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Best Viewpoints for External Robots or Sensors
Assisting Other Robots
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Abstract—This work creates a model of the value of different ex-
ternal viewpoints of a robot performing tasks. The current state of
the practice is to use a teleoperated assistant robot to provide a view
of a task being performed by a primary robot; however, the choice
of viewpoints is ad hoc anddoes not always lead to improved perfor-
mance. This research applies a psychomotor approach to develop a
model of the relative quality of external viewpoints usingGibsonian
affordances. In this approach, viewpoints for the affordances are
rated based on the psychomotor behavior of human operators and
clustered into manifolds of viewpoints with the equivalent value.
The value of 30 viewpoints is quantified in a study with 31 expert
robot operators for four affordances (reachability, passability, ma-
nipulability, and traversability) using a computer-based simulator
of two robots. The adjacent viewpoints with similar values are
clustered into ranked manifolds using agglomerative hierarchical
clustering. The results show the validity of the affordance-based
approach by confirming that there are manifolds of statistically
significantly different viewpoint values, viewpoint values are sta-
tistically significantly dependent on the affordances, and viewpoint
values are independent of a robot. Furthermore, the best manifold
for each affordance provides a statistically significant improvement
with a large Cohen’s d effect size (1.1–2.3) in the performance
(improving time by 14%–59%and reducing errors by 87%–100%)
and improvement in the performance variation over the worst
manifold. This model will enable autonomous selection of the best
possible viewpoint and path planning for the assistant robot.

Index Terms—Human–robot interaction, multirobot systems,
telerobotics.

I. INTRODUCTION

AN ASSISTANT robot providing a view of a task being
performed by a primary robot has emerged as the state of

the practice for ground and water robots in homeland security
applications, disaster response, and inspection tasks [1]–[6].
Advances in small unmanned aerial systems (UAS), especially
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tethered UAS, suggest that flying assistant robots will soon
supply the needed external visual perspective [7]–[10].
During the 2011 FukushimaDaiichi nuclear power plant acci-

dent, teleoperated robots were used in pairs from the beginning
of the response to reduce the time it took to accomplish a
task [11], [12]. iRobot PackBot unmanned ground vehicles were
used to conduct radiation surveys and read dials inside the plant
facility, where the assistant PackBot provided camera views of
the first robot in order to manipulate door handles, valves, and
sensors faster [13].
Since then, the use of two robots to perform a single task

has been acknowledged as the best practice for decommission-
ing tasks. However, the Japanese Atomic Energy Agency has
reported through our memorandum of understanding for coop-
erative research on disaster robotics that operators constantly
try to avoid using a robotic visual assistant. The two sets of
robot operators find it difficult to coordinate in order to get
and maintain the desired view but a single operator becomes
frustrated trying to operate both robots.
There are at least two issues with the current state of the

practice. First, it increases the cognitive workload on a primary
operator by either requiring the primary operator to control two
robots or having to coordinate with a secondary operator [12].
Second, it is not guaranteed a human operator will provide
ideal viewpoints as viewpoint quality for various tasks is not
well understood and humans were shown to pick suboptimal
viewpoints [14].
This article addresses the choice of ideal viewpoints by

creating a model of the value of different external viewpoints
of a robot performing tasks; it is expected, but beyond the
scope of this study that the application of the model to robotic
visual assistants will likely reduce the cognitive workload on
the primary operator. The model will provide an understanding
of the utility of different external viewpoints of tasks of the
primary robot and can be used as a basis for principled viewpoint
selection for a robotic visual assistant. This can ultimately
enable autonomous viewpoint selection and path planning for
an autonomous robotic visual assistant, therefore, eliminating
the need for manual control.
This article is organized as follows. Section II discusses the

relatedwork establishing there is no existingmodel of viewpoint
values and showing the importance of psychomotor aspects in
viewpoint selection. Section III introduces the affordance-based
approach. Section IV details the implementation of a computer-
based simulator. Section V presents a human subject study
quantifying the value of viewpoints and clustering to create the
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manifolds. Section VI presents the results showing the validity
of the affordance-based approach and a significant improvement
in the performance. Section VII discusses the relation to the
related work, the reduction in cognitive workload, the ramifica-
tions for robotic visual assistants, and the actionable rules for
teleoperated robotic visual assistants. Section VIII summarizes
the key findings that there are manifolds of different viewpoint
values, viewpoint values are dependent on the affordances, and
viewpoint values are independent of the robot.

II. RELATED WORK

There is no existingmodel of viewpoint values leaving robotic
visual assistants to rely on ad hoc choices of viewpoints or
work envelope models. Woods et al. [15]–[24] indicated that
improving the ability to comprehend Gibsonian affordances im-
proves teleoperation and external viewpoints improve the ability
to comprehend affordances forming an important foundation for
the affordance-based approach of this work.
A total of five attributes of an ideal viewpoint were identified

and four categories of existing robotic visual assistant imple-
mentations were examined with an underlying focus on whether
there is an existing model of viewpoint values. There was no
existing model of viewpoint values leaving the existing robotic
visual assistant implementations to rely on ad hoc choices or on
having a priori access to, or constructing, 2-D or 3-D models of
their work envelope. Robotic visual assistants lacked principles
to select ideal viewpoints and no robotic visual assistant im-
plementation considered psychomotor aspects in the viewpoint
selection.
There were five attributes of an ideal external viewpoint of

action being performed by a robot: the field of view (the area of
interest must be in the field of view) [25], visibility/occlusions
(the view of the area of interest must be occlusion free) [26],
depth of field (the area of interest must be in the depth of field
or sharp focus) [27], resolution/zoom (the area of interest must
have sufficient resolution in the image so the camera has to be
physically close or have to zoom in) [28], and psychomotor
aspects (the view must positively affect the human ability to
move the robot to accomplish the goal) [22].
There were four categories of robotic visual assistant im-

plementations in the literature all lacking principles to select
ideal viewpoints. Static visual assistants [29]–[31] did not move
and therefore could not adapt viewpoints to changing pose or
actions of the primary robot. Manual visual assistants [32],
[33] left the choice of a viewpoint to humans who were pre-
viously shown to pick suboptimal viewpoints [14]. Reactive au-
tonomous visual assistants [34]–[36] only reactively tracked and
zoomed on the action ignoring the question of what are the best
viewpoints. Deliberative autonomous visual assistants [37]–[39]
deliberated about certain predefined geometrical criteria while
only considering camera configuration attributes of an ideal
viewpoint (field of view, visibility/occlusions, depth of field,
and resolution/zoom).While camera configuration attributes are
necessary preconditions for an ideal viewpoint, no robotic visual
assistant studies considered how the viewpoint affects the human

teleoperator of the primary robot (psychomotor aspects attribute
of an ideal viewpoint) in viewpoint selection.
Psychomotor aspects of an ideal viewpoint were ignored in

the existing robotic visual assistant implementations, despite the
results by Woods et al. [15]–[24] who showed that teleopera-
tion can be improved by improving the ability to comprehend
affordances and that an external view improves the ability to
comprehend affordances.
Woods et al. primarily focused on creating tools to enable

humans to manually select external views that supply Gib-
sonian affordances, which are visual cues that allow humans
to directly perceive the possibility of actions independent of
the environment or task models [40]. Woods et al. contributed
two important results forming a theoretical background for this
article. They showed that teleoperation can be improved by
improving teleoperators’ ability to comprehend affordances and
they established that an external view improves the ability to
comprehend the affordances. This indicates that the value of a
viewpoint should depend on the affordances and confirms the
benefit of a robotic visual assistant providing an external view.
Despite those contributions, Woods et al. relied on human

input to select viewpoints and did not evaluate the value of
different external viewpoints, they experimentally studied only
reachability affordance, they used a simulator that did not reflect
realistic robots, and the subjects were not expert robot operators.
Their work forms the foundation for the approach in Section III.
However, unlike their work, this article creates a model of the
value of different external viewpoints (that can ultimately enable
a robotic visual assistant to pick a viewpoint without human
input), the model is created for four affordances, the simulator
used in the experimentation reflects two realistic robots, and
the subjects are expert robot operators. Having expert operators
using realistic robots prevents confounding the results with
subjects struggling to control the robots.

III. AFFORDANCE-BASED APPROACH

The approach is to use the concept of Gibsonian affor-
dances [1], where the potential for an action can be directly per-
ceived without knowing intent or models and, thus, is universal
to all robots and tasks. In this approach, it is assumed tasks can
be decomposed into actions each relying on a single affordance,
space around the actions is decomposed into viewpoints, and
the viewpoints for the affordances are rated based on teleop-
erator’s psychomotor behavior and clustered into manifolds of
viewpoints with the equivalent value (see Fig. 1).
The main postulation of the approach is that a model of

viewpoint values can be created using Gibsonian affordances
based on psychomotor behavior. This postulation has two central
tenets. The first tenet is that the value of a viewpoint depends
on the Gibsonian affordance for each action in a task. This tenet
is supported by the previous work of Woods et al. discussed
in Section II. The approach based on Gibsonian affordances
has at least two benefits. First, it avoids the need for models
seen in the deliberative approach by focusing on the affordances
for an action rather than the action itself. Second, research on
affordances suggests there are relatively few affordances [41].
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Fig. 1. Overview of the main building blocks of the approach. T , ti, and ai
denote task, action, and affordance respectively.

Fig. 2. Reachability affordance: Are the robot and its manipulator in the right
pose to reach an object?

It is, therefore, conceivable every robotic task could be decom-
posed into a small set of affordances and each affordance would
have associated preferred viewpoints. The second tenet is that
viewpoints in the space surrounding the action can be rated and
adjacent viewpoints with similar ratings can be clustered into
manifolds of viewpoints with the equivalent value. The cluster-
ing of viewpoints into manifolds has at least three benefits. First,
it simplifies navigational reachability. As long as the robotic
visual assistant can reach any location within the manifold, it
will provide approximately the same value as any other location
within themanifold. Second, it aids visual stability.Due to equiv-
alence of viewpointswithin themanifold, positioning the robotic
visual assistant at the centroid of a manifold will minimize the
chance that a potential pose perturbation would significantly
change viewpoint quality. Third, it can be used in autonomous
planning for a robotic visual assistant to select a manifold and
plan a path there while balancing the reward of having a view
from that particular manifold with the associated risk of being at
that manifold and getting to that manifold [42]–[47] while also
considering visual stability.
Based on the relatedwork ofWoods et al. and our prior experi-

ence with 21 disaster deployments, participation in 35 homeland
security exercises, and examination of common tasks for robots
at Fukushima [12], the development of the model is restricted
to four common affordances: reachability (see Fig. 2), passabil-
ity (see Fig. 3), manipulability (see Fig. 4), and traversability
(see Fig. 5). Woods et al. additionally discussed climability
and drivability affordances, however, those overlap with our
traversability (definitions of affordances are not standardized).
Starting with the first building block from Fig. 1, it is assumed

every task T can be decomposed into a sequence of actions
t1, t2, . . ., tn where the perception for each action ti relies

Fig. 3. Passability affordance: Is the robot or its manipulator in the right pose
to safely pass through a narrow opening?

Fig. 4. Manipulability affordance: Is the robot’s manipulator in the right pose
to manipulate an object?

Fig. 5. Traversability affordance: Is the robot in the right pose to safely traverse
the environment?

on a single affordance, ai. In reality, actions might rely on a
compound affordance, but this work assumes each action relies
on its dominant affordance. Then, a task T can be represented by
a sequence of action-affordance tuples (ti, ai) forming a coarse
knowledge representation of the task.
Space around the action can be decomposed into viewpoints

that are assumed to be lying on ahemisphere of afixed radius (see
Fig. 6). A viewpoint is represented using a spherical coordinate
system as v = (r, θ, ϕ) and the optical axis is along the radius
r. While the values of r can vary in practice, an assumption for
this work is that a hemisphere with a fixed radius r serves as the
idealized workspace envelope for the assistant.
A viewpoint v will have a value |v| based on how well a

teleoperator can perform the action from that viewpoint. The
value is composed of the time to complete the action and the
number of errors.
Adjacent viewpoints v with similar value |v| will form a

continuous volume, or manifold, M . Within a manifold, each
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Fig. 6. Hemisphere with a fixed radius r centered in the action serves as an
idealized work envelope for the robotic visual assistant.

viewpoint is equally good. The entire space will be divided into
ranked manifolds.
The model of viewpoint values will be extracted in two steps.

First, the value of viewpoints |v| for the four affordances will
be quantified in a human subject study using a computer-based
simulation. Second, adjacent viewpoints of similar value will
be clustered into manifolds of viewpoints with the equivalent
value.

IV. SIMULATOR IMPLEMENTATION

A computer-based simulator was created to enable the quan-
tification of the value of viewpoints by remotely (over the web)
measuring the performance of expert robot operators controlling
one of two robots (iRobot PackBot or QinetiQ TALON) in
four tasks corresponding to the four affordances from differ-
ent external viewpoints. Using expert robot operators already
proficient with the robots reduces the chance of confounding
the results with subjects’ varying familiarity with the robots,
varying difficulty in controlling the robots, and varying time
needed to train on the robots. It also reduces learning effects as
subjects unfamiliar with the robots might gradually learn how
to control the robots during the experiment. Those two specific
models of robots were selected because they are the two most
common explosive ordnance disposal robots making it easier to
find subjects proficient with at least one of them. The use of
computer-based simulation is justified based on previous work
of Woods et al. (see Section II) who showed computer-based
simulation is suitable to measure the teleoperators’ ability to
comprehend Gibsonian affordances. The simulator was imple-
mented in C# using the Unity engine and runs on Amazon Web
Services (AWS) infrastructure. The AWS S3 supports a front-
endwebsite with the Unity simulation interface while AWSEC2
runs a back-end responsible for receiving and storing the data.
When running the simulation, subjects can see a large external
view of the task from a specific viewpoint, a small fixed view
from a forward-looking onboard camera of the primary robot, a
color-coded keyboard legend corresponding to the color-coding
of the primary’s robot arm (this is necessary because a keyboard
is not a typical mode of control of those robots), and a clock
to constantly remind them they are being timed (as seen in
Figs. 2–5). When a subject makes an error, the error location

is highlighted in red and an error sound is played to make the
subject aware of the error.

V. EXPERIMENTATION

The experimentation is done by quantifying the value of
viewpoints in a human subject study and then clustering the
viewpoints into ranked manifolds. The value of 30 viewpoints
is quantified in a 31 person human subject study for 4 Gibso-
nian affordances (reachability, passability, manipulability, and
traversability) using a computer-based simulator. The data from
the human subject study are then used to rate the viewpoints and
cluster adjacent viewpoints with similar value into manifolds
of viewpoints with the equivalent value using agglomerative
hierarchical clustering.

A. Quantifying Viewpoints in Human Subject Study

A 31 person human subjects study was designed with a goal
to sufficiently sample human performance for 30 viewpoints vi,
where i = 1, . . ., 30, to quantify the value of viewpoints |vai | for
each of the four affordances a so that spatial clusters (manifolds)
can be learned. The subjects perform four tasks corresponding
to the four affordances from varying external viewpoints while
their performance is measured in terms of time and number of
errors to quantify the corresponding viewpoint value.
The subjects are 31 (based on power analysis) male expert

robot operators of age ranging from 23 to 46 years (M = 31.5,
SD = 5.9) experienced with either PackBot or TALON robots.
The subjects use their own computer to connect to a remote
computer-based simulator via a web browser. The subjects
choose either PackBot or TALON robots based on their experi-
ence (10 subjects chose PackBot and 21 chose TALON).
The subjects perform four kinds of tasks each associated with

one of the four affordances. For reachability, the task is to touch
the blue cube using the gripper without hitting the neighboring
blocks (see Fig. 2). For passability, the task is to pass through
the opening in the walls and take caution to not hit the walls
(see Fig. 3). For manipulability, the task is to pick up the blue
cylinder and drop it in the bin without hitting the bin with the
gripper (see Fig. 4). For traversability, the task is to cross the
ridge and reach the other side without falling on the ground (see
Fig. 5).
The independent variable is the position of the external view-

point provided to the subject. A total of 30 possible viewpoints,
vi where i = 1, . . ., 30, are equidistantly dispersed on a hemi-
sphere with a fixed radius of r = 1.5 m centered at the task
location at (0,0,0), as illustrated in Fig. 7. The distance between
viewpoints is approximately 0.7 m. Those 30 viewpoints are
divided into 5 groups (6 viewpoints per group) based on their
relative position to the task location: left, right, front, back, and
top. Each subject performs each of the 4 tasks from each of the
5 viewpoints groups (20 rounds total). The particular viewpoint
from each group is always selected randomly. The order of the
tasks and viewpoint groups is randomized for each subject to
reduce the order effect. The five viewpoint groups are used
solely to help the samples to be uniformly distributed across
viewpoints and the specific choice of groups does not have an
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Fig. 7. Total of 30 possible viewpoints are equidistantly dispersed on a
hemisphere centered at the task and divided into five groups. The figure is in
scale.

influence on the final results. An alternative approach would be
to manually distribute the viewpoints to the subjects in a way
that each viewpoint has the same number of samples.
There are two dependent variables both indicating the sub-

ject’s performance: the time to complete the task and the number
of errors. Those two measures were the most common in the
reviewed robotic visual assistant studies. For the reachability
and manipulability tasks, the number of errors is the number of
manipulator collisions. For the passability task, the number of
errors is the number of robot collisions. For the traversability
task, the number of errors is the number of falls of the robot.
Themetric indicating the quality of a viewpoint is the subject’s

performance computed as

jP
a
i = −wt

(
j̃tai

)
− we

(
j̃eai

)
(1)

where

j̃tai =
jt

a
i −meana′,i′

(
jt

a′
i′
)

stda′,i′
(
jta

′
i′
) (2)

j̃eai =
je

a
i −meana′,i′

(
je
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i′
)

stda′,i′
(
jea

′
i′
) . (3)

j is a subject index, i is a viewpoint index, a is an affordance
index, jP a

i denotes the performance of subject j for affordance
a from viewpoint vi, jtai is the time subject j took to complete
the task associated with affordance a from viewpoint vi, jeai is
the number of errors subject j made when performing the task
associated with affordance a from viewpoint vi, j̃tai and j̃eai are
jt

a
i and je

a
i normalized across all samples for subject j, and

wt and we are the weights of the time term and error term of
the performance, respectively. The formula uses time and errors
that are normalized for each individual subject to reduce the
effects of the variation in overall performance between individ-
ual subjects. The weighted sum in this formula is multiplied
by −1 so that the performance is more intuitive to interpret.
Without this adjustment, the lower performance would be better
because less time and fewer errors are better, however, the lower
performance being better is counterintuitive. The wt and we

weights are set to 0.4 and 0.6, respectively, for this experiment.
This weights the errors slightly higher than completion time to
penalize completing a task faster at the expense of more errors.

The study results in a set of performance samples where one
performance sample jP

a
i represents a performance of subject

j at viewpoint vi for affordance a. A performance sample is
rejected as an outlier if the corresponding jt

a
i value is more

than three scaled median absolute deviations away from the
medj′ j′tai . An example of an outlier would be a subject getting
distracted in the middle of a task (e.g., answering a phone call)
causing their time to complete the task to be higher than it would
have been.
The value of a viewpoint vi for affordance a is defined as

|vai | = wm meanj (jP
a
i )− wd stdj (jP

a
i ) (4)

where wm and wd are the weights of the mean and standard
deviation term of the viewpoint value, respectively. While the
viewpoint value should be primarily indicated by the mean of
the corresponding performance samples, the standard deviation
term is introduced to also make the viewpoint value inversely
proportional to the standard deviation of the corresponding
performance samples (higher standarddeviation indicates higher
unpredictability of the performance). The wm and wd weights
are set to 0.9 and 0.1, respectively, for this experiment. This
makes the mean term the dominant indicator of the viewpoint
value.

B. Learning Manifolds by Clustering Viewpoints

Agglomerative hierarchical cluster analysiswith average link-
ages [48] is used to generate manifolds. Pairwise dissimilarity
is computed using the combination of the orthodromic distance
and the difference between the normalized viewpoint values, and
used to construct a hierarchical cluster tree using the unweighted
pair groupmethod with arithmetic mean linkage. The number of
manifolds is determined by maximizing the Calinski–Harabasz
criterion [49]. The value of a manifold is computed as a combi-
nation of the mean and standard deviation of the values of the
member viewpoints. To be able to compare two manifolds in
terms of time and errors, a metric comparing the time and errors
using the intersection of the subjects in the two manifolds is
introduced.
The input is 30 sample points for each affordance a, where

one sample point is

sai = (θi, ϕi,˜|vai |) (5)

where θi and ϕi are the polar angle and azimuthal angle of

ith viewpoint vi in the spherical coordinate system and˜|vai | =
|va

i |−meani′=1,...,30 |va
i′ |

stdi′=1,...,30 |va
i′ |

is the normalized value of ith viewpoint,

vi, for affordance a.
The pairwise dissimilarity between all 30 sample points sai ,

where i = 1, . . ., 30, for affordance a is computed using the
combination of the orthodromic distance of the viewpoints
on the hemisphere and the difference between the normalized
viewpoint values resulting in 435 dissimilarities

dsai saj =

√(
d
(o)
sai s

a
j

)2

+
(
d
(p)
sai s

a
j

)2

(6)
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where sai = (θi, ϕi,˜|vai |) and saj = (θj , ϕj ,˜|vaj |) are two sample

points,d(o)sai s
a
j
is the orthodromic distance between the two sample

points, and d
(p)
sai s

a
j
is the value distance between the two sample

points. The orthodromic distance is the great-circle distance of
the two associated viewpoints on the hemisphere defined as

d
(o)
sai s

a
j
= 2r atan2

(√
ξ,
√

1− ξ
)

(7)

where

ξ = sin2
θj − θi

2
+ cos θi cos θj sin

2 ϕj − ϕi

2
. (8)

The value distance is the difference between the normalized
values of the two associated viewpoints defined as

d
(p)
sai s

a
j
=

∣∣∣˜|vai | − ∣̃∣vaj ∣∣∣∣∣ . (9)

The sample points are grouped into a binary hierarchical clus-
ter tree using the unweighted pair group method with arithmetic
mean linkage [48]. The linkage between clusters (manifolds)
Ma

k and Ma
l for affordance a is the average linkage defined as

dMa
kMa

l
=

1

NMa
k
NMa

l

∑
sai ∈Ma

k

∑
saj ∈Ma

l

dsai saj (10)

where NMa
k

is the number of sample points in kth cluster
(manifold),Ma

k , for affordance a.
The number of manifoldsNa

m for affordance a is determined
by maximizing the Calinski–Harabasz criterion [49]. This cri-
terion is used based on a premise that well-defined clusters
have a large between-cluster variance and a small within-cluster
variance. For this work, the number of manifolds is limited to
10 to prevent forming too many small manifolds.
The value of a manifold Ma

k is defined as

|Ma
k | = wm meanvi∈Ma

k
|vai | − wd stdvi∈Ma

k
|vai | (11)

where vi ∈ Ma
k ⇐⇒ sai ∈ Ma

k .
To be able to compare two manifolds in terms of the non-

normalized time and number of errors, a metric quantifying a
relative improvement in the time and number of errors between
two manifolds is introduced. This metric measures the improve-
ment only on the intersection of the subjects in the twomanifolds
to prevent biasing the relative improvement with the variation
in overall speed among individual subjects and is defined as

I
(t)
Ma

kMa
l
=

Ma
k
taMa

l
− Ma

l
taMa

k

Ma
k
taMa

l

(12)

where I(t)Ma
kMa

l
is the relative improvement in time t of manifold

Ma
k overmanifoldMa

l ,Ma
l
taMa

k
= meanj∈S(Ma

k )∩S(Ma
l ) jt

a
Ma

k
is

the average time to complete the task associated with affordance
a frommanifoldMa

k measured by only taking subjects that have
at least one sample in both Ma

k and Ma
l manifolds, jt

a
Ma

k
=

meanvi∈Ma
k jt

a
i is the average time subject j took to complete

the task associated with affordance a from manifold Ma
k , and

S(Ma
k ) is the set of subjects that have at least one sample in

manifoldMa
k . The relative improvement in the errors I(e)Ma

kMa
l
is

measured analogically.

VI. RESULTS

The results show the validity of the affordance-based ap-
proach by confirming there are manifolds of statistically signif-
icantly different viewpoint values, viewpoint values depend on
the affordances, and viewpoint values are independent of a robot.
The best manifold for each affordance provides a statistically
significant improvement with a large Cohen’s d effect size
(1.1–2.3) in the performance (improving time by 14%–59%
and reducing errors by 87%–100%) and improvement in the
performance variation over the worst manifold. All statistical
testing is on significance level α = 0.05.

A. Validity of Affordance-Based Approach

The results support the two central tenets of the approach by
confirming that there are manifolds of statistically significantly
different viewpoint values, viewpoint values are statistically
significantly dependent on the affordances, and viewpoint values
are independent of a robot.
There are manifolds of statistically significantly different

viewpoint values. Not all views are equal, and some manifolds
provide statistically significantly better views than others. This
is tested using an unbalanced one-way analysis of variance
(ANOVA) test for each affordance testing that not all P a

Ma
k

for k = 1, . . ., Na
m for a specific affordance a are equal, where

P a
Ma

k
= meanvi∈Ma

k
(jP

a
i ) is the mean of all performance sam-

ples in manifold Ma
k for affordance a. This is confirmed for all

affordances a based onF -statistics and p-values listed in Table I.
The viewpoint values are statistically significantly dependent

on the affordances. This is tested using an unbalanced two-way
ANOVA test for interaction effects testing whether there is an
interaction between affordance factor a and viewpoint factor
i for response variable P̃ a

vi
, where P̃ a

vi
= meanj (˜jP a

i ) is the
mean normalized performance for viewpoint vi for affordance

a and˜jP a
i =

jP
a
i −meani′,j′ (j′P

a
i′ )

stdi′,j′ (j′Pa
i′ )

is the performance jP
a
i nor-

malized within the affordance a (normalization is necessary
because different affordances have different scales of the per-
formance). The interaction is confirmed based on F -statistic
F (86, 457) = 1.8361 and p-value 4.0652× 10−5.

The viewpoint values are independent of the robot. The se-
lected robot does not have a statistically significant influence
on viewpoint values (i.e., the viewpoint values are very similar
for both robots). This is tested using an unbalanced two-way
ANOVA test for interaction effects testing whether there is
an interaction between robot factor ρ and viewpoint factor i

for response variable ρ̃P vi
, where ρ̃P vi

= meanj,a (
ρ̃
jP

a
i ) is

the mean normalized performance for viewpoint vi for robot

ρ, ρ̃
jP

a
i =

ρ
jP

a
i −meani′,j′,ρ′ (

ρ′
j′P

a
i′ )

stdi′,j′,ρ′ (
ρ′
j′P

a
i′ )

is the ρ
jP

a
i normalized within

the affordance a (normalization is necessary because different
affordances have different scales of the performance), and ρ

jP
a
i

is the performance of subject j for affordance a and robot ρ
from viewpoint vi. The interaction is not confirmed based on
F -statisticF (29, 516) = 1.1507 and p-value 0.27078. Since the
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TABLE I
THERE ARE MANIFOLDS OF STATISTICALLY SIGNIFICANTLY DIFFERENT VIEWPOINT VALUES

TABLE II
REACHABILITY: 14% TIME AND 87% ERROR IMPROVEMENT

TABLE III
PASSABILITY: 23% TIME AND 100% ERROR IMPROVEMENT

TABLE IV
MANIPULABILITY: 39% TIME AND 100% ERROR IMPROVEMENT

interaction term of the ANOVA test is nonsignificant, the inter-
action effect is either very small and statistically nonsignificant
or does not exist.

B. Statistically Significant Improvement in Performance

The results show there is a statistically significant improve-
mentwith a largeCohen’sd effect size (1.1–2.3) between the best
and worst manifold for each affordance improving time by 14%
to 59% and reducing errors by 87% to 100%. The best manifolds
also provide an improvement in the performance variation over
the worst manifolds.
The best manifold for each affordance improves time by 14%

to 59% and reduces errors by 87% to 100% over the worst
manifold. Fig. 8 shows for each affordance a view from the
best manifold as compared to the worst manifold. Tables III
–V provide a quantitative comparison between the best and
worst manifold for each affordance (for manipulability, the
second-worst manifold is used for this comparison as there are
no subjects in the intersection of the worst and best manifold).
Figs. 9 –12 show the visualization of the manifolds for each
affordance.

Fig. 8. View from the centroid of the best manifold as compared to the worst
manifold.

TABLE V
TRAVERSABILITY: 59% TIME AND 100% ERROR IMPROVEMENT

The best manifold is statistically significantly better than the
worst manifold for each affordance with a large Cohen’s d effect
size (1.1–2.3). This is tested using one-tailed two-sample t-test
(left-tailed) testing for each affordance a that P a

Ma
w(a)

< P a
Ma

b(a)
,

where Ma
w(a) and Ma

b(a) are the worst and best manifolds for
affordance a, respectively, w(a) = arg mink=1,...,Na

m
|Ma

k |, and
b(a) = arg maxk=1,...,Na

m
|Ma

k |. The worst manifold for manip-
ulability (MM

10) and traversability (MT
7 ) was replaced by the

second-worst manifold,MM
9 andMT

6 , respectively, because the
worst manifolds each have only one sample. The hypothesis
is confirmed for all affordances a based on t-statistics and
p-values listed in Table VI. The table also lists Cohen’s d effect
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TABLE VI
BEST MANIFOLDS STATISTICALLY SIGNIFICANTLY BETTER THAN WORST WITH LARGE COHEN’S d EFFECT SIZE

Fig. 9. Two manifolds for reachability affordance. The figure shows a top-
down view of the hemispherewith the twomanifolds (MR

1 andMR
2 ) color-coded

by the corresponding manifold value (|MR
1 | and |MR

2 |). The manifold labels are
placed in the centroid of the corresponding manifold. The manifolds are indexed
in ascending order from the best to the worst. The figure is in scale including
the size and pose of the primary robot (colored gray).

Fig. 10. Sixmanifolds for passability affordance. The figure shows a top-down
view of the hemisphere with the six manifolds (MP

1 , . . .,M
P
6 ) color-coded by

the corresponding manifold value (|MP
1 |, . . ., |MP

6 |).

size, number of performance samples N (P )
Ma

k
, and the standard

deviation of the performance σ(P a
Ma

k
) = stdvi∈Ma

k
(jP

a
i ) for

manifold Ma
k .

The best manifolds provide an improvement in the perfor-
mance variation over the worst manifolds. This is because good
viewpoints are consistently good across subjects but bad view-
points have a large variation in the performance (time and errors).
This means that having a view from a good manifold leads to a
good predictable performance while having a view from a bad

Fig. 11. Ten manifolds for manipulability affordance. The figure shows a
top-down view of the hemisphere with the ten manifolds (MM

1 , . . .,MM
10) color-

coded by the corresponding manifold value (|MM
1 |, . . ., |MM

10|).

Fig. 12. Sevenmanifolds for traversability affordance. The figure shows a top-
down view of the hemisphere with the seven manifolds (MT

1 , . . .,M
T
7 ) color-

coded by the corresponding manifold value (|MT
1 |, . . ., |MT

7 |).

manifold not only leads to a bad performance but also leads to
unpredictability in what might go wrong and howmuch. Fig. 13
illustrates this on passability affordance.

VII. DISCUSSION

The results are consistent withWoods et al. confirming that an
external viewpoint improves teleoperation, and further showing
there are manifolds of viewpoints with some manifolds being
significantly better than others. While beyond the scope, it
is expected the proposed model will likely reduce the cogni-
tive workload by eliminating the need to manually control the
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Fig. 13. Viewpoints with a low mean performance (red) also have a high
standard deviation of the performance (yellow). The performance (left) and the
standard deviation of the performance (right) is defined asPa

vi
= meanj (jP

a
i )

and σ(Pa
vi
) = stdj (jP

a
i ), respectively.

robotic visual assistant and improving the ability to comprehend
affordances. The results have implications for robotic visual
assistants using the manifolds both in terms of visual stability
and tracking and can be extracted into actionable rules. The
manifolds for all affordances except manipulability are not very
sensitive to theweights used in the viewpoint value andmanifold
value definitions, it is, therefore, not necessary to adjust them.

A. Relation to Related Work

The results are consistent with Woods et al., who showed an
external view improves the ability to comprehend affordances
making teleoperation easier. This work goes further by showing
that not all external views are equal and that there are different
regions of viewpoints (manifolds) where good manifolds signif-
icantly improve time and reduce errors over bad manifolds. This
work is also in agreement with the position of Woods et al. that
there is no best viewpoint for a task. The viewpoint values in
the proposed model depend on the affordances, and therefore,
the viewpoint would change over time as a task may consist of
a series of affordances. For example, a task “go through a door”
mayconsist of four affordances—traversability to get to the door,
reachability to reach the door handle, manipulability to open the
door, and passability to pass through the door (illustrated in
Fig. 1). In this example, the best viewpoint would change four
times during a single task.

B. Reduction in Cognitive Workload

While beyond the scope of this article, it is expected the
model will likely reduce the cognitive workload on the primary
robot operator. The model will enable to make the robotic visual
assistant autonomous eliminating the need for the primary robot
operator to manually control the robotic visual assistant or to
coordinate with a secondary operator [7]–[10], [42]–[47]. The
model will also allow the robotic visual assistant to select a
viewpoint for each action that enables direct apprehension of the
affordance for that action reducing the need for high-workload
deliberative reasoning about the properties of the scene that
would be required if the affordance for the action could not
be directly perceived, as shown by Morison [23].

C. Ramifications for Robotic Visual Assistants

The results have implications for robotic visual assistants
using themanifolds both in terms of visual stability and tracking.
The best manifolds for all the affordances except manipulability
have large areas (77%, 23%, 7%, and 20% of the hemisphere
surface for reachability, passability, manipulability, traversabil-
ity, respectively) suggesting that positioning a robotic visual
assistant in the best manifold centroid will result in good visual
stability (potential perturbations in the pose of a robotic visual
assistant will not significantly change the view quality). The best
manifolds for reachability (MR

1 ) and manipulability (MM
1 and

MM
2 ) are shifted toward the robot indicating those affordances

are object–robot centric and suggesting the necessity to track
both the object and the end effector as can be seen in Figs. 9
and 11, respectively. The best manifolds for passability (MP

1

and MP
2 ) and traversability (MT

1 and MT
2 ) are elongated along

approach and departure directions indicating those affordances
are robot-centric and suggesting the necessity to track the entire
action (movement) of the robot as can be seen in Figs. 10 and 12,
respectively. The results show that even small ground-based
robotic visual assistants can still provide views from the best
manifolds for each affordance since all the manifolds whose
value is in the 80th percentile of the manifold value range for
the given affordance reach all the way to the ground except for
manipulability (for which the three best manifolds reach the
ground but the fourth-best does not).

D. Actionable Rules for Robotic Visual Assistants

The results can be extracted into actionable rules for robotic
visual assistants suitable for a human operator to follow, as
shown in Fig. 14. Those rules are extracted by partitioning the
viewpoints on the hemisphere into five cardinal directions cor-
responding to the viewpoint groups from Fig. 7 and computing
the view value for each of those cardinal directions as the mean
value of the member viewpoints. The desired view direction for
each affordance is extracted by taking the cardinal directions
whose value is in the 80th percentile of the cardinal direction
value range for the given affordance.

E. Sensitivity of Results to Different Weights

The manifolds for all affordances except manipulability are
not very sensitive to wm and wd weights used in the viewpoint
value [see (4)] and manifold value [see (11)] definitions. This is
tested by startingwithwm = 1 and decreasingwm by 0.1 in each
step untilwm = 0.5 (the other weight is alwayswd = 1− wm).
It does not make sense to decrease the wm weight below 0.5 as
the mean should be the dominant indicator of the viewpoint or
manifold value. For reachability, the shape and relative ranking
of the manifolds remain unchanged. For passability, the shape
and relative ranking of the manifolds remain unchanged until
wm = 0.6. Forwm = 0.6 andwm = 0.5,MP

5 has one less view-
point, otherwise, the shape and relative ranking is unchanged.
For traversability, the shape and relative ranking of themanifolds
remain unchanged until wm = 0.7. Then, the manifolds start
changing, however, the two best manifolds,MT

1 andMT
2 , remain
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Fig. 14. Actionable rules for robotic visual assistants and the value for each of
the five cardinal directions defined as |dal | = meanvi∈dl |vai |, where dl denotes
lth cardinal direction.

unchanged until wm = 0.5 and the best manifold,MT
1 , remains

unchanged even for wm = 0.5. Manipulability is the most sen-
sitive to different weights, however, the first three manifolds,
MM

1 , MM
2 , and MM

3 , remain unchanged in terms of their shape
and relative order.

VIII. SUMMARY

This work proposed a model of the value of different external
viewpoints of a robot performing tasks. The model was devel-
oped using a psychomotor approach by quantifying the value
of 30 external viewpoints for 4 affordances in a study with 31
expert robot operators using a computer-based simulator of two
robots and clustering viewpoints of similar value into manifolds
of viewpoints with equivalent value using agglomerative hierar-
chical clustering.
The results support the main postulation of the approach

confirming the validity of the affordance-based approach by
showing that there are manifolds of statistically significantly
different viewpoint values, viewpoint values are statistically
significantly dependent on the affordances, and viewpoint val-
ues are independent of the robot. The best manifold for each
affordance provides a statistically significant improvement with
a large Cohen’s d effect size (1.1–2.3) in the performance
and improvement in the performance variation over the worst
manifold improving time by 14% to 59% and reducing errors
by 87% to 100%.
This work creates the fundamental understanding of external

viewpoints quality for four common affordances providing a
foundation for ideal viewpoint selection; it is expected, but
beyond the scope of this study that the application of the model

to robotic visual assistants will likely reduce the cognitive work-
load on the primary operator. Themodelwill enable autonomous
selection of the best possible viewpoint and path planning for
autonomous robotic visual assistants. One direction of future
work would be to quantify view quality in a continuous matter
rather than for a set of discrete viewpoints.
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