

1 **Title:** Maintenance of community function through compensation breaks down over time in a
2 desert rodent community

3 **Authors:** Renata M. Diaz¹ and S. K. Morgan Ernest²

4 1. School of Natural Resources and Environment, University of Florida, Gainesville, FL.

5 Corresponding author. renata.diaz@weecology.org

6 2. Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL.

7 **Original submission:** This submission analyzes long-term data on rodent community abundance
8 and energy use from the Portal Project. Sections of this timeseries have been analyzed in
9 numerous other publications, but this is the first to analyze data from 2007-2020 on
10 compensation on experimental and control plots.

11 **No prior publication:** This submission is posted as a preprint on bioRxiv at

12 <https://www.biorxiv.org/content/10.1101/2021.10.01.462799v1>.

13 **Animal welfare:** Rodent censuses were conducted with IACUC approval, most recently under
14 protocol 201808839_01 at the University of Florida.

15 **Open research:** All data and code to reproduce these analyses are archived on Zenodo at
16 <https://doi.org/10.5281/zenodo.5544361> and <https://doi.org/10.5281/zenodo.5539880>.

17 **Analytic methods:** All analyses were conducted in R version 4.0.3.

18 **Abstract**

19 Understanding the ecological processes that maintain community function in systems
20 experiencing species loss, and how these processes change over time, is key to understanding the
21 relationship between community structure and function and predicting how communities may
22 respond to perturbations in the Anthropocene. Using a 30-year experiment on desert rodents, we
23 show that the impact of species loss on community-level energy use has changed repeatedly and
24 dramatically over time, due to 1) the addition of new species to the community, and 2) a
25 reduction in functional redundancy among the same set of species. Although strong
26 compensation, initially driven by the dispersal of functionally redundant species to the local
27 community, occurred in this system from 1997-2010, since 2010, compensation has broken
28 down due to decreasing functional overlap within the same set of species. Simultaneously, long-
29 term changes in sitewide community composition due to niche complementarity have decoupled
30 the dynamics of compensation from the overall impact of species loss on community-level
31 energy use. Shifting, context-dependent compensatory dynamics, such as those demonstrated
32 here, highlight the importance of explicitly long-term, metacommunity, and eco-evolutionary
33 perspectives on the link between species-level fluctuations and community function in a
34 changing world.

35 **Key words:** community function, compensation, zero-sum dynamic, environmental fluctuations,
36 functional redundancy

37 **Introduction**

38 Determining the extent to which community-level properties are affected by species loss,
39 and how and why this changes over time, is key for understanding how communities are
40 structured and how community function may respond to future perturbations (Gonzalez and
41 Loreau 2009). When species are lost from a community, their contributions to community
42 function (e.g. total productivity or resource use) are also directly lost. Community function may
43 be maintained, however, if in the new community context, species that remain perform similar
44 functions to the species that were lost, and compensate for the decline in function directly caused
45 by species loss - i.e., functional redundancy (Walker 1992, 1995; Ernest and Brown 2001;
46 Rosenfeld 2002; Gonzalez and Loreau 2009). When compensation via functional redundancy
47 occurs among consumers with a common resource base, it is consistent with a zero-sum
48 competitive dynamic, in which resources not used by one species are readily absorbed by
49 competitors, and any increases in the abundance of one species must come at the direct expense
50 of others (Van Valen 1973; Ernest et al. 2008).

51 Because the response of system-level function to species loss is partially determined by
52 the degree of functional redundancy in a community, processes that cause functional redundancy
53 to change over time can have important consequences for the long-term maintenance of
54 ecosystem function. Colonization events may buffer community function against species loss, if
55 a community gains species that perform similar functions to the species that were lost (Ernest
56 and Brown 2001; Leibold et al. 2017). The ability of colonization to supply functionally
57 redundant species depends on the species (and traits) present in the broader metacommunity, and
58 on the rate of dispersal supplying appropriate species to local communities (Leibold et al. 2017).

59 Even without the addition of new species and traits, however, functional redundancy
60 within a consistent set of coexisting species may fluctuate over time. While, in theory, functional
61 redundancy may occur via the special case of complete niche neutrality (e.g. Hubbell 2001), it
62 may also occur in niche-structured systems that contain species that share some traits but differ
63 along other niche axes (Thibault et al. 2010). In these systems, if similar, but non-identical,
64 species respond to environmental change in similar ways, functional overlap can be maintained
65 or even strengthened. However, if niche differences cause species to respond differently to
66 changing conditions, the degree of functional overlap between those species may decline,
67 resulting in a breakdown in compensation (Loreau 2004; Fetzer et al. 2015). Over time, as
68 metacommunity dynamics and changing environmental conditions modulate functional
69 redundancy within a community, the extent to which community function is robust to species
70 loss - and the strength of zero-sum competition - may also be dynamic and context-dependent.

71 Despite logical conceptual support, and evidence from experimental microcosms (Fetzer
72 et al. 2015), there is little empirical documentation of how, and through which mechanisms,
73 temporal changes in functional redundancy modulate the effect of species loss on ecosystem
74 function in natural assemblages. Although relatively plentiful, observational data cannot
75 unambiguously detect compensation through functional redundancy, and even short-term
76 experiments may not be sufficient to capture temporal variation in compensation (Ernest and
77 Brown 2001; Houlahan et al. 2007). In contrast, long-term manipulative experiments are
78 uniquely suited to address this question. In long-term experiments in which key species are
79 removed from a community over an extended period of time, the impact of species loss on
80 community function can be directly quantified by comparing community function between
81 complete and manipulated assemblages. As metacommunity dynamics and environmental

82 conditions shift over time, long-term monitoring can reveal how these processes contribute to
83 changes in functional redundancy and ecosystem function across different time periods. Due to
84 the financial and logistical resources required to maintain and monitor whole-community
85 manipulations over long timescales, these experiments are rare in natural systems representative
86 of realistic evolutionary, geographic, and environmental constraints (Hughes et al. 2017).

87 Here, we use a 30-year experiment on desert rodents to investigate how shifts in
88 functional redundancy alter the effect of species loss on community function over time. In this
89 study, kangaroo rats (*Dipodomys* spp.), the largest and competitively dominant species in the
90 rodent community, have been removed from a subset of experimental plots to explore how the
91 loss of key species affects community function, measured as community-level metabolic flux
92 (“total energy use”, or E_{tot}) or total biomass (Ernest et al. 2019). For systems of consumers with
93 a shared resource base, such as this community of granivorous rodents, E_{tot} reflects the total
94 amount of resources being processed by an assemblage, and total biomass directly reflects
95 standing biomass. Both are important metrics of community function (Lawton 1994; Ernest and
96 Brown 2001). Long-term monitoring of this experiment has documented repeated shifts in the
97 habitat and species composition of this system, resulting in distinct time periods characterized by
98 different habitat conditions and configurations of the rodent community (Christensen et al.
99 2018). Abrupt reorganization events in community composition occurred in 1997 and in 2010,
100 associated with the establishment and subsequent decline of the pocket mouse *Chaetodipus*
101 *baileyi*. *C. baileyi* is similar in size, and presumably other traits, to kangaroo rats, and its
102 establishment in 1996-97 drove a pronounced increase in compensation due to functional
103 redundancy between *C. baileyi* and kangaroo rats (Ernest and Brown 2001; Thibault et al. 2010).
104 Over the course of this experiment, shifting environmental conditions have caused the habitat at

105 the study site to transition from desert grassland to scrub, driving a shift in baseline rodent
106 community composition away from kangaroo rats and favoring other, smaller, granivores
107 (Brown et al. 1997; Ernest et al. 2008). By making comparisons across these time periods, we
108 explored how shifts in community composition and functional overlap among the same species
109 have contributed to long-term changes in the effect of species loss on community function.

110 **Methods**

111 *The Portal Project*

112 The Portal Project consists of a set of 24 fenced experimental plots located approximately
113 7 miles east of Portal, AZ, USA, on unceded land of the Chiricahua Apache. Beginning in 1977,
114 kangaroo rats (*Dipodomys spectabilis*, *D. merriami*, and *D. ordii*) have been experimentally
115 excluded from a subset of these plots (exclosures), while all other rodents are allowed access
116 through small holes cut in the plot fencing. Control plots, with larger holes, are accessible to all
117 rodents, including kangaroo rats. Rodents on all plots are censused via monthly bouts of live-
118 trapping. Each individual captured is identified to species and weighed. For additional details on
119 the site and methodology of the Portal Project, see Ernest et al. (2019).

120 *Data*

121 We used data for control and exclosure plots from February 1988 until January 2020. The
122 experimental treatments for some plots have changed over time, and we used the subset of plots
123 that have had the same treatments for the longest period of time (Ernest et al. 2019). Four control
124 plots, and five exclosure plots, met these criteria. In order to achieve a balanced sample, we
125 randomly selected four exclosure plots for analysis. We divided the timeseries into three time
126 periods defined by major transitions in the rodent community surrounding the establishment and
127 decline of *C. baileyi* (Ernest and Brown 2001; Christensen et al. 2018). The first time period

128 (February 1988-June 1997) precedes *C. baileyi*'s establishment at site. We defined *C. baileyi*'s
129 establishment date as the first census period in which *C. baileyi* was captured on all exclosure
130 plots (following Bledsoe and Ernest, 2019). During the second time period (July 1997-January
131 2010), *C. baileyi* was abundant on both exclosure and control plots. This time period ended with
132 a reorganization event in which *C. baileyi* became scarce sitewide. We used January 2010, the
133 midpoint of the 95% credible interval for the date of this reorganization event as estimated in
134 Christensen et al. (2018), as the end date for this time period. The last time period spans from
135 February 2010-January 2020. For each individual rodent captured, we estimated the individual-
136 level metabolic rate using the scaling relationship between individual body mass and metabolic
137 rate $b = 5.69 * (m^{0.75})$, where m is body mass in grams and b is metabolic rate (for details, see
138 White et al. 2004). We calculated treatment and species-level energy use as the sum of the
139 appropriate individuals' metabolic rates, and total biomass as the sum of individuals' body mass
140 measurements.

141 *Statistical analysis of rodent community energy use and biomass*

142 Here, we describe analyses for energy use. For biomass, we repeated these analyses
143 substituting biomass values for energy use throughout. For all variables, we combined data for
144 all plots within a treatment in each monthly census period and calculated treatment-level means.
145 This is necessary to calculate compensation, and we treated other variables in the same way to
146 maintain consistency. A provisional plot-level analysis yielded qualitatively equivalent results
147 (Appendix S1). To measure the overall impact of kangaroo rat removal on E_{tot} , we calculated a
148 "total energy ratio" as the ratio of treatment-level E_{tot} for kangaroo-rat exclosure plots relative to
149 unmanipulated control plots, i.e. E_{totE}/E_{totC} where E_{totE} and E_{totC} are total energy use on
150 exclosures and controls, respectively (Thibault et al 2010; Bledsoe and Ernest 2019). This ratio is

151 distinct from compensation, which we defined as the proportion of the energy made available by
152 kangaroo rat removal taken up via compensatory increases in energy use by small granivores (all
153 granivores other than kangaroo rats; *Baiomys taylori*, *C. baileyi*, *Chaetodipus hispidus*,
154 *Chaetodipus intermedius*, *Chaetodipus penicillatus*, *Perognathus flavus*, *Peromyscus eremicus*,
155 *Peromyscus leucopus*, *Peromyscus maniculatus*, *Reithrodontomys fulvescens*, *Reithrodontomys*
156 *megalotis*, and *Reithrodontomys montanus*). We calculated this as $(SG_E - SG_C)/KR_C$, where SG_E
157 and SG_C are the amount of energy used by small granivores (SG) on exclosure and control plots,
158 respectively, and KR_C is the amount of energy used by kangaroo rats (KR) on control plots
159 (Ernest and Brown 2001). To compare these variables across time periods, we used generalized
160 least squares models (GLS; the R package *nlme*; Pinheiro et al. 2020) of the form $(SG_E -$
161 $SG_C)/KR_C \sim \text{time period}$, for compensation, and $E_{\text{tot}}/E_{\text{tot}C} \sim \text{time period}$, for the total energy
162 ratio. We included a continuous-time autoregressive temporal autocorrelation term to account for
163 temporal autocorrelation between values from monthly census periods within each multi-year
164 time period (for details of model selection, see Appendix S2). To evaluate change in baseline
165 community composition over time, we calculated the proportion of treatment-level energy use
166 accounted for by kangaroo rats on control plots in each census period ($KR_C/E_{\text{tot}C}$). Proportional
167 energy use is bounded 0-1 and is therefore not appropriate for GLS, so we compared values
168 across time periods using a binomial generalized linear model (GLM) of the form $KR_C/E_{\text{tot}C} \sim$
169 time period . Finally, we calculated the proportional energy use accounted for by *C. baileyi* (CB)
170 on exclosure and control plots in each census period ($CB_E/E_{\text{tot}E}$ and $CB_C/E_{\text{tot}C}$, respectively). *C.*
171 *baileyi* was not present at the site prior to 1996, and we restricted the analysis of *C. baileyi*
172 proportional energy use to the second two time periods. We compared *C. baileyi* proportional
173 energy use over time and across treatments using a binomial GLM of the form $CB_E/E_{\text{tot}E} \sim \text{time}$

174 *period + treatment*. For all models, we calculated estimated means and 95% confidence or
175 credible intervals for time-period (and, for *C. baileyi*, treatment) level values, and contrasts
176 between time periods (and, for *C. baileyi*, treatments), using the R package *emmeans* (Lenth
177 2021). Analyses were conducted in R 4.0.3 (R Core Team 2020). Data and code are archived at
178 <https://doi.org/10.5281/zenodo.5544361> and <https://doi.org/10.5281/zenodo.5539880>.

179 **Results**

180 The impact of kangaroo rat removal on community function has changed repeatedly
181 over time, through a combination of abrupt shifts in compensation associated with *C. baileyi*, and
182 long-term changes in baseline community composition sitewide (Figure 1). These dynamics are
183 qualitatively identical whether function is measured as total energy use (Figure 1; Appendix S2)
184 or total biomass (Appendix S3). The first shift coincided with *C. baileyi*'s establishment in the
185 community beginning in 1996-97 (Figure 1D). *C. baileyi* rapidly became dominant on exclosure
186 plots and dramatically increased compensation (Figure 1B). From 1997-2010, small granivores
187 compensated for an average of 58% of kangaroo rat energy use on control plots (95% interval
188 48-67%), an increase from an average of 18% from 1988-1997 (95% interval 8-29%; contrast p
189 < 0.001 ; for complete results of all models, see Appendix S2) from 1997-2010. With *C. baileyi*'s
190 addition to the community, the total energy ratio (on exclosures relative to controls; Figure 1A)
191 increased from 30% (20-40%) to 71% (62-79%, contrast $p < 0.014$). In the second shift,
192 beginning around 2010, *C. baileyi*'s abundance sitewide dropped precipitously (Figure 1D). *C.*
193 *baileyi*'s proportional energy use dropped from an average of 72% (65-80%) to 26% (18-35%,
194 contrast $p < 0.001$) on exclosure plots, and from 11% (6-16%) to essentially 0 on control plots
195 (contrast $p < 0.001$). Other species of small granivore did not make compensatory gains to offset
196 the decline in *C. baileyi* (Figure 1B). As a result, compensation declined from an average of 58%

197 (48-67%) to 28% (17-38%, contrast $p = 0.002$), a level not significantly different from the 18%
198 (8-29%, contrast $p = .44$) observed prior to *C. baileyi*'s establishment at the site. Somewhat
199 paradoxically, while the total energy ratio also dropped following *C. baileyi*'s decline, from an
200 average of 71% (62-79%) from 1997-2010 to 50% (40-60%, contrast $p = 0.0056$) from 2010-
201 2020, it remained higher than its average of 30% (20-40%, contrast $p = 0.0144$) from 1988-1997
202 (Figure 1A). Over the course of the experiment, community composition shifted sitewide. In
203 later years, kangaroo rats accounted for a lower proportion of baseline E_{tot} than they did at the
204 beginning of the study (Figure 1C). From 1988-1997, kangaroo rats accounted for 92% (87-97%)
205 of E_{tot} on controls; after 1997, this dropped to an average of approximately 70% (1988-1997
206 compared to later time periods, both $p = .0004$; 1997-2010 and 2020-2020 not significantly
207 different, $p = .976$). Because the proportion of E_{tot} directly lost to kangaroo rat removal was
208 smaller from 2010-2020 than from 1988-1997, the total energy ratio was higher from 2010-2020
209 than it was from 1988-1997 - even though there was not a detectable difference between the two
210 time periods in the proportion of lost energy being offset through compensation.

211 **Discussion**

212 The dynamics of rodent community energy use at Portal illustrate that the role of
213 functional redundancy in buffering community function against species loss fluctuates over time,
214 due to changes in both species composition and in the degree of functional overlap among the
215 same species. The 1997 increase in compensation, driven by *C. baileyi*'s establishment at the
216 site, was a clear and compelling instance of colonization from the regional species pool
217 overcoming limitations on functional redundancy (Ernest and Brown 2001; Leibold et al 2017).
218 Although the small granivore species originally present in the community did not possess the
219 traits necessary to compensate for kangaroo rats, *C. baileyi* supplied those traits and

220 substantially, but incompletely, restored community function. In contrast, following the
221 community reorganization event in 2010, *C. baileyi* remained present in the community, but
222 ceased to operate as a partial functional replacement for kangaroo rats. This is consistent with
223 fluctuating conditions modulating functional redundancy between similar, but non-identical,
224 competitors. Kangaroo rats and *C. baileyi* are relatively similar in size and are demonstrably
225 capable of using similar resources. However, *C. baileyi* prefers different, shrubbier microhabitats
226 than kangaroo rats, and the two groups have been observed to replace each other in adjacent
227 habitats (Ernest and Brown 2001). We suggest that this study site, which has historically been
228 dominated by kangaroo rats, constitutes marginal habitat for *C. baileyi*, and that, while
229 conditions from 1997-2010 aligned sufficiently with *C. baileyi*'s requirements to create
230 appreciable functional redundancy between kangaroo rats and *C. baileyi*, conditions since have
231 caused this redundancy to break down. *C. baileyi*'s decline occurred immediately following a
232 period of low plant productivity and low rodent abundance community-wide, and in the decade
233 following, the site experienced two long and severe droughts (Appendix S4; Christensen et al.
234 2018). These extreme conditions may themselves have limited *C. baileyi*'s fitness at the site, or
235 the community-wide low abundance event may have temporarily overcome incumbency effects
236 and triggered a community shift tracking longer-term habitat trends (Thibault and Brown 2008;
237 Christensen et al. 2018). Regardless of the proximate cause of *C. baileyi*'s decline, the fact that
238 *C. baileyi* remains in the community, but no longer compensates for kangaroo rats, illustrates
239 that changing conditions can have profound effects on community function by modulating the
240 degree of functional redundancy within a consistent set of species.

241 While changes in compensation have contributed to changes in community function in
242 this system, changes in compensation alone do not fully account for the long-term changes in the

243 overall impact of kangaroo rat removal on E_{tot} . Since 2010, although the ratio of E_{tot} on
244 exclosure plots relative to control plots declined coinciding with the breakdown in compensation
245 associated with *C. baileyi*, it remained higher than the levels observed prior to 1997 (Figure 1A).
246 This difference between the first and last time periods cannot be explained by an increase in
247 compensation, as compensation from 2010-2020 was not greater than pre-1997 levels (Figure
248 1B). Rather, the increase in E_{tot} on exclosure plots relative to control plots was the result of a
249 long-term decrease in the contribution of kangaroo rats to E_{tot} sitewide. Because kangaroo rats
250 accounted for a smaller proportion of E_{tot} on control plots from 2010-2020 than they did prior to
251 1997, their removal had a smaller impact on community function – even though there was not an
252 increase in the degree to which small granivores compensated for their absence. In fact, the
253 comparable levels of compensation achieved in the decades preceding and following *C. baileyi*'s
254 dominance at the site suggest a relatively stable, and limited, degree of functional overlap
255 between kangaroo rats and the original small granivores (i.e., excluding *C. baileyi*). Niche
256 complementarity, combined with changing habitat conditions, may partially explain this
257 phenomenon. It is well-documented that, while kangaroo rats readily forage in open
258 microhabitats where predation risk can be relatively high, smaller granivores preferentially
259 forage in sheltered microhabitats as an antipredator tactic (Kelt 2011). Over the course of this
260 experiment, the habitat at this study site has transitioned from an arid grassland to a shrubland
261 (Brown et al. 1997). As sheltered microhabitats became more widespread, small granivores may
262 have gained access to a larger proportion of resources and increased their share of E_{tot} sitewide.
263 However, kangaroo rats may have continued to use resources in open areas, which would have
264 remained inaccessible to smaller granivores even on exclosure plots. The long-term reduction in
265 the impact of kangaroo rat removal on community function, driven by niche complementarity

266 and consistent niche partitioning, contrasts with the temporary compensatory dynamic driven by
267 functional redundancy with *C. baileyi*. Although changes in the overall effect of species loss are
268 sometimes treated interchangeably with compensation (e.g. Ernest and Brown 2001 compared to
269 Thibault et al. 2010), it is important to recognize that multiple distinct pathways modulate the
270 long-term impacts of species loss on community function. Particularly in strongly niche-
271 structured systems, complementarity effects and fluctuations in functional redundancy may occur
272 simultaneously, with complex and counterintuitive impacts on community function.

273 Overall, the decadal-scale changes in energy use among the Portal rodents underscore the
274 importance of long-term metacommunity dynamics to the maintenance of community function
275 following species loss (see Leibold et al. 2017). Although a single colonization event may allow
276 for temporary compensation via functional redundancy, as conditions shift, species that once
277 compensated may no longer perform that function (see also Isbell et al. 2011). Particularly if
278 limiting similarity prevents similar competitors from specializing on precisely the same habitats
279 (Rosenfeld 2002), temporary, context-dependent compensation may be common. To maintain
280 compensation over time, multiple colonization events, supplying species that are functionally
281 redundant under different conditions, may be required. Depending on dispersal rates, and the
282 diversity and composition of regional species pools, this may be unlikely or even impossible. At
283 Portal, dispersal limitation introduced a 20-year delay in the compensatory response driven by *C.*
284 *baileyi*. Theoretically, a new species capable of compensating for kangaroo rats, and better-
285 suited to conditions at the site since 2010, could restore compensation under present conditions –
286 but it is unclear whether this species exists or if it can disperse to this site. As ecosystems
287 globally undergo reductions in habitat connectivity and regional beta diversity, and enter novel

288 climatic spaces, maintenance of community function via functional redundancy may grow
289 increasingly rare and fragile (Dornelas et al. 2014; Williams and Jackson 2007).

290 Finally, the long-term variability in functional redundancy documented here adds
291 important nuance to our understanding of how zero-sum dynamics operate in natural
292 assemblages. Theories invoking zero-sum dynamics, and tests for compensatory dynamics in
293 empirical data, often treat a zero-sum dynamic as a strong and temporally consistent constraint
294 (Hubbell 2001; Houlahan et al. 2007). In this framing, any resources made available via species
295 loss should immediately be taken up by other species. This is not consistent with the dynamics
296 that occur at Portal, which has seen extended periods of time when resources are available on
297 exclosure plots but are not used. Rather, these results are more consistent with a zero-sum
298 constraint operating at metacommunity or evolutionary scales (Van Valen 1973; Terry and Rowe
299 2015; Leibold et al. 2017). Over short timescales, or within a closed local assemblage, niche
300 differences may weaken zero-sum effects, especially under fluctuating conditions. However,
301 over larger temporal and spatial scales, dispersal or evolution may supply new species equipped
302 to use available resources - via either functional redundancy, or niche complementarity allowing
303 them to exploit novel niches. A long-term, metacommunity, and even macroevolutionary
304 approach may be necessary to fully understand how zero-sum constraints, functional
305 redundancy, and niche complementarity contribute to the maintenance of community-level
306 function in the face of species extinctions and changing conditions over time.

307 **Acknowledgements**

308 The Portal Project has been supported by numerous grants from the U.S. National Science
309 Foundation, most recently NSF DEB-1929730. RMD was supported in part by the NSF Graduate
310 Research Fellowship under Grant No. DGE-1315138 and DGE-1842473. This work was

311 supported by the USDA National Institute of Food and Agriculture, Hatch project FLA-WEC-
312 005983.

313 **Literature cited**

314 Bledsoe, Ellen K., and S. K. Morgan Ernest. 2019. "Temporal Changes in Species Composition
315 Affect a Ubiquitous Species' Use of Habitat Patches." *Ecology* 100 (11): e02869.
316 <https://doi.org/10.1002/ecy.2869>.

317 Brown, J. H., T. J. Valone, and C. G. Curtin. 1997. "Reorganization of an Arid Ecosystem in
318 Response to Recent Climate Change." *Proceedings of the National Academy of Sciences* 94
319 (18): 9729–33. <https://doi.org/10.1073/pnas.94.18.9729>.

320 Christensen, Erica M., David J. Harris, and S. K. Morgan Ernest. 2018. "Long-Term Community
321 Change through Multiple Rapid Transitions in a Desert Rodent Community." *Ecology* 99
322 (7): 1523–29. <https://doi.org/10.1002/ecy.2373>.

323 Dornelas, M., N. J. Gotelli, B. McGill, H. Shimadzu, F. Moyes, C. Sievers, and A. E. Magurran.
324 2014. "Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss."
325 *Science* 344 (6181): 296–99. <https://doi.org/10.1126/science.1248484>.

326 Ernest, S. K. Morgan, and James H. Brown. 2001. "Delayed Compensation for Missing
327 Keystone Species by Colonization." *Science* 292 (5514): 101–4.
328 <https://doi.org/10.1126/science.292.5514.101>.

329 Ernest, S. K. Morgan, Glenda M. Yenni, Ginger Allington, Ellen K. Bledsoe, Erica M.
330 Christensen, Renata M. Diaz, Keith Geluso, et al. 2020. "The Portal Project: A Long-Term
331 Study of a Chihuahuan Desert Ecosystem." *BioRxiv*, January, 332783.
332 <https://doi.org/10.1101/332783>.

333 Ernest, S. K. Morgan, James H. Brown, Katherine M. Thibault, Ethan P. White, and Jacob R.
334 Goheen. 2008. "Zero Sum, the Niche, and Metacommunities: Long-Term Dynamics of

335 Community Assembly.” *The American Naturalist* 172 (6): E257–69.

336 <https://doi.org/10.1086/592402>.

337 Fetzer, Ingo, Karin Johst, Robert Schäwe, Thomas Banitz, Hauke Harms, and Antonis

338 Chatzinotas. 2015. “The Extent of Functional Redundancy Changes as Species’ Roles Shift

339 in Different Environments.” *Proceedings of the National Academy of Sciences* 112 (48):

340 14888–93. <https://doi.org/10.1073/pnas.1505587112>.

341 Gonzalez, Andrew, and Michel Loreau. 2009. “The Causes and Consequences of Compensatory

342 Dynamics in Ecological Communities.” *Annual Review of Ecology, Evolution, and*

343 *Systematics* 40 (1): 393–414. <https://doi.org/10.1146/annurev.ecolsys.39.110707.173349>.

344 Houlahan, J. E., D. J. Currie, K. Cottenie, G. S. Cumming, S. K. M. Ernest, C. S. Findlay, S. D.

345 Fuhlendorf, et al. 2007. “Compensatory Dynamics Are Rare in Natural Ecological

346 Communities.” *Proceedings of the National Academy of Sciences*. 104(9): 3273-3277.

347 <https://www.srs.fs.usda.gov/pubs/29712>.

348 Hubbell, Stephen P. 2001. *The Unified Neutral Theory of Biodiversity and Biogeography* (MPB-

349 32). Princeton University Press. <https://www.jstor.org/stable/j.ctt7rj8w>.

350 Hughes, Brent B., Rodrigo Beas-Luna, Allison K. Barner, Kimberly Brewitt, Daniel R.

351 Brumbaugh, Elizabeth B. Cerny-Chipman, Sarah L. Close, et al. 2017. “Long-Term Studies

352 Contribute Disproportionately to Ecology and Policy.” *BioScience* 67 (3): 271–81.

353 <https://doi.org/10.1093/biosci/biw185>.

354 Isbell, Forest, Vincent Calcagno, Andy Hector, John Connolly, W. Stanley Harpole, Peter B.

355 Reich, Michael Scherer-Lorenzen, et al. 2011. “High Plant Diversity Is Needed to Maintain

356 Ecosystem Services.” *Nature* 477 (7363): 199–202. <https://doi.org/10.1038/nature10282>.

357 Kelt, Douglas A. 2011. “Comparative Ecology of Desert Small Mammals: A Selective Review
358 of the Past 30 Years.” *Journal of Mammalogy* 92 (6): 1158–78. <https://doi.org/10.1644/10-MAMM-S-238.1>.

360 Kelt, Douglas A., Jaclyn R. Aliperti, Peter L. Meserve, W. Bryan Milstead, M. Andrea Previtali,
361 and Julio R. Gutierrez. 2015. “Energetic Compensation Is Historically Contingent and Not
362 Supported for Small Mammals in South American or Asian Deserts.” *Ecology* 96 (6):
363 1702–12. <https://doi.org/10.1890/14-1569.1>.

364 Lawton, John H. 1994. “What Do Species Do in Ecosystems?” *Oikos* 71 (3): 367–74.
365 <https://doi.org/10.2307/3545824>.

366 Leibold, Mathew A., Jonathan M. Chase, and S. K. Morgan Ernest. 2017. “Community
367 Assembly and the Functioning of Ecosystems: How Metacommunity Processes Alter
368 Ecosystems Attributes.” *Ecology* 98 (4): 909–19. <https://doi.org/10.1002/ecy.1697>.

369 Lenth, Russell V. 2021. *Emmeans: Estimated Marginal Means, Aka Least-Squares Means*.
370 <https://CRAN.R-project.org/package=emmeans>.

371 Loreau, Michel. 2004. “Does Functional Redundancy Exist?” *Oikos* 104 (3): 606–11.
372 <https://doi.org/10.1111/j.0030-1299.2004.12685.x>.

373 Nagy, K. A., I. A. Girard, and T. K. Brown. 1999. “Energetics of Free-Ranging Mammals,
374 Reptiles, and Birds.” *Annual Review of Nutrition* 19 (1): 247–77.
375 <https://doi.org/10.1146/annurev.nutr.19.1.247>.

376 Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. 2020. *Nlme*:
377 *Linear and Nonlinear Mixed Effects Models*. <https://CRAN.R-project.org/package=nlme>.

378 R Core Team. 2020. *R: A Language and Environment for Statistical Computing*. Vienna,
379 Austria: R Foundation for Statistical Computing. <https://www.R-project.org/>.

380 Rosenfeld, Jordan S. 2002. "Functional Redundancy in Ecology and Conservation." *Oikos* 98
381 (1): 156–62. <https://doi.org/10.1034/j.1600-0706.2002.980116.x>.

382 Terry, Rebecca C., and Rebecca J. Rowe. 2015. "Energy Flow and Functional Compensation in
383 Great Basin Small Mammals under Natural and Anthropogenic Environmental Change."
384 *Proceedings of the National Academy of Sciences* 112 (31): 9656–61.
385 <https://doi.org/10.1073/pnas.1424315112>.

386 Thibault, Katherine M., and James H. Brown. 2008. "Impact of an Extreme Climatic Event on
387 Community Assembly." *Proceedings of the National Academy of Sciences of the United
388 States of America* 105 (9): 3410–15. <https://doi.org/10.1073/pnas.0712282105>.

389 Thibault, Katherine M., S. K. Morgan Ernest, and James H. Brown. 2010. "Redundant or
390 Complementary? Impact of a Colonizing Species on Community Structure and Function."
391 *Oikos* 119 (11): 1719–26.

392 Van Valen, Leigh. 1973. "A New Evolutionary Law." *Evolutionary Theory* 1 (1): 1–30.

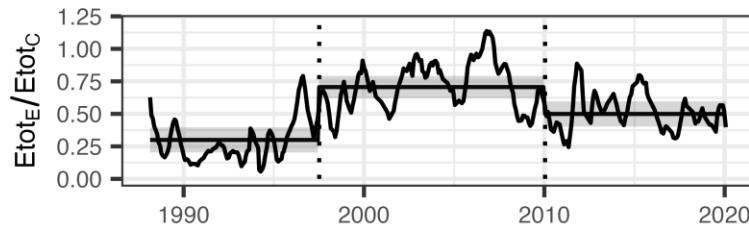
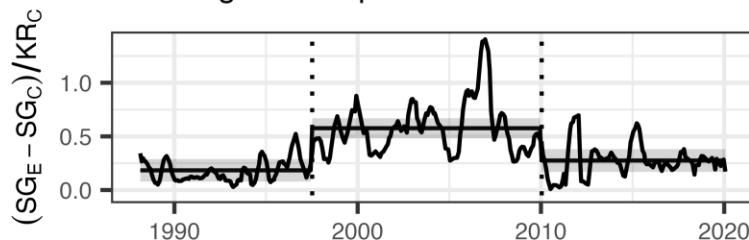
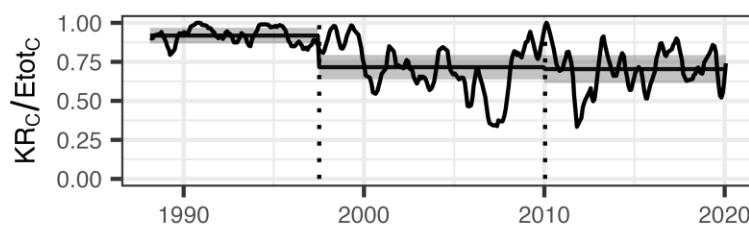
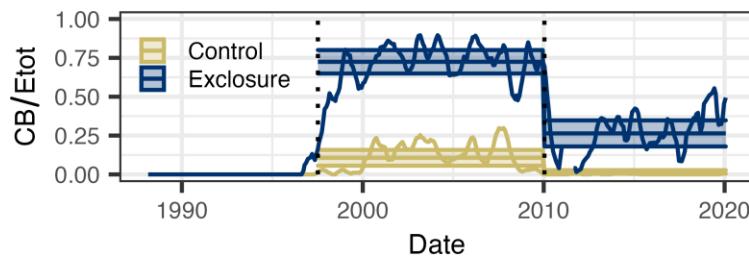
393 Walker, Brian. 1995. "Conserving Biological Diversity through Ecosystem Resilience."
394 *Conservation Biology* 9 (4): 747–52. <https://doi.org/10.1046/j.1523-1739.1995.09040747.x>.

395 Walker, Brian H. 1992. "Biodiversity and Ecological Redundancy." *Conservation Biology* 6 (1):
396 18–23. <https://doi.org/10.1046/j.1523-1739.1992.610018.x>.

397 White, Ethan P., S. K. Morgan Ernest, and Katherine M. Thibault. 2004. "Trade-offs in
398 Community Properties through Time in a Desert Rodent Community." *The American
399 Naturalist* 164 (5): 670–76. <https://doi.org/10.1086/424766>.

400 Williams, John W., and Stephen T. Jackson. 2007. "Novel Climates, No-Analog Communities,
401 and Ecological Surprises." *Frontiers in Ecology and the Environment* 5 (9): 475–82.
402 <https://doi.org/10.1890/070037>.

403 **Figure legends**





404 **Figure 1.** Dynamics of energy use and rodent community composition over time. Lines represent
405 the ratio of total energy use on exclosure plots to control plots (a), 6-month moving averages of
406 energetic compensation (b), and the share of community energy use accounted for by kangaroo
407 rats on control plots (c), and by *C. baileyi* (d), on control (gold) and exclosure (blue) plots.
408 Dotted vertical lines mark the boundaries between time periods used for statistical analysis.
409 Horizontal lines are time-period estimates from generalized least squares (a, b) and generalized
410 linear (c, d) models, and the semitransparent envelopes mark the 95% confidence or credible
411 intervals.

412

413

414

416 **Figures****a. Total energy use ratio****b. Energetic compensation****c. Kangaroo rat proportional energy use****d. *C. baileyi* proportional energy use**

417

418

419 **Appendix S1 - Plot-level analysis**

420 *Supplemental information for “Maintenance of community function through compensation*
421 *breaks down over time in a desert rodent community”, by Renata M. Diaz and S. K. Morgan*
422 *Ernest, in Ecology.*

423 Fully annotated code and RMarkdown documents to reproduce these analyses are available at
424 <https://doi.org/10.5281/zenodo.5544361> and <https://doi.org/10.5281/zenodo.5539880>.

425 Table of Contents

426	Explanation	25
427	Compensation	26
428	Model specification and selection.....	26
429	Table S1. Model comparison for compensation.	26
430	Results.....	26
431	Table S2. Coefficients from linear mixed-effects model for compensation	26
432	Table S3. Estimates from linear mixed-effects model for compensation	27
433	Table S4. Contrasts from linear mixed-effects model for compensation.....	27
434	Total energy use	28
435	Model specification and selection.....	28
436	Table S5. Model comparison for total energy ratio.	28
437	Results.....	28
438	Table S6. Coefficients from linear mixed-effects model on total energy ratio	28
439	Table S7. Estimates from linear mixed-effects model on total energy ratio.....	29
440	Table S8. Contrasts from linear mixed-effects model on total energy ratio	29
441	Kangaroo rat proportional energy use.....	30
442	Model specification and selection.....	30
443	Table S9. Model comparison for Dipodomys proportional energy use.	30
444	Results.....	30
445	Table S10. Coefficients from GLMER on Dipodomys energy use.	30
446	Table S11. Estimates from GLMER on Dipodomys energy use.	31

447	Table S12. Contrasts from GLMER on <i>Dipodomys</i> energy use.....	31
448	<i>C. baileyi</i> proportional energy use	32
449	Model specification and selection.....	32
450	Table S13. Model comparison for <i>C. baileyi</i> proportional energy use	32
451	Results.....	33
452	Table S14. Coefficients from GLMER on <i>C. baileyi</i> energy use	33
453	Table S15. Estimates from GLMER on <i>C. baileyi</i> energy use	33
454	Table S16. Contrasts from GLMER on <i>C. baileyi</i> energy use.....	34
455	References.....	35
456		
457		

458 **Explanation**

459 In order to calculate energetic compensation and the total energy ratio, we require an estimate for
460 the baseline values of total energy use, kangaroo rat energy use, and small granivore energy use
461 on control plots. Estimating these baselines requires aggregating over between-plot variability
462 among the control plots. For consistency, in the main analysis, we also aggregate across the
463 exclosure plots and focus on treatment-level means throughout. Here, we explore the effect of
464 between-plot variability on our analyses, to the extent possible. We used treatment-level means
465 across control plots to calculate energetic compensation and the total energy ratio, but calculated
466 these quantities separately for each exclosure plot, and conducted analyses including a random
467 effect of plot. We also conducted analyses of *Dipodomys* and *C. baileyi* proportional energy use
468 using plot-level data, again including plot as a random effect. Results were qualitatively the same
469 as using treatment-level means.

470

471 **Compensation**

472 *Model specification and selection*

473 We fit linear mixed-effects models (using the lme function in the R package nlme; Pinheiro et
 474 al. 2021) of the form compensation ~ time period with a random effect of plot and temporal
 475 autocorrelation structure to account for autocorrelation between monthly census periods within
 476 each time period. We compared these to models without the autocorrelation structure, without
 477 the random effect, and without the term for time period. The best-fitting model included terms
 478 for time period, random effect of plot, and autocorrelation.

479 **Table S1. Model comparison for compensation.**

Model.specification	AIC
intercept + timeperiod + plot (random effect) + autocorrelation	1360.207
intercept + timeperiod + plot (random effect)	1680.916
intercept + timeperiod + autocorrelation	1409.830
intercept + plot (random effect) + autocorrelation	1408.362
intercept + plot (random effect)	1879.126
intercept	2036.371

480 *Results*

481 **Table S2. Coefficients from linear mixed-effects model for compensation**

482 Note that “oera” is the variable name for the term for time period in these analyses.

	Value	Std.Error	DF	t-value	p-value
(Intercept)	0.3451282	0.1048354	1362	3.292096	0.0010199

oera.L	0.0653090	0.0373313	1362	1.749446	0.0804392
oera.Q	-0.2845830	0.0341063	1362	-8.343990	0.0000000

483 **Table S3. Estimates from linear mixed-effects model for compensation**

Timeperiod	emmmean	SE	df	lower.CL	upper.CL
1988-1997	0.1827673	0.1091842	3	-0.1647055	0.5302400
1997-2010	0.5774892	0.1078860	3	0.2341478	0.9208306
2010-2020	0.2751282	0.1093969	3	-0.0730215	0.6232779

484 **Table S4. Contrasts from linear mixed-effects model for compensation**

Comparison	estimate	SE	df	t.ratio	p.value
1988-1997 - 1997-2010	-0.3947220	0.0491845	1362	-8.025330	0.0000
1988-1997 - 2010-2020	-0.0923609	0.0527944	1362	-1.749446	0.1873
1997-2010 - 2010-2020	0.3023610	0.0496411	1362	6.090948	0.0000

485

486 **Total energy use**

487 *Model specification and selection*

488 As for compensation, we fit linear mixed-effects models fitting *total_energy_ratio ~ time period*
 489 with a random effect of plot and a temporal autocorrelation term to account for autocorrelation
 490 between monthly census periods within each timeperiod. We compared these to models without
 491 the autocorrelation term, without the random effect, and without the term for time period. The
 492 best-fitting model included terms for time period, random effect of plot, and autocorrelation.

493 **Table S5. Model comparison for total energy ratio.**

Model.specification	AIC
intercept + timeperiod + plot (random effect) + autocorrelation	474.8558
intercept + timeperiod + plot (random effect)	924.1830
intercept + timeperiod + autocorrelation	507.7842
intercept + plot (random effect) + autocorrelation	543.5425
intercept + plot (random effect)	1266.2097
intercept	1382.7469

494 *Results*

495 **Table S6. Coefficients from linear mixed-effects model on total energy ratio**

496 Note that “oera” is the variable name for the term for time period in these analyses.

	Value	Std.Error	DF	t-value	p-value
(Intercept)	0.5018200	0.0709701	1362	7.070865	0.0e+00
oera.L	0.1454309	0.0301324	1362	4.826392	1.5e-06

oera.Q -0.2545852 0.0273660 1362 -9.302977 0.0e+00

497 **Table S7. Estimates from linear mixed-effects model on total energy ratio**

Timeperiod	emmmean	SE	df	lower.CL	upper.CL
1988-1997	0.2950508	0.0751321	3	0.0559470	0.5341547
1997-2010	0.7096879	0.0738511	3	0.4746606	0.9447151
2010-2020	0.5007212	0.0752881	3	0.2611207	0.7403216

498 **Table S8. Contrasts from linear mixed-effects model on total energy ratio**

Comparison	estimate	SE	df	t.ratio	p.value
1988-1997 - 1997-2010	-0.4146370	0.0395736	1362	-10.477622	0.0e+00
1988-1997 - 2010-2020	-0.2056703	0.0426137	1362	-4.826392	4.6e-06
1997-2010 - 2010-2020	0.2089667	0.0398571	1362	5.242901	5.0e-07

499

500 **Kangaroo rat proportional energy use**501 *Model specification and selection*

502 To compare proportional energy use across time periods, we used binomial generalized linear
 503 mixed models (using the glmer function in the R package lme4; Bates et al. 2015), which
 504 allowed us to include a random effect of plot.

505 For *Dipodomys* proportional energy use, we compared models with and without the random
 506 effect of plot and with and without a term for timeperiod. The best-fitting model included terms
 507 for timeperiod and a random effect of plot.

508 **Table S9. Model comparison for Dipodomys proportional energy use.**

Model.specification	AIC
intercept + timeperiod + plot (random effect)	1040.861
intercept + plot (random effect)	1162.470
intercept + timeperiod	1108.490
intercept	1208.081

509 *Results*510 **Table S10. Coefficients from GLMER on Dipodomys energy use.**

511 Note that “oera” is the variable name for the term for time period in these analyses.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.181163	0.1305753	16.704251	0
oera.L	-1.946096	0.2664545	-7.303670	0
oera.Q	1.124620	0.1769225	6.356572	0

512 **Table S11. Estimates from GLMER on Dipodomys energy use.**

513 Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod	prob	SE	df	asympt.LCL	asympt.UCL
1988-1997	0.9823009	0.0062020	Inf	0.9701452	0.9944566
1997-2010	0.7795273	0.0183934	Inf	0.7434769	0.8155777
2010-2020	0.7797464	0.0208516	Inf	0.7388780	0.8206149

514 **Table S12. Contrasts from GLMER on Dipodomys energy use.**

515 Contrasts are performed on the link (logit) scale.

Comparison	estimate	SE	df	z.ratio	p.value
1988-1997 - 1997-2010	0.2027736	0.0194108	Inf	10.4464200	0
1988-1997 - 2010-2020	0.2025545	0.0217545	Inf	9.3109407	0
1997-2010 - 2010-2020	-0.0002191	0.0278048	Inf	-0.0078811	1

516

517 **C. baileyi proportional energy use**518 *Model specification and selection*

519 As for kangaroo rat proportional energy use, we used a binomial generalized linear mixed effects
 520 model to compare *C. baileyi* proportional energy use across time periods. Because *C. baileyi*
 521 occurs on both control and exclosure plots, we investigated whether the dynamics of *C. baileyi*'s
 522 proportional energy use differed between treatment types. We compared models incorporating
 523 separate slopes, separate intercepts, or no terms for treatment modulating the change in *C. baileyi*
 524 proportional energy use across time periods, i.e. comparing the full set of models:

525 • *cbaileyi_proportional_energy_use ~ timeperiod + treatment + timeperiod:treatment*
 526 • *cbaileyi_proportional_energy_use ~ timeperiod + treatment*
 527 • *cbaileyi_proportional_energy_use ~ timeperiod*

528 We also tested a null (intercept-only) model of no change across time periods:

529 • *cbaileyi_proportional_energy_use ~ 1*

530 We compared all of these models with and without a random effect of plot.

531 We found that the best-fitting model incorporated a random effect of plot, and fixed effects for
 532 time period and for treatment, but no interaction between them
 533 (*cbaileyi_proportional_energy_use ~ timeperiod + treatment*). We therefore proceeded with this
 534 model.

535 **Table S13. Model comparison for C. baileyi proportional energy use.**

Model.specification	AIC
intercept + timeperiod + treatment + timeperiod:treatment + plot (random effect)	1021.318
intercept + timeperiod + treatment + plot (random effect)	1020.263
intercept + timeperiod + plot (random effect)	1042.758

intercept + plot (random effect)	1321.149
intercept + timeperiod + treatment + timeperiod:treatment	1166.653
intercept + timeperiod + treatment	1162.901
intercept + timeperiod	1869.097
intercept	2036.489

536 *Results*

537 **Table S14. Coefficients from GLMER on C. baileyi energy use**

538 Note that “oera” is the variable name for the term for time period in these analyses, and
 539 “oplottype” refers to experimental treatment.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.443643	0.2067789	-11.81766	0
oera.L	-1.866286	0.1530068	-12.19740	0
oplottype.L	3.265183	0.2913472	11.20719	0

540 **Table S15. Estimates from GLMER on C. baileyi energy use**

541 Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod	Treatment	prob	SE	df	asymp.LCL	asymp.UCL
1997-2010	Control	0.0312856	0.0116044	Inf	0.0085414	0.0540297
1997-2010	Exclosure	0.7658194	0.0392864	Inf	0.6888195	0.8428193
2010-2020	Control	0.0023009	0.0008486	Inf	0.0006378	0.0039641
2010-2020	Exclosure	0.1893142	0.0364430	Inf	0.1178872	0.2607412

542 **Table S16. Contrasts from GLMER on *C. baileyi* energy use.**

543 Contrasts are performed on the link (logit) scale.

Comparison	Treatment	estimate	SE	df	z.ratio	p.value
1997-2010 - 2010-2020	Control	2.639326	0.2163843	Inf	12.1974	0
1997-2010 - 2010-2020	Exclosure	2.639326	0.2163843	Inf	12.1974	0

544

545 **References**

546 Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). *Fitting Linear Mixed-
547 Effects Models Using lme4*. Journal of Statistical Software, 67(1), 1-48.
548 doi:10.18637/jss.v067.i01.
549 Lenth, Russell V. (2021). emmeans: *Estimated Marginal Means, aka Least-Squares Means*. R
550 package version 1.7.0. <URL: <https://CRAN.R-project.org/package=emmeans>>
551 Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). *nlme: Linear and Nonlinear
552 Mixed Effects Models*. R package version 3.1-153, <URL: [https://CRAN.R-project.org/package=nlme](https://CRAN.R-
553 project.org/package=nlme)>.
554

555 **Appendix S2 - Full analytical methods and model results**

556 *Supplemental information for “Maintenance of community function through compensation*
557 *breaks down over time in a desert rodent community”, by Renata M. Diaz and S. K. Morgan*
558 *Ernest, in Ecology.*

559 Fully annotated code and RMarkdown documents to reproduce these analyses are available at
560 <https://doi.org/10.5281/zenodo.5544361> and <https://doi.org/10.5281/zenodo.5539880>.

561 Table of Contents

562	Compensation	38
563	Table S1. Model comparison for compensation.	38
564	Table S2. Coefficients from GLS for compensation.....	38
565	Table S3. Estimates from GLS for compensation.....	39
566	Table S4. Contrasts from GLS for compensation	39
567	Total energy use ratio.....	40
568	Table S5. Model comparison for total energy ratio.	40
569	Table S6. Coefficients from GLS on total energy ratio	40
570	Table S7. Estimates from GLS on total energy ratio	40
571	Table S8. Contrasts from GLS on total energy ratio.....	41
572	Kangaroo rat (Dipodomys) proportional energy use	42
573	Table S9. Model comparison for Dipodomys proportional energy use.	42
574	Table S10. Coefficients from GLM on Dipodomys energy use.	42
575	Table S11. Estimates from GLM on Dipodomys energy use.	43
576	Table S12. Contrasts from GLM on Dipodomys energy use.....	43
577	C. baileyi proportional energy use	44
578	Table S13. Model comparison for C. baileyi proportional energy use.	44
579	Table S14. Coefficients from GLM on C. baileyi energy use.....	45
580	Table S15. Estimates from GLM on C. baileyi energy use	45
581	Table S16. Contrasts from GLM on C. baileyi energy use.....	45
582	References.....	46

583

584

585 **Compensation**

586 We fit a generalized least squares (of the form *compensation ~ timeperiod*; note that
 587 “timeperiod” is coded as “oera” throughout) using the *gls* function from the R package *nlme*
 588 (Pinheiro et al. 2021). Because values from monthly censuses within each time period are subject
 589 to temporal autocorrelation, we included a continuous autoregressive temporal autocorrelation
 590 structure of order 1 (using the *CORCAR1* function). We compared this model to models fit
 591 without the autocorrelation structure and without the time period term using AIC. The model
 592 with both the time period term and the autocorrelation structure was the best-fitting model via
 593 AIC, and we used this model to calculate estimates and contrasts using the package *emmeans*
 594 (Lenth 2021).

595 **Table S1. Model comparison for compensation.**

Model.specification	AIC
intercept + timeperiod + autocorrelation	69.85023
intercept + autocorrelation	84.74902
intercept + timeperiod	157.09726
intercept	252.74534

596 **Table S2. Coefficients from GLS for compensation**

597 Note that “oera” is the variable name for the term for time period in these analyses.

	Value	Std.Error	t-value	p-value
(Intercept)	0.3450313	0.0294996	11.696141	0.0000000
oera.L	0.0647933	0.0524103	1.236269	0.2172146

oera.Q -0.2833553 0.0477359 -5.935890 0.0000000

598 **Table S3. Estimates from GLS for compensation**

Timeperiod	emmean	SE	df	lower.CL	upper.CL
1988-1997	0.1835362	0.0520378	44.11081	0.0786683	0.2884041
1997-2010	0.5763899	0.0462641	47.37851	0.4833383	0.6694416
2010-2020	0.2751677	0.0528010	46.75897	0.1689314	0.3814041

599 **Table S4. Contrasts from GLS for compensation**

Comparison	estimate	SE	df	t.ratio	p.value
1988-1997 - 1997-2010	-0.3928537	0.0689413	47.89422	-5.698378	0.0000
1988-1997 - 2010-2020	-0.0916315	0.0741194	45.51740	-1.236269	0.4383
1997-2010 - 2010-2020	0.3012222	0.0694989	49.52957	4.334200	0.0002

600

601 **Total energy use ratio**

602 As for compensation, we fit a generalized least squares of the form *total_energy_ratio ~*
 603 *timeperiod*, accounting for temporal autocorrelation between monthly censuses within each time
 604 period using a continuous autoregressive autocorrelation structure of order 1. We compared this
 605 model to models fit without the timeperiod term and/or autocorrelation structure, and found the
 606 full (timeperiod plus autocorrelation) model had the best performance via AIC. We used this
 607 model for estimates and contrasts.

608 **Table S5. Model comparison for total energy ratio.**

Model.specification	AIC
intercept + timeperiod + autocorrelation	-132.92138
intercept + autocorrelation	-118.15000
intercept + timeperiod	13.29396
intercept	156.85988

609 **Table S6. Coefficients from GLS on total energy ratio**

610 Note that “oera” is the variable name for the term for time period in these analyses.

	Value	Std.Error	t-value	p-value
(Intercept)	0.5016731	0.0271176	18.499880	0.0000000
oera.L	0.1413504	0.0477646	2.959316	0.0033001
oera.Q	-0.2503659	0.0429312	-5.831790	0.0000000

611 **Table S7. Estimates from GLS on total energy ratio**

Timeperiod	emmmean	SE	df	lower.CL	upper.CL
------------	---------	----	----	----------	----------

1988-1997	0.2995118	0.0475806	36.19943	0.2030323	0.3959913
1997-2010	0.7060960	0.0419773	38.51943	0.6211550	0.7910369
2010-2020	0.4994115	0.0480066	37.62774	0.4021956	0.5966274

612 **Table S8. Contrasts from GLS on total energy ratio**

Comparison	estimate	SE	df	t.ratio	p.value
1988-1997 - 1997-2010	-0.4065842	0.0623398	40.51631	-6.522060	0.0000
1988-1997 - 2010-2020	-0.1998997	0.0675493	37.12310	-2.959316	0.0144
1997-2010 - 2010-2020	0.2066845	0.0626456	41.44768	3.299267	0.0056

613

614 **Kangaroo rat (*Dipodomys*) proportional energy use**

615 Proportional energy use is bounded 0-1 and cannot be fit with generalized least squares. We

616 therefore used a binomial generalized linear model of the form

617 *dipodomys_proportional_energy_use ~ timeperiod*. We compared a model fit with a timeperiod

618 term to an intercept-only (null) model using AIC, and found the timeperiod term improved

619 model fit. We used this model for estimates and contrasts.

620 Note that we were unable to incorporate temporal autocorrelation into generalized linear models,

621 and we prioritized fitting models of the appropriate family over accounting for autocorrelation.

622 Due to the pronounced differences between time periods for these variables, we were

623 comfortable proceeding without explicitly accounting for autocorrelation.

624 **Table S9. Model comparison for *Dipodomys* proportional energy use.**

Model.specification	AIC
intercept + timeperiod	258.3581
intercept	280.8497

625 **Table S10. Coefficients from GLM on *Dipodomys* energy use.**

626 Note that “oera” is the variable name for the term for time period in these analyses. Coefficients

627 are given on the link (logit) scale.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	1.4032480	0.1503201	9.335068	0.0000000
oera.L	-1.1000833	0.2871738	-3.830723	0.0001278
oera.Q	0.5855493	0.2304516	2.540878	0.0110574

628 **Table S11. Estimates from GLM on Dipodomys energy use.**

629 Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod	prob	SE	df	asympt.LCL	asympt.UCL
1988-1997	0.9183528	0.0256462	Inf	0.8680872	0.9686183
1997-2010	0.7160901	0.0398537	Inf	0.6379782	0.7942020
2010-2020	0.7035835	0.0456677	Inf	0.6140765	0.7930905

630 **Table S12. Contrasts from GLM on Dipodomys energy use.**

631 Contrasts are performed on the link (logit) scale.

contrast	estimate	SE	df	z.ratio	p.value
a_pre_pb - b_pre_reorg	1.4950249	0.3942281	Inf	3.7922836	0.0004
a_pre_pb - c_post_reorg	1.5557527	0.4061251	Inf	3.8307227	0.0004
b_pre_reorg - c_post_reorg	0.0607279	0.2938992	Inf	0.2066282	0.9767

632

633 **C. baileyi proportional energy use**

634 As for kangaroo rat proportional energy use, we used a binomial generalized linear model to
 635 compare *C. baileyi* proportional energy use across time periods. Because *C. baileyi* occurs on
 636 both control and exclosure plots, we investigated whether the dynamics of *C. baileyi*'s
 637 proportional energy use differed between treatment types. We compared models incorporating
 638 separate slopes, separate intercepts, or no terms for treatment modulating the change in *C. baileyi*
 639 proportional energy use across time periods, i.e. comparing the full set of models:

640 • *cbaileyi_proportional_energy_use ~ timeperiod + treatment + timeperiod:treatment*
 641 • *cbaileyi_proportional_energy_use ~ timeperiod + treatment*
 642 • *cbaileyi_proportional_energy_use ~ timeperiod*

643 We also tested a null (intercept-only) model of no change across time periods:

644 • *cbaileyi_proportional_energy_use ~ 1*

645 We found that the best-fitting model incorporated effects for time period and for treatment, but
 646 no interaction between them (*cbaileyi_proportional_energy_use ~ timeperiod + treatment*). We
 647 therefore proceeded with this model.

648 **Table S13. Model comparison for C. baileyi proportional energy use.**

Model.specification	AIC
intercept + timeperiod + treatment + timeperiod:treatment	237.7643
intercept + timeperiod + treatment	231.0963
intercept + timeperiod	460.8477
intercept	541.3799

649 **Table S14. Coefficients from GLM on *C. baileyi* energy use**

650 Note that “oera” is the variable name for the term for time period in these analyses, and
 651 “oplotype” refers to treatment. Coefficients are given on the link (logit) scale.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.574028	0.1670168	-9.424368	0
oera.L	-1.409273	0.2010398	-7.009921	0
oplotype.L	2.184896	0.2267112	9.637355	0

652 **Table S15. Estimates from GLM on *C. baileyi* energy use**

653 Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod	Treatment	prob	SE	df	asymp.LCL	asymp.UCL
1997-2010	Control	0.1069314	0.0258894	Inf	0.0561890	0.1576737
1997-2010	Exclosure	0.7246076	0.0385129	Inf	0.6491236	0.8000915
2010-2020	Control	0.0160560	0.0058224	Inf	0.0046444	0.0274676
2010-2020	Exclosure	0.2639419	0.0428458	Inf	0.1799657	0.3479181

654 **Table S16. Contrasts from GLM on *C. baileyi* energy use.**

655 Contrasts are performed on the link (logit) scale.

Comparison	Treatment	estimate	SE	df	z.ratio	p.value
1997-2010 - 2010-2020	Control	1.993013	0.2843132	Inf	7.009921	0
1997-2010 - 2010-2020	Exclosure	1.993013	0.2843132	Inf	7.009921	0

656

657 **References**658 Lenth, Russell V. (2021). *emmeans: Estimated Marginal Means, aka Least-Squares Means*. R659 package version 1.7.0. <URL: <https://CRAN.R-project.org/package=emmeans>>660 Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). *nlme: Linear and Nonlinear*661 *Mixed Effects Models*. R package version 3.1-153, <URL: <https://CRAN.R-project.org/package=nlme>>.

662

663

664 **Appendix S3 - Biomass analysis**

665 *Supplemental information for “Maintenance of community function through compensation*
666 *breaks down over time in a desert rodent community”, by Renata M. Diaz and S. K. Morgan*
667 *Ernest, in Ecology.*

668 Fully annotated code and RMarkdown documents to reproduce these analyses are available at
669 <https://doi.org/10.5281/zenodo.5544361> and <https://doi.org/10.5281/zenodo.5539880>.
670 All statistical methods for biomass are identical to the ones for energy use (Appendix S1).

671 Table of Contents

672 Compensation	48
673 Table S1. Model comparison for compensation.	48
674 Table S2. Coefficients from GLS for compensation.....	49
675 Table S3. Estimates from GLS for compensation.....	49
676 Table S4. Contrasts from GLS for compensation	49
677 Total biomass ratio.....	50
678 Table S5. Model comparison for total biomass ratio.	50
679 Table S6. Coefficients from GLS on total biomass ratio	50
680 Table S7. Estimates from GLS on total biomass ratio	50
681 Table S8. Contrasts from GLS on total biomass ratio	51
682 Kangaroo rat (Dipodomys) proportional biomass	52
683 Table S9. Model comparison for Dipodomys proportional biomass.	52
684 Table S10. Coefficients from GLM on Dipodomys biomass.....	52
685 Table S11. Estimates from GLM on Dipodomys biomass.	52
686 Table S12. Contrasts from GLM on Dipodomys biomass.....	53
687 C. baileyi proportional biomass	54
688 Model specification and selection.....	54
689 Table S13. Model comparison for C. baileyi proportional biomass.	54
690 Table S14. Coefficients from GLM on C. baileyi biomass.....	55

691	Table S15. Estimates from GLM on C. baileyi biomass.....	55
692	Table S16. Contrasts from GLM on C. baileyi biomass.....	55
693	Figure S1. Biomass results.....	56
694	Figure S1 Legend.....	57
695	References.....	58
696		

697 **Compensation**

698 We fit a generalized least squares (of the form *compensation ~ timeperiod*; note that
 699 “timeperiod” is coded as “oera” throughout) using the *gls* function from the R package *nlme*
 700 (Pinheiro et al. 2021). Because values from monthly censuses within each time period are subject
 701 to temporal autocorrelation, we included a continuous autoregressive temporal autocorrelation
 702 structure of order 1 (using the *CORCAR1* function). We compared this model to models fit
 703 without the autocorrelation structure and without the time period term using AIC. The model
 704 with both the time period term and the autocorrelation structure was the best-fitting model via
 705 AIC, and we used this model to calculate estimates and contrasts using the package *emmeans*
 706 (Lenth 2021).

707 **Table S1. Model comparison for compensation.**

Model.specification	AIC
intercept + timeperiod + autocorrelation	-17.623354
intercept + autocorrelation	-3.297103
intercept + timeperiod	92.184205
intercept	207.804481

708 **Table S2. Coefficients from GLS for compensation**

709 Note that “oera” is the variable name for the term for time period in these analyses.

	Value	Std.Error	t-value	p-value
(Intercept)	0.3081443	0.0290539	10.605950	0.0000000
oera.L	0.0711412	0.0514131	1.383719	0.1673549
oera.Q	-0.2799121	0.0465252	-6.016352	0.0000000

710 **Table S3. Estimates from GLS for compensation**

Timeperiod	emmean	SE	df	lower.CL	upper.CL
1988-1997	0.1435663	0.0511419	39.28312	0.0401458	0.2469867
1997-2010	0.5366915	0.0452745	41.91562	0.4453185	0.6280646
2010-2020	0.2441751	0.0517205	41.17937	0.1397373	0.3486130

711 **Table S4. Contrasts from GLS for compensation**

Comparison	estimate	SE	df	t.ratio	p.value
1988-1997 - 1997-2010	-0.3931253	0.0673811	43.22895	-5.834358	0.0000
1988-1997 - 2010-2020	-0.1006089	0.0727090	40.36882	-1.383719	0.3588
1997-2010 - 2010-2020	0.2925164	0.0678003	44.43055	4.314383	0.0003

712

713 **Total biomass ratio**

714 As for compensation, we fit a generalized least squares of the form *total_biomass_ratio ~*
 715 *timeperiod*, accounting for temporal autocorrelation between monthly censuses within each time
 716 period using a continuous autoregressive autocorrelation structure of order 1. We compared this
 717 model to models fit without the timeperiod term and/or autocorrelation structure, and found the
 718 full (timeperiod plus autocorrelation) model had the best performance via AIC. We used this
 719 model for estimates and contrasts.

720 **Table S5. Model comparison for total biomass ratio.**

Model.specification	AIC
intercept + timeperiod + autocorrelation	-176.57761
intercept + autocorrelation	-162.61339
intercept + timeperiod	-15.98438
intercept	146.61442

721 **Table S6. Coefficients from GLS on total biomass ratio**

722 Note that “oera” is the variable name for the term for time period in these analyses.

	Value	Std.Error	t-value	p-value
(Intercept)	0.4553971	0.0272418	16.716827	0.0000000
oera.L	0.1454493	0.0477989	3.042941	0.0025257
oera.Q	-0.2531409	0.0427343	-5.923594	0.0000000

723 **Table S7. Estimates from GLS on total biomass ratio**

Timeperiod	emmmean	SE	df	lower.CL	upper.CL
------------	---------	----	----	----------	----------

1988-1997	0.2492046	0.0476584	33.82432	0.1523326	0.3460765
1997-2010	0.6620857	0.0419515	35.98516	0.5770030	0.7471684
2010-2020	0.4549009	0.0480215	34.98703	0.3574107	0.5523911

724 **Table S8. Contrasts from GLS on total biomass ratio**

Comparison	estimate	SE	df	t.ratio	p.value
1988-1997 - 1997-2010	-0.4128811	0.0621739	38.42746	-6.640747	0.0000
1988-1997 - 2010-2020	-0.2056963	0.0675979	34.67694	-3.042941	0.0121
1997-2010 - 2010-2020	0.2071848	0.0624325	39.20390	3.318542	0.0054

725

726 **Kangaroo rat (*Dipodomys*) proportional biomass**

727 Proportional biomass is bounded 0-1 and cannot be fit with generalized least squares. We
 728 therefore used a binomial generalized linear model with no temporal autocorrelation term, of the
 729 form *dipodomys_proportional_biomass ~ timeperiod*. We compared a model fit with a
 730 timeperiod term to an intercept-only (null) model using AIC, and found the timeperiod term
 731 improved model fit. We used this model for estimates and contrasts.

732 **Table S9. Model comparison for *Dipodomys* proportional biomass.**

Model.specification	AIC
intercept + timeperiod	215.2069
intercept	227.9608

733 **Table S10. Coefficients from GLM on *Dipodomys* biomass.**

734 Note that “oera” is the variable name for the term for time period in these analyses. Coefficients
 735 are given on the link (logit) scale.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	1.6149566	0.1644937	9.817741	0.0000000
oera.L	-1.1672395	0.3180813	-3.669626	0.0002429
oera.Q	0.6619048	0.2473324	2.676175	0.0074468

736 **Table S11. Estimates from GLM on *Dipodomys* biomass.**

737 Note that estimates are back-transformed onto the response scale, for interpretability.

Timeperiod	prob	SE	df	asymp.LCL	asymp.UCL
1988-1997	0.9376458	0.0226460	Inf	0.8932605	0.9820310

1997-2010	0.7454543	0.0385025	Inf	0.6699909	0.8209177
2010-2020	0.7426552	0.0437171	Inf	0.6569713	0.8283392

738 **Table S12. Contrasts from GLM on Dipodomys biomass.**

739 Contrasts are performed on the link (logit) scale.

contrast	estimate	SE	df	z.ratio	p.value
a_pre_pb - b_pre_reorg	1.6360275	0.4372643	Inf	3.741508	0.0005
a_pre_pb - c_post_reorg	1.6507259	0.4498349	Inf	3.669626	0.0007
b_pre_reorg - c_post_reorg	0.0146984	0.3057707	Inf	0.048070	0.9987

740

741 **C. baileyi proportional biomass**742 *Model specification and selection*

743 As for kangaroo rat proportional biomass, we used a binomial generalized linear model to
 744 compare *C. baileyi* proportional biomass across time periods. Because *C. baileyi* occurs on both
 745 control and enclosure plots, we investigated whether the dynamics of *C. baileyi*'s proportional
 746 biomass differed between treatment types. We compared models incorporating separate slopes,
 747 separate intercepts, or no terms for treatment modulating the change in *C. baileyi* proportional
 748 biomass across time periods, i.e. comparing the full set of models:

749 • *cbaileyi_proportional_biomass ~ timeperiod + treatment + timeperiod:treatment*
 750 • *cbaileyi_proportional_biomass ~ timeperiod + treatment*
 751 • *cbaileyi_proportional_biomass ~ timeperiod*

752 We also tested a null (intercept-only) model of no change across time periods:

753 • *cbaileyi_proportional_biomass ~ 1*

754 We found that the best-fitting model incorporated effects for time period and for treatment, but
 755 no interaction between them (*cbaileyi_proportional_biomass ~ timeperiod + treatment*). We
 756 therefore proceeded with this model.

757 **Table S13. Model comparison for C. baileyi proportional biomass.**

Model specification	AIC
intercept + timeperiod + treatment + timeperiod:treatment	237.6847
intercept + timeperiod + treatment	231.2374
intercept + timeperiod	466.4937
intercept + treatment	346.2154
intercept	543.7811

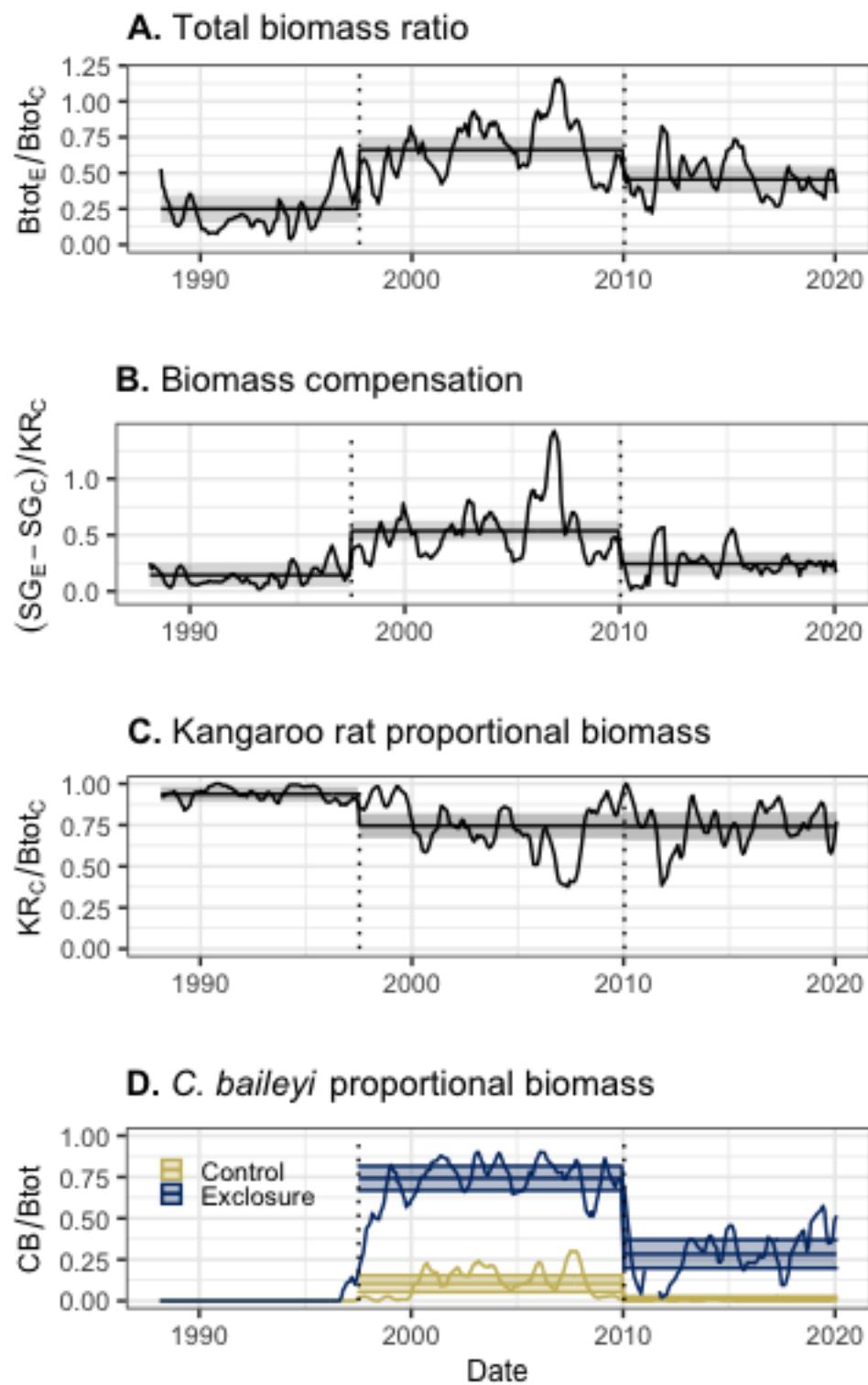
758 **Table S14. Coefficients from GLM on C. baileyi biomass.**

759 Note that “oera” is the variable name for the term for time period in these analyses, and
 760 “oplotype” refers to treatment. Coefficients are given on the link (logit) scale.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.538798	0.1671239	-9.207525	0
oera.L	-1.403286	0.2006948	-6.992140	0
oplotype.L	2.270657	0.2298594	9.878462	0

761 **Table S15. Estimates from GLM on C. baileyi biomass**

762 Note that estimates are back-transformed onto the response scale, for interpretability.


Timeperiod	Treatment	prob	SE	df	asymp.LCL	asymp.UCL
1997-2010	Control	0.1041331	0.0255800	Inf	0.0539971	0.1542691
1997-2010	Exclosure	0.7425132	0.0376727	Inf	0.6686761	0.8163504
2010-2020	Control	0.0157248	0.0057341	Inf	0.0044861	0.0269634
2010-2020	Exclosure	0.2838438	0.0439192	Inf	0.1977637	0.3699240

763 **Table S16. Contrasts from GLM on C. baileyi biomass.**

764 Contrasts are performed on the link (logit) scale.

Comparison	Treatment	estimate	SE	df	z.ratio	p.value
1997-2010 - 2010-2020	Control	1.984546	0.2838253	Inf	6.99214	0
1997-2010 - 2010-2020	Exclosure	1.984546	0.2838253	Inf	6.99214	0

765

766 **Figure S1. Biomass results**

768 **Figure S1 Legend.**

769 Dynamics of biomass and rodent community composition over time. Lines represent the ratio of
770 biomass on exclosure plots to control plots (a), 6-month moving averages of biomass
771 compensation (b), and the share of community-wide biomass accounted for by kangaroo rats on
772 control plots (c), and by *C. baileyi* (d), on control (gold) and exclosure (blue) plots. Dotted
773 vertical lines mark the boundaries between time periods used for statistical analysis. Horizontal
774 lines are time-period estimates from generalized least squares (a, b) and generalized linear (c, d)
775 models, and the semitransparent envelopes mark the 95% confidence or credible intervals.

776

777 **References**778 Lenth, Russell V. (2021). *emmeans: Estimated Marginal Means, aka Least-Squares Means*. R779 package version 1.7.0. <URL: <https://CRAN.R-project.org/package=emmeans>>780 Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). *nlme: Linear and Nonlinear*781 *Mixed Effects Models*. R package version 3.1-153, <URL: <https://CRAN.R-project.org/package=nlme>>.

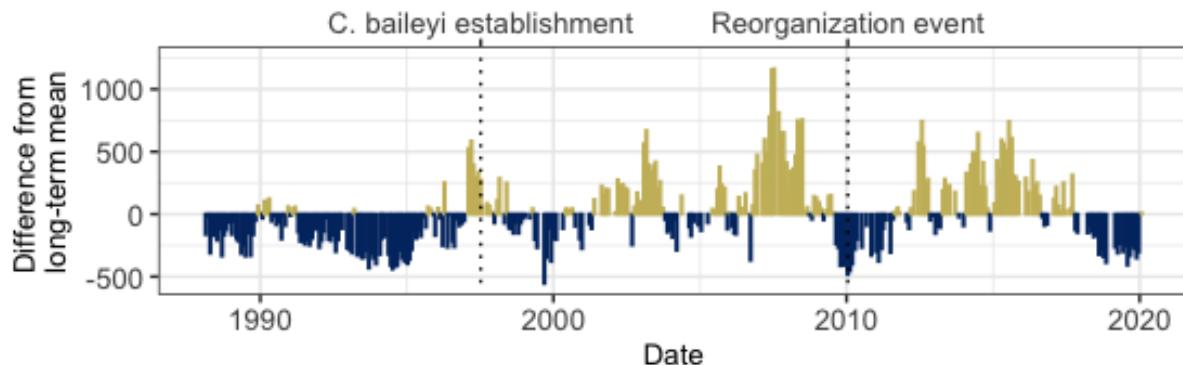
782

783

784 **Appendix S4 - Covariates of rodent community change**785 *Supplemental information for “Maintenance of community function through compensation*786 *breaks down over time in a desert rodent community”, by Renata M. Diaz and S. K. Morgan*787 *Ernest, in Ecology.*

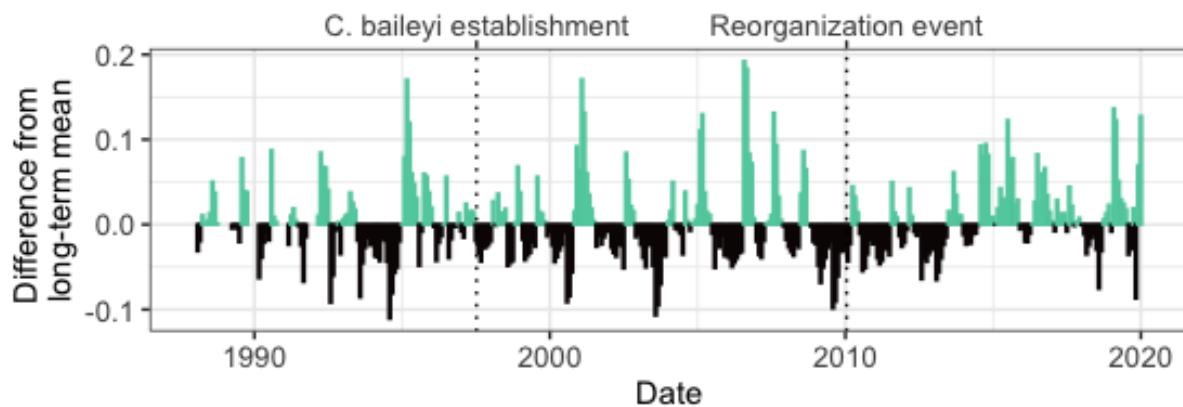
788 Fully annotated code and RMarkdown documents to reproduce these analyses are available at

789 <https://doi.org/10.5281/zenodo.5544361> and <https://doi.org/10.5281/zenodo.5539880>.

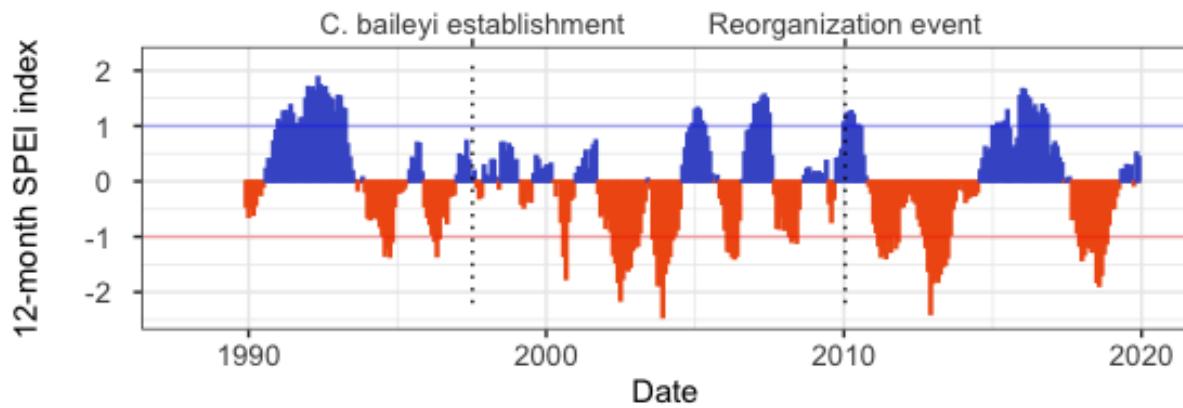

790 Table of Contents

791	Appendix S2 Figure S1 - Covariates of rodent community change.....	59
792	Legend	61
793	References.....	62
794		

795 **Appendix S4 Figure S1 - Covariates of rodent community change**


A

Total rodent energy use anomaly


B

NDVI anomaly

C

Drought (SPEI index)

796

797

798 **Legend**

799 *Figure S1.* Changes in overall community energy use (A), NDVI (B), and local climate (C)
800 surrounding the 2010 shift in rodent community composition. As documented in Christensen et
801 al. (2018), the 2010 transition followed a period of low abundance community-wide (A) and low
802 plant productivity (B). Since 2010, the site has experienced two periods of drought (C)
803 interspersed with an unusually wet period.

804 Total rodent energy use (A) is calculated as the total energy use of all granviores on control plots
805 (E_{totC}) in each census period. The anomaly (shown) is calculated as the difference between the
806 total energy use in each census period and the long-term mean of total energy use. Vertical
807 dashed lines mark the dates of major transitions in the rodent community. NDVI anomaly (B) is
808 calculated as the difference between monthly NDVI and the long-term mean for that month.
809 NDVI data were obtained from Landsat 5, 7, and 8 using the `ndvi` function in the R package
810 `portalr` (Maesk et al. 2006; Vermote et al. 2016; Christensen et al. 2019). Drought (C) was
811 calculated using a 12-month Standardized Precipitation Evapotranspiraiton index (SPEI) for all
812 months from 1989-2020, using the Thornthwaite method to estimate potential evapotranspiration
813 (using the R package `SPEI`, Beguería and Vicente-Serrano 2017; Slette et al. 2019; Cárdenas et
814 al. 2021). Values greater than 0 (blue) indicate wetter than average conditions, and values less
815 than 0 (red) indicate drier conditions. Values between -1 and 1 (horizontal lines) are considered
816 within normal variability for a system, while values < -1 constitute drought (Slette et al. 2019).

817

818 **References**

819 Beguería, S., and S. M. Vicente-Serrano. 2017. SPEI: Calculation of the Standardised
820 Precipitation-Evapotranspiration Index.

821 Cárdenas, P. A., E. Christensen, S. K. M. Ernest, D. C. Lightfoot, R. L. Schooley, P. Stapp, and
822 J. A. Rudgers. 2021. Declines in rodent abundance and diversity track regional climate
823 variability in North American drylands. *Global Change Biology*:gcb.15672.

824 Christensen, E. M., D. J. Harris, and S. K. M. Ernest. 2018. Long-term community change
825 through multiple rapid transitions in a desert rodent community. *Ecology* 99:1523–1529.

826 Christensen, E. M., G. M. Yenni, H. Ye, J. L. Simonis, E. K. Bledsoe, R. M. Diaz, S. D. Taylor,
827 E. P. White, and S. K. M. Ernest. 2019. portalr: an R package for summarizing and using the
828 Portal Project Data. *Journal of Open Source Software* 4:1098.

829 Masek, J.G., Vermote, E.F., Saleous, N., Wolfe, R., Hall, F.G., Huemmrich, F., Gao, F., Kutler,
830 J., and Lim, T.K. (2006). A Landsat surface reflectance data set for North America, 1990-100,
831 *IEEE Geoscience and Remote Sensing Letters*. 3:68-72.

832 Slette, I. J., A. K. Post, M. Awad, T. Even, A. Punzalan, S. Williams, M. D. Smith, and A. K.
833 Knapp. 2019. How ecologists define drought, and why we should do better. *Global Change
834 Biology* 25:3193–3200.

835 Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the
836 performance of the Landsat 8/OLI land surface reflectance product. *Remote Sensing of
837 Environment*, 185, 46-56.

838