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Abstract

Understanding the ecological processes that maintain community function in systems
experiencing species loss, and how these processes change over time, is key to understanding the
relationship between community structure and function and predicting how communities may
respond to perturbations in the Anthropocene. Using a 30-year experiment on desert rodents, we
show that the impact of species loss on community-level energy use has changed repeatedly and
dramatically over time, due to 1) the addition of new species to the community, and 2) a
reduction in functional redundancy among the same set of species. Although strong
compensation, initially driven by the dispersal of functionally redundant species to the local
community, occurred in this system from 1997-2010, since 2010, compensation has broken
down due to decreasing functional overlap within the same set of species. Simultaneously, long-
term changes in sitewide community composition due to niche complementarity have decoupled
the dynamics of compensation from the overall impact of species loss on community-level
energy use. Shifting, context-dependent compensatory dynamics, such as those demonstrated
here, highlight the importance of explicitly long-term, metacommunity, and eco-evolutionary
perspectives on the link between species-level fluctuations and community function in a
changing world.

Key words: community function, compensation, zero-sum dynamic, environmental fluctuations,

functional redundancy
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Introduction

Determining the extent to which community-level properties are affected by species loss,
and how and why this changes over time, is key for understanding how communities are
structured and how community function may respond to future perturbations (Gonzalez and
Loreau 2009). When species are lost from a community, their contributions to community
function (e.g. total productivity or resource use) are also directly lost. Community function may
be maintained, however, if in the new community context, species that remain perform similar
functions to the species that were lost, and compensate for the decline in function directly caused
by species loss - i.e., functional redundancy (Walker 1992, 1995; Ernest and Brown 2001;
Rosenfeld 2002; Gonzalez and Loreau 2009). When compensation via functional redundancy
occurs among consumers with a common resource base, it is consistent with a zero-sum
competitive dynamic, in which resources not used by one species are readily absorbed by
competitors, and any increases in the abundance of one species must come at the direct expense
of others (Van Valen 1973; Ernest et al. 2008).

Because the response of system-level function to species loss is partially determined by
the degree of functional redundancy in a community, processes that cause functional redundancy
to change over time can have important consequences for the long-term maintenance of
ecosystem function. Colonization events may buffer community function against species loss, if
a community gains species that perform similar functions to the species that were lost (Ernest
and Brown 2001; Leibold et al. 2017). The ability of colonization to supply functionally
redundant species depends on the species (and traits) present in the broader metacommunity, and

on the rate of dispersal supplying appropriate species to local communities (Leibold et al. 2017).
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Even without the addition of new species and traits, however, functional redundancy
within a consistent set of coexisting species may fluctuate over time. While, in theory, functional
redundancy may occur via the special case of complete niche neutrality (e.g. Hubbell 2001), it
may also occur in niche-structured systems that contain species that share some traits but differ
along other niche axes (Thibault et al. 2010). In these systems, if similar, but non-identical,
species respond to environmental change in similar ways, functional overlap can be maintained
or even strengthened. However, if niche differences cause species to respond differently to
changing conditions, the degree of functional overlap between those species may decline,
resulting in a breakdown in compensation (Loreau 2004; Fetzer et al. 2015). Over time, as
metacommunity dynamics and changing environmental conditions modulate functional
redundancy within a community, the extent to which community function is robust to species
loss - and the strength of zero-sum competition - may also be dynamic and context-dependent.

Despite logical conceptual support, and evidence from experimental microcosms (Fetzer
et al. 2015), there is little empirical documentation of how, and through which mechanisms,
temporal changes in functional redundancy modulate the effect of species loss on ecosystem
function in natural assemblages. Although relatively plentiful, observational data cannot
unambiguously detect compensation through functional redundancy, and even short-term
experiments may not be sufficient to capture temporal variation in compensation (Ernest and
Brown 2001; Houlahan et al. 2007). In contrast, long-term manipulative experiments are
uniquely suited to address this question. In long-term experiments in which key species are
removed from a community over an extended period of time, the impact of species loss on
community function can be directly quantified by comparing community function between

complete and manipulated assemblages. As metacommunity dynamics and environmental
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conditions shift over time, long-term monitoring can reveal how these processes contribute to
changes in functional redundancy and ecosystem function across different time periods. Due to
the financial and logistical resources required to maintain and monitor whole-community
manipulations over long timescales, these experiments are rare in natural systems representative
of realistic evolutionary, geographic, and environmental constraints (Hughes et al. 2017).

Here, we use a 30-year experiment on desert rodents to investigate how shifts in
functional redundancy alter the effect of species loss on community function over time. In this
study, kangaroo rats (Dipodomys spp.), the largest and competitively dominant species in the
rodent community, have been removed from a subset of experimental plots to explore how the
loss of key species affects community function, measured as community-level metabolic flux
(“total energy use”, or Etof) or total biomass (Ernest et al. 2019). For systems of consumers with
a shared resource base, such as this community of granivorous rodents, Etot reflects the total
amount of resources being processed by an assemblage, and total biomass directly reflects
standing biomass. Both are important metrics of community function (Lawton 1994; Ernest and
Brown 2001). Long-term monitoring of this experiment has documented repeated shifts in the
habitat and species composition of this system, resulting in distinct time periods characterized by
different habitat conditions and configurations of the rodent community (Christensen et al.
2018). Abrupt reorganization events in community composition occurred in 1997 and in 2010,
associated with the establishment and subsequent decline of the pocket mouse Chaetodipus
baileyi. C. baileyi is similar in size, and presumably other traits, to kangaroo rats, and its
establishment in 1996-97 drove a pronounced increase in compensation due to functional
redundancy between C. baileyi and kangaroo rats (Ernest and Brown 2001; Thibault et al. 2010).

Over the course of this experiment, shifting environmental conditions have caused the habitat at
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the study site to transition from desert grassland to scrub, driving a shift in baseline rodent
community composition away from kangaroo rats and favoring other, smaller, granivores
(Brown et al. 1997; Ernest et al. 2008). By making comparisons across these time periods, we
explored how shifts in community composition and functional overlap among the same species
have contributed to long-term changes in the effect of species loss on community function.
Methods
The Portal Project

The Portal Project consists of a set of 24 fenced experimental plots located approximately
7 miles east of Portal, AZ, USA, on unceded land of the Chiricahua Apache. Beginning in 1977,
kangaroo rats (Dipodomys spectabilis, D. merriami, and D. ordii) have been experimentally
excluded from a subset of these plots (exclosures), while all other rodents are allowed access
through small holes cut in the plot fencing. Control plots, with larger holes, are accessible to all
rodents, including kangaroo rats. Rodents on all plots are censused via monthly bouts of live-
trapping. Each individual captured is identified to species and weighed. For additional details on
the site and methodology of the Portal Project, see Ernest et al. (2019).
Data

We used data for control and exclosure plots from February 1988 until January 2020. The
experimental treatments for some plots have changed over time, and we used the subset of plots
that have had the same treatments for the longest period of time (Ernest et al. 2019). Four control
plots, and five exclosure plots, met these criteria. In order to achieve a balanced sample, we
randomly selected four exclosure plots for analysis. We divided the timeseries into three time
periods defined by major transitions in the rodent community surrounding the establishment and

decline of C. baileyi (Ernest and Brown 2001; Christensen et al. 2018). The first time period
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(February 1988-June 1997) precedes C. baileyi’s establishment at site. We defined C. baileyi’s
establishment date as the first census period in which C. baileyi was captured on all exclosure
plots (following Bledsoe and Ernest, 2019). During the second time period (July 1997-January
2010), C. baileyi was abundant on both exclosure and control plots. This time period ended with
a reorganization event in which C. balieyi became scarce sitewide. We used January 2010, the
midpoint of the 95% credible interval for the date of this reorganization event as estimated in
Christensen et al. (2018), as the end date for this time period. The last time period spans from
Feburary 2010-January 2020. For each individual rodent captured, we estimated the individual-
level metabolic rate using the scaling relationship between individual body mass and metabolic
rate b = 5.69 * (m®’°), where m is body mass in grams and b is metabolic rate (for details, see
White et al. 2004). We calculated treatment and species-level energy use as the sum of the
appropriate individuals’ metabolic rates, and total biomass as the sum of individuals’ body mass
measurements.
Statistical analysis of rodent community energy use and biomass

Here, we describe analyses for energy use. For biomass, we repeated these analyses
substituting biomass values for energy use throughout. For all variables, we combined data for
all plots within a treatment in each monthly census period and calculated treatment-level means.
This is necessary to calculate compensation, and we treated other variables in the same way to
maintain consistency. A provisional plot-level analysis yielded qualitatively equivalent results
(Appendix S1). To measure the overall impact of kangaroo rat removal on Etot, we calculated a
“total energy ratio” as the ratio of treatment-level Etot for kangaroo-rat exclosure plots relative to
unmanipulated control plots, i.e. Etote/Etotc where Etotr and Etotc are total energy use on

exclosures and controls, respectively (Thibault et al 2010; Bledsoe and Ernest 2019). This ratio is
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distinct from compensation, which we defined as the proportion of the energy made available by
kangaroo rat removal taken up via compensatory increases in energy use by small granivores (all
granivores other than kangaroo rats; Baiomys taylori, C. baileyi, Chaetodipus hispidus,
Chaetodipus intermedius, Chaetodipus penicillatus, Perognathus flavus, Peromyscus eremicus,
Peromyscus leucopus, Peromyscus maniculatus, Reithrodontomys fulvescens, Reithrodontomys
megalotis, and Reithrodontomys montanus). We calculated this as (SGt - SG¢)/KRc, where SGg
and SGc are the amount of energy used by small granivores (SG) on exclosure and control plots,
respectively, and KRc is the amount of energy used by kangaroo rats (KR) on control plots
(Ernest and Brown 2001). To compare these variables across time periods, we used generalized
least squares models (GLS; the R package n/me; Pinheiro et al. 2020) of the form (SGg —
SGc)/KRc ~ time period, for compensation, and Etotg/Etotc ~ time period, for the total energy
ratio. We included a continuous-time autoregressive temporal autocorrelation term to account for
temporal autocorrelation between values from monthly census periods within each multi-year
time period (for details of model selection, see Appendix S2). To evaluate change in baseline
community composition over time, we calculated the proportion of treatment-level energy use
accounted for by kangaroo rats on control plots in each census period (KRc/Etotc). Proportional
energy use is bounded 0-1 and is therefore not appropriate for GLS, so we compared values
across time periods using a binomial generalized linear model (GLM) of the form KRc/Etotc ~
time period. Finally, we calculated the proportional energy use accounted for by C. baileyi (CB)
on exclosure and control plots in each census period (CBg/Etotr and CB¢/Etotc, respectively). C.
baileyi was not present at the site prior to 1996, and we restricted the analysis of C. baileyi
proportional energy use to the second two time periods. We compared C. baileyi proportional

energy use over time and across treatments using a binomial GLM of the form CBg/Etotr ~ time
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period + treatment. For all models, we calculated estimated means and 95% confidence or
credible intervals for time-period (and, for C. baileyi, treatment) level values, and contrasts
between time periods (and, for C. baileyi, treatments), using the R package emmeans (Lenth
2021). Analyses were conducted in R 4.0.3 (R Core Team 2020). Data and code are archived at

https://doi.org/10.5281/zenodo.5544361 and https://doi.org/10.5281/zenodo.5539880.

Results

The impact of kangaroo rat removal on community function has changed repeatedly
over time, through a combination of abrupt shifts in compensation associated with C. baileyi, and
long-term changes in baseline community composition sitewide (Figure 1). These dynamics are
qualitatively identical whether function is measured as total energy use (Figure 1; Appendix S2)
or total biomass (Appendix S3). The first shift coincided with C. baileyi’s establishment in the
community beginning in 1996-97 (Figure 1D). C. baileyi rapidly became dominant on exclosure
plots and dramatically increased compensation (Figure 1B). From 1997-2010, small granivores
compensated for an average of 58% of kangaroo rat energy use on control plots (95% interval
48-67%), an increase from an average of 18% from 1988-1997 (95% interval 8-29%; contrast p
< 0.001; for complete results of all models, see Appendix S2) from 1997-2010. With C. baileyi’s
addition to the community, the total energy ratio (on exclosures relative to controls; Figure 1A)
increased from 30% (20-40%) to 71% (62-79%, contrast p < 0.014). In the second shift,
beginning around 2010, C. baileyi’s abundance sitewide dropped precipitously (Figure 1D). C.
baileyi’s proportional energy use dropped from an average of 72% (65-80%) to 26% (18-35%,
contrast p < 0.001) on exclosure plots, and from 11% (6-16%) to essentially 0 on control plots
(contrast p < 0.001). Other species of small granivore did not make compensatory gains to offset

the decline in C. baileyi (Figure 1B). As a result, compensation declined from an average of 58%
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(48-67%) to 28% (17-38%, contrast p = 0.002), a level not significantly different from the 18%
(8-29%, contrast p = .44) observed prior to C. baileyi’s establishment at the site. Somewhat
paradoxically, while the total energy ratio also dropped following C. baileyi’s decline, from an
average of 71% (62-79%) from 1997-2010 to 50% (40-60%, contrast p = 0.0056) from 2010-
2020, it remained higher than its average of 30% (20-40%, contrast p = 0.0144) from 1988-1997
(Figure 1A). Over the course of the experiment, community composition shifted sitewide. In
later years, kangaroo rats accounted for a lower proportion of baseline Etot than they did at the
beginning of the study (Figure 1C). From 1988-1997, kangaroo rats accounted for 92% (87-97%)
of Etot on controls; after 1997, this dropped to an average of approximately 70% (1988-1997
compared to later time periods, both p =.0004; 1997-2010 and 2020-2020 not significantly
different, p = .976). Because the proportion of Etot directly lost to kangaroo rat removal was
smaller from 2010-2020 than from 1988-1997, the total energy ratio was higher from 2010-2020
than it was from 1988-1997 - even though there was not a detectable difference between the two
time periods in the proportion of lost energy being offset through compensation.
Discussion

The dynamics of rodent community energy use at Portal illustrate that the role of
functional redundancy in buffering community function against species loss fluctuates over time,
due to changes in both species composition and in the degree of functional overlap among the
same species. The 1997 increase in compensation, driven by C. baileyi’s establishment at the
site, was a clear and compelling instance of colonization from the regional species pool
overcoming limitations on functional redundancy (Ernest and Brown 2001; Leibold et al 2017).
Although the small granivore species originally present in the community did not possess the

traits necessary to compensate for kangaroo rats, C. baileyi supplied those traits and
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substantially, but incompletely, restored community function. In contrast, following the
community reorganization event in 2010, C. baileyi remained present in the community, but
ceased to operate as a partial functional replacement for kangaroo rats. This is consistent with
fluctuating conditions modulating functional redundancy between similar, but non-identical,
competitors. Kangaroo rats and C. baileyi are relatively similar in size and are demonstrably
capable of using similar resources. However, C. baileyi prefers different, shrubbier microhabitats
than kangaroo rats, and the two groups have been observed to replace each other in adjacent
habitats (Ernest and Brown 2001). We suggest that this study site, which has historically been
dominated by kangaroo rats, constitutes marginal habitat for C. baileyi, and that, while
conditions from 1997-2010 aligned sufficiently with C. baileyi’s requirements to create
appreciable functional redundancy between kangaroo rats and C. baileyi, conditions since have
caused this redundancy to break down. C. baileyi’s decline occurred immediately following a
period of low plant productivity and low rodent abundance community-wide, and in the decade
following, the site experienced two long and severe droughts (Appendix S4; Christensen et al.
2018). These extreme conditions may themselves have limited C. baileyi’s fitness at the site, or
the community-wide low abundance event may have temporarily overcome incumbency effects
and triggered a community shift tracking longer-term habitat trends (Thibault and Brown 2008;
Christensen et al. 2018). Regardless of the proximate cause of C. baileyi’s decline, the fact that
C. baileyi remains in the community, but no longer compensates for kangaroo rats, illustrates
that changing conditions can have profound effects on community function by modulating the
degree of functional redundancy within a consistent set of species.

While changes in compensation have contributed to changes in community function in

this system, changes in compensation alone do not fully account for the long-term changes in the
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overall impact of kangaroo rat removal on Efot. Since 2010, although the ratio of Etot on
exclosure plots relative to control plots declined coinciding with the breakdown in compensation
associated with C. baileyi, it remained higher than the levels observed prior to 1997 (Figure 1A).
This difference between the first and last time periods cannot be explained by an increase in
compensation, as compensation from 2010-2020 was not greater than pre-1997 levels (Figure
1B). Rather, the increase in Efot on exclosure plots relative to control plots was the result of a
long-term decrease in the contribution of kangaroo rats to Efot sitewide. Because kangaroo rats
accounted for a smaller proportion of Etof on control plots from 2010-2020 than they did prior to
1997, their removal had a smaller impact on community function — even though there was not an
increase in the degree to which small granivores compensated for their absence. In fact, the
comparable levels of compensation achieved in the decades preceding and following C. baileyi’s
dominance at the site suggest a relatively stable, and limited, degree of functional overlap
between kangaroo rats and the original small granivores (i.e., excluding C. bailyei). Niche
complementarity, combined with changing habitat conditions, may partially explain this
phenomenon. It is well-documented that, while kangaroo rats readily forage in open
microhabitats where predation risk can be relatively high, smaller granivores preferentially
forage in sheltered microhabitats as an antipredator tactic (Kelt 2011). Over the course of this
experiment, the habitat at this study site has transitioned from an arid grassland to a shrubland
(Brown et al. 1997). As sheltered microhabitats became more widespread, small granivores may
have gained access to a larger proportion of resources and increased their share of Etot sitewide.
However, kangaroo rats may have continued to use resources in open areas, which would have
remained inaccessible to smaller granivores even on exclosure plots. The long-term reduction in

the impact of kangaroo rat removal on community function, driven by niche complementarity
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and consistent niche partitioning, contrasts with the temporary compensatory dynamic driven by
functional redundancy with C. baileyi. Although changes in the overall effect of species loss are
sometimes treated interchangeably with compensation (e.g. Ernest and Brown 2001 compared to
Thibault et al. 2010), it is important to recognize that multiple distinct pathways modulate the
long-term impacts of species loss on community function. Particularly in strongly niche-
structured systems, complementarity effects and fluctuations in functional redundancy may occur
simultaneously, with complex and counterintuitive impacts on community function.

Overall, the decadal-scale changes in energy use among the Portal rodents underscore the
importance of long-term metacommunity dynamics to the maintenance of community function
following species loss (see Leibold et al. 2017). Although a single colonization event may allow
for temporary compensation via functional redundancy, as conditions shift, species that once
compensated may no longer perform that function (see also Isbell et al. 2011). Particularly if
limiting similarity prevents similar competitors from specializing on precisely the same habitats
(Rosenfeld 2002), temporary, context-dependent compensation may be common. To maintain
compensation over time, multiple colonization events, supplying species that are functionally
redundant under different conditions, may be required. Depending on dispersal rates, and the
diversity and composition of regional species pools, this may be unlikely or even impossible. At
Portal, dispersal limitation introduced a 20-year delay in the compensatory response driven by C.
baileyi. Theoretically, a new species capable of compensating for kangaroo rats, and better-
suited to conditions at the site since 2010, could restore compensation under present conditions —
but it is unclear whether this species exists or if it can disperse to this site. As ecosystems

globally undergo reductions in habitat connectivity and regional beta diversity, and enter novel
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climatic spaces, maintenance of community function via functional redundancy may grow
increasingly rare and fragile (Dornelas et al. 2014; Williams and Jackson 2007).

Finally, the long-term variability in functional redundancy documented here adds
important nuance to our understanding of how zero-sum dynamics operate in natural
assemblages. Theories invoking zero-sum dynamics, and tests for compensatory dynamics in
empirical data, often treat a zero-sum dynamic as a strong and temporally consistent constraint
(Hubbell 2001; Houlahan et al. 2007). In this framing, any resources made available via species
loss should immediately be taken up by other species. This is not consistent with the dynamics
that occur at Portal, which has seen extended periods of time when resources are available on
exclosure plots but are not used. Rather, these results are more consistent with a zero-sum
constraint operating at metacommunity or evolutionary scales (Van Valen 1973; Terry and Rowe
2015; Leibold et al. 2017). Over short timescales, or within a closed local assemblage, niche
differences may weaken zero-sum effects, especially under fluctuating conditions. However,
over larger temporal and spatial scales, dispersal or evolution may supply new species equipped
to use available resources - via either functional redundancy, or niche complementarity allowing
them to exploit novel niches. A long-term, metacommunity, and even macroevolutionary
approach may be necessary to fully understand how zero-sum constraints, functional
redundancy, and niche complementarity contribute to the maintenance of community-level
function in the face of species extinctions and changing conditions over time.
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Figure legends

Figure 1. Dynamics of energy use and rodent community composition over time. Lines represent
the ratio of total energy use on exclosure plots to control plots (a), 6-month moving averages of
energetic compensation (b), and the share of community energy use accounted for by kangaroo
rats on control plots (c), and by C. baileyi (d), on control (gold) and exclosure (blue) plots.
Dotted vertical lines mark the boundaries between time periods used for statistical analysis.
Horizontal lines are time-period estimates from generalized least squares (a, b) and generalized
linear (c, d) models, and the semitransparent envelopes mark the 95% confidence or credible

intervals.
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Appendix S1 - Plot-level analysis

Supplemental information for “Maintenance of community function through compensation
breaks down over time in a desert rodent community”, by Renata M. Diaz and S. K. Morgan

Ernest, in Ecology.

Fully annotated code and RMarkdown documents to reproduce these analyses are available at

https://doi.org/10.5281/zenodo.5544361 and https://doi.org/10.5281/zenodo.5539880.
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Explanation

In order to calculate energetic compensation and the total energy ratio, we require an estimate for
the baseline values of total energy use, kangaroo rat energy use, and small granivore energy use
on control plots. Estimating these baselines requires aggregating over between-plot variability
among the control plots. For consistency, in the main analysis, we also aggregate across the
exclosure plots and focus on treatment-level means throughout. Here, we explore the effect of
between-plot variability on our analyses, to the extent possible. We used treatment-level means
across control plots to calculate energetic compensation and the total energy ratio, but calculated
these quantities separately for each exclosure plot, and conducted analyses including a random
effect of plot. We also conducted analyses of Dipodomys and C. baileyi proportional energy use
using plot-level data, again including plot as a random effect. Results were qualitatively the same

as using treatment-level means.
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471  Compensation

472  Model specification and selection

473  We fit linear mixed-effects models (using the Ime function in the R package nlme; Pinheiro et
474  al. 2021) of the form compensation ~ time period with a random effect of plot and temporal
475  autocorrelation structure to account for autocorrelation between monthly census periods within
476  each time period. We compared these to models without the autocorrelation structure, without
477  the random effect, and without the term for time period. The best-fitting model included terms

478  for time period, random effect of plot, and autocorrelation.

479  Table S1. Model comparison for compensation.

Model.specification AIC

intercept + timeperiod + plot (random effect) + autocorrelation 1360.207

intercept + timeperiod + plot (random effect) 1680.916
intercept + timeperiod + autocorrelation 1409.830
intercept + plot (random effect) + autocorrelation 1408.362
intercept + plot (random effect) 1879.126
intercept 2036.371

480  Results

481 Table S2. Coefficients from linear mixed-effects model for compensation

482  Note that “oera” is the variable name for the term for time period in these analyses.

Value  Std.Error DF t-value p-value

(Intercept) 0.3451282 0.1048354 1362 3.292096 0.0010199
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oera.L 0.0653090 0.0373313 1362 1.749446 0.0804392

oera.Q -0.2845830 0.0341063 1362 -8.343990 0.0000000

483  Table S3. Estimates from linear mixed-effects model for compensation

Timeperiod  emmean SE df lower.CL upper.CL

1988-1997 0.1827673 0.1091842 3 -0.1647055 0.5302400
1997-2010  0.5774892 0.1078860 3  0.2341478 0.9208306

2010-2020 0.2751282 0.1093969 3 -0.0730215 0.6232779

484  Table S4. Contrasts from linear mixed-effects model for compensation

Comparison estimate SE df tratio p.value

1988-1997 - 1997-2010 -0.3947220 0.0491845 1362 -8.025330 0.0000
1988-1997 - 2010-2020 -0.0923609 0.0527944 1362 -1.749446 0.1873

1997-2010 - 2010-2020  0.3023610 0.0496411 1362 6.090948 0.0000

485
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Total energy use

Model specification and selection

As for compensation, we fit linear mixed-effects models fitting total energy ratio ~ time period
with a random effect of plot and a temporal autocorrelation term to account for autocorrelation
between monthly census periods within each timeperiod. We compared these to models without
the autocorrelation term, without the random effect, and without the term for time period. The

best-fitting model included terms for time period, random effect of plot, and autocorrelation.

Table S5. Model comparison for total energy ratio.

Model.specification AIC

intercept + timeperiod + plot (random effect) + autocorrelation  474.8558

intercept + timeperiod + plot (random effect) 924.1830

intercept + timeperiod + autocorrelation 507.7842

intercept + plot (random effect) + autocorrelation 543.5425

intercept + plot (random effect) 1266.2097

intercept 1382.7469
Results

Table S6. Coefficients from linear mixed-effects model on total energy ratio

Note that “oera” is the variable name for the term for time period in these analyses.

Value  Std.Error  DF t-value p-value

(Intercept) 0.5018200 0.0709701 1362 7.070865 0.0e+00

oera.L 0.1454309 0.0301324 1362 4.826392 1.5¢-06
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oera.Q -0.2545852 0.0273660 1362 -9.302977 0.0e+00

497  Table S7. Estimates from linear mixed-effects model on total energy ratio

Timeperiod  emmean SE df lower.CL upper.CL

1988-1997  0.2950508 0.0751321 3 0.0559470 0.5341547
1997-2010  0.7096879 0.0738511 3 0.4746606 0.9447151

2010-2020 0.5007212 0.0752881 3 0.2611207 0.7403216

498  Table S8. Contrasts from linear mixed-effects model on total energy ratio

Comparison estimate SE df tratio p.value
1988-1997 - 1997-2010 -0.4146370 0.0395736 1362 -10.477622 0.0e+00
1988-1997 - 2010-2020 -0.2056703 0.0426137 1362 -4.826392 4.6e-06
1997-2010 - 2010-2020  0.2089667 0.0398571 1362  5.242901 5.0e-07
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Kangaroo rat proportional energy use

Model specification and selection

To compare proportional energy use across time periods, we used binomial generalized linear
mixed models (using the glmer function in the R package Ime4; Bates et al. 2015), which
allowed us to include a random effect of plot.

For Dipodomys proportional energy use, we compared models with and without the random
effect of plot and with and without a term for timeperiod. The best-fitting model included terms

for timeperiod and a random effect of plot.

Table S9. Model comparison for Dipodomys proportional energy use.

Model.specification AIC

intercept + timeperiod + plot (random effect) 1040.861

intercept + plot (random effect) 1162.470

intercept + timeperiod 1108.490

intercept 1208.081
Results

Table S10. Coefficients from GLMER on Dipodomys energy use.

Note that “oera” is the variable name for the term for time period in these analyses.

Estimate  Std. Error zvalue Pr(>|z|)
(Intercept) 2.181163 0.1305753 16.704251 0
oera.L -1.946096 0.2664545 -7.303670 0

oera.Q 1.124620 0.1769225  6.356572 0
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512  Table S11. Estimates from GLMER on Dipodomys energy use.

513  Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod prob SE df asymp.LCL asymp.UCL

1988-1997  0.9823009 0.0062020 Inf 0.9701452  0.9944566
1997-2010  0.7795273 0.0183934 Inf 0.7434769  0.8155777
2010-2020 0.7797464 0.0208516 Inf 0.7388780  0.8206149

514 Table S12. Contrasts from GLMER on Dipodomys energy use.

515  Contrasts are performed on the link (logit) scale.

Comparison estimate SE df z.ratio p.value
1988-1997 - 1997-2010  0.2027736 0.0194108 Inf 10.4464200 0
1988-1997 - 2010-2020  0.2025545 0.0217545 Inf  9.3109407 0
1997-2010 - 2010-2020 -0.0002191 0.0278048 Inf -0.0078811 1
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C. baileyi proportional energy use

Model specification and selection

As for kangaroo rat proportional energy use, we used a binomial generalized linear mixed effects
model to compare C. baileyi proportional energy use across time periods. Because C. baileyi
occurs on both control and exclosure plots, we investigated whether the dynamics of C. baileyi’s
proportional energy use differed between treatment types. We compared models incorporating
separate slopes, separate intercepts, or no terms for treatment modulating the change in C. baileyi
proportional energy use across time periods, i.e. comparing the full set of models:

*  cbaileyi_proportional_energy use ~ timeperiod + treatment + timeperiod.:treatment

*  cbaileyi_proportional energy use ~ timeperiod + treatment

*  cbaileyi_proportional energy use ~ timeperiod

We also tested a null (intercept-only) model of no change across time periods:

*  cbaileyi proportional energy use ~ I

We compared all of these models with and without a random effect of plot.

We found that the best-fitting model incorporated a random effect of plot, and fixed effects for
time period and for treatment, but no interaction between them

(cbaileyi_proportional energy use ~ timeperiod + treatment). We therefore proceeded with this

model.

Table S13. Model comparison for C. baileyi proportional energy use.

Model.specification AIC
intercept + timeperiod + treatment + timeperiod:treatment + plot (random effect) 1021.318
intercept + timeperiod + treatment + plot (random effect) 1020.263

intercept + timeperiod + plot (random effect) 1042.758
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intercept + plot (random effect) 1321.149
intercept + timeperiod + treatment + timeperiod:treatment 1166.653
intercept + timeperiod + treatment 1162.901
intercept + timeperiod 1869.097
intercept 2036.489

536  Results

537 Table S14. Coefficients from GLMER on C. baileyi energy use

538  Note that “oera” is the variable name for the term for time period in these analyses, and

539  “oplottype” refers to experimental treatment.
Estimate  Std. Error zvalue Pr(>|z|)
(Intercept) -2.443643 0.2067789 -11.81766 0
oera.L -1.866286 0.1530068 -12.19740 0
oplottype.L  3.265183 0.2913472 11.20719 0

540 Table S15. Estimates from GLMER on C. baileyi energy use

541  Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod Treatment prob SE df asymp.LCL asymp.UCL

1997-2010  Control 0.0312856 0.0116044 Inf 0.0085414  0.0540297

1997-2010  Exclosure 0.7658194 0.0392864 Inf 0.6888195  0.8428193

2010-2020  Control 0.0023009 0.0008486 Inf 0.0006378  0.0039641

2010-2020  Exclosure 0.1893142 0.0364430 Inf 0.1178872  0.2607412
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542  Table S16. Contrasts from GLMER on C. baileyi energy use.

543  Contrasts are performed on the link (logit) scale.

Comparison Treatment estimate SE df zratio p.value
1997-2010 - 2010-2020 Control 2.639326 0.2163843 Inf 12.1974 0
1997-2010 - 2010-2020 Exclosure 2.639326 0.2163843 Inf 12.1974 0
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Appendix S2 - Full analytical methods and model results

Supplemental information for “Maintenance of community function through compensation
breaks down over time in a desert rodent community”, by Renata M. Diaz and S. K. Morgan

Ernest, in Ecology.

Fully annotated code and RMarkdown documents to reproduce these analyses are available at

https://doi.org/10.5281/zenodo.5544361 and https://doi.org/10.5281/zenodo.5539880.
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585  Compensation

586  We fit a generalized least squares (of the form compensation ~ timeperiod; note that

587  “timeperiod” is coded as “oera” throughout) using the gls function from the R package nlme

588  (Pinheiro et al. 2021). Because values from monthly censuses within each time period are subject
589  to temporal autocorrelation, we included a continuous autoregressive temporal autocorrelation
590  structure of order 1 (using the CORCARI function). We compared this model to models fit

591  without the autocorrelation structure and without the time period term using AIC. The model

592  with both the time period term and the autocorrelation structure was the best-fitting model via
593  AIC, and we used this model to calculate estimates and contrasts using the package emmeans

594  (Lenth 2021).

595 Table S1. Model comparison for compensation.

Model.specification AIC

intercept + timeperiod + autocorrelation ~ 69.85023

intercept + autocorrelation 84.74902
intercept + timeperiod 157.09726
intercept 252.74534

596  Table S2. Coefficients from GLS for compensation

597  Note that “oera” is the variable name for the term for time period in these analyses.

Value  Std.Error t-value p-value

(Intercept) 0.3450313 0.0294996 11.696141 0.0000000

oera.L 0.0647933 0.0524103  1.236269 0.2172146



oera.Q -0.2833553 0.0477359 -5.935890 0.0000000

598 Table S3. Estimates from GLS for compensation

Timeperiod  emmean SE df lower.CL

upper.CL

1988-1997 0.1835362 0.0520378 44.11081 0.0786683
1997-2010  0.5763899 0.0462641 47.37851 0.4833383

2010-2020 0.2751677 0.0528010 46.75897 0.1689314

599  Table S4. Contrasts from GLS for compensation

Comparison estimate SE df
1988-1997 - 1997-2010 -0.3928537 0.0689413 47.89422
1988-1997 - 2010-2020 -0.0916315 0.0741194 45.51740
1997-2010 - 2010-2020  0.3012222 0.0694989 49.52957

600

0.2884041
0.6694416

0.3814041

tratio p.value
-5.698378  0.0000
-1.236269 0.4383

4.334200 0.0002
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601  Total energy use ratio

602  As for compensation, we fit a generalized least squares of the form fotal energy ratio ~

603  timeperiod, accounting for temporal autocorrelation between monthly censuses within each time
604  period using a continuous autoregressive autocorrelation structure of order 1. We compared this
605  model to models fit without the timeperiod term and/or autocorrelation structure, and found the
606  full (timeperiod plus autocorrelation) model had the best performance via AIC. We used this

607  model for estimates and contrasts.

608 Table S5. Model comparison for total energy ratio.

Model.specification AIC

intercept + timeperiod + autocorrelation -132.92138

intercept + autocorrelation -118.15000
intercept + timeperiod 13.29396
intercept 156.85988

609 Table S6. Coefficients from GLS on total energy ratio

610  Note that “oera” is the variable name for the term for time period in these analyses.

Value  Std.Error t-value p-value

(Intercept) 0.5016731 0.0271176 18.499880 0.0000000
oera.L 0.1413504 0.0477646  2.959316 0.0033001
oera.Q -0.2503659 0.0429312 -5.831790 0.0000000

611 Table S7. Estimates from GLS on total energy ratio

Timeperiod emmean SE df lower.CL  upper.CL




1988-1997  0.2995118 0.0475806

1997-2010  0.7060960 0.0419773

2010-2020 0.4994115 0.0480066

612 Table S8. Contrasts from GLS on total energy ratio

Comparison estimate

36.19943 0.2030323

38.51943 0.6211550

37.62774 0.4021956

SE df

0.3959913

0.7910369

0.5966274

t.ratio

p.value

1988-1997 - 1997-2010 -0.4065842

1988-1997 - 2010-2020 -0.1998997

1997-2010 - 2010-2020  0.2066845

613

0.0623398 40.51631

0.0675493 37.12310

0.0626456 41.44768

-6.522060

-2.959316

3.299267

0.0000

0.0144

0.0056
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Kangaroo rat (Dipodomys) proportional energy use

Proportional energy use is bounded 0-1 and cannot be fit with generalized least squares. We
therefore used a binomial generalized linear model of the form

dipodomys_proportional _energy use ~ timeperiod. We compared a model fit with a timeperiod
term to an intercept-only (null) model using AIC, and found the timeperiod term improved
model fit. We used this model for estimates and contrasts.

Note that we were unable to incorporate temporal autocorrelation into generalized linear models,
and we prioritized fitting models of the appropirate family over accounting for autocorrelation.
Due to the pronounced differences between time periods for these variables, we were

comfortable proceeding without explicitly accounting for autocorrelation.

Table S9. Model comparison for Dipodomys proportional energy use.

Model.specification AIC

intercept + timeperiod 258.3581

intercept 280.8497

Table S10. Coefficients from GLM on Dipodomys energy use.

Note that “oera” is the variable name for the term for time period in these analyses. Coefficients
are given on the link (logit) scale.

Estimate  Std. Error z value Pr(>|z|)

(Intercept) 1.4032480 0.1503201 9.335068 0.0000000
oera.L -1.1000833 0.2871738 -3.830723 0.0001278

oera.Q 0.5855493 0.2304516 2.540878 0.0110574



628 Table S11. Estimates from GLM on Dipodomys energy use.

629  Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod prob SE df asymp.LCL asymp.UCL

1988-1997 0.9183528 0.0256462 Inf 0.8680872  0.9686183
1997-2010  0.7160901 0.0398537 Inf 0.6379782  0.7942020

2010-2020 0.7035835 0.0456677 Inf 0.6140765  0.7930905

630 Table S12. Contrasts from GLM on Dipodomys energy use.

631  Contrasts are performed on the link (logit) scale.

contrast estimate SE df z.ratio p.value

a pre pb-b pre reorg 1.4950249 0.3942281 Inf 3.7922836 0.0004
a pre pb-c post reorg 1.5557527 0.4061251 Inf 3.8307227 0.0004
b _pre reorg - c_post reorg 0.0607279 0.2938992 Inf 0.2066282 0.9767

632
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633  C. baileyi proportional energy use

634  As for kangaroo rat proportional energy use, we used a binomial generalized linear model to

635  compare C. baileyi proportional energy use across time periods. Because C. baileyi occurs on
636  both control and exclosure plots, we investigated whether the dynamics of C. baileyi’s

637  proportional energy use differed between treatment types. We compared models incorporating
638  separate slopes, separate intercepts, or no terms for treatment modulating the change in C. baileyi
639  proportional energy use across time periods, i.e. comparing the full set of models:

640 «  cbhaileyi proportional energy use ~ timeperiod + treatment + timeperiod:treatment

641 «  cbhaileyi proportional energy use ~ timeperiod + treatment

642 «  cbhaileyi proportional energy use ~ timeperiod

643  We also tested a null (intercept-only) model of no change across time periods:

644+  cbaileyi proportional energy use ~ 1

645  We found that the best-fitting model incorporated effects for time period and for treatment, but
646  no interaction between them (chaileyi proportional energy use ~ timeperiod + treatment). We

647  therefore proceeded with this model.

648  Table S13. Model comparison for C. baileyi proportional energy use.

Model.specification AIC
intercept + timeperiod + treatment + timeperiod:treatment  237.7643
intercept + timeperiod + treatment 231.0963
intercept + timeperiod 460.8477

intercept 541.3799
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Table S14. Coefficients from GLM on C. baileyi energy use

Note that “oera” is the variable name for the term for time period in these analyses, and

“oplottype” refers to treatment. Coefficients are given on the link (logit) scale.

Estimate  Std. Error zvalue Pr(>|z|)
(Intercept) -1.574028 0.1670168 -9.424368 0
oera.L -1.409273 0.2010398 -7.009921 0
oplottype.L  2.184896 0.2267112  9.637355 0

Table S15. Estimates from GLM on C. baileyi energy use

Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod Treatment prob SE df asymp.LCL asymp.UCL
1997-2010  Control 0.1069314 0.0258894 Inf 0.0561890  0.1576737
1997-2010  Exclosure 0.7246076 0.0385129 Inf 0.6491236  0.8000915
2010-2020  Control 0.0160560 0.0058224 Inf 0.0046444  0.0274676
2010-2020 Exclosure 0.2639419 0.0428458 Inf 0.1799657  0.3479181

Table S16. Contrasts from GLM on C. baileyi energy use.

Contrasts are performed on the link (logit) scale.

Comparison

Treatment

estimate

SE df

z.ratio p.value

1997-2010 - 2010-2020 Control

1997-2010 - 2010-2020 Exclosure

1.993013 0.2843132 Inf 7.009921

1.993013 0.2843132 Inf 7.009921

0

0
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Appendix S3 - Biomass analysis

Supplemental information for “Maintenance of community function through compensation
breaks down over time in a desert rodent community”, by Renata M. Diaz and S. K. Morgan

Ernest, in Ecology.

Fully annotated code and RMarkdown documents to reproduce these analyses are available at

https://doi.org/10.5281/zenodo.5544361 and https://doi.org/10.5281/zenodo.5539880.

All statistical methods for biomass are identical to the ones for energy use (Appendix S1).
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Compensation

We fit a generalized least squares (of the form compensation ~ timeperiod; note that
“timeperiod” is coded as “oera” throughout) using the gls function from the R package nlme
(Pinheiro et al. 2021). Because values from monthly censuses within each time period are subject
to temporal autocorrelation, we included a continuous autoregressive temporal autocorrelation
structure of order 1 (using the CORCARI1 function). We compared this model to models fit
without the autocorrelation structure and without the time period term using AIC. The model
with both the time period term and the autocorrelation structure was the best-fitting model via
AIC, and we used this model to calculate estimates and contrasts using the package emmeans

(Lenth 2021).

Table S1. Model comparison for compensation.

Model.specification AIC

intercept + timeperiod + autocorrelation -17.623354
intercept + autocorrelation -3.297103
intercept + timeperiod 92.184205

intercept 207.804481
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708  Table S2. Coefficients from GLS for compensation

709  Note that “oera” is the variable name for the term for time period in these analyses.

Value  Std.Error t-value p-value

(Intercept) 0.3081443 0.0290539 10.605950 0.0000000
oera.L 0.0711412 0.0514131 1.383719 0.1673549

oera.Q -0.2799121 0.0465252 -6.016352 0.0000000

710  Table S3. Estimates from GLS for compensation

Timeperiod  emmean SE df lower.CL  upper.CL

1988-1997 0.1435663 0.0511419 39.28312 0.0401458 0.2469867
1997-2010  0.5366915 0.0452745 41.91562 0.4453185 0.6280646

2010-2020 0.2441751 0.0517205 41.17937 0.1397373 0.3486130

711  Table S4. Contrasts from GLS for compensation

Comparison estimate SE df tratio p.value

1988-1997 - 1997-2010 -0.3931253 0.0673811 43.22895 -5.834358 0.0000
1988-1997 - 2010-2020 -0.1006089 0.0727090 40.36882 -1.383719 0.3588

1997-2010 - 2010-2020  0.2925164 0.0678003 44.43055 4.314383 0.0003

712
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713 Total biomass ratio

714 As for compensation, we fit a generalized least squares of the form fotal biomass ratio ~

715  timeperiod, accounting for temporal autocorrelation between monthly censuses within each time
716  period using a continuous autoregressive autocorrelation structure of order 1. We compared this
717 model to models fit without the timeperiod term and/or autocorrelation structure, and found the
718  full (timeperiod plus autocorrelation) model had the best performance via AIC. We used this

719  model for estimates and contrasts.

720  Table S5. Model comparison for total biomass ratio.

Model.specification AIC

intercept + timeperiod + autocorrelation -176.57761

intercept + autocorrelation -162.61339
intercept + timeperiod -15.98438
intercept 146.61442

721  Table S6. Coefficients from GLS on total biomass ratio

722 Note that “oera” is the variable name for the term for time period in these analyses.

Value  Std.Error t-value p-value

(Intercept)  0.4553971 0.0272418 16.716827 0.0000000
oera.L 0.1454493 0.0477989  3.042941 0.0025257
oera.Q -0.2531409 0.0427343 -5.923594 0.0000000

723 Table S7. Estimates from GLS on total biomass ratio

Timeperiod emmean SE df lower.CL  upper.CL




1988-1997  0.2492046 0.0476584 33.82432 0.1523326 0.3460765
1997-2010  0.6620857 0.0419515 35.98516 0.5770030 0.7471684

2010-2020  0.4549009 0.0480215 34.98703 0.3574107 0.5523911

724  Table S8. Contrasts from GLS on total biomass ratio

Comparison estimate SE df t.ratio

p.value

1988-1997 - 1997-2010 -0.4128811 0.0621739 38.42746 -6.640747
1988-1997 - 2010-2020 -0.2056963 0.0675979 34.67694 -3.042941

1997-2010 - 2010-2020  0.2071848 0.0624325 39.20390 3.318542

725

0.0000

0.0121

0.0054
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726  Kangaroo rat (Dipodomys) proportional biomass

727  Proportional biomass is bounded 0-1 and cannot be fit with generalized least squares. We

728  therefore used a binomial generalized linear model with no temporal autocorrelation term, of the
729  form dipodomys_proportional biomass ~ timeperiod. We compared a model fit with a

730  timeperiod term to an intercept-only (null) model using AIC, and found the timeperiod term

731  improved model fit. We used this model for estimates and contrasts.

732 Table S9. Model comparison for Dipodomys proportional biomass.

Model.specification AIC

intercept + timeperiod 215.2069

intercept 227.9608

733 Table S10. Coefficients from GLM on Dipodomys biomass.

734 Note that “oera” is the variable name for the term for time period in these analyses. Coefficients
735  are given on the link (logit) scale.

Estimate  Std. Error z value Pr(>|z|)

(Intercept) 1.6149566 0.1644937 9.817741 0.0000000
oera.L -1.1672395 0.3180813 -3.669626 0.0002429

oera.Q 0.6619048 0.2473324 2.676175 0.0074468

736 Table S11. Estimates from GLM on Dipodomys biomass.

737  Note that estimates are back-transformed onto the response scale, for interpretability.
Timeperiod prob SE df asymp.LCL asymp.UCL

1988-1997 0.9376458 0.0226460 Inf 0.8932605  0.9820310



1997-2010  0.7454543 0.0385025 Inf 0.6699909

2010-2020 0.7426552 0.0437171 Inf 0.6569713

738  Table S12. Contrasts from GLM on Dipodomys biomass.

739  Contrasts are performed on the link (logit) scale.

0.8209177

0.8283392

contrast estimate SE df z.ratio p.value
a pre pb-b pre reorg 1.6360275 0.4372643 Inf 3.741508 0.0005
a pre pb-c post reorg 1.6507259 0.4498349 Inf 3.669626 0.0007
b _pre reorg - c post reorg 0.0146984 0.3057707 Inf 0.048070 0.9987

740
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C. baileyi proportional biomass

Model specification and selection

As for kangaroo rat proportional biomass, we used a binomial generalized linear model to
compare C. baileyi proportional biomass across time periods. Because C. baileyi occurs on both
control and exclosure plots, we investigated whether the dynamics of C. baileyi’s proportional
biomass differed between treatment types. We compared models incorporating separate slopes,
separate intercepts, or no terms for treatment modulating the change in C. baileyi proportional
biomass across time periods, i.e. comparing the full set of models:

»  cbaileyi_proportional_biomass ~ timeperiod + treatment + timeperiod.:treatment

*  cbaileyi_proportional_biomass ~ timeperiod + treatment

*  cbaileyi_proportional_biomass ~ timeperiod

We also tested a null (intercept-only) model of no change across time periods:

*  cbaileyi proportional biomass ~ 1
We found that the best-fitting model incorporated effects for time period and for treatment, but

no interaction between them (chaileyi proportional biomass ~ timeperiod + treatment). We

therefore proceeded with this model.

Table S13. Model comparison for C. baileyi proportional biomass.

Model.specification AIC

intercept + timeperiod + treatment + timeperiod:treatment 237.6847

intercept + timeperiod + treatment 231.2374
intercept + timeperiod 466.4937
intercept + treatment 346.2154

intercept 543.7811
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Table S14. Coefficients from GLM on C. baileyi biomass.

Note that “oera” is the variable name for the term for time period in these analyses, and

“oplottype” refers to treatment. Coefficients are given on the link (logit) scale.

Estimate

Std. Error

zvalue Pr(>|z|)

(Intercept)

oera.L

-1.538798 0.1671239 -9.207525

-1.403286

0.2006948

-6.992140

oplottype.L  2.270657 0.2298594  9.878462

0

0

0

Table S15. Estimates from GLM on C. baileyi biomass

Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod Treatment prob SE df asymp.LCL asymp.UCL
1997-2010  Control 0.1041331 0.0255800 Inf 0.0539971  0.1542691
1997-2010  Exclosure 0.7425132 0.0376727 Inf 0.6686761  0.8163504
2010-2020  Control 0.0157248 0.0057341 Inf 0.0044861  0.0269634
2010-2020 Exclosure 0.2838438 0.0439192 Inf 0.1977637  0.3699240

Table S16. Contrasts from GLM on C. baileyi biomass.

Contrasts are performed on the link (logit) scale.

Comparison

Treatment

estimate

SE df

z.ratio p.value

1997-2010 - 2010-2020 Control

1997-2010 - 2010-2020 Exclosure

1.984546 0.2838253 Inf 6.99214

1.984546 0.2838253 Inf 6.99214

0

0
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Figure S1. Biomass results
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Figure S1 Legend.

Dynamics of biomass and rodent community composition over time. Lines represent the ratio of
biomass on exclosure plots to control plots (a), 6-month moving averages of biomass
compensation (b), and the share of community-wide biomass accounted for by kangaroo rats on
control plots (¢), and by C. baileyi (d), on control (gold) and exclosure (blue) plots. Dotted
vertical lines mark the boundaries between time periods used for statistical analysis. Horizontal
lines are time-period estimates from generalized least squares (a, b) and generalized linear (c, d)

models, and the semitransparent envelopes mark the 95% confidence or credible intervals.
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Appendix S4 - Covariates of rodent community change

Supplemental information for “Maintenance of community function through compensation
breaks down over time in a desert rodent community”, by Renata M. Diaz and S. K. Morgan

Ernest, in Ecology.

Fully annotated code and RMarkdown documents to reproduce these analyses are available at

https://doi.org/10.5281/zenodo.5544361 and https://doi.org/10.5281/zenodo.5539880.
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Legend

Figure S1. Changes in overall community energy use (A), NDVI (B), and local climate (C)
surrounding the 2010 shift in rodent community composition. As documented in Christensen et
al. (2018), the 2010 transition followed a period of low abundance community-wide (A) and low
plant productivity (B). Since 2010, the site has experienced two periods of drought (C)
interspersed with an unusually wet period.

Total rodent energy use (A) is calculated as the total energy use of all granviores on control plots
(Etot.) in each census period. The anomaly (shown) is calculated as the difference between the
total energy use in each census period and the long-term mean of total energy use. Vertical
dashed lines mark the dates of major transitions in the rodent community. NDVI anomaly (B) is
calculated as the difference between monthly NDVI and the long-term mean for that month.
NDVI data were obtained from Landsat 5, 7, and 8 using the ndvi function in the R package
portalr (Maesk et al. 2006; Vermote et al. 2016; Christensen et al. 2019). Drought (C) was
calculated using a 12-month Standardized Precipitation Evapotranspiraiton index (SPEI) for all
months from 1989-2020, using the Thornthwaite method to estimate potential evapotranspiration
(using the R package SPEI, Begueria and Vicente-Serrano 2017; Slette et al. 2019; Cardenas et
al. 2021). Values greater than 0 (blue) indicate wetter than average conditions, and values less
than 0 (red) indicate drier conditions. Values between -1 and 1 (horizontal lines) are considered

within normal variability for a system, while values < -1 constitute drought (Slette et al. 2019).
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