
3886 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Adaptive Edge Offloading for Image Classification
Under Rate Limit

Jiaming Qiu , Graduate Student Member, IEEE, Ruiqi Wang, Ayan Chakrabarti , Member, IEEE,
Roch Guérin, Fellow, IEEE, and Chenyang Lu , Fellow, IEEE

Abstract—This article considers a setting where embedded
devices are used to acquire and classify images. Because of limited
computing capacity, embedded devices rely on a parsimonious
classification model with uneven accuracy. When local classifi-
cation is deemed inaccurate, devices can decide to offload the
image to an edge server with a more accurate but resource-
intensive model. Resource constraints, e.g., network bandwidth,
however, require regulating such transmissions to avoid conges-
tion and high latency. This article investigates this offloading
problem when transmissions regulation is through a token
bucket, a mechanism commonly used for such purposes. The
goal is to devise a lightweight, online offloading policy that
optimizes an application-specific metric (e.g., classification accu-
racy) under the constraints of the token bucket. This article
develops a policy based on a deep Q-network (DQN), and demon-
strates both its efficacy and the feasibility of its deployment
on embedded devices. Of note is the fact that the policy can
handle complex input patterns, including correlation in image
arrivals and classification accuracy. The evaluation is carried
out by performing image classification over a local testbed using
synthetic traces generated from the ImageNet image classifica-
tion benchmark. Implementation of this work is available at
https://github.com/qiujiaming315/edgeml-dqn.

Index Terms—Deep reinforcement learning, edge computing,
embedded machine learning, image classification, token bucket.

I. INTRODUCTION

RECENT years have witnessed the emergence of artificial
intelligence of things (AIoT), a new paradigm of embed-

ded systems that builds on two important advances. First,
through progress in embedded hardware [1], [2], [3], machine
learning models can now run on embedded devices, even
if resource constraints limit them to relatively weak models
[4], [5], [6] that trade accuracy for resource efficiency. Second,
edge servers accessible through shared local networks are

Manuscript received 3 August 2022; accepted 3 August 2022. Date of
publication 9 August 2022; date of current version 24 October 2022. This
work was supported in part by NSF under Grant 1646579 (CPS) and Grant
2006530 (CNS); and in part by the Fullgraf Foundation. This article was
presented at the International Conference on Embedded Software (EMSOFT)
2022 and appeared as part of the ESWEEK-TCAD special issue. This article
was recommended by Associate Editor A. K. Coskun. (Corresponding author:
Jiaming Qiu.)

Jiaming Qiu, Ruiqi Wang, Roch Guérin, and Chenyang Lu are with the
Department of Computer Science and Engineering, Washington University
in St. Louis, St. Louis, MO 63130 USA (e-mail: qiujiaming@wustl.edu;
ruiqi.w@wustl.edu; guerin@wustl.edu; lu@wustl.edu).

Ayan Chakrabarti was with the Department of Computer Science and
Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA.
He is now with Google Research, New York, NY 10011 USA (e-mail:
ayan.chakrabarti@gmail.com).

Digital Object Identifier 10.1109/TCAD.2022.3197533

increasingly common, providing access to additional compute
resources [7]. Those edge servers are powerful enough to
run strong(er), more complex models that are more accurate,
therefore, supplementing the weak local models running on
embedded devices.

Of relevance in our setting is that independent of the
edge compute resources, the large amount of input data (e.g.,
images) acquired by embedded devices and the limited band-
width of the shared network call for judicious decisions on
what to offload to edge servers and when. In particular, band-
width constraints call for rate-limiting transmissions from
embedded devices. In this work and following common prac-
tice, we employ a standard token bucket [8, Sec. 18.4.2] to
regulate offloading traffic. A token bucket (sometimes called
a leaky bucket) provides a simple and flexible mechanism
that specifies both a long-term transmission rate and a maxi-
mum number of consecutive transmissions (bucket size). It has
become the de facto standard for limiting user transmissions
in both wired and wireless networks, with implementations
available across commercial router/switch products, cloud
providers offerings, and all major operating systems and pro-
gramming languages. As a result, the findings of this article
should have applicability beyond the specific environment it
considers.

Fig. 1 offers a representative example of the type of edge
computing setting we consider. We use image classifica-
tion as our target application, although the framework may
be generalized to other types of classification or inference
applications.

Cameras distributed across an area share a network connect-
ing them to an edge server. They are responsible for capturing
images and classifying them according to the category to which
they belong. As is common [9], this is done using a deep learn-
ing model. The limited computational resources available in
the cameras impose the use of what we term a weak model
in contrast to the strong model available on the edge server
that boasts greater compute resources. The primary difference
between the two models is the confidence metric of their out-
puts, with the strong model outperforming the weak one. In
many instances, the weak model returns a satisfactory (of suffi-
cient confidence) answer, but it occasionally falls short. In those
cases, the embedded device has the option to send its input
to the edge server for a higher confidence answer. However,
network bandwidth constraints call for regulating such offload-
ing decisions through a token bucket mechanism, with each
image transmission consuming a token. The challenge is to

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9576-0499
https://orcid.org/0000-0002-4843-740X
https://orcid.org/0000-0003-1709-6769

QIU et al.: ADAPTIVE EDGE OFFLOADING FOR IMAGE CLASSIFICATION UNDER RATE LIMIT 3887

Fig. 1. System overview and connectivity.

devise a policy that meets those constraints while maximizing
classification accuracy (the metric of interest).

Offloading decisions influence both immediate and
future “rewards” (improvements in classification accuracy).
Offloading an image generates an immediate reward from the
higher (expected) accuracy of the edge server classification.
However, the token this transmission consumes may be better
spent on a future higher reward image. This tradeoff depends
on both future image arrivals and how the classifiers would
perform on those images. Neither aspect is likely to follow a
simple pattern. For example, image capture may be triggered
by external events (e.g., motion detectors), with the resulting
arrival process exhibiting complex variations. Similarly, the
accuracy of the weak classifier may be influenced by weather
and lighting conditions or the type of objects in the images.
This may in turn introduce correlation in the accuracy of
consecutive images classifications.

Examples of real-world image classification applications
that may exhibit such complex input patterns include automatic
check-out in retail stores, wildlife monitoring, or AI-powered
robots that classify waste in recycling plants. In all those set-
tings, external factors, e.g., store layout, animals behavior, or
how items are stacked in recycling bins, can produce complex
input sequences to the classifier.

This article presents a general solution capable of handling
arbitrary input sequences while making efficient offloading
decisions on embedded devices. The solution is built on a
deep Q-network (DQN) framework that can learn an efficient
offloading policy given a training sequence of representa-
tive inputs, i.e., based on a history of consecutive images,
classification outputs, offloading rewards, and token bucket
states. More specifically, this article makes the following
contributions.

1) A DQN-based policy that optimizes offloading decisions
under variable image arrival patterns and correlation in

the accuracy of consecutive images classifications, while
accounting for token bucket constraints.

2) An implementation and benchmarking of the policy in
an edge computing testbed demonstrating its efficiency
on embedded devices.

3) A comprehensive evaluation using a wide range of image
sequences from the ImageNet dataset, illustrating its
benefits over competing alternatives.

II. BACKGROUND AND MOTIVATION

As mentioned in Section I, embedded devices can now run
deep learning models. The co-location of data and processing
offers significant benefits in leveraging distributed compute
resources and timeliness of execution. For example, as we
report in Section VI-B, local execution can return an image
classification answer in about 20 ms versus over 50 ms if
performed on an edge server after transmission over a local
WiFi network.

This gain in timeliness, however, comes at a cost, as the
weak(er) models running in embedded devices can under-
perform the stronger models that edge servers can run. Of
interest though is the fact that differences in image classi-
fication accuracy are not systematic or even common. Those
differences vary depending on the classifiers (weak and strong)
used, but broadly fall in three categories: 1) images that both
classifiers accurately classify; 2) images that both classifiers
struggle to classify accurately; and 3) images that the strong
classifier can handle but not the weak classifier.

The relative fraction of images in each category can vary,
but for typical combinations of classifiers many images are in
(a), a small fraction of images are in (b), and the remainder
is in (c). For example, using the model of [10] with a com-
putational footprint of 595MFlops as the strong classifier, and
a 16-layer VGG-style model as the weak classifier, we find
that across the ILSVRC validation set 70.00% of images are
in 1), 4.47% are in 2), and the remaining 25.53% images are
in 3) (Fig. 2 shows sample images from all three categories).

To improve overall classification accuracy, images in (c)
should be offloaded, while offloading images in (a) or (b) is a
waste of network bandwidth and edge resources. Any solution
must, therefore, first identify images in (c), and then ensure
that as many of them can be transmitted under the constraints
imposed by the rate control mechanism (token bucket). This
is difficult because of the often unpredictable nature of the
arrival pattern of images in (c). Developing a policy capable of
handling this complexity is one of the challenges the solution
developed in this article addresses.

III. RELATED WORK

A. Edge Computing for Deep Learning Applications

Three general approaches have been explored to address
bandwidth constraints in edge computing systems running
deep neural network (DNN) models. We briefly review them.

Input Adaptation: In this approach the deep learning model
is only deployed on the edge server, and the embedded devices
offload all inputs to the edge server for inference. A variety of
application-specific techniques have been exploited to reduce

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

3888 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 2. Image samples from the ILSVRC validation set for which classification is (a) accurate for both classifiers, (b) hard for both classifiers, and (c) accurate
for the strong classifier but not the weak one.

the size of the input data, including compression based on
regions of interest (RoI) for object detection [11], [12], adapta-
tion of video frame size and rate [13], exploiting motion vector
for object tracking [12], face cropping and contrast enhance-
ment for emotion recognition [14], and DNN-driven feedback
regions for video streaming [15]. The key idea is to adapt the
input as a function of the inference tasks toward preserving
its accuracy. None of these solutions exploit the capabilities
of modern embedded hardware to execute machine learning
models locally.

Split Computing: This approach takes advantage of the
computing capability of embedded devices by splitting the
inference task between the device and the server, with each
side completing part of the computation. The deep learning
model is partitioned into head and tail models deployed on
the device and the server, respectively. Early works [16], [17]
partition the original DNN to minimize bandwidth utilization.
More recent techniques [18], [19] modify the original DNN
structure by injecting a bottleneck autoencoder that ensures a
lightweight head model. Other works [20], [21] apply knowl-
edge distillation techniques to train an autoencoder that serves
as its head model and performs part of the inference task in
addition to compressing the input. In all these solutions, the
offloading rate is fixed once the splitting is selected.

Model Cascade and Early Exiting: The cascade of models
framework [22], [23] relies on a cascade of models of increas-
ing complexity and accuracy to achieve fast and accurate
inference with deep learning models. A weak (and fast) model
is used first, with stronger but computationally more expen-
sive models invoked only if the weak model is not sufficiently
confident of its output. In an edge computing setting, this
naturally suggests deploying a pair of weak and strong mod-
els on embedded devices and servers, respectively, [24], [25].
Distributed DNNs (DDNNs) [26] have a similar focus but rely
on early exiting to avoid redundant inferences. Intermediate
exits (i.e., sub-branches) added to the DNN model allow infer-
ence queries to exit once confidence exceeds a threshold. As
with the cascade framework, this readily maps to an edge com-
puting setting by assigning early exit layers to the embedded
device and the remaining layers to the edge server [27], [28].
Of particular relevance is [27] that seeks to select exit points
based on network conditions. However, none of those works
focus on enforcing explicit rate limits as imposed by token
buckets.

B. Computation Offloading Algorithms in Edge Computing

Devising effective offloading policies is a fundamental
problem in edge computing;1 one that has received significant

1Lin et al. [29] provided a comprehensive review.

attention. In most works, the offloading problem is formulated
as an optimization problem that aims to minimize a metric
such as latency and/or energy consumption, with, as in this
article, deep Q-learning often the solution method of choice
when dealing with dynamic and high-dimensionality inputs.

Focusing on a few representative examples, Chen et al. [30]
considered a mobile edge computing setup with a sliced radio
access network and wireless charging and relies on a double
DQN approach to maximize a utility function that incorporates
latency and energy consumption. Similarly, Min et al. [31]
investigated a scenario where energy harvesting IoT devices
make offloading decisions across multiple edge servers and
use DQN to optimize offloading rate and edge server selec-
tion. Finally, Huang et al. [32] considered a wireless powered
mobile edge computing system, and uses DQN to make real-
time offloading and wireless resource allocation decisions that
adapt to channel conditions.

In spite of their reliance on DQN for offloading decisions
in an edge computing setting, there are several important
differences with this article. The first is that those papers
aim to optimize the general system or computational metrics
rather than an application-specific metric (classification accu-
racy) that depends on both local and edge performance. In
addition, although they also target an optimization under con-
straints, e.g., energy constraints [30], [31], [32], those give
rise to different state representations and, therefore, problem
formulation than the token bucket constraint we consider.

The problem of optimizing offload decisions to maximize
inference accuracy under token bucket constraint, which we
consider, was first introduced in [33] based on the cascade of
models framework. The work formulated the offloading deci-
sion problem as a Markov decision process (MDP) assuming
that the inputs to the classifier are periodic and indepen-
dent and identically distributed (i.i.d.). It generalized the
fixed offloading threshold model of the cascade framework
[22], [23], [26], [27] to account for the token bucket con-
straints by adopting an offloading policy that, for every token
bucket state, learned a threshold based on the local classi-
fier confidence score. As alluded to in Section I, the periodic
and i.i.d. assumptions may apply in some settings, but they
are overly restrictive and unlikely to hold in many real-world
applications. Devising policies capable of handling more com-
plex image sequences is the focus and main contribution of
this article.

IV. PROBLEM FORMULATION

Recalling the system of Fig. 1, images captured by cameras
are classified by the local (weak) classifier and an offloading
decision is made based on that classifier’s confidence and the

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: ADAPTIVE EDGE OFFLOADING FOR IMAGE CLASSIFICATION UNDER RATE LIMIT 3889

token bucket state. This offloading policy can be formulated as
an online constrained optimization problem that accounts for:
1) the image arrival process; 2) the output of the (weak) clas-
sifier; 3) the token bucket state; and 4) the metric to optimize
(classification accuracy).

In the rest of this section, we review our assumptions along
each of those dimensions before formulating our optimization,
with Section V introducing a possible solution suitable for the
limited computational resources of embedded devices.

A. Input Process

The first aspect affecting offloading decisions is how inputs
arrive at each device, both in terms of their frequency (rate)
and temporal patterns. Our goal is to accommodate as broad a
set of scenarios as possible, and we describe next our model
for the input arrival process at each device.

For modeling sake, we assume a discrete-time system with
an underlying clock that determines when images can arrive.
Image arrivals follow a general interarrival time process with
an arbitrary distribution F(t). This distribution can be chosen
to allow both renewal and nonrenewal interarrival times. This
includes i.i.d. arrival processes that may be appropriate when
images come from a large set of independent sources, as well
as nonrenewal arrival processes, e.g., MAP [34], that may be
useful to capture environments where image arrivals follow
alternating periods of high and low intensity.

In general, a goal of our solution will be to learn the specific
structure of the image arrival process, as captured by F(t), and
incorporate that knowledge into offloading decisions.

B. Classifier Output

The weak and strong classifiers deployed in the devices and
the edge server are denoted as W and S , respectively. For a
given image x they provide classification outputs W(x) and
S(x) in the form of probability distributions over the (finite)
set of possible classes Y. Given the ground truth class y and the
classifier output z for an input image x, an application-specific
loss (error) function L(z, y) is defined that measures the mis-
classification penalty (e.g., 0 if y is among the k most likely
classes according to z and 1 otherwise, when the application
is “top-k.”) Loss is, therefore, dependent on whether or not an
image is offloaded, and for image x denoted as L(W(x), y) if
it is not offloaded, and L(S(x), y) otherwise.

Note that at (offloading) decision time both S(x) and y
are unknown so that neither L(W(x), y) nor L(S(x), y) can
be computed. As a result and as discussed in Section IV-D,
the policy’s goal is instead to maximize an expected reward
(decrease in loss) from offloading decisions. This reward is
affected not just by the input arrival process, but also by the
classifier output process. In particular, dependencies in the
classifier outputs, e.g., caused by changes in environmental
conditions, can result in sequences of high or low confidence
outputs that need to be accounted for by the policy’s decisions.

C. Token Bucket

As mentioned, it is necessary to regulate the offloading rate
of devices to control the network load. This is accomplished

through a two-parameters token bucket (r, b) in each device,
which controls both short and long-term offloading rates.

Specifically, tokens are replenished at a rate of r ≤ 1, (frac-
tional) tokens per unit of time, and can be accumulated up to
a maximum value of b. Every offloading decision requires the
availability of and consumes a full token. Consequently, the
token rate, r, upper-bounds the long-term rate at which images
can be offloaded, while the bucket depth, b, limits the number
of successive such decisions that can be made.

Reusing the notation of [33], the behavior of the token
bucket system can be captured by tracking the evolution of
the token count n[t] in the bucket over time, as follows:

n[t + 1] = min(b, n[t] − a[t] + r) (1)

where a[t] the offloading action at t, which is 1 if an image
arrives and is offloaded (this needs n[t] ≥ 1), and 0 otherwise.

Again as in [33], we assume that both r and b are rational
so that r = N/P and b = M/P for some integers N ≤ P ≤ M.
We can then scale up the token count by a factor of P and
express it as n̄

n̄[t + 1] = min(M, n̄[t] − P × a[t] + N) (2)

which ensures that n̄[t] is an integer in the set {N, N +
1, . . . , M}, with images offloaded only when n̄[t] ≥ P.

D. Offloading Reward and Decisions

The offloading policy seeks to “spend” tokens on images
that maximize an application-specific metric (classification
accuracy) while conforming to the token bucket constraints.

Suppose at time unit t the image x[t] with ground truth
category y[t] arrives, so that, as defined earlier, the loss of the
classification predictions of the weak and strong classifiers are
L(W(x[t]), y[t]) and L(S(x[t]), y[t]), respectively. We define
the offloading reward R[t] as the reduction in loss through
offloading the image to the edge

R[t] = L(W(x[t]), y[t]) − L(S(x[t]), y[t]). (3)

Under the assumption of a general input process, a policy
π making an offloading decision a[t] at time t may need to
account for the entire input history up to time t as well as the
scaled token count n̄[t], namely,

a[t] = π(X[t], n̄[t]) (4)

where X[t] is the input history from time 0 to time t that
accounts for past image arrivals and classification outputs.

As alluded to in Section IV-B, we seek an offloading policy
π∗ that maximizes the expected sum of rewards over an infinite
horizon with a discount factor γ ∈ [0, 1). In other words

π∗ = arg max
π

E

∞∑

t=0

γ ta[t]R[t]. (5)

Note that, when no image arrives at time t, we implicitly
assume that x[t] is null and that correspondingly so is the
classification output. The offloading action a[t] and reward
R[t] are then both 0. This ensures that the input history X[t]
incorporates information on past image interarrival times and
the classification outputs following each image arrival, with
the policy only making decisions at image arrival times.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

3890 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

V. SOLUTION

We now describe the approach we rely on to derive π∗. The
policy assumes a given pair of image classifiers W , S , access
to representative training data, and seeks to specify actions that
maximize an expected discounted reward as expressed in (5).
There are several challenges in realizing π∗.

The first is that, to improve classification accuracy by tak-
ing advantage of the edge server’s strong classifier, we need to
identify images with a positive offloading reward (i.e., images
in (c) as described in Section II). Based on (3), the reward
associated with an input x(t) depends on the outputs of both the
weak and strong classifiers, W(x[t]) and S(x[t]), and knowl-
edge of the true class y(t) of the input. Unfortunately, neither
S(x[t]) nor y(t) are available at the time an offloading deci-
sion needs to be made. We address this challenge through
an approach similar to that of [33] that relies on an offloading
metric m(x), which learns an estimate of the offloading reward
R[t]. We briefly review this approach in Section V-A.

The second more significant challenge is that, as reflected
in (4), policy decisions may need the entire history of inputs
(and associated metrics) to accurately capture dependencies
in arrival patterns and classification outputs. The size of the
resulting state space can translate into significant complex-
ity, which we address through a deep reinforcement learning
approach based on Q-values as in [35]. We expand on this
approach in Section V-B.

In summary, the processing pipeline for each image in an
embedded device has following steps: 1) the weak classifier
classifies the image and produces an output W(x); 2) using
W(x) the offloading metric m(x) is computed as an estimate
of the reward R; and 3) Q-values are then computed based on
the current state (which includes a history of offloading metrics
and input interarrival times, and the token bucket state) and
an offloading decision is made. Of note is that Q-values rely
only on current and local information, which allows for timely
offloading decisions independent of the edge server.

A. Offloading Metric

As mentioned, each time an image x arrives, the only
information available after its local processing is the out-
put of the weak classifier W(x). The offloading metric m(x)
represents then an estimate for the corresponding offloading
reward R. We compute m(x) following the approach outlined
in [33, Sec. 4.1], which uses a training set of K representa-
tive image samples to generate a mapping from the entropy
h(W(x)) of the weak classifier output to the expected reward.

The entropy h(z) of a classification output z is given by

h(z) = −
∑

y∈Y
zy log zy

which captures the classifier’s confidence in its result (recall
that the classifier’s output is in the form of a probability dis-
tribution over the set of possible classes). This entropy is then
mapped to an expected offloading reward using a standard
radial basis function kernel

f (h̄) =
∑K

k=1 σ(h̄, hk) × Rk∑K
k=1 σ(h̄, hk)

(6)

where h̄ = h(z) for classification output z, σ(h̄, hk) =
exp(−λ(h̄ − hk)

2), and Rk is the reward from the kth sample
in the training set with hk its entropy.

By setting m(x) = f (h(W(x))), we choose an expected
reward that is essentially a weighted average over the entire
training set of K images of reward values for training set inputs
with similar entropy values, where images with entropy values
closer to that of image x are assigned higher weights.

B. Deep Q-Learning Policy

With the metric m(x) of image x in hand, the policy’s goal
is to decide whether to offload it given also the system state
as captured in X(t) and n̄(t), the past history of image arrivals,
classification outputs, and the token bucket state. The poten-
tial sheer size of the underlying state space makes a direct
approach impractical. This leads us to exploring the use of
deep Q-learning proposed in [35]. In the remainder of this
section, we first provide a brief overview of deep Q-learning
before discussing its mapping to our problem and articulating
its use in learning from our training data set an offloading
policy that seeks to maximize the expected offloading reward.

1) Background: Q-learning is a standard Reinforcement
Learning approach for devising policies that maximize a dis-
counted expected reward summed over an infinite horizon as
expressed in (5). It relies on estimating a Q-value, Q(s, a) as
a measure of this reward, assuming that the current state is
s and the policy takes action a. As mentioned above, in our
setting, s consists of the arrival and classification history X
and the token count n̄, while a is the offloading decision.

Estimating Q-values relies on a Q-value function, which in
deep Q-learning is in the form of a DNN, or DQN. Denoting
this network as Q, it learns Q-values during a training phase
through a standard Q-value update. Specifically, denoting the
current DQN as Q− let

Q+(s, a) = R
(
s, a, s′) + γ max

a′ Q−(
s′, a′) (7)

where s′ is the state following action a at state s, R(s, a, s′) is
the reward from this transition (available during the training
phase) with γ the discount factor of (5), and both a and a′ are
selected from the set of feasible actions in the corresponding
states s and s′.

The value Q+(s, a) is used as the “ground-truth,” with the
difference between Q+(s, a) and Q−(s, a) representing a loss
function to minimize, which can be realized by updating the
weights of the DQN through standard gradient descent. The
approach ultimately computes Q-values for all combinations of
inputs (state s) and possible actions a, and the resulting policy
greedily takes the action with maximum Q-value in each state

π(s) = arg max
a

Q(s, a). (8)

The challenges in learning the policy of (8) are the size of the
state space and the possibility of correlation and nonstationary
input distributions, which can all affect convergence. Deep Q-
learning introduced two additional techniques to address those
challenges.

Experience Replay: The Q-value updates of (7) rely on a
(s, a, R, s′) tuple, where we recall that the state s may include

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: ADAPTIVE EDGE OFFLOADING FOR IMAGE CLASSIFICATION UNDER RATE LIMIT 3891

the entire past history of the system, e.g., the tuple (X, n̄) of (4)
in our case. Deep Q-learning generates (through simulation2)
a set of (s, a, R, s′) tuples, stores them in a so-called replay
buffer, which it then randomly samples to perform Q-value
updates. This shuffles the order of the collected tuples so that
the learned Q-values are less likely to diverge because of bias
from groups of consecutive tuples.

Target Network: A Q-value update changes the weights of
the DQN and consequently its Q-value estimates in subsequent
updates. Deep Q-learning makes a separate copy of the DQN,
known as the target network, Qtarget, which it then uses across
multiple successive updates. Specifically, the Q-value update
of (7) is modified to use

Q+(s, a) = R
(
s, a, s′) + γ max

a′ Qtarget
(
s′, a′). (9)

Weights of the current DQN are still modified using gradi-
ent descent after each update, but subsequent values continue
to be computed using Qtarget. The two networks are eventu-
ally synchronized, i.e., Qtarget is updated to the current DQN,
but limiting the frequency of such updates has been shown to
improve learning stability.

2) DQN Setup: This section introduces the architecture and
setup of the DQN used to estimate Q-values for making effi-
cient offloading decisions based on the structure of the input
process, dependencies in the classification output, and the
token bucket state. Aspects of relevance to our DQN include
its inputs and outputs, as well as its internal architecture.

Our system state consists of the input X (image arrivals
and classification history) and the (scaled) token count n̄,
i.e., s = (X, n̄). For computational efficiency, rather than
using raw images, we instead rely on the offloading metrics
m(x) to estimate Q-values.3 The input history X, therefore,
reduces to (I, m), i.e., the history of image interarrival times
and offloading metrics. As mentioned earlier, the state space
is independent of the strong classifier, so that offloading
decisions can be made immediately based only on local
information.

With this state definition, Q-values are produced for each
combination of (X, n̄, a), where a is a (feasible) offloading
decision. This suggests (X, n̄, a) as our input to the DQN.
Such a selection is, however, relatively inefficient; both from a
runtime and a training standpoint. From a runtime perspective,
it calls for multiple passes through the DQN, one for each
possible action. More importantly, a different choice of input
can significantly improve training efficiency.

In particular, token states are a deterministic function of
offloading actions and our inputs (and metrics) are statistically
independent of actions. This allows the parallel computation of
Q-values across possible actions, and computing (and updating
during the training phase) Q-values for all token bucket states
n̄ at the same time without resampling training data based on

2As we shall see shortly, our setting mostly avoids simulations.
3Using raw images would add a component of complexity compara-

ble to the weak classifier itself, which is undesirable. An alternative is to
use intermediate features extracted from the weak classifier. This is still
challenging, especially when considering a history of such metrics, as the
dimensionality of these features remains much higher than the offloading
metric (a scalar), and would likely require a more complex model architecture.

policy, i.e., avoid doing proper reinforcement learning. This
can significantly improve training efficiency. As a result, we
select X as our system input, with our DQN producing a set of
2M − P − N + 2 outputs (Q-values), one for each combination
of token bucket states n̄ and offloading actions a ∈ {0, 1}.

Many recent works in deep reinforcement learning involve
relatively complex deep convolutional neural networks (CNNs)
to handle high-dimensional inputs such as raw images, or rely
on more sophisticated algorithms than DQN, e.g., proximal
policy optimization (PPO) [36] or Rainbow [37]. Initial exper-
iments with CNNs did not yield meaningful improvements
over a lightweight multilayer perceptron (MLP), possibly from
our state space relative low dimensionality. As a result, given
our focus on a light computational footprint, we opted for
a simple MLP architecture with 5 layers and 64 units in
each layer,4 and the relative simplicity of the DQN algorithm.
Exploring the feasibility and benefits of more sophisticated RL
algorithms and more complex architectures such as recurrent
neural networks (RNNs) is a topic we leave to future work.

3) DQN Learning Procedure: As our inputs, X are inde-
pendent of actions and the token state is a deterministic
function of action, we can limit ourselves to generating a
sequence of image arrivals and corresponding the offloading
metrics and rewards as our training set, which we store in our
replay buffer.

During training, the replay buffer is randomly sampled, each
time extracting a finite history window (segment) of length T ,
which is assumed sufficient to allow learning the joint distribu-
tion of interarrival times and classification outputs. Segments
sampled from the beginning of the image sequence are zero-
padded to ensure a window size of T for all segments. For each
segment, we create an input tuple X = (I, m) that consists of
the first T − 1 image interarrival times and the correspond-
ing offloading metrics. Conversely, the tuple X′ includes the
same information but for the last T −1 entries in the segment,
and represents our next “input state.” We can then adapt the
Q-value update expression of (9) as follows:

Q+(X, n̄; a) = a · R + γ max
a′∈{0,1}

Qtarget
(
X′, n̄′; a′) (10)

where n̄ is the token state when the current image (last entry
in X) arrives, R is the reward from offloading it, a is the
offloading decision for that image (a is 0 when n̄ < P), and
n̄′ is the updated token state following action a. Note that
since no additional images can be offloaded until the next one
arrives, n̄′ can be readily computed from n̄, a, and the last
interarrival time IT in X′, namely,

n̄′ = min(M, n̄ − P × a + N × IT).

This also means that for any pair (X, X′) from a given seg-
ment in our replay buffer, we can simultaneously update all
Q-values associated with different token states. This signifi-
cantly speeds-up convergence of our learning process.

VI. EVALUATION

Our goal is to demonstrate that the DQN-based policy:
1) estimates Q-values efficiently with negligible overhead in

4The performance impact of different choices is discussed in Section VI-C4.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

3892 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 3. Mapping (red curve) from entropy of weak classifier output to
offloading metric, with actual rewards for training set images (purple dots).

embedded devices and 2) can learn complex input structures
to realize offloading decisions that outperform state-of-the-art
solutions. To that end, we implemented a testbed emulating
a real-world edge computing setting, and, in addition to sim-
ulations, ran extensive experiments to evaluate the policy’s
runtime efficiency on embedded devices and its performance
for different configurations. Section VI-A reviews our exper-
imental setup. Section VI-B presents our implementation
and empirical evaluation of runtime efficiency in embedded
systems. Finally, Section VI-C evaluates our policy’s efficacy
in making offloading decisions for different input structures.

A. Experimental Setup

1) Classification Task: We rely on the standard task of
image classification with 1000 categories from the ImageNet
large-scale visual recognition challenge (ILSVRC) to evaluate
the classification performance of our offloading policy.

Our classification metric is the top-5 loss (or error). It
assigns a penalty of 0 if the image is in the five most likely
classes returned by the classifier and 1 otherwise. The strong
classifier in our edge server is that of [10] with a computational
footprint of 595MFlops. Our weak classifier is a “home-
grown” 16 layers model acting on low-resolution 64 × 64
images with 13 convolutional layers (8 with 1 × 1 kernels
and 5 with 3 × 3 kernels) and 3 fully connected layers.

Given our classifiers and the top-5 loss metric, the function
f (h) of (6) that maps the entropy5 of the weak classifier out-
put to the offloading rewards across the training set is reported
in Fig. 3. We note that the relatively low prediction accuracy
of our weak qualifier results in a monotonic mapping from
entropy to metric, i.e., in most instances where the weak clas-
sifier is very uncertain about its decision, the strong classifier
can provide a more confident (and accurate) output.

2) Image Sequence Generation: The other main aspect of
our experimental setup is our “image generators.” They deter-
mine both the image arrival process and how those images
are sampled from the ImageNet dataset. The former affects
temporal patterns in image arrivals at the weak classifier, while
the latter determines potential similarities among successive
classification outputs. To test our solution’s ability to infer

5Prior to computing the entropy, we calibrate the predictions of the weak
classifier using temperature-scaling as outlined in [38].

such patterns, distinct sequence generators separately control
image arrivals and similarities in classification outputs.

Image Arrival Process: We rely on a simple two-state
Markov-Modulated mechanism to create variable image arrival
patterns. Each state is associated with a different but fixed
image interarrival time, I1 and I2, with each state having a
given probability tprobi, i = 1, 2, of transitioning to the other
state. Given our discrete-time setting, up to one image arrives
in each time slot, and the two states emulate alternating peri-
ods of high and low image arrival rates. Of interest is the
extent to which DQN recognizes when it enters a state with a
lower/higher image arrival rate and adjusts its offloading deci-
sions based not only on the token bucket state but also its
estimate on when the next images might arrive.

Image Selection Process: In the simplest instance, images
are selected randomly from the ImageNet dataset. This
results in classification outputs with metrics randomly dis-
tributed across the ImageNet distribution. As mentioned in
Section IV-B, this may not be reflective of many practical sit-
uations. To create patterns of correlated confidence outputs, we
rank-order the ImageNet dataset by images’ offloading metric,
and sample it using a simple two-parameter model based on
a sampling spread sp and a location reset probability rprob.
The reset probability rprob determines the odds of jumping to
a new random location in the rank-ordered ImageNet dataset,
while the spread sp identifies a range of images, and, there-
fore, metrics, from which to randomly select once at a location.
Correlation in the metrics of successive classification outputs
can then be varied by adjusting sp and rprob.

3) DQN Configuration: We use the official ILSVRC vali-
dation set with 50 000 images (1000 categories with 50 images
each). We evenly split the validation set into three subsets; two
are used as training sets and the third as test set. Given a token
bucket configuration and sequence generator settings, we gen-
erate a training sequence of 108 images from the training sets
along with corresponding interarrival times and metrics. This
sequence is stored in the replay buffer from which we ran-
domly sample (with replacement) input history segments with
a fixed length history window of T = 97 to train DQN. The
effect of the history window length T on DQN’s performance
is investigated in Section VI-C4. Throughout the training pro-
cedure, we synchronize the target network with DQN every
214 segments, and perform 4000 synchronizations, for a total
of 4000 × 214 ≈ 6.55 × 107 segments for Q-value updates.
The DQN policy is then evaluated with test sequences of 107

images from the test set sampled using the same sequence
generator settings.

4) Evaluation Scenarios: In evaluating DQN, we vary
image arrival patterns, classification output correlation, and
token bucket parameters, and compare DQN to several bench-
marks.

The first is a lower bound that corresponds to a setting
where the weak classifier is limited to only offloading a fixed
fraction of images based on its token rate r (i.e., images with
offloading metrics above the (1 − r)th percentile), but it is
not constrained by the bucket size (equivalent to an infinite
bucket size). This lower bound is often not feasible, but barring
knowing an optimal policy, it offers a useful reference.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: ADAPTIVE EDGE OFFLOADING FOR IMAGE CLASSIFICATION UNDER RATE LIMIT 3893

TABLE I
TIME SPENT ACROSS COMPONENT THE IMAGE CLASSIFICATION PIPELINE

We also compare DQN to two practical policies. The first is
the MDP policy introduced in [33]. It is oblivious to any struc-
ture in either the image arrival process or the classifier output
(it assumes that they are i.i.d.), but is cognizant of the token
bucket state and attempts to adapt its decisions based on the
number of available tokens and its estimate of the long-term
image arrival rate. The second, denoted as Baseline, is a fixed
threshold policy commonly adopted by many works in the
model cascade framework [22], [23], [26], [27]. Baseline uses
the same threshold as lower bound, i.e., attempting to offload
images with offloading metrics above the (1 − r)th percentile,
but in contrast to lower bound, it needs to conform to the
token bucket constraint at run time. Further, unlike DQN, it is
oblivious to the token bucket state and any structure in either
the arrival process or the classification output.

B. Runtime Efficiency

To evaluate the feasibility of our DQN-based policy, we
implemented it on a testbed consisting of an embedded device
and an edge server connected over WiFi, and quantified its
overhead by comparing its runtime execution time on the
embedded device to the time spent in other components in an
end-to-end classification task. Next, we briefly describe our
testbed and measurement methodology.

1) Testbed Configuration: Our testbed comprises a
Raspberry Pi 4 Model B 8 GB that costs ∼$75 as the
embedded device and a server equipped with an Intel Core
i7-10700K CPU @ 3.80 GHz and Nvidia GeForce RTX
3090 GPU as the edge server. The pair of weak and strong
classifiers of Section VI-A are deployed on the embedded
device and the edge server, respectively. To further accelerate
the inference speed of the weak classifier, we convert the
weak classifier to an 8-bit quantized TensorFlow Lite model
and accelerate the inference with a Coral USB accelerator.
The DQN is also converted to a float16 TensorFlow Lite
model. The Raspberry Pi and the edge server communicate
over a WiFi network using the 802.11/n mode from the
2.4-GHz frequency band.

We resize the ILSVRC validation images to 236 × 236
in the preprocessing stage to unify the input images size to
1.34 × 106 bits, and set the image arrival rate to 5 images/s.
To introduce correlation in consecutive classifications, we use
sp = 0.1 and rprob = 0.1 for the classifier output process.

The token bucket is configured with a rate r = 0.1 (i.e.,
a long-term offloading rate of one out of 10 images or
0.67 Mb/s) and a bucket size b = 4 (i.e., allowing the
offloading of up to 4 consecutive images). We note that while
the rate of 0.67 Mb/s is well below the bandwidth of the
WiFi network, that bandwidth would in practice be shared

among many embedded devices, so that rate controlling their
individual transmissions, as we do, would be required.

2) Computation Cost: To quantify the overhead that DQN
imposes, we measure where time is spent across the differ-
ent components of the classification pipeline. The embedded
device first classifies every image using its weak classifier,
and then executes the DQN model to estimate the Q-values
before making an offloading decision that accounts for the
current token bucket state. Offloaded images are transmitted
to the edge server over the network and finally classified by the
strong classifier. Hence, a full classification task includes four
main stages: 1) weak classifier inference; 2) DQN inference;
3) network transmission; and 4) strong classifier inference,
which all contribute to how long it takes to complete.

The bottom section of Fig. 4 plots those respective time con-
tributions for a representative experiment involving a sequence
of 100 images, with the two other sections of the figure report-
ing the metrics computed by DQN for each image (top) and
the corresponding token counts (middle) and offloading deci-
sions. As we detail further in the rest of the section, the results
illustrate how DQN takes both the offloading metric of each
image and the token bucket state into account when making
offloading decisions.

As shown in Table I, DQN only takes 0.25 ms on average.
This is just over 1% of the time spent in the weak classifier,
and for offloaded images, it is less than a third of a percent of
the total classification pipeline time. This demonstrates that the
benefits DQN affords impose a minimal overhead. Quantifying
those benefits is the focus of the next section.

C. Policy Performance

In this section, we evaluate DQN’s performance across a
range of scenarios, which illustrate its ability to learn complex
input structures and highlight how this affects its offloading
decisions. To that end, we proceed in three stages. In the first
two, we introduce complexity in only one dimension of the
input structure, i.e., correlation is present in either classifi-
cation outputs or image arrivals. This facilitates developing
insight into how such structure affects DQN’s decisions. In
the third stage, we create a scenario with complexity in both
classification outputs and image arrivals, and use it to demon-
strate DQN’s ability to learn policies when complexity spans
multiple dimensions. Finally, as a sanity check, we evaluate
how different choices of model parameters, including history
window length T , number of hidden layers, and number of
units in each layer, affect the performance of DQN.

1) Deterministic Image Arrivals and Correlated
Classification Outputs: To explore DQN’s ability to learn
about the presence of correlation in classification outputs,

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

3894 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 4. Traces of offloading metrics, token bucket states, and time spent in the image classification pipeline in a representative experiment.

Fig. 5. Offloading policies performance as a function of classifier output
correlation. Correlation decreases as spread sp (Top) or location resetting
probability rprob (Bottom) increase. Token bucket: r = 0.1, b = 4.

we first fix the token bucket parameters to r = 0.1 and
b = 4, and vary the two hyper-parameters of our sequence
generator to realize different levels of classification output
correlation: the sampling spread sp is varied from 0 (single
image) to 1 (full dataset and, therefore, no correlation), while
the reset probability rprob is varied from 10−3 to 1 (no
correlation). Fig. 5 reports the top-5 loss for DQN and our
three benchmarks.

As expected, when either sp or rprob are large so that
classification output correlation is minimal, both DQN and
MDP perform similarly and approach the performance of the
lower bound. However, when classification output correlation
is present, DQN consistently outperforms MDP (and the base-
line). As correlation increases, performance degrades when
compared to the lower bound, but this is not surprising given
the token bucket constraints. Correlation in the classification
output means that sequences of either high or low metrics are
more likely, which are harder to handle under token bucket
constraints. A sequence of high metric images may rapidly

Fig. 6. Offloading policies performance for different token bucket configu-
rations under correlated classification outputs (sp = 0.1 and rprob = 0.1).

deplete a finite token bucket, so that it may not be possible to
offload all of them, irrespective of how forward looking the
policy is. Conversely, a sequence of low metric images may
result in wasted tokens (the bucket fills up) even if, as we shall
see, the DQN policy is able to mitigate this by recognizing
that it has entered such a period and adapting its behavior.

This is illustrated in the top portion of Fig. 7 that reports
traces of classification outputs and policy decisions for a sam-
ple configuration of Fig. 5 (sp restricts classification output
metrics to a range of 10% of the full set, while rprob results
in an average of 100 images consecutively sampled from that
range). When compared to MDP, DQN recognizes when it
enters periods of low metrics and proceeds to offload some low
metric images while MDP does not. Conversely, both policies
perform mostly similarly during periods of high metric.

Fig. 5 relied on a single token bucket configuration,
(r, b) = (0.1, 4). Fig. 6 extends this by still relying on a par-
ticular pattern of classification output correlation (sp = 0.1
and rprob = 0.1), but now for different token bucket con-
figurations. Specifically, we select three different token rates,
r = 0.05, 0.1, 0.25 and for each vary the token bucket depth
b from 1 to 20. The figure demonstrates that DQN consis-
tently outperforms MDP and Baseline, even if the difference
diminishes as either r or b increases. This is expected. A larger
token rate lowers the cost of missed offloading opportunities
because of wasted tokens, while a larger bucket depth makes

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: ADAPTIVE EDGE OFFLOADING FOR IMAGE CLASSIFICATION UNDER RATE LIMIT 3895

Fig. 7. Offloading decisions of DQN and MDP for token bucket depths
of b = 4 (Top) and b = 20 (Bottom) under correlated classification outputs
(sp = 0.1 and rprob = 0.01).

Fig. 8. Offloading policies performance as a function of image arrivals
correlation. Correlation decreases as transition probabilities tprob1, tprob2
increase. Token bucket: r = 0.1, b = 4.

offloading decisions less dependent on accurately predicting
classification output correlation in successive images.

We illustrate the latter in Fig. 7, where we again plot
traces of the decisions that the DQN and MDP policies make
for a scenario with correlated output metrics (sp = 0.1 and
rprob = 0.01) and two different bucket depths, b = 4 (Top)
and b = 20 (Bottom). We note that the value rprob = 0.01 dif-
fers from that used in Fig. 6, i.e., rprob = 0.1. The motivation
is visual clarity, as the lower rprob value stretches the periods
during which classification output metrics are sampled from a
given range, which amplifies differences in policy decisions.
Comparing the Top and Bottom parts of the figures, we see
that when b is larger, DQN recognizes that the odds of wasting
tokens during periods of low metrics are lower, which results
in fewer offloading decisions during those times. This is espe-
cially so after periods of high metrics, e.g., after t ≈ 500,
when the token bucket count is low.

2) Markov-Modulated Image Arrivals and I.I.D.
Classification Outputs: Next, we proceed to demonstrate
that DQN can also learn variations in the structure of the
image arrival process, and in particular changes in the arrival
rate that extend over long enough periods of time to affect
offloading decisions. As the focus is on variations in the
image arrival process, we rely on a simple i.i.d. structure for
the classifier outputs.

As in the previous section, we chose r = 0.1, b = 4, as
our base token bucket configuration, and evaluate offload-
ing performance under Markov-modulated image arrival
processes. We rely on two base configurations. Configuration 1
alternates between high and low-intensity states with constant
image interarrival times of I1 = 1 and I2 = 3, i.e., images in
every time slot versus every three-time slots. We set the ratio
of the transition probabilities out of each state to two, i.e.,
tprob1/tprob2 = 2 so that the low-intensity state lasts twice
as long, and vary the state transition probability out of state 1,
tprob1, from 10−3 to 10−0.5. Configuration 2 uses I1 = 1
and I2 = 6, i.e., images again in every time slot in the high-
intensity state, but only every six-time slots in the low-intensity
state, with tprob1/tprob2 = 4, i.e., a low-intensity state that
now lasts four times as long. As with the first configuration,
we vary tprob1 from 10−3 to 10−0.5.

The results are in Fig. 8, which reports the average top-5
loss for DQN and our three benchmarks for configurations 1
(Left) and 2 (Right). DQN’s ability to learn the structure of the
arrival process improves performance (lower Top-5 loss) over
both MDP and Baseline, with those improvements diminish-
ing6 as correlation in the arrival process decreases (increased
transition probabilities out each state).

To better understand how learning about the arrival process
affects DQN’s offloading decisions, we again use a sample
trace showing the decisions of both DQN and MDP for a
sequence of image arrivals. To illustrate DQN’s ability to “rec-
ognize” rate transitions, the trace explicitly includes one. The
results are reported in the top portion of Fig. 10 for configu-
ration 1 with state transition probabilities of tprob1 = 0.001,
tprob2 = 0.0005. The transition from high to low arrival
intensity is indicated by a vertical line in the figure.

In the high arrival rate state (left of the dividing line), DQN
is more conservative than MDP with slightly fewer offload-
ing decisions. This is, however, offset by its ability to offload
some higher metric images than MDP whose more aggres-
sive behavior resulted in an empty token bucket when those
images arrived. Conversely, once DQN recognizes that it has
transitioned to a state with a lower image arrival rate (right
of the dividing line), it proceeds to be more aggressive and
selects more lower metric images as it knows that the lower
image arrival rate means that tokens will be replenished faster
relative to image arrivals. In contrast, MDP ends-up wasting
tokens it could have used during periods of lower arrival rate.

Next, we investigate the extent to which the results of
Fig. 8 remain under different token bucket configurations. For
that purpose, we select configuration 1 with I1 = 1, I2 = 3
and tprob1 = 0.001, tprob2 = 0.0005. Fig. 9 reports the
performance (top-5 loss) of DQN and our three benchmarks
across a range of token bucket configurations, namely, token
rates of r = 0.05, 0.1, 0.25, and token bucket depths that vary
from b = 1 to 20. The figure illustrates that DQN continues
to outperform MDP across all configurations, even if, as with
Fig. 6, the differences are smaller than between MDP and

6As mentioned in Section VI-A2, changes in tprobi, i = 1, 2 affect the
image arrival rate. Hence, the changes in the lower bound as they increase.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

3896 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 9. Offloading policies performance for different token bucket configu-
rations under correlated image arrivals (I1 = 1, I2 = 3 and tprob1 = 0.001,
tprob2 = 0.0005).

Fig. 10. Offloading decisions of DQN and MDP for token bucket depths of
b = 4 (Top) and b = 20 (Bottom) under correlated image arrivals (I1 = 1,
I2 = 3, tprob1 = 0.001, tprob2 = 0.0005).

the Baseline. The latter ignores the token bucket state, which
remains the main contributor to differences in performance.

Toward better understanding factors that influence differ-
ences between DQN and the MDP policy in the presence
of arrival correlation, the bottom part of Fig. 10 reports a
trace of image arrivals (I1 = 1, I2 = 3, tprob1 = 0.001,
tprob2 = 0.0005) and policy decisions that parallels that of
the top part of the figure, but for a different token bucket
depth, i.e., b = 20 versus b = 4. The bigger bucket depth
means that MDP’s overly aggressive behavior during periods
of high arrival rate (it still assumes the lower long-term rate)
has less of an impact, as the larger bucket makes it easier to
sustain the higher offloading rate (at least for a period of time).
This is illustrated by the fewer policy decision differences
between MDP and DQN in the bottom part of the figure’s
left-hand side. Conversely, the larger bucket also means that
DQN needs not to be as aggressive during periods of lower
arrival rate since the larger bucket reduces the odds of wasting
tokens by not offloading enough images. This is reflected in
the higher metrics used by DQN in its offloading decisions in
the right-hand-side of the bottom part of Fig. 10.

3) Markov-Modulated Image Arrival and Correlated
Classification Outputs: Finally, because the combination of
variability/correlation in both classification accuracy image
arrival rates makes for a much more challenging (higher
dimensionality) input structure, it is important to test DQN’s
ability to learn such structure toward making effective policy

Fig. 11. DQN’s performance as a function of the log (base 2) of the history
window length T on a representative setting that combines correlation in both
image arrivals (I1 = 1, I2 = 3, tprob1 = 0.001, tprob2 = 0.0005) and
classification outputs (sp = 0.1, rprob = 0.01), and token bucket parameters
of r = 0.1 and b = 4.

decisions. Due to lack of space, we omit to presenting the
results, but they are available in [39] and confirm that DQN
is indeed capable of accounting for this higher level of input
complexity.

4) DQN Modeling Parameters: In this last section, we
investigate how the DQN’s parameters, including the history
window length T , the number of layers, and the number of
units in each layer, impact the performance of our policy. We
report results for a setting that combines both variable image
arrival rate and correlated classification output, as it represents
a more complex environment for which the choice of window
length can, therefore, be anticipated to have a greater impact.

Fig. 11 reports the performance (average top-5 loss) of DQN
(and MDP)7 for different values of log2 T . The lowest value
(T = 2) corresponds to a setting where DQN uses only the
current offloading metric and image interarrival time, while the
largest setting of T = 128 offers enough samples for DQN to
learn the correlation structure in both arrivals and classification
outputs.

The results display relatively limited sensitivity to the choice
of T even if some variations are present. Of note is the fact
that even in the absence of any history (T = 2), DQN still out-
performs MDP because it can use its knowledge of the current
interarrival time to make better policy decisions (MDP only
has access to the current offloading metric and token bucket
state). As T increases and more history information becomes
available, DQN quickly stabilizes at its best performance and
remains insensitive to T over a wide range. Performance even-
tually starts to decrease as T becomes too large. This is likely
because its simple architecture (a 5 × 64 MLP) does not con-
tain a sufficiently large number of parameters to interpret all
the information within the high-dimensionality input.

We also performed a grid search on the model parameters by
varying the number of hidden layers from 3 to 8, and the base
2 logarithm of the number of units in each layer from 4 to 8.
As when varying the history window length T , we observed
only small variations (within 1%) in the relative difference
between the best and the worst performance for the top-5 loss.
This indicates limited sensitivity of the model to these choices.

7MDP is included only to show that DQN outperforms it for all T values.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: ADAPTIVE EDGE OFFLOADING FOR IMAGE CLASSIFICATION UNDER RATE LIMIT 3897

VII. CONCLUSION

This article investigates a distributed image classification
problem in an edge-assisted AIoT setting, where classifica-
tion accuracy is improved by dynamically offloading some
images to an edge server subject to network bandwidth con-
straints. Managing access to the shared network is regulated
through a token bucket that constrains offloading decisions.
This article devises and evaluates a policy that manages offload
decisions from devices under such constraints while opti-
mizing classification accuracy. Because image arrival patterns
and classification results can be arbitrary, the policy needs
to accommodate complex input sequences. To that end, we
investigate the use of DQN to realize such a policy, and
demonstrate its ability to effectively “learn” effective policy
decisions. Experiments demonstrate both the efficacy of the
DQN-based offloading policy and its runtime efficiency on
embedded devices with limited computational resources.

REFERENCES

[1] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D. Lane,
“EmBench: Quantifying performance variations of deep neural networks
across modern commodity devices,” in Proc. 3rd Int. Workshop Deep
Learn. Mobile Syst. Appl., 2019, pp. 1–6.

[2] A. Ignatov et al., “AI benchmark: All about deep learning on smart-
phones in 2019,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop
(ICCVW), 2019, pp. 3617–3635.

[3] S. Wang, A. Pathania, and T. Mitra, “Neural network inference on mobile
SoCs,” IEEE Design Test, vol. 37, no. 5, pp. 50–57, Oct. 2020.

[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 4510–4520.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and Huffman coding,”
2016, arXiv:1510.00149.

[6] B. Jacob et al., “Quantization and training of neural networks for effi-
cient integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2018, pp. 2704–2713.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[8] D. Medhi and K. Ramasamy, Network Routing, 2nd ed. Boston, MA,
USA: Morgan Kaufmann, 2018.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Int. Conf. Adv. Neural
Inf. Process. Syst. (NeurIPS), 2012, pp. 1097–1105.

[10] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train
one network and specialize it for efficient deployment,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2020, pp. 1–15.

[11] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang, “Distributed and effi-
cient object detection in edge computing: Challenges and solutions,”
IEEE Netw., vol. 32, no. 6, pp. 137–143, Nov./Dec. 2018.

[12] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in Proc. 25th Annu. Int. Conf. Mobile
Comput. Netw. (MOBICOM), 2019, pp. 1–16.

[13] Q. Liu and T. Han, “DARE: Dynamic adaptive mobile augmented reality
with edge computing,” in Proc. IEEE 26th Int. Conf. Netw. Protocols
(ICNP), 2018, pp. 1–11.

[14] G. Muhammad and M. S. Hossain, “Emotion recognition for cognitive
edge computing using deep learning,” IEEE Internet Things J., vol. 8,
no. 23, pp. 16894–16901, Dec. 2021.

[15] K. Du et al., “Server-driven video streaming for deep learning infer-
ence,” in Proc. Annu. Conf. ACM Spec. Interest Group Data Commun.
Appl. Technol. Archit. Protocols Comput. Commun. (SIGCOMM), 2020,
pp. 557–570.

[16] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” SIGARCH Comput. Archit. News, vol. 45, no. 1,
pp. 615–629, 2017.

[17] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Trans. Mobile Comput., vol. 20, no. 2,
pp. 565–576, Feb. 2021.

[18] A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A deep learn-
ing architecture for intelligent mobile cloud computing services,” in
Proc. IEEE/ACM Int. Symp. Low Power Electron. Des. (ISLPED), 2019,
pp. 1–6.

[19] J. Shao and J. Zhang, “BottleNet++: An end-to-end approach for feature
compression in device-edge co-inference systems,” in Proc. IEEE Int.
Conf. Commun. Workshops (ICC Workshops), 2020, pp. 1–6.

[20] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh,
“Distilled split deep neural networks for edge-assisted real-time
systems,” in Proc. Workshop Hot Topics Video Anal. Intell. Edges, 2019,
pp. 21–26.

[21] Y. Matsubara, D. Callegaro, S. Baidya, M. Levorato, and S. Singh,
“Head network distillation: Splitting distilled deep neural networks for
resource-constrained edge computing systems,” IEEE Access, vol. 8,
pp. 212177–212193, 2020.

[22] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J. E. Gonzalez,
“IDK cascades: Fast deep learning by learning not to overthink,” in Proc.
Conf. Uncertainty Artif. Intell. (UAI), 2018, pp. 580–590.

[23] A. Kouris, S. I. Venieris, and C.-S. Bouganis, “cascadeCNN : Pushing the
performance limits of quantisation in convolutional neural networks,”
in Proc. 28th Int. Conf. Field Program. Logic Appl. (FPL), 2018,
pp. 155–162.

[24] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile
deep learning framework for edge video analytics,” in Proc. IEEE Int.
Conf. Comput. Commun. (INFOCOM), 2018, pp. 1421–1429.

[25] J. Wang et al., “Bandwidth-efficient live video analytics for drones via
edge computing,” in Proc. IEEE/ACM Symp. Edge Comput. (SEC), 2018,
pp. 159–173.

[26] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep neu-
ral networks over the cloud, the edge and end devices,” in Proc. IEEE
37th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2017, pp. 328–339.

[27] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: Synergistic progressive inference of neural networks over
device and cloud,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw.
(MOBICOM), 2020, pp. 1–15.

[28] L. Zeng, E. Li, Z. Zhou, and X. Chen, “Boomerang: On-demand coop-
erative deep neural network inference for edge intelligence on the
industrial Internet of Things,” IEEE Netw., vol. 33, no. 5, pp. 96–103,
Sep./Oct. 2019.

[29] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey on
computation offloading modeling for edge computing,” J. Netw. Comput.
Appl., vol. 169, Nov. 2020, Art. no. 102781.

[30] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[31] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for IoT devices with energy harvesting,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, Feb. 2019.

[32] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581–2593, Nov. 2020.

[33] A. Chakrabarti, R. Guérin, C. Lu, and J. Liu, “Real-time edge classi-
fication: Optimal offloading under token bucket constraints,” in Proc.
IEEE/ACM Symp. Edge Comput. (SEC), 2021, pp. 41–54.

[34] D. M. Lucantoni, K. S. Meier-Hellstern, and M. F. Neuts, “A single-
server queue with server vacations and a class of non-renewal arrival
processes,” Adv. Appl. Probab., vol. 22, no. 3, pp. 676–705, 1990.

[35] V. Mnih et al., “Playing Atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[37] M. Hessel et al., “Rainbow: Combining improvements in deep reinforce-
ment learning,” in Proc. 32nd AAAI Conf. Artif. Intell. (AAAI), 2018,
pp. 3215–3222.

[38] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in Proc. 34th Int. Conf. Mach. Learn. (ICML),
2017, pp. 1321–1330.

[39] J. Qiu, R. Wang, A. Chakrabarti, R. Guerin, and C. Lu, “Adaptive
edge offloading for image classification under rate limit,” 2022,
arXiv:2208.00485.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on October 27,2022 at 22:36:45 UTC from IEEE Xplore. Restrictions apply.

