 o] CREXE R I R [ )
i

+ Z( +2n0/2 Cf) )9 + Dy + WO (,Xfigﬂé))

+ Val‘[Zo, Zo} .
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If ~({1XZ~} is stationary under 6y, so is {Y;}. Therefore, Eq, |Y;|?"? = Eq,|Y1|?*? = 51)9 Vi,
an

n
5/2 &/(2+5)
Zcovel ir ] Z < +6n CG] 92) ‘] i‘*l
4

i,j=1
<n ( +6n°/2Ch, )( i/(f”)). (A31)
h>1

Again, using Lemma B.1.4 on Covy, (Yj, Zp), yields

i=1 h>1

n 4
ZCOV@1 (Yi, Zo) < <11 + 21/15/2((:9 + D1,2 + v/ Cng,z)) (Z 065/ (2+9) > (A32)

Finally, using Equations (A31) and (A32) we have

4
(n + Z”J/Z(C(gi,)ez + D1+ Cé},)ez D1,2)> (Z oci/(zw))
h>1

+ COV@l (Z[), ZO).
O

Appendix B.2. Proofs for Stationary Markov Data-Generating Models
Proof of Theorem 2

Part 1: Verifying condition (i) of Corollary 1.

We substitute the true parameter 6, for 6; and 0 for 6. We also set qgo) to be the
invariant distribution of the Markov chain under 6y, g9, and qéo) as the invariant distribution
of the Markov chain under 0, 9. Applying the fact that these Markov chains are stationary
to Proposition 2, we have

) o)y Pe,(X11Xo)
KB, Fy) = nE [log< po(X1|Xo) + Elzol

<ny E[MY (X1, X0)|1£ (6,600) |+2E D X)IFP (6,00), (A33)
j=1

where the inequality follows from Assumption 1. Therefore, it follows that

[ @ B patae) < w B[ %0 X0)] [ 15 0.00)lou(a)
=

+ Y EM (Xo)l| [ £7(0,60)lon(do).

k=1
By Assumption 1(i), it follows that

/IC (P, Py pu () <nZE[ )(Xl,xo} ¢

- LM

%\0
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where e,(ql) = O(L>

-
Part 2: Verifying condition (ii) of Corollary 1. Again, using Proposition 3 along with the fact
that the Markov chain is stationary we have

Var[r,(6,6)] < n (i + 6n5/2Cé;,)9> <Z ai/(2+5)>

k>0

4 1 (2+96)
+(n2+2”m( Cho +D909+\/Ceo D909><wa ) )
k>1

+ Var[Zp].

It then follows that

4
[ Varlra (6, 60)lpu(de) < n(n 612 [ Clllp (d@)) ( 2/ ?*‘”) + [ VarlZolpa(d9)
. k>1
4
+ <112 +2n%/2( / Chopon(d6)

+/D909pn () +/,/ + . Dey 0n (d6)) )( ‘5/(2”)).
k>1

First, consider the term [ Cé;)gpn (0), and observe that

[ Chnapn(dt) = [ Elog

By Assumption 1, we have

/Elo

Since the function x — x

246

(X1|X
Peo 1| 0) on (d9).

po(X1]Xo)

Poo (X1|Xo) Xo) |71

po(X1|Xo)

" 240
J(0) < [ [g MY (x1, %) 6, eo>|] ou(d6).
=

2+9 is convex, we can apply Jensen’s inequality to obtain,

240 m
(zM (X1, Xo) £ <e,eo>|) <m0y MUY (X, X0) 2| £V (6, 60) .
k=1

Therefore, it follows that

/El

5
Po, (X11X0) 2

b Ky | Pr(d0) <t YL EIM (X, X))

k=1

< [ 1A (0,60 pu(de).

By Assumption 1, [ |f;(6,60)|>"p,(d6) < € and E[M,((l)(Xl,XO)“‘S] < B, implying that

2+ BC

/Cél)gpn (d0) mlto Z B s
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Since (Zk> zxk (2+5)) < oo, it follows that (% +6n5/2fCé;?9pn(d9)) (Ek>1 ”‘li/(12+5)) =
0(57) Similarly, we can show that | Dy, p0x(d6) = O(1), and [ Var[Zo]p,(d6) = O(1).

For the final term [ / C(g;’)g Dg, 001 (d6), use the Cauchy-Schwarz inequality to obtain
the upper bound ( J C(S;,)ep" (d6) [ Dy, 00n (dB)) 12 which is also of order O(1). Combining
all of these together we have

/ Var[r(8,60)]pn(d6) < nel,

(2) n’/?

for some € = O(%=-).
Since K(py, 1) < /nC = f’ it follows that K(p,, 1) < ne,(f’), where €, =
1 .(2) .3)

O(1/+/n) as before. Finally, by choosing €, = max(e; ’, €, ", €5, ), our theorem is proved.
O

B) _

Appendix B.3. Proofs for Non-Stationary, Ergodic Markov Data-Generating Models
Appendix B.3.1. Proof of Theorem 3
Part 1: Verifying condition (i) of Corollary 1: As in the proof of Theorem 2 substitute the

true parameter 6y for 6; and 6 for 6, in . We also set qgo) and qéo) to the distribution g(©).

Applying Proposition 2 to the corresponding transition kernels and initial distribution we

have,
) reles(oisy)] oo

)}

Now, applying Assumption 1, we can bound the previous equation as follows,

Xi|Xi 4
(P pmy = E[l (?’90(11
(B, Fo") ,Zzl %8\ pe(XiIXi1

- P (Xil Xi—y
= L jos( B

~| \/\_/

|/\
M=

6y 7

E[ﬁ Xerl 1)|fk (9r90)|]

I
—

Il
] m:

m
) (M (3, %) | 1A (6, 00)1. (A35)
Since M,El)’s are bounded there exists a constant Q so that,

//C (PY, P )pu(d8) < Q/ZZ 172 (8, 60) o (d6)

i=1k=1

= Qn} /l (6, 60) |0 (d6).

By Assumption 19 in Assumption 1, it follows that

/IC 6+ P pn(d() <Qn2f—anf—ne,(11),

for some e,gl) = O(in)
Part 2: Verifying condition (ii) of Corollary 1: As in the previous part, Zg = 0, implying
that Dy g,. Applying Proposition 3 and integrating with respect to p,, we obtain
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n

/Var T’n 9 90 pn d@ Z( +2n‘5/2/C9 (;Pn d@))( 5/(24-(5))
i=1
4
+ <n+2n5/2 /C() Qp” d@ +/C9 Gp” d@ _|_/ Cé)ecg epn d9 )
5/ (249)

x (a350)- (A36)

First, consider the term [ Céé),epn (d6). Using Assumption 1, we can upper bound Céi)o as

(i)
Coop < E

m 2+
Y MV (x;, Xi_1>|fk“><6,eo>|]
k=1

240
<) m'E {(MS) (X XDl 0,601) } (by Jensen’s inequality)
k=1

3

_ Z mliHR {Ml(cl) (Xi/ XH)ZM} |fk(1) (9/ 90) |2+(5‘
k=1

Since Mlgl) ’s are upper bounded by Q, it follows from the previous expression that, C(g;)/g <
51 (1
ym m1+5Q2+o|fk( )(9, 0o)| 2.

Hence, from Assumption 1, we get,

[ Coonon(a0) < Yom 2@ 177000 @0) < (@) -

Using the upper bound above, we can say for an L large enough, f C Gpn(dﬁ
L

) <
=. Next, by the Cauchy-Schwarz inequality, we have that [ \/ CQ g 9 gpn( ) <

\/f Ceo,ep" (d6) fCQO,Gpn d0)) < L. Thus, we have the following upper bound.

n

/ Var[r, (6, 60)]on(d6) < Y <: WY % ) (a2/)

i=1

8/2( L L L\ 5/@+0)
+Z< +2n +n+n))(a )

i—jl-1
= li—jl

4 5/2 L L 5/(2+0
:<n+2n‘)/2n> <szig >>

i=1

4 5/2L Z 6/(2+96)
+ (1’1 + 6n E l.jgllx‘ifjlfl .

Since 21] ) wé/(2+5) 5/(2+6)

8/2
-1 < nYys14;, " < oo, wehave that for some 6«512) =0(%-),

/ Var[r(6,60)]pn(46) < nel?).

Since K(pn, v) < /nC, following the concluding argument in Theorem 2 completes the
proof. O
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Appendix B.3.2. Proof of Proposition 8
We verify Assumption 1 and the proof follows from Theorem 3. Fori € {1,2,...,K—1},

e ifj=io1,
p"(m){l—e ifj=i+1.

If i = 0 ori = K, then the Markov chain goes back to 1 or K — 1, respectively, with
probability 1. With the convention log % = 0, the log ratio of the transition probabilities
becomes,

0o 1-6
H0g pe, (X1 Xa) = log paX1 | X0)| = T, 1108y ) + i oo 1y 1o =5 )

In this case, m = 2. M) (X1, Xo) = Ijx,—x, 41 and MY (X3, Xo) = Iix,_x, 1), both of
which are bounded. Let fl(l)(G, o) := log(%o) suppose f2(1)(9, 6p) := log(1 90)

The stationary distribution g¢(i) = & V i € 1,2,..., K. Hence the log of the ratio of
the invariant distribution becomes

loggo(x) —logqe(x) =0, (A37)

and we can set Mi(z) (-):=1and fl.(z) (+,+) == 0for i € {1,2}. Thus, to prove the concen-
tration bound for this Markov Chain it is enough to assume that 6 = 1 and show that
f[fl(l)(Q, 00)]%0n(d0) < € and f[fz (6,00)]%01(d6) < < for some constant C > 0.

As given {pn}isa sequence of beta probability distribution functions, with parameters
+b = 6. Specifically, we choose a,, = n6y and (therefore)
b, = n(l — 6p). Thus, we get the following,

[ 16,00 Pontan) = [ hog(%)[

0 _|°
< / L 00 (d6)

ai’l/

On (d@)

0%~ 1(1—6)n1de.

1 1
~ Beta(ay, by) /0

0 — 0|
)

Since 6,60 € (0,1), so is ‘90 f, giving |0y — 0|3 < 2(6p — 0)?. We use that fact to arrive at
J1A7,60)Poutae) < 2 /1(90 — 0)26m~4(1— 0)>1dp
L ~ Beta(ay, by) Jo
_ 2Beta(a, — 3, by) (an —3)(bn)

Beta(an, by)  (an + by —3)%(an + by, —2)°

2Beta(a,—3,by) -0

From our choice of a,, and b,,, Beta(ay by
nYn

(an*?’)(bn) (ﬂn*3)(hn) _ (60 y/’)(l 90)
an+0y—3)2(an+bp—2 (a0 4bn—3)%(an+bn—2) n(1-2)2(1-2)"

bounded by % for some constant C; > 0. Hence,

(1), and plugging the values of a, and

by into 0 jr we get which is upper

J177(0,00) Poutao) < =

Similarly, we can also show that,

177 ©,60) Pou(ae) < .
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Finally, from Proposition A.2.1, we get that K(p,, 7T) < C + 3 log(n) for some large constant
C. Hence, K(py, 77) < C34/n for some constant C3 > 0. Choosmg C = max(Cy, Gy, C3), we
satisfy all the conditions of Assumption 1 and Theorem 3. O

Appendix B.3.3. Proof of Proposition 9

For the purpose of this proof, we choose p,’s with scaled Beta distribution with
parameters a, = n(6p/2) and b, = n(1 — 6y/2). Since, py, is a scaled Beta distribution with
the scaling factors m = 0.5 and c = 0, the pdf of p, is given by

2

ou(6) = oty 20" (120"

Since this is a scaled distribution, E,, [f] = 2

ﬂnu‘ﬁbn = 6y and there exists a constant o > 0,

Var,, [0] = ‘772 Now, we analyse the transition probabilities. Fori € {1,2,... }, the Birth-
Death process has transition probabilities

o fe afj=ion,
p"(]|l)_{1—9 ifj=i+1.

If i = 0, then the Markov chain goes to 1 with probability 1. Hence with the convention
log 8 = 0 the ratio of the log of the transition probabilities becomes,

6o 1-26
Hog pe,(X:1X0) ~ g pa(X11X0)| = I, 11108 | | + Ty, 108 T

In this case, m = 3. M{" (X1, Xo) = Ijx,_x,+1] and M (X1, Xo) = Iix,—x, 1] De-
fine M(l)(Xl,Xo) := 1. All these randorn variables are bounded. Define fll)(O o) =

log{go} le)(ﬂ 6o) := log[1 90} and f3 (6 fp) := 0. Similarly as in the proof on Proposi-
tion 8,

[ @,60)Ppu(d6) < 1, and
17 e, 00)Fputae) < 9

The stationary distribution is given by g4(i) = (1%5)"1qe(1) V i € 1,2,..., s0 that go(i) =
(1—6)(7%5)"~! Hence the log of the ratio of the invariant distribution becomes

log go(i) — log gg(i) = 1og[11__%°} +(i— 1)1og[9;] —(i— 1)10g{11__690] (A38)

We define Mgz)(X ) == 1, and M(z)( Xo) = M(z)(XO) = Xp—1. We can write
[M(z)(XO)]2 =y2, (i -1)240(3) < £, 29 (i). We have chosen ¢(© such that
2 ° 11299 (i) is bounded. Hence, E 4© [Mé )(Xo)] < oo. To verify Assumption i define,

flz)(G, ) = —f32)(0, 6p) := log{1 90] and define fz(z)(ﬂ, 6p) = 10g{%°] Therefore fol-
lowing the proof of Proposition 8,

172,60 Poutae) = [ 1470000 pud8) = [ 175(0,60) Ppu(de) < 2, and,

c
/|f22)660|pnd6 /\ (6,60)°pa(d6) < .
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Finally, we take the KL-divergence K(p,, 71). pn follows a scaled Beta distribution on
(0,1/2) with parameters a, = n(6y/2) and b, = n(1 — 6y/2), while 7 follows a scaled Beta
distribution on (0,1/2) with parameters a and b. Thus,

Klow ) = [ tog(2 o a0),

which, by substituting t = 26, we get,

K(on, ) = 2/01 log(i:((:))>pn(dt).

/i 01 log ( ‘;;’((tt)) )pn (dt) is the KL-divergence between a Beta distribution with parameters a, and
by, and a Beta distribution with parameters a and b. An application of Proposition A.2.1 gives

us for a constant C; > 0,

/01 log(p;((:)) >pn(dt) <C+ %log(n).

Hence we can say, K(p,, ) < 2 [Cl + % log(n)} . Thus, we now get that for some constant
C3 >0,

Choosing C = max(Cy, C, C3) we satisfy all of the conditions of Assumption 1 and thus
by Theorem 3, we are complete the proof. O

Appendix B.3.4. Proof of Theorem 4
Part 1: Verifying condition (i) of Corollary 1 As in the proof of Theorem 2 substitute the

true parameter 6 for 6; and 6 for 6. We also set our initial distributions qgo) and qgo) to the

known initial distribution 4(°). A method similar to Equation (A35), yields

Ky, Py <

1

Hngh

i E [M£1>(Xi, Xi_l)] 1£(6,60)].
k=1

Because M ,El)s satisfy Assumption 2, it follows by the application of Theorem 2.3, [21] that

3 A > 0 such that for any 0 < ¥ < A, and for some { € (0,1) possibly depending upon A,

: (1) 1-¢
Xy, Xo] < e Mk (X1,X0) 4 %De’(” foralli > 1.

E {eKM;(fl) (Xi Xi-1)

We rewrite E [M]El) (X;, Xi1)| Xy, Xo} as follows:

E[KM;ED (Xi, Xi—1)|X1, Xo]

K

)
_ E[e*Me (XiXi1) | X, Xo]
< . .

E{M,El)(xi, Xi—1)|X1/XO} =
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Therefore, } ' | E [M,El) (X;, Xi_1)} can be upper bounded as,

M-

Z E [M£” (Xi, Xi—l)} =) E [KM;EU (Xi, Xi—1)1 X1, XO} !

I
L
I

1

ngE

<) {gilEekM,(fl)(Xl,Xo) n 1- Dexa:| 1

1-¢

Il
_

Since, ¢ € (0,1), ¢ I < 1. Hence, we can write that,

= [ ic1 g oM (X, %) - = [ ic1g oM (X, %) 1 -1
Yo (7 Ee M (X1,Xo -|- . —=De |t < Y |7 ESM (KXo : éDe"" K
i=1 i=1 o

1-2" (1) n _
— | 25 ReM; (X1, Xo) Dek | 11
[ 1-¢ e + 1-¢ e |k

<nlL,

for a large constant L. Therefore [ KC( P(:), Pé")) 0r(d0) can be upper bounded as follows,

[, P pu(a0) / 3 nLli 0,600

_ ZnL/|fk1 (0, 80)|0n (d6).
k=1
By Assumption 1, | \fk(l)(Q, 00)|pn(d0) < &, hence,

RS KA pn(d9)<nL\CF

n

Hence, for some e,(}) = O(ﬁ), we have obtained that, [ IC(PG(:), Pé"))pn(de) < ne(l).
Part 2: Verifying condition (ii) of Corollary 1: Similar to as in the proof of Theorem 3, we
upper bound [ Var[r,(6,6y)]p.(d6) by

n

/ Var[r, (6, 60)]on(d6) < Y <:+2n5/z< / Cl)yon(d6) + / Cyon(d6)  (A39)

ij=1
+ [y Céf]),ecé{;?gpnue)) ) (a/5) (A40)
n 4 N . i
5 (n ot cgg,gpn(de)) (a0,
1=

where Cy ¢ is upper bounded as

m

245
909 Z H(SE{ (X5, X 1)} |fk(1)(9/90)\2+5-

There exists a constant C; depending upon ¢ such that,

1
K20 [MIS )]ZH(XI', Xi_1)2+5
K2+0

[M](cl)]2+5(xi/ Xi—1) =

oMY (X 1) +C;s
21

<
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By expressing E [M,El) (X, Xi_l)Z*‘S} =E [E [M,El) (X;, Xi—1)*H| Xy, Xg] } and following a
method similar to the previous part, we get,

[giEe"M;El)(XhXO) + L%ipexu] +C5

210

E [Mlgl) (Xi, Xzel)z”} <
The fact that 0 < { < 1 implies that 0 < {’ < {. This gives us the following,

(1)
[gEe"Mk (X1,X0) 4 1_1§De"“] +C;

K240

E [Mlil) (Xir Xi_1)2+§} <

Since x < A, by the application of Jensen’s inequality, we get

" [gEeAM;cl)(Xl,Xo) + 1ECD€K”] +C;
1 246
E[Mk (Xi, Xi-1) } < poxy:

1)
[Cfe)‘Mk (xl’x[))pgo(X1|x0) (x0)dxqdxg + 1= éDe"“ +Cs

K20

We know that [ | fk (0, 90) |2+‘5 n(d0) < Thus, following Assumption 1 we can say that,
for a large constant L, [ Ce epn(dG) < L . The rest of the proof follows similarly as in the

proof of Theorem 3, and we obtain an e,(qz) = 0%~ o ), such that,
/Var[rn(ﬂ, 6o)]on(d6) < ne?).

Since, K(pn, ) < \/nC, similar arguments as in the proof of Theorem 2 holds. The theorem
is thus proved.

Appendix B.3.5. Proof of Theorem 5

Part 1: Verifying condition (i) of Corollary 1 As in the proof of Theorem 2 substitute
the true parameter 6y for 6; and 6 for 6. We also set qgo) and qéo) to the known initial

distribution ¢(©). Similar to the steps leading to Equation (A35), we get

[\1:

Ky, Py

i E[M (%, %) | 1A (6,60)].

k=1

I
—

Consider the term E [M,((l) (X;, Xl-_l)] . With qég_l) the marginal distribution of X;_1, we
have

E[Mlgl)(xizxifl)} = /M}EU(xz'/xifl)Peo(xi|xi—l)%(;gil)(xi—l)dxidxi—L

E[Mjgl)(xirxi—l)} = /Mﬁ”(xi,xi_l)Peo(inxi_l)Pégl(xi_1IxO)qéS) (xo)dxodx;dx;_q

Recall that the marginal density satisfies qéﬁ) (xis1) = [ p x,,1|x0)qég)(x0)d(x0),
where péo (+|x0) is the i-step transition probability. Then

E[M;(cl)(Xi,Xifl)} = /E{Mzgl)(xi/xi—l)‘xi—l}Pé;l(xi—ﬂxo)qx)(xo)dxodxi—l-
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Since the Markov chain {X, } satisfies Assumption A.1.1, we know by the application of
Theorem A.1.1 that {X,} is V-geometrically ergodic. Hence, 3 7 < 1, R < oo such that
vIfl<v

| FGp Gealsoddxioa = [ Flxioa)gn(eio)dxia] < RV (xo)ei =,
where gy, is the stationary distribution, implying that

/f Xi— 1 : xz 1\x0 dxz 1 </f Xi—1 1790(xz 1)dxz 1—|—RV(J€0) 1'

L .o . (1) 240
By the application of Jensen’s inequality we get (E {Mk (X;, Xi,l)\Xi,lD

E{Mlgl)(Xi, Xi,1)2+‘5|X,',1] < V(X;_1). Since V(-) > 1, it follows from the previous
expression that E[M,El)(Xi,Xi_lﬂXi_l} < V(X;_1)V2+) < V(X;_1). Thus, setting
f(x) =E [M,El)(Xi,Xi_lﬂXi_l = x}, we obtain

E[MY (% X;1)] < [ [E[M (X X)X gy (r)dig + RV ()71 90 (x0) o

=E[M ,(()(Xl,XO)} + 7l 1/RV X0) q( )(xo)dxo

Summing from i = 1 to n, we get

iE{Mlgl)(xi/xil)} < ”E[Mzgl)(XLXo)] T 1/RV x0)9'%) (x0)dxg
— nEMY (X1, Xo)] + ) (x0)dxo.
This gives us the following bound on [ IC(PQ(:), Pe(") )on(dO):
/IC P, P, (d) gf[ Xl,XO)H—l_T /RV %0) D (x0)dx

< [ 1A (0,60 oa (d9).

By Assumption 1, [ | flfl) (6,60)|0n(d0) < % Hence, we can rewrite the previous expres-
sion as

m
/IC P(" Pi")0,(d6) Z{ Y (X4, Xo)]

D(xl)dxl]

§\m S0

— nm [E[MIE ) (X1, Xo)] + ﬁ/Rv xo) (xo)dxo}

Since, T < 1,0 <1 — 1" < 1, and we rewrite the previous equation as,

/’C 0+ Pn(de) < nm {E[M,ﬁl)(xl,xo)] + n(ll—r)/ RV(xo)D(xo)dxo}

ap

Hence, there exists an e,(f) = such that [ IC(P, %o P p (n))pn(d(?) < ne,gl).

(%)
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Part 2: Verifying condition (ii) of Corollary 1: Similar to as in the proof of Theorem 3, we upper
bound [ Var[r, (6, 69)]pn(d0) by

n 4 . .
/ Varlr, (6,60)]on(46) < Y <n+znm< / CL)oon(d6) + / Clopon(de)  (AdD)
ij=1

[ ) ~( /(246
+/ Cé;),gCéé),epn(dG)>) (‘X\i—(ﬂfl)) (A42)

n

#3232 [ cllapatan)) (a5,

i=1

where Cy, ¢ is upper bounded as

i U 246
Cily < k;mH‘sE (M %, x50)] IR (6,00) .

Since E {M,gl) (X;, X;_q1)%+° |X,',1] < V(X;_1), by a similar application of V-geometric er-
godicity, we can say that, 3 0 < T < 1, such that

1

245
) (Xi, Xifl)}

E [M,E < nE[M (X1, Xo)]PH0 + 71 | / RV (x0)D (x0)dxo,

which, by the fact that T~! < 1, gives us,

E [M,El) (Xi, Xi—l)} e

< EMIY (Xy, Xo) 2+ + T/RV(xo)D(xo)dxo.

By Assumption 1, we know that, [ | fk(l) (6,00)>°0,(d6) < <. Hence, for a large constant

L[ Céé)’epn(dQ) < % We also see that since the chain is geometrically ergodic, by the

5/(244)
k

application of Equation (A4), } > & < +o00. The rest of the proof follows similarly

as in the proof of Theorem 3, and we obtain an e,(qz) =O( # ), such that,

/ Var[r(0,60)]pn(46) < nel?).

Since, K(pn, ) < \/nC, similar arguments as in the proof of Theorem 2 holds. The theorem
is thus proved. OJ

Appendix B.3.6. Proof of Proposition 10

For the purpose of the proof, we choose p,’s with scaled Beta distribution with
parameters a, = n% and b, = n@. Since, p;, is a scaled Beta distribution with the

scaling factors m = 2 and c = —1, the pdf of p, is given by

() = 1 1+0\" (1-0\"
P = IBeta(ay, bn) \ 2 2

Since this is a scaled distribution, E,,[0] = 2%~ —1 = g and there exists a constant

o > 0, Var,, [0] = ‘772 We now analyse the log-ratio of the transition probabilities for the
Markov chain,

log pg, (Xn|Xy—1) — log pe(Xn|Xu—1) = 2XuX,—1(0 — 0p) + X2_1 (65 — 62).
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Observe that in this setting, M%U (X, Xy—1) = | XuX,—1] and Mgl) (X, X,—1) = X2. Next,

using the fact that
2+6 _ 2+6
E[| X" Xn-1] = E[|Xn — 60Xp—1 + 60 X—1 /77| Xy 1],

and by an application of triangle inequality, we obtain

E[1 X1 X-1] < E|[(1X = 00Xs1| + 180X -1)* 7 X, 1

Xy — 00X—1] + 100Xn_1] >
:E <2| n 0 n;|+| 0An 1|> |Xn—1

[ X, — 00X, 1|+ 60X,_1| 2T
:E 22+§(| n 0 n;l_'—’ 0n 1|) |anl

Now by using Jensen’s inequality we get,

X—@X_Z-HS Qx_Z—HS
A e e

2
= 210 |X — 00X, -1/2 X1 ] + 21160, 1.

prptl
We know if Y ~ N(p,0?), then E|Y — u|P = U”zzr\(ﬁz . Consequently,
245 14s | 277TCE) 144 246
E[| X, "7 X—q] <2' v + 21100 X, 17, (A43)
T
It follows that,
2407 (3+6
(1) 2+6 s 221050 246 | l4d|g 246 4425
E[M; " (Xn, Xn—1)"""[Xp1] <2 NG | X177 + 2777007 Xy 1]
146 25T 1465 (246 4426
<|2 — | +2 |00 ([ X1 "7 +1).
Since 6y < 1, we can say,
a 246 146 23 TCF) 146 4426
E[M; (X, Xp—1)""%| Xp—1] < | 2 I +2 (1 X1 +1).

)
2] + 2149 > . The above term then becomes,

E[MY (X0, X,_1)2H0 | X,1] < Co(| X1 |12 4 1),

Next we analyse the term Mél) (X, X51)-
l o
E[ ML (X0, X127 X1 | = BXE]X, )
_ y4t20
- Xni—l

< Cs(X3H0 +1).



Entropy 2021, 23, 313

37 of 39

Then, defining V(x) := Cs(x*+2% 4 1) it follows that,
E[V(Xy)|Xy_1] = E[Cg(Xf,*z‘s + 1)|Xn,1}.

Using a technique similar to Equation (A43) we get,

4420 r( 5420 )

272
C 23+2(5
o NG

E [Ca(X$+2‘5 + 1) X1 +23F20|90 X, 1[4 +1)

—

<

7T

MF(M)
Define another constant Cj := Cj (23“5 {”\fz] — 2342019, |4+20 - 1). Since § > 0,

4426 (5426
2 7 (%7

#—=——"— > 1. Furthermore, since |fp| <1, s0 is |6 [+

. Hence,

4420 r( 5420 )

93426 [2 2

NG

] o 23+2(5|90|4+2(5 > 0.

Hence, we have shown that,

E[V(Xn)|Xn-1] < (272160 *) C5 (X313 +1) + C5.

Since |6p| < 2wzl 93+26 00/*72% < 1, and we can express the above equation as,
E[V(Xn)[Xna] < V(Xn1) + C.

Define the set C(m) := {x : [x|**?) +1 < m}. From Proposition 11.4.2, [20], for a large
enough m, C(m) forms a petite set. Thus, we have proved that V(x) as defined in this

example satisfies Assumption A.1.1, and {X,} is V-geometrically ergodic. The f]-(l)’s

corresponding to Assumption 1 are given by fl(l)(G, 6p) = (6 —6y) and fz(l)(Q, 6y) =
(63 — 62). Therefore, it follows that,

a@fl(l) =1
89f2(1) = —26 and
—2< =20 <2

Since fl(l) (60,60) = fz(l) (60, 6p) = 0, We just showed that they also have bounded partial
derivatives. We also know that |8 < 1. Hence, by Proposition 4 f]«(l) ’s satisfy the conditions
of Assumption 1.

The invariant distribution for the simple linear model Markov-chain under parameter
g is given by a gaussian distribution with mean 0 and variance ﬁ. In other words,

1 12,2
olx) = e
Analyzing the log likelihood yields,
x2 2 x2 2
log qo(x) —logqe(x) = ——-(1 — ) + 5 (1 —67)
2
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Let £% (60, 00) = (62 — 62) and £ (6, 09) = 0. Since %) (6, 60) = £ (60, 60), by follow-
ing arguments similar as before, can conclude that fl(z) (6o, o) also satisfies the requirements
@

of Assumption 1. Let M%Z)(x) = "2—2 and define M, )(x) :=1. Let Xy ~ qgo). As long as

IE qgo) (x)dx < oo, we satisfy all the conditions required for Theorem 5. Finally we need
to verify the condition that K(p,, r) < Cy/n for some constant C > 0. The KL-divergence

f log ( ff((g)) )Pn (d@) becomes,

o 1 140\ (1—0\"
’C(Pn/”)—/_110g<2Beta(lln/bn)< 2 > ( 2 )

an _ by
» 1 146 1-06 6.
2Beta(ay, by) 2 2
1460

Substituting, y = -5+, we get,

Klonr) = | 108 gy 0" (1~ 0" ) gy 07 1= 1) dy

SN -
o 8\2 Beta(ay, by) Y vy

1 1 an b, 1 an by
+ 10g(Beta(ambn)(y) (1-v) )Beta(ambn)(y) 1=y

The first term integrates up to log(1/2). The second term is the KL-divergence between
a Uniform and Beta distribution with parameters a,, = n% and b, = n(1— @) and
support [0, 1]. Following Lemma A 2.1 it follows that K(py,, 7) is upper bounded by,

1
K(on, 7) <log(1/2) + Cy + 5 log(n) < Cy/n,
for some large constant C. This completes the proof. [J

Appendix B.4. Proofs for Misspecified Models
Proof of Theorem 6

As in the proof of Theorem 1, following Equation (A13), we note that,

n n)y ~ o’ n n
/ Dare (P, Py ) o e o (d60) < / Ky, P\ )pu(d6)

(A44)

A’ \/Var[f (6, 600)0n(d0)] N K(pn, ) —log(e)
1—are 1 1—are '

Following from Equations (23) and (26), we get that,

[ PR B o d6) < Elr(60,67)] + i,
and

[ Varlr(6,60))p (d6) < 2ne,, + 2Var(ra (65, 00)).

Plugging these into Equation (A44), we are done. [J
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