
Compositional Information Flow Monitoring for Reactive Programs

McKenna McCall
Carnegie Mellon University

Pittsburgh, USA
mckennak@andrew.cmu.edu

Abhishek Bichhawat
Indian Institute of Technology Gandhinagar

Gandhinagar, India
abhishek.b@iitgn.ac.in

Limin Jia
Carnegie Mellon University

Pittsburgh, USA
liminjia@andrew.cmu.edu

Abstract—To prevent applications from leaking users’ pri-
vate data to attackers, researchers have developed runtime
information flow control (IFC) mechanisms. Most existing
approaches are either based on taint tracking or multi-
execution, and the same technique is used to protect the
entire application. However, today’s applications are typi-
cally composed of multiple components from heterogenous
and unequally trusted sources. The goal of this paper is to
develop a framework to enable the flexible composition of
IFC enforcement mechanisms. More concretely, we focus on
reactive programs, which is an abstract model for event-
driven programs including web and mobile applications.
We formalize the semantics of existing IFC enforcement
mechanisms with well-defined interfaces for composition, de-
fine knowledge-based security guarantees that can precisely
quantify the effect of implicit leaks from taint tracking,
and prove sound all composed systems that we instantiate
the framework with. We identify requirements for future
enforcement mechanisms to be securely composed in our
framework. Finally, we implement a prototype in OCaml
and compare the effects of different compositions.

1. Introduction

Applications such as web and mobile phone apps
collect a huge amount of user data. Such event-driven ap-
plications are typically modeled as reactive programs [24],
where a program is a set of event handlers, triggered by
corresponding user input events. Shared storage allows
the same data to be accessed by different event handlers
(e.g., cookies) and organizes the event handlers themselves
(e.g., the DOM). These applications often include code
from heterogeneous and untrusted sources and could po-
tentially leak the users’ sensitive data to an adversary. To
prevent such leaks, many runtime mechanisms have been
developed for enforcing information flow control (IFC)
policies [15]–[17], [20], [30], [33], [39], [69], most of
which guarantee (variants of) noninterference, i.e., private
data should not influence data sent on channels that are
publicly observable [34]. Broadly, these approaches can
be classified into multi-execution approaches [10], [11],
[31], and taint tracking approaches [8], [9], [66], [71].

Multi-execution-based approaches, like secure multi-
execution (SME) [31], and faceted execution [10], execute
code multiple times at different security levels. These
ensure that the code executing at a particular level only
outputs data at the same security level, and replace sensi-
tive data from higher security levels with “default” values.

Taint tracking approaches annotate data with labels to
indicate its security level, and can suppress outgoing
sensitive data to publicly observable channels to prevent
leaks. These approaches differ in performance, how much
they alter the semantics of safe programs (transparency),
and the relative strength of their security guarantees.

Most of these approaches use the same enforcement
mechanism for all components in an application. Given
the heterogeneity of applications, a compositional enforce-
ment mechanism where different components execute un-
der different IFC enforcement mechanisms could offer an
attractive solution to the tradeoffs of each approach.

In this work, we motivate the usefulness of com-
position (Section 3), build a framework for composing
different IFC enforcement mechanisms, and explore which
security properties can be proven for which compositions.
One of the challenges is to build a unified framework so
that different styles of enforcement (taint tracking-based
and multi-execution-based) can interact smoothly and two
distinct elements of reactive systems (event handlers and
shared storage) can interface nicely. To do so, our for-
malism identifies the common elements between all tech-
niques, as well as the interfaces between the event handler
execution component and the shared storage components,
and converts values between mechanisms securely.

As we show in Section 4, the compositional semantics
are cleanly separated into a top-level component to trigger
event handlers and a low-level component that executes in-
dividual event handlers and interacts with shared storage.

To reason about security guarantees and their relative
strengths, we define, in Section 5, security properties
based on attacker knowledge, which is the set of all pos-
sible (secret) inputs that the attacker believes could have
produced the public outputs observed by the attacker [5].
As the attacker makes more observations, they become
more certain about the possible secret inputs. We also de-
fine a weaker security condition which extends prior work
on weak and explicit secrecy [66], [71] that permits the
attacker to additionally learn what is implicitly leaked by
taint tracking. We propose a set of security requirements
that describe what is required by each system component
and could be used to securely instantiate our framework
with additional enforcement mechanisms in the future.

We implement the enforcement mechanisms in OCaml
(Section 6) to validate the model and show an empirical
comparison of the different compositions.

Contributions. We develop a framework to enable the
flexible composition of dynamic IFC enforcement mech-

Figure 1: High-level depiction of a reactive system

anisms for reactive programs with provable security guar-
antees and model a simple web environment. We use a
knowledge-based security condition to compare the rela-
tive security of different compositions. We extend prior
work on weak secrecy to reason about implicit flows of
information due to control flow decisions within as well as
between event handlers and show that the overall security
of a composed system may depend more on the security
of the data structures shared between event handlers than
the security of the event handler execution. Finally, we im-
plement the framework in OCaml1 to validate our model
and to compare the tradeoffs of different compositions.
Detailed definitions, lemmas, and proofs can be found in
the Appendix.

2. Background
IFC monitors for reactive programs typically associate

security labels with input events, data, output channels,
and event handlers to reflect the security policy. Labels
are elements of a security lattice. In what follows, we
consider the two-point security lattice L v H meaning
that information labeled L (public) is allowed to flow
to H (secret), but not the other way. We briefly review
noninterference and weak secrecy, standard runtime IFC
mechanisms, and knowledge-based security.

2.1. Reactive programming

A simple reactive system is shown in Figure 1. First, a
user input triggers an event (1) which causes correspond-
ing event handlers (EH) to run. Event handlers may be
stored in a tree (such as the DOM on a webpage) or a
simpler data structure, like an unordered list. Event han-
dlers wait in a queue (2) to be run. The runtime manages a
single-threaded event loop to run all of the event handlers
in the queue. The runtime also keeps track of the system
state which is producer (while an event handler is running)
or consumer (when an event handler finishes). While an
event handler is running (3), it may trigger new events or
register new event handlers by interacting with the event
handler storage. An event handler may also interact with
other types of storage (like cookies or bookmarks) that
persist after the event handler finishes (4). A new event is
processed when all event handlers have finished running.

2.2. Noninterference and Weak secrecy

Noninterference [34] ensures that secret inputs do
not affect public outputs. It prohibits explicit leaks, like

1. The code repository is available at https://github.com/CompIFC/
comp-model/releases/tag/eurosp22.

output (L, h) where h contains secret data and L is a
public channel, as well as implicit leaks via control flow
like the following, where h is secret and l is public:

if h = 0 then l := 1 else l := 0; output(L, l)
A weaker form of noninterference that allows implicit

leaks is weak secrecy [71] or explicit secrecy [66]. Weak
secrecy only allows information leaks through branch
predicates. The program above satisfies weak secrecy, as
it can be re-written as a secure program without “high”
branches: l := 1; output(L, l) and l := 0; output(L, l). Be-
cause both of these programs are secure, the original
program satisfies weak secrecy.

2.3. Standard IFC Enforcement Mechanisms

We illustrate different enforcement mechanisms devel-
oped to enforce noninterference for reactive systems via
an example event handler:

onKeyPress(k) { if k == 42 then l := k }
Assume that initially l = 0. The event handler runs
for keypress events and receives as a parameter the key
pressed. The keypress events are public, while the param-
eter k, is secret. This means an attacker is allowed to learn
that a key was pressed but not which key.

Multi-execution based approaches. These include secure
multi-execution [31] and faceted execution [10].

Secure multi-execution (SME) executes the example
program twice, once for each security level L and H ,
maintaining separate memory stores for each copy of the
execution. Each execution receives only the data that is
“visible” at its level, otherwise it is replaced with a default
value. Thus, when a key is pressed, the execution at the
H level reads the value of the key press k (the H input),
and assigns 42 to the H copy of l if k 7! 42. In the
L execution, the H input k is replaced with the default
value, say 0, so the branch is never taken. Thus, at the end
of the L execution, l remains unchanged in the L store,
irrespective of the value of k.

Faceted execution (MF) simulates multiple execu-
tions while avoiding unnecessary re-execution by creating
facets of a value only when the value contains a secret,
e.g., v = hvh|vli where vh is the value of v observable at
H and vl is the value of v observable at L2. In the above
example, l 7! 0 initially and is observable at all levels.
If the secret input k is 42, l is assigned the faceted value
h42|0i, meaning H observers see 42, while L observers
see l’s original value.

Taint tracking approaches. Taint tracking (TT) ap-
proaches carry and propagate taint, or security labels,
along with the data. In the example, suppose l 7! 0L

initially, where L is the label of l. If k 7! 42H , then
l 7! 42H at the end. Otherwise, the branch is not
taken, and l remains 0L. Since the value of l depends
on the branch condition, the branch condition is leaked
implicitly through l. To securely handle such implicit
leaks, some approaches maintain a program context (pc)
label which keeps track of the context of the control
flow decisions. In the example above, the context is H

when assigning to l because of the branch predicate.

2. The original faceted values [10] have the format hk ? v : v0i, where
those that can read principal k’s private data see v and others see v

0.

https://github.com/CompIFC/comp-model/releases/tag/eurosp22
https://github.com/CompIFC/comp-model/releases/tag/eurosp22

1 onClick() {
2 if (strength > 5) {
3 p = pwdNode.value;
4 u = unameNode.value;
5 output (H, u+p); }};

Listing 1: Event handler to send username and password to
host server

1 onInput(e) {
2 p = e.target.value; /∗ get password value ∗/
3 if (p.match(/[0�9]/)) { strength+=1; }
4 if (p.match(/[A�Z]/)) { strength+=4; }
5 ...
6 output (L, p); }; /∗ Explicit leak ∗/

Listing 2: Third-party event handler to check password
strength; “strength” is a global variable

Then, these approaches abort the execution or diverge
when assigning to public variables in secret contexts [8].
These approaches are called no-sensitive-upgrade (NSU)
and satisfy termination-insensitive noninterference. Some
other approaches satisfy weak secrecy by allowing implicit
leaks and blocking only explicit leaks that output secret
information to public channels [66], [71]. Here, we only
consider approaches that do not abort or diverge.

3. Motivating Example

We demonstrate the usefulness of composing enforce-
ment mechanisms via a web example in which event
handlers run under different enforcement mechanisms.

Consider a website with a sign-up form including
username and password fields and a submit button. There
is also a third-party password strength-checking script
which registers an event handler to the password field
for the onInput event. The event handler is triggered
whenever the user changes the password. It checks the
password strength based on some algorithm (e.g., count
the character classes of the password) and writes a nu-
meric representation of the strength to a global variable
strength (illustrated in Listing 2). The main page registers
(among others) an event handler for the onClick event
associated with the submit button (as shown in Listing 1).
This event handler reads the global variable strength , and
either allows the form submission (if the strength reaches a
certain threshold) or displays a pop-up suggesting adding
character classes, such as numbers and symbols.

The third-party script should compute the strength of
the password locally without sending it on the network.
A malicious script might try to send the password to their
servers (line 6). The output command models sending
a message to the third-party site. Let us see how taint
tracking and multi-execution would enforce IFC in this
scenario, and why composing them might be desirable. We
will use this as a running example in the paper to describe
our framework and later as a case study for evaluation.

Taint-tracking enforcement. Suppose we execute the
event handlers with a taint tracking enforcement mech-
anism. NSU would terminate the execution of the entire
page if any script attempts to assign to a public variable
in a secret branch. This effectively opens up all pages to

1 onInputLeak(e) {
2 p1 = e.target.value.charAt[0];
3 present a = true; /∗ labeled L ∗/
4 detected a = false; /∗ labeled L ∗/
5 if (p1 = ’a’) {
6 detected a = true;} /∗ tainted H if p1 is ’a’ ∗/
7 if (!detected a) {
8 present a = false;} /∗ still labeled L if p1 is ’a’ ∗/
9 output (L, present a) };

Listing 3: Malicious third-party event handler

denial of service attacks, so we do not use NSU here (more
discussion can be found in Section 7). Let’s consider naive
taint tracking [33] without NSU, instead.

If the thid-party checker tries to directly leak the pass-
word on line 6 in Listing 2, the output will be suppressed
because the output requires the value’s label to be lower
than or equal to that of the channel, which does not hold.

A well-known limitation of naive taint tracking with-
out NSU is that it allows the script to leak information
via implicit flows [8]. Listing 3 is adapted from a classic
example of implicit leaks. Here, the variable detected a
is only tainted if the first character is ‘a’. In this case,
the assignment on line 8 is not executed as the branch
is not taken. As a result, present a remains true (and
labeled L). On the other hand, if the first character is not
‘a’, the assignment on line 6 will not be taken. Then,
the condition on line 8 will branch on an L value and
therefore, present a remains L and the value updated
to false. Finally, the output on line 9 will successfully
notify the attacker whether the first character is ‘a’. We
can expand the program to test the password character-
by-character for every ASCII symbol and thus leak the
entire password [6]. Thus, taint tracking has weaker se-
curity guarantees, which we later formalize using weak
secrecy [66], [71], that allows attackers to learn which H

branches are taken and which L variables are upgraded
to H . Because we allow branch conditions to be leaked,
anyway, we simplify our semantics by not upgrading the
pc when branching on secrets.

Multi-execution enforcement. To prevent the above-
mentioned leaks, we can instead execute the event han-
dlers using a multi-execution mechanism like SME [31].
The event handlers would then execute twice: once for
the secret and once for the public level, where the secret
execution would allow only H outputs while the public
execution would allow only L outputs. The secret exe-
cution would see the actual value of the password but
the public execution would get a default value instead. If
the script sends the password on an L channel (line 6 in
Listing 2), the public execution would send the default
value instead of the actual password, while the secret
execution would skip the output altogether. This also
prevents the implicit leaks shown in Listing 3. Although
SME securely computes accurate information, it runs the
event handlers multiple times and stores multiple copies
of data, which is resource intensive.

Composing taint-tracking and multi-execution. In this
example, a desirable approach would be to execute the
third-party script and store the global variable strength
using a multi-execution approach so that it can correctly

Execution contexts:
Sec. label set: L ::= {·, L,H}
Program counter: pc 2 L
Security label: l 2 L
Policy context: P
Global storage enf.: G

EH enforcement: V
Program syntax:
Value: v ::= n | b | dv
Expression: e ::= x | v | uop e | e1 bop e2 | ehAPIe(...)
Command: c ::= skip | c1; c2 |while e do c |x := e

| id := e | if e then c1 else c2

| output ch e | ehAPIc(...)
Runtime configurations:
Global state: �

G

Local state: �
V

Execution state: s ::= P |C
Events: E ::= · |E, (id .Ev(v), l)
Configuration: 

V ::= �
V
, c, s, E

Config. stack: ks ::= · | (V;V ; pc) :: ks
Comp. config.: K

G ::= �
G; ks

Actions: ↵ ::= in | ch(v) | •
Figure 2: Syntax for the compositional framework

compute the strength of the password without compro-
mising its secrecy. Meanwhile the event handlers on the
main page could execute with a taint tracking mechanism
as they do not purposely exploit implicit leaks and will
be more performant than a multi-execution approach. In
this particular example, for the main page event handlers
to access precise information, the event handler will run
in the H context to access the H copy of strength .
Composition allows us to balance good security for the
untrusted third-party scripts with good performance for
the more trustworthy first-party scripts.

Another interesting composition question arising from
this example is whether it is necessary to store shared
variables such as strength twice as is typically done with
SME and MF or is it sufficient to merely taint the variables
and execute the script with SME? In this example, when
onInput runs, the L copy runs first and sets the imprecise
value for strength based on the default value for the
password. The H copy runs next and sets the precise value
for strength based on the real password with label H , as
it is written from the H execution context. Is this secure?
We take the first steps to explore different ways of storing
data and executing scripts (Section 4), as well as what type
of security each composition achieves (Section 5).

4. Compositional Enforcement Framework

One of our observations is that the semantics of reac-
tive programs necessitate a high-level event handling loop
that processes inputs and outputs, leading to the high-
level semantics of dynamic IFC enforcement for these
programs behaving similarly, regardless of the mechanism
(e.g., SME or taint tracking). We design a framework
that is flexible enough to incorporate all of the dynamic
enforcement techniques described in Section 2. We de-
scribe the components from Figure 1, each of which has

G,P ` K
↵

=) K
0

P(id .Ev(v)) = H

G,P,� ` lookupEHAll(id .ev(v)) ;H ks

G,P ` �; · id.Ev(v)
=) �; ks

IN-H

P(id .Ev(v)) = L

G,P,� ` lookupEHAll(id .ev(v)) ;· ks

G,P ` �; · id.Ev(v)
=) �; ks

IN-L

(a) Simplified input rules

producer() ↵l = outV(P, ch(v), pc)

G,P,V ` �,
ch(v)�! pc �

0
, ks 0

G,P ` �; ((V;; pc) :: ks) ↵l=) �
0
, ks 0 :: ks

OUT

producer()
G,P,V ` �,

↵�!pc �
0
, ks 0 • = outV(P,↵, pc)

G,P ` �; ((V;; pc) :: ks) (•,pc)
=) �

0
, ks 0 :: ks

OUT-SKIP

consumer()

G,P ` �; ((V;; pc) :: ks) (•,pc)
=) �, ks

OUT-NEXT

(b) Simplified output rules

Figure 3: Simplified semantics for processing inputs (user
events) and performing outputs (communications on channels).

its own semantics (Section 4.2). The topmost level of
semantics is responsible for processing inputs and outputs,
and looking up event handlers. The next level manages
the event handler queue, and another level describes how
individual event handlers are run, according to the selected
enforcement mechanism. Finally, the lowest level seman-
tics are described in Section 4.3 determines how event
handlers interact with shared storage (such as the DOM).

4.1. Syntax

The syntax for our compositional enforcement frame-
work is shown in Figure 2. We organize our security
labels, l, in a three-point security lattice which is the
standard two-point security lattice with an additional label
‘·’. At a high-level, · means “no (pc) context” and is
neither public nor private, so we put it at the bottom of
the security lattice. This is used by MF to differentiate a
standard execution from one which has split into an L and
H copy. The program context label indicates the context
under which the event handlers execute, denoted as pc.

The policy context P keeps track of the labels as-
signed to input events and output channels, and is also
responsible for deciding which event handlers run with
which enforcement mechanism. For example, P might
mark the onInput event for the password field as secret
(H), output channels that belong to an attacker as public
(L), and the enforcement of the onClick event handler
to be TT and the third-party onInputCk event handler
to be SME. We discuss considerations for making such
decisions in Section 7. The enforcement for the global
store is denoted G. The enforcement for a particular event
handler is denoted V .

Values include integers (n), booleans (b), and a pre-
determined default value dv, which is used to replace the
public copy of private data in multi-execution [35]. Each
value type can have a distinct default value; for simplicity
we use a single default value. Commands and expressions
are mostly standard in our framework. The event handler
APIs ehAPIe (e.g., look up a DOM node’s attribute) and
ehAPIc (e.g., create a new child node in the DOM) interact
with the event handler store, and id := e updates the
attributes in the event handler store.

A single configuration  contains a local store for
storing local script variables, �V (whose structure is deter-
mined by the enforcement mechanism V), the command
(event handler) being executed, the state of the execution
(either Producer (P) or Consumer (C)), and a list of events
triggered by that event handler, E. The compositional
configuration K

G is a snapshot of the current system state.
It maintains the global store �

G and the configuration
stack, ks . The global store inclues variables shared be-
tween scripts and event handler storage. The structure of
the global store depends on the enforcement mechanism.
Each element of the configuration stack includes one of
the event handlers pending execution in , as well as the
enforcement mechanism it should run under, V , and the
context in which it should run, pc. The enforcement (V)
used for each event handler in the stack is determined
by P and may be different for different events. Actions
emitted by the execution, ↵, include user-generated input
events, outputs on channels and silent actions, denoted •.

4.2. Framework Semantics

We organize our semantics into several layers to match
the components illustrated in Figure 1.

Input/Output, EH Lookup. The top-most level for our
compositional framework processes user input events and
outputs to channels. These rules govern how inputs trigger
event handlers and how outputs are processed and use the
judgement G,P ` K

↵
=) K

0, meaning the compositional
configuration K can step to K

0 given input ↵ or producing
output ↵ under the compositional enforcement G and label
context P . Simplified rules are shown in Figure 3.

Regardless of how the event handlers or global vari-
ables are stored, or how the policy determines to enforce
IFC on individual event handlers, the logic for looking up
event handlers is the same. In each case, the label context,
P , tells us whether the event is secret (H) or public
(L). The EH lookup semantics, given by the judgement
G,P,� ` ks; lookupEH(...) ;pc ks 0 return the stack of
event handlers to run.

The label of an input event id .Ev(v) is given by
the policy P . For secret events as in IN-H, all event
handlers visible to H are run in the H context by using
lookupEHAll with pc = H to build ks . When the input
is a public event as in IN-L, all event handlers are run in
whatever context they are visible in by using the · pc for
the lookup.

Similar to the input rules, the output rules shown in
Figure 3b are the same regardless of the enforcement
mechanism or event handler storage. The mid-level se-
mantics are of the form: G,P,V ` �

G

1 ,
↵�!pc �

G

2 , ks
(omitted due to space constraints) and run a single event

handler  with the given enforcement mechanism V and
produce some output ↵. producer() and consumer()
tell us whether the execution state of  is producer or
consumer (respectively). When an event handler is cur-
rently running, the system is in producer state (OUT and
OUT-SKIP) and when the event handler has finished, the
system is in consumer state (OUT-NEXT) and the current
event handler can be popped off ks . outV(...) determines if
an output should be allowed (OUT) or suppressed (OUT-
SKIP) which is determined by whether the value being
output is visible to the channel receiving the output and
varies depending on the enforcement mechanism (V).
EH Queue. The mid-level semantics control the execution
state (P for Producer, when an event handler is running,
and C for consumer, when it has finished) as well as
adding event handlers for locally-triggered events (i.e., not
triggered by a user) to the resulting configuration stack.
After an event handler finishes running, these semantics
check for any locally-triggered events. If there are some,
their corresponding event handlers are added to ks . Fi-
nally, the current event handler enters consumer state to
tell OUT-NEXT to run the next event handler.
Running EHs. The lower-level semantic rules for evalu-
ating individual event handlers are triggered by the mid-
level semantics in the “producer” state. These rules are
mostly standard and enforcement-independent, except for
interactions with the store. The rules in Figure 4 high-
light the way our framework handles these differences.
ASSIGN-G performs an assignment to a global variable
while ASSIGN-D performs an assignment to an attribute
in the event handler storage. Expressions are evaluated
using the judgment G,V,�G

,�
V ` e +pc v. This also

ensures v is in the format expected by the enforcement
when different mechanisms are composed. For instance, to
convert a tainted value (v,H) to a value used by SME, we
check that the label on the value is visible to the execution.
The L execution would receive the default value dv instead
of something tainted (v,H), while the H execution would
receive the real value. This is reminiscent of the way SME
replaces secret inputs with dv for the L execution. More
discussion on conversion can be found in Section 4.3.

The assignment is performed using enforcement-
specific helper functions. assign

G
(...) assigns global vari-

ables or event handler attributes, depending on whether
a variable or node id is passed as an argument. The pc
ensures that the assignments are performed securely (i.e.,
in the correct copy of the store, facet, or with the correct
label, depending on the type of enforcement).

4.3. Shared storage

Event handlers may interact with each other through
shared storage. To introduce the storage techniques, we
describe the syntax for both variable and event handler
storage (using the DOM as a case study) and describe
their semantics at a high-level, then we explain how shared
storage with one type of enforcement may be composed
with an event handler running with a different type of
enforcement. Finally, we illustrate these interactions by
returning to our example from Section 3.
Variable storage syntax. We refer to shared storage
techniques using similar terms as the enforcement mech-

G,V � �
G

1 ,�
V
1 , c1

↵�!pc �
G

2 ,�
V
2 , c2, E

G,V,�G

1 ,�
V
1 ` e +pc v

x 2 �
G

1 assign
G
(�G

1 , pc, x, v) = �
G

2

G,V � �
G

1 ,�
V
1 , x := e

•�!pc �
G

2 ,�
V
1 , skip, ·

ASSIGN-G

G,V,�G

1 ,�
V
1 ` e +pc v

x 62 �
G

1 assignV(�
V
1 , pc, x, v) = �

V
2

G,V � �
G

1 ,�
V
1 , x := e

•�!pc �
G

1 ,�
V
2 , skip, ·

ASSIGN-L

G,V,�G
,�

V ` e +pc v

G,V, d � �
G
,�

V
, output ch e

ch(v)�! pc �
G
,�

V
, skip, ·

OUTPUT

Figure 4: Selected command semantics

Shared Storage
Shared storage: �G ::= �

G

g ,�
G

EH

SME/SMS Variable Storage
Single store: �pc ::= · |x 7! v

SME/SMS Storage: �SME
,�

SMS
g ::= �H ,�L

MF/FS Variable Storage
Faceted value: vMF

, v
FS ::= v | hvH |vLi | h·|vi | hv|·i

MF Storage: �
MF ::= · |�MF

, x 7! v
MF

FS Storage: �
FS
g ::= · |�FS

g , x 7! v
FS

TT/TS Variable Storage
Labeled value: vTT, vTS ::= (v, l)
TT Storage: �

TT ::= · |�TT
, x 7! v

TT

TS Storage: �
TS
g ::= · |�TS

g , x 7! v
TS

Figure 5: Storage syntax

EH Storage:
EH map: M ::= · |M,Ev 7! {(eh1, l1), ..., (ehn, ln)}

Unstructured SMS DOM:
Single store: �pc ::= · | id 7! (v,M)
DOM: �

SMS
EH ::= �H ,�L

Unstructured FS DOM:
DOM: �FS

EH ::= · |�FS
, id 7! (vFS,M)

Unstructured TS DOM:
DOM: �TS

EH ::= · |�TS
, id 7! (vTS,M, l)

DOM addresses:
Location: loc 2 Address
Address: a ::= loc |NULL
Root address: a

rt ::= loc
Address list: A ::= · |A, a

Tree-structured SMS DOM:
Node: �

SMS ::= (id , v,M, ap, A)
Single store: �pc ::= a

rt 7! �
SMS |�pc , loc 7! �

SMS

DOM: �
SMS
EH ::= �H ,�L

Tree-structured FS DOM:
Faceted address: a

FS ::= a | haH |aLi | h·|ai | ha|·i
Faceted address list: AFS ::= · | aFS :: AFS

Node: �
FS ::= (id , vFS,M, a

FS
p , A

FS)
DOM: �

FS
EH ::= a

rt 7! �
FS |�FS

, loc 7! �
FS

Figure 6: Event handler storage syntax for the DOM

anisms for code execution: secure multi-storage, SMS,
stores each item multiple times (once per security level),
faceted storage, FS, stores multiple copies only when
necessary, and tainted storage, TS, tracks labels for every
item in the store. Storage syntax is shown in Figure 5.
For SME/SMS, variables are stored twice: once at each
security level. Observers at H will interact with the H

copy of the store (�H) and observers at L with interact
with the L copy of the store (�L). For MF/FS, variables
are also stored twice, but only when the value depends
on a secret. A faceted value such as hvH |vLi depends on
a secret. H observers will interact with the H facet (vH)
and L observers interact with the L facet (vL). Empty
facets (such as the L facet of hv|·i) are treated as a default
value. Finally, for TT/TS, values have an accompanying
label to reflect whether they have been influenced by a
secret (label H) or not (label L).

EH storage syntax. Event handler storage associates
events with the appropriate event handlers. The DOM is
one type of event handler storage, which links event han-
dlers to elements on a webpage. We explain how to model
event handler storage in our framework by considering
both an unstructured DOM, where nodes are organized as
an unordered list [49], which is useful for reactive systems
like OS processes, as well as a more traditional tree-
structure [62], which is useful for modeling the DOM. For
brevity, we refer both the unstructured and tree-structured
event handler storage as the “DOM.” The syntax for both
structures are shown in Figure 6.

In the unstructured DOM, elements are identified by a
unique identifier (id) and contain both an attribute (whose
structure is determined by the type of enforcement, to be
described next) and an event handler map (M), which
maps events (Ev) to a list of event handlers (eh) and the
context they were registered in (l). M is the same for all
enforcement mechanisms, except that event handlers in FS
may have any label in L (“·” means the event handler can
be triggered by either L- or H-labeled events) but SMS
and TS event handlers may only be labeled L or H .

Similar to variable storage, the unstructured [49] SMS
DOM has two copies. H observers interact with the H

copy of the DOM and likewise for L observers. Attributes
are standard values (v), including integers and booleans.
Initially, the H and L copies of the DOM will be identical.
As events are triggered, new elements may be added to the
DOM, event handlers registered, or attributes updated in
one or both copies. The unstructured FS DOM is a single
structure whose attributes are duplicated when they have
been influenced by secrets. Here, attributes are standard
when the value does not depend on a secret (v) or faceted
values when the value appears different to H observers
than L observers (hvH |vLi). Initially, all the attributes are
standard values in the FS DOM. A DOM element which
has been added in only the H context will have an attribute
with an empty L facet (i.e., hv|·i) and likewise for the H

facet of an element added in only the L context. The TS
DOM will associate labels with both attributes ((v, l)) and
DOM elements ((vTS,M, l)). The label on the element
reflects the context the element was created in, while the
label on the attribute reflects whether the attribute has been
influenced by a secret (l = H) or not (l = L).

In the tree-structured [62] DOM, each element on the

page has a matching DOM node (�) which is stored by
reference (loc). Nodes have a unique identifier (id), an
attribute, and an event handler map, like in the unstruc-
tured DOM. They also contain a pointer to their parent
(ap), and a list of pointers to their children (A) (if any).
The root of the DOM is at art. The node at this address
cannot be replaced with another node, but its attribute
may be updated and children can be added to it. Since we
later prove that compositions involving the unstructured
TS DOM only satisfy weak secrecy, we only formalize
the more complex tree-structured DOM for SMS and FS.

The tree-structured SMS DOM has two copies and
behaves similarly to the unstructured SMS DOM. The
tree-structured FS DOM supports faceted attributes, as
well as a faceted parent pointer (aFS) and list of faceted
pointers to children (AFS). Because nodes are uniquely
identified by their ID, a node may have a faceted parent
pointer, for instance, if a node is created as a child of �H

in the H context and then a node with the same ID is
created as a child of �L in the L context. A node might
have a faceted pointer in its list of children if a child is
added in the H context, but not the L context. In this case,
if the child is at address a, the node would have ha|·i in
its list of children.

Storage composition. Since different event handlers run-
ning with different enforcement mechanisms may interact
through shared storage, values may need to be “converted”
from the format for one enforcement mechanism (i.e.,
a standard, faceted, or labeled value) to another. When
converting data, we follow three high-level guidelines to
ensure the composition is secure:
1. The pc context determines which copy to access in
multi- storage. If a value is coming from SMS or FS,
there may be two copies to pick from. When the context
(i.e., the pc) is H , we access the H copy, and likewise
for L. If the value does not exist in that copy of the store
(in the case of SMS) or is an empty facet (in the case of
FS), we use a default value.
2. The pc context and destination determines whether to
replace a labeled value with a default value. If the value
is coming from TS, we need to decide if we take the
actual value or use a default value. If the context is H , we
take the real value without leaking any information. If the
context is L and the destination is a multi-storage (SMS,
FS) or multi-execution (SME, MF) technique, we replace
tainted values (with label H) with a default value since the
L copy of the store/execution should never be influenced
by a secret. On the other hand, if the destination is TS or
TT, we use the original, tainted value, and propagate the
taint through the resulting label.
3. The destination and pc context determines the ultimate
format. Multi-storage and multi-execution techniques use
the context to determine which copy of the store/which
facet to update. For taint tracking techniques, the context
is also used to determine the final label on the data (e.g.,
public data is labeled H if it is computed in the H

context). Consider a public event handler running with
SME. It would run first in the L context and then in the
H context. The L execution would interact with the L

copy of store secured with SMS, or with the L facets for
a store secured with FS. The H execution would interact
with the H copy (respectively, H facets). On the other

hand, if the store is secured with TS, any changes made
by the L execution would be labeled L and ultimately be
overwritten by the H execution (which would have label
H). A table summarizing how data is converted for every
combination of enforcement is shown in Figure 7.

Examples. We describe how the example from Section 3
works in our framework, using the configuration in Fig-
ure 8. For illustrative purposes, we describe both SMS and
TS shared storage with an unstructured DOM.

For TS storage, everything maps to a value and a label,
including both variables and attributes and elements in the
DOM. SMS involves an H and L copy of both the shared
variables and DOM. The onInput event handler is public,
so it exists in both the H copy of the SMS event handler
storage and is labeled L in the TS storage. The contents
of the field idp are secret, so for SMS, the contents are
replaced with a default value in the L copy of the DOM,
and for TS the contents are labeled H . The onClick event
is secret, so it is only registered in the H copy of the SMS
DOM and is labeled H in the TS DOM. The policy is that
onInput event handlers should be run under SME. We trust
the first-party event handler onClick to not misbehave, so
the policy is to run this event handler with TT.

The ks in Figure 8 is the result of looking up event
handlers for the input event on the password field and the
public click event on the “Submit” button. Note that ks
will be the same whether we use SMS or TS for shared
storage (more details on this to follow). For illustrative
purposes, ks is the result of running all three event han-
dlers. In reality, the local stores would initially be empty
and the input event handlers would run to completion
before the click event was triggered.

Rule IN-L is used to process the public Input event.
It will run all of the registered event handlers in whatever
context they are visible. Since the event handler is regis-
tered in both the L and H copies of the SMS DOM, and
with label L in the TS DOM, it is visible to both the L and
H context. Since we are running this event handler with
SME, the ks has two onInput event handlers: one running
in the L context and one in the H context (note that SMS
and TS produce the same ks).3 The onInput event handler
attempts to output to an L channel. In the H execution,
this output is suppressed (OUT-SKIP) because the output
condition for SME requires that the label on the channel
matches the label of the pc. On the other hand, the same
output in the L execution would succeed (OUT). Recall
that event handlers running in the L context interact with
the L copy of the SMS DOM and receive default values
instead of tainted values from the TS DOM. Therefore,
this output does not leak anything to the attacker since the
L copy of the execution receives a default value for the
password from the DOM in both cases.

For the Click event, IN-H runs all of the event handlers
visible to H (i.e. only those labeled H). This is the third
element in ks (note that, like above, SMS and TS produce
the same ks). When this event handler runs it will run in
the H context, so it will interact with the H copy of the

3. If the same event handler were to run under TT, we can output to
both L and H channels from the L context, but only H channels from
the H context. We only want to run the event handler once to avoid
duplicated outputs to H channels, and we don’t want to suppress all the
L outputs, so we would run the event handler in the L context only.

Destination and pc
SME, SMS MF,FS TT,TS
· L H · L H · L H

So
ur

ce
v
std

v
std

v
std

v
std

v
std h·|vstdi hvstd|·i (vstd, L) (vstd, L) (vstd, H)

hvH |vLi hvH |vLi vL vH hvH |vLi vL vH hvH |vLi (vL, L) (vH , H)
hv|·i hv|·i dv v hv|·i dv v hv|·i (dv, L) (v,H)
h·|vi h·|vi v dv h·|vi v dv h·|vi (v, L) (dv, H)
(v, L) � v v v v v � (v, L) (v,H)
(v,H) � dv v hv|dvi dv v � (v,H) (v,H)

Figure 7: Conversion between standard, tainted, and faceted values.

TS Shared storage �g = strength 7! (40, H), username 7! (“bob”, L)
�EH = (idp 7! ((“aKUd?mdu5GHa&l7gHJ5”, H), input 7! {(onInput(x){cin}, L)}, L)),

(idb 7! (, click 7! {(onClick(){cclk}, L)}, H))
SMS Shared storage �g,L = strength 7! dv, username 7!“bob”

�EH,L = (idp 7!7! (dv, input 7! {(onInput(x){cin}, L)})), (idb 7! (, ·))
�g,H = strength 7! 40, username 7!“bob”
�EH,H = (idp 7! (“aKUd?mdu5GHa&l7gHJ5”, input 7! {(onInput(x){cin}, H)}),

(idb 7! (, click 7! {(onClick(){cclk}, H)}))
Configuration stack ks = (SME, ((p1 7! dv[0], presenta 7! false, detecteda 7! false), [idp/x]cin ,P , ·), L)

:: (SME, ((p1 7! “a”, presenta 7! true, detecteda 7! true), [idp/x]cin ,P , ·), H)
:: (TT, ((p 7! (“aKUd?mdu5GHa&l7gHJ5”, H), u 7! (“bob”, L)), cclk ,P , ·), H)

Figure 8: Example configuration

SMS �g and runs the risk of upgrading public variables
in the TS �g . In this case, Listing 1 only reads from the
shared storage, so nothing is leaked through TS. Recall
from above that everything from the H copy of the SMS
storage will be labeled H , and everything that comes from
the TS storage will keep its label. An output for TT
succeeds if the pc (H) joined with the label on the value
being output (p + u , so, H tH = H in the case of SMS
or H tL = H in the case of TS) is at or below the label
on the channel (H). Therefore, this output succeeds.

This example shows that our framework can seam-
lessly compose enforcement mechanisms and securely
convert data between different enforcement mechanisms,
like SMS and TT.

5. Security and Weak Secrecy
Next we present two security definitions of different

strengths, compare these two definitions, and prove that
the techniques from Section 2 may be composed to en-
force varying levels of security.

5.1. Attacker Observation

To quantify how much an attacker learns by inter-
acting with our framework, we first define what the at-
tacker can observe from an execution trace. A trace T

is a sequence of execution steps, inductively defined as
T = G,P ` T

0 ↵l=) K where an empty trace is the initial
state G,P ` K0. An attacker’s observation of T , denoted
T #L, is the sequence of L-observable inputs and outputs
in T . Two execution traces are L-equivalent if their L

observations are the same: T ⇡L T
0 i↵ T #L= T

0 #L.
Key rules defining L observation of an execution trace
are in Figure 9.

Low inputs (TRACE-IN-L) and other low actions
(TRACE-L) are observable. TRACE-L defines a “low ac-
tion” as one produced in the low context (l v L) or

P(id .Ev(v)) = L

(G,P ` K
id.Ev(v)
=) T

0) #L= id .Ev(v) :: T 0 #L
TRACE-IN-L

P(↵) = L or l v L

(G,P ` K
(↵,l)
=) T

0) #L= ↵ :: T 0 #L
TRACE-L

P(id .ev(v)) = H

(G,P ` K
id.ev(v)
=) T

0) #L= T
0 #L

TRACE-IN-H

P(↵) = H or ↵ = •

(G,P ` K
(↵,H)
=) T

0) #L= T
0 #L

TRACE-H

Figure 9: Rules for projecting execution traces to L

an L-labeled action (P(↵) = L). L-labeled inputs and
outputs to L-labeled channels are all L-labeled actions.
Secret events, are not observable (TRACE-IN-H). Finally,
secret actions (P(↵) = H) performed in the H context
are not observable as shown in TRACE-H.

Two configurations K1 and K2 are L-equivalent if
their global stores �

G

1 and �
G

2 and their configuration
stacks ks1 and ks2 are L-equivalent. Configuration stacks
are L-equivalent if all of the L configurations have L-
equivalent local stores and they agree on commands. Most
of these definitions are straightforward. The most inter-
esting definition is L-equivalence of the tree-structured
DOM, which is defined inductively over the structure of
the tree beginning with the root nodes.

5.2. Progress-Insensitive Security

We first define attacker’s knowledge assuming that the
attacker can view all of the publicly-observable inputs and
outputs, as well as the initial state of the system (this

includes the initial global variables and DOM upon page
load which contains no secrets). The attacker’s knowledge
given a trace T is what they believe the secret inputs might
have been, which is the set of inputs from L-equivalent
execution traces starting from the same initial state:

K(T,�G

0 ,P) = {⌧i | 9T 0 2 runs(�G

0 ,P),
T ⇡L T

0 ^ ⌧i = in(T 0)}

We define runs(...) as the set of possible execution traces
resulting from the shared state �

G

0 under the policy P .
The set of inputs from a trace T is denoted in(T), while
⌧ is a sequence of actions.

Intuitively, the system is secure if the attacker does
not refine their knowledge. However, this definition is
too strong for our system because it is progress-sensitive.
An infinite loop that depends on a secret will allow
the attacker to refine their knowledge based on whether
the system makes progress to accept another low input.
Instead, we define a weaker, progress-insensitive security
property, by introducing the following progress-insensitive
attacker’s knowledge below:

Kp(T,�G

0 ,P) = {⌧i | 9T 0 2 runs(�G

0 ,P),
T ⇡P

L
T

0 ^ ⌧i = in(T 0) ^ prog(T 0)}
The attacker is allowed to distinguish between traces
which do and do not make progress so we add prog(T 0)
as a condition on T

0 to consider only the traces which
produce the same L-observations and make progress.

Using these knowledge definitions, we define what it
means for a program to be secure: when the system takes
a step, the attacker’s confidence about the secret inputs
should not increase; they should not be able to distinguish
between any more traces than before, other than through
whether the system makes progress. We use � subscript
for the subset relation (◆�) to say that the input sequences
after the step may be longer.

Definition 1 (Progress-Insensitive Security). The compo-
sitional framework is progress-insensitive secure iff given
any initial global store �

G

0 and policy P , it is the case
that for all traces T , actions ↵, and configurations K s.t.
(T

↵
=) K) 2 runs(�G

0 ,P), then K(T
↵

=) K,�
G

0 ,P) ◆�
Kp(T,�G

0 ,P).

We can prove that any combination of enforcement
mechanisms SME, SMS, MF, and FS satisfy this progress-
insensitive security condition:

Theorem 2 (Soundness). If event handlers are enforced
with V 2 {SME,MF} and the global storage is enforced
with G 2 {SMS,FS}, then the composition of these event
handlers and global stores in our framework satisfies
progress-insensitive security.

We prove our framework secure with these enforce-
ment mechanisms by defining a series of “requirements”
for the framework (called Trace and Expression require-
ments), variable stores (called Variable requirements),
and event handler store (called Event Handler require-
ments). These requirements are described in Figure 10.
For the most part, these requirements follow a similar
structure to other knowledge-based security proofs from
prior work. The most noteworthy difference is the notion
of “strong equivalence” for values. Traditionally, nonin-
terference only requires that values are equivalent (i.e.,

they are the same public values, or both values are secret)
but here we require that values are both equivalent and
publicly observable (i.e., they are equivalent only if they
are the same public values; they cannot be tainted). This
distinction is important for highlighting the difference
between progress-insensitive security and weak secrecy.

5.3. Weak Secrecy

As discussed in Section 3, NSU semantics are too rigid
for our setting. Unfortunately, without NSU semantics,
taint tracking techniques are susceptible to implicit leaks.
Namely, branching on a secret in the L context may result
in different public behavior for different secrets. We can
also see implicit leaks through global store: suppose a
secret event handler upgrades a public value stored in the
global variable x. If the attacker successfully output x

in the past, but cannot output x now, they can conclude
that a secret event handler which writes to x must have
ran recently. For example, the leaky third-party script
shown in Listing 3 violates Definition 1 when the script
is enforced with TT and the global storage with TS.
Consider the scenario where the user inputs a password
“abcd”. Before the output (true, L), the attacker knows
the input was some password, but they are not sure which
one, so their knowledge set is all possible passwords. After
the output, the attacker learns that the input password must
start with an ‘a’, thus refining the set of possible inputs
to only the passwords beginning with ‘a’, which violates
the security condition. Branching on a secret implicitly
leaked information to the attacker.

Instead, we prove a weaker security condition called
weak secrecy [66], [71] which allows implicit leaks
through control flow but still ensures that explicit leaks
via outputs are still prevented.

Additional attacker observations. We modify our se-
mantics with additional outputs to capture both types of
implicit leaks described above: br() when branching on
a tainted value in the L context, and gw() when a L-
labeled value is upgraded in the H context.

Knowledge-based weak secrecy definition. Since we
allow information to leak through control flow decisions,
we define another form of knowledge to capture this:

Kwp(T,⌃0,P,↵l, I) = {⌧i | 9T 0 2 runs(⌃0,P, I), T ⇡L T
0

^⌧i = in(T 0) ^ prog(T 0) ^ wkTrace(T 0
,↵

0)

where ↵
0 = (last(T)

↵l=) K)) #L}

last(T) returns the last configuration in a trace. Here, ⇡L

ensures the implicit leaks up to this point were the same
and wkTrace ensures the next implicit leak is the same.
If T is about to output br(b) or gw(x), then T

0 can be
extended to produce the same output. We also need to
make sure that when T receives a public input, T 0 does not
leak anything until the next public input. Because inputs
come nondeterministically, and we only want to consider
traces which produce the same implicit leaks, we don’t
want T 0 to leak anything extra in a secret event handler
before the next public input. This ensures that if T and
T

0 were ⇡L up to this point, they will continue to be
equivalent after the next step. Maintaining equivalence like
this is important for proving security.

Trace Requirements
(W)T1 ⇡L traces, ⇡L states Equivalent traces starting in equivalent states lead to equivalent states
(W)T2 Empty traces, ⇡L states Traces producing no public events produce equivalent states

T3 Secret pc’s, empty traces Steps under a secret pc produce no public events
(W)T4 Strong one-step If a trace takes a step, then an equivalent trace can take an equivalent step
(W)T5 Weak one-step Equivalent traces taking steps producing equivalent public observations lead to equiv-

alent states
Expression Requirements

(W)E1 L-expressions are ⇡L Evaluating an expression under equivalent stores with public pc’s results in (strong)
equivalent values

Variable Requirements
(W)V1 L-lookups are ⇡L Lookups of the same variable under public pc’s in equivalent stores result in (strong)

equivalent values
(W)V2 H-assignments are ⇡L Assignments to stores under a secret pc result in an equivalent store
(W)V3 L-assignments are ⇡L Assignments to equivalent stores under public pc’s result in equivalent stores

Event Handler Storage Requirements
(W)EH1 L-lookups are ⇡L Lookups in equivalent DOM’s under public pc’s result in (strong) equivalent values
(W)EH2 H EH lookups empty Event handler lookups under a secret pc produce no public event handlers

EH3 H-updates are ⇡L Updates under a secret pc results in an equivalent store
(W)EH4 L-updates are ⇡L Updates under public pc’s in equivalent stores result in equivalent stores

Figure 10: Requirements for Progress-Insensitive Security and Weak Secrecy

(a) Progress-insensitive Security: Each in the H context before EvL

is L-equivalent, even though T2 sees different H events than T1. From
T1 ⇡L T2, T1 and T2 see the same public input: EvL. We show that
each step in the L context (K1 to K

0
1 and K2 to K

0
2) produces ⇡L

states and from this, we prove that T2 can take step ↵
=)

producing the same output ↵ = ch(v) and equivalent states ⇡L .

(b) Weak Security: The proof is similar to above except that T1 and
T2 are also synchronized on gw() and br() actions. Because of this,

when T1 takes a step to accept a low event
EvL=) , we need to

know that running the event handler for EvH,1 in T2 (=)⇤) will
not produce any gw() actions. This is guaranteed by the wkTrace

condition in Kwp().

Figure 11: Comparison of Progress-insensitive security (top) and Weak Security (bottom) proofs. Given T1 ⇡L T2, where T1 takes
a step to , we want to show that T2 can take equivalent steps , and that trace equivalence maintains state equivalence .

Consider, again, our leaky third-party script in List-
ing 3 where the user inputs the password “abcd”. In
our weak secrecy semantics, the execution of that event
handler would generate br(true) when branching on the
secret. The wkTrace predicate in the weak secrecy def-
inition allows the attacker to refine their knowledge to
include the fact that the branch condition must evaluate to
true by throwing out all the traces which do not generate
this branch condition. Only passwords starting with ‘a’
cause the branch condition to be true, so at this step, the
attacker is allowed to learn that the password must begin
with ‘a’ (i.e. the knowledge set is refined from all possible
passwords to all possible passwords starting with ‘a’).
Therefore, the output does not further refine the attacker’s
knowledge, so this program satisfies weak secrecy.

Definition 3 (Progress-insensitive Weak Secrecy). The
compositional framework satisfies progress-insensitive
weak secrecy in our framework iff given any initial global
store, �G

0 , and policy P , it is the case that for all traces
T , actions ↵, and configurations K s.t. (T

↵
=) K) 2

runs(�G

0 ,P), the following holds

• If wkAction(last(T) ↵
=) K):

K(T
↵

=) K,�
G

0 ,P) ◆� Kwp(T,�G

0 ,P,↵)
• Otherwise:
K(T

↵
=) K,�

G

0 ,P) ◆� Kp(T,�G

0 ,P).

Meta-theory. We prove that any combination of enforce-
ment mechanisms that we instantiated our framework
with, including TT and TS, satisfy Definition 3:

Theorem 4 (Soundness-Weak Secrecy). If event handlers
are enforced with V 2 {SME,MF,TT} and the global
storage is enforced with G 2 {SMS,FS,TS}, then the
composition of these event handlers and global stores in
our framework satisfies progress-insensitive weak secrecy.

We prove weak secrecy using a similar technique to
progress-insensitive security. The requirements are nearly
the same and are shown in Figure 10 with a (W). Re-
quirements T3 and EH3 cannot be proven in the presence
of implicit leaks (upgrades to global variables in the H

context is publicly observable). However, they are not
needed to prove weak secrecy. The requirements mention-
ing “strong equivalence” are weakened to “equivalence”
since leaking branch conditions is permitted.

Further comparisons of the proof techniques behind
these two security definitions are shown in Figure 11. The
events that two equivalent traces T1 and T2 have to agree
on for the weak secrecy definition are a superset set of
those required by the regular security definition, so the
set of traces in the equivalent class (knowledge set) of the
former is a subset of the latter. Consequently, attackers
know more in the system that allows implicit leaks. We

prove that our weak secrecy security condition is weaker
than our standard security condition, in general:

Theorem 5 (PI Security implies PI Weak Secrecy). If
the composition of event handlers and global storage
enforcement are progress-insensitive secure, then they are
also progress-insensitive weak secure.

5.4. Securing TT

We can prove that in the presence of a secure global
storage, using taint tracking for the event handler is secure,
even without NSU semantics.

Theorem 6 (Soundness (TT)). If event handlers are
enforced with V 2 {TT, SME,MF} and the global storage
is enforced with G 2 {SMS,FS}, then the composition of
these event handlers and global stores in our framework
satisfies progress-insensitive security.

The proof deviates from the requirements shown in
Figure 10. We cannot prove the variable requirements for
TT because looking up a tainted value violates require-
ment V1. However these requirements are stronger than
necessary. The proof is intuitive: from the requirements, a
secure global store will not allow a public event handler to
access secrets, nor will it let secret event handlers modify
public values. Recall that the local variable storage is
cleared between event handlers, so there is no way for
public event handlers to branch on secret values because
the local storage will only contain public values. This
means that WV1 is sufficient to prove the stronger se-
curity condition and taint tracking techniques can be used
securely, without NSU semantics, as long as the global
structures satisfy strong security guarantees.

Going back to our example, the event handler in
Listing 1 is secure, even though it is enforced with TT
because it does not have implicit leaks. On the other hand,
code with implicit leaks (Listing 2 and 3) can be secured
by connecting the taint tracking script enforcement with a
secure storage like SMS or FS, as shown by Theorem 6.
This is noteworthy because it suggests that the selection
of script enforcement is not as relevant to security as the
selection of the global storage enforcement. Furthermore,
the effects of TT are not manifested in this setting (since
tainted variables never appear in the L context), meaning
that as long as the shared structures are secure, the event
handlers execution may require no additional enforcement.

6. Prototype Implementation and Evaluation

We discuss our prototype implementation of the com-
positional IFC monitoring framework and present evalua-
tion results.

6.1. Prototype Implementation

We implemented our compositional semantics in
OCaml 4.06.1 to validate the semantic rules and to study
the results of composition. Our implementation consists of
2400 lines of OCaml code (including comments and blank
lines) that is parametrized over the execution mechanism
and the global store type. We optimized some of the
semantics; for instance, instead of splitting the program

when branching on a faceted value, our implementation
only splits the execution of the branch, after which the
program executes normally.

Limitations. Since the main goal of our prototype im-
plementation is to understand and study the behavior of
different compositions and to evaluate their security and
performance, we do not aim to include all features of a
browser (e.g., DOM APIs, cookies, localStorage, event
handling logic), and restrict our implementation to the
generic features modeled in Section 4. As future work,
we would like to explore integrating our current model
with Featherweight Firefox [23], an OCaml model of the
browser, and study the behavior of the framework in a
more realistic browser setting.

6.2. Evaluation Setup

We model web clients (specifically, a basic tree-
structured DOM) by creating one root node with other
nodes as children. For all experiments, we created 10
nodes in each of the stores with event handlers reg-
istered on some of these nodes. We emulate the exe-
cution of scripts on real-world websites by triggering
events on some of these nodes and running the asso-
ciated event handlers. To evaluate the performance of
composing one script with varying enforcement mecha-
nisms (Section 6.3.1), we install a keypress event handler
on the password node that checks for the presence of
certain characters in the entered password and returns
the computed strength as the result (à la Listing 2). The
program automatically inputs 100 character keypresses on
the password node, which then runs the event handler
producing some output depending on the mechanism used.

To evaluate the effects of composing different enforce-
ment mechanisms for different scripts (Section 6.3.2), we
implement a host page script, which installs an event
handler that sends the password to the host server based
on the strength of the password when the submit button
is clicked (à la Listing 1). To emulate the behavior of
multiple host scripts (and the possibility that more host
scripts run than third-party scripts), we run more instances
of the event handler installed by the host. The third-party
script is the same as above.

For studying the security and accuracy of various
enforcement mechanisms (Section 6.4), we implemented
an analytics tracking script that tracks mouse clicks and
keypresses by a user using the three event handlers shown
in Figure 12. The aim is to implicitly leak the key pressed
by the user through the global variable o.

6.3. Performance Evaluation

We compare the performance overhead of running a
single event handler with different shared storage enforce-
ment in Section 6.3.1. In Section 6.3.2, we compare the
performance of composing multiple event handlers and
show that the performance improves (while providing the
same guarantees) when using a combination of enforce-
ment mechanisms as opposed to a single enforcement
mechanism for all event handlers.

Execution
Mechanisms

Shared State
SMS FS TS

SME 12.69 13.24 12.51
MF 9.47 9.13 9.48
TT 7.72 7.79 7.35

TABLE 1: Time taken for different compositions for the
example shown in Listing 2, measured in milliseconds with

100 characters as input, by the user

Host Script
Exec. Mechanism

Third-party Script
Exec. Mechanism

SME MF TT
SME 28.73 27.87 26.32
MF 24.63 23.77 23.12
TT 21.57 21.28 20.07

TABLE 2: Time taken for different script compositions for the
examples shown in Listings 1 and 2, measured with secure

multi-storage DOM

6.3.1. Composing shared storage and script enforce-
ment. The execution times in milliseconds for all com-
positions are shown in Table 1. As expected, SME is less
performant because it executes event handlers multiple
times for publicly visible events. Our implementation does
not parallelize the L and H executions; prior work has
shown that parallelism helps SME’s performance consid-
erably [35]. MF’s performance is better than SME as there
are fewer commands that MF executes multiple times,
while TT is the fastest of the three. MF spends extra
time creating, projecting and removing facets in values,
depending on the context of the execution.

We also measure the total shared memory usage using
OCaml’s garbage collector API; they are 168 kB for SMS,
166.4 kB for FS and 165 kB for TS. These results match
our intuition. SMS stores multiple copies of data, so it
uses the most memory, followed by FS, which needs to
store additional data when facets are created, while TS
requires additional memory to store labels.

6.3.2. Composing script enforcement. The time taken
for different combinations of script enforcement mecha-
nisms with the SMS DOM are shown in Table 2. Down
each column and across each row from left to right, the
execution time decreases, as the enforcement mechanisms
run fewer copies of the code. Since the host page has
more scripts than third-party scripts, the script enforce-
ment mechanism of the host page is the dominating factor
of the execution time. The time taken for TT as the
host script’s enforcement mechanism and SME as the
third-party script’s enforcement mechanism is consider-
ably shorter when compared to SME being used for both.
Further, under the assumption that host page scripts are to
be trusted not to have malicious implicit leaks, the security
offered by the composition is similar to the one where
SME is used for all the scripts. More generally, it may
suffice to run trusted scripts with TT enforcement and
selected scripts from untrusted sources under SME and
MF to prevent malicious implicit leaks.

6.4. Security and Accuracy Evaluation

We evaluate the effects of different compositions on
security guarantees and accuracy where “accuracy” is

onKeyPress(k) : if k = 42 then l := k

onClick(c) : if l = 42 then o := 1;

output (L, o); output (H, o)

onMouseOver(c) : output(L, o)

Figure 12: Analytics script event handlers for comparing
security and precision. The keypress event is secret while click

and mouseover events are public.

Execution
Mechanisms

Shared State
SMS FS TS

SME
Secure

Accurate
Secure

Accurate
Weak Secrecy

Inaccurate

MF
Secure

Accurate
Secure

Accurate
Weak Secrecy

Inaccurate

TT
Secure

Inaccurate
Secure

Inaccurate
Weak Secrecy

Inaccurate

TABLE 3: Security and precision for different compositions for
the example shown in Figure 12.

comparing the behavior of the program with enforcement
to the behavior without enforcement4.

The execution traces of our case study shown in Fig-
ure 12 with different compositions of SME, MF and TT
with each of the stores are shown in Figures 13, 14 and 15
in the Appendix. The time taken for different compositions
are shown in Table 4 in the Appendix. The performance
numbers are similar to the numbers obtained above. The
security and accuracy between the various compositions
vary as shown in Table 3. In the table, “Secure” indicates
that the composition does not leak information through
the execution while “Weak Secrecy” indicates that some
information is leaked via implicit flows. Similarly, “Accu-
rate” means the execution produced correct outputs as per
the user expectation while “Inaccurate” means the output
is not consistent with what the user might have expected.

Summarizing results from Section 5, both SME and
MF guarantee progress-insensitive security with all stores
except for TS. For TS, we can show only weak secrecy,
as global upgrades may cause leaks. Interestingly TT
guarantees noninterference with SMS and FS storage, and
with lower overheads. This is because only public event
handlers can output to L channels and the only way
public event handlers can access a secret is through the
global store. SMS and FS replace secrets with dv in the
L context, so TT does not leak secrets, even implicitly.

Figures 13, 14 and 15 show that TT and TS affect
the accuracy of the outputs of program execution. While
SME and MF guarantee similar results in most scenarios,
SME is sometimes more accurate [22], illustrated by the
example below when x is secret and l is public:

l := 0; if x = 1 then l := 1 else l := 2; output(L, l)

While SME outputs either 1 or 2 (depending on the default
value of x), which are the possible values of l after the
branch, MF outputs 0 as the value of l to L channel
because the public part of the facet is 0 irrespective of

4. This is similar to “transparency” which says the behavior of non-
leaky programs should not be altered by enforcement, except, here, some
of the event handlers we evaluate do have leaks so we use the term
“accuracy”, instead.

which branch is taken. This makes SME apt for systems
where accuracy is critical. If a small loss of accuracy is
permissible, MF would be a more performant option.

7. Discussion

Declassification. The framework we have presented thus
far does not allow practical scenarios where some secret
information needs to be released to public channels (e.g.,
releasing the last four digits of a credit-card number).
Luckily, declassification [64] of secret information can be
incorporated into our framework without extensive modi-
fication. Based on prior work on stateful declassification
for SME [25], [49], [70], we can lift the declassification
components to the top-level of the framework so it applies
uniformly to all enforcement mechanisms, similar to the
way that we process inputs and outputs the same way for
each mechanism.

To allow the attacker’s knowledge to be refined due
to declassification, we would also define release knowl-
edge, similar to implicit knowledge, which distinguishes
between traces which perform different declassifications.
Definitions 1 and 3 would then be extended to include
an additional case for released events (similar to the
wkA condition for weak secrecy). Modified semantics and
security conditions which account for declassification may
be found in the Appendix.

Other reactive settings. Our framework can be applied
to different reactive settings, such as web apps with a
full DOM, OS processes [43], [75], mobile phone appli-
cations [33], [39], [56], and serverless computing [4]. We
consider only a few dynamic enforcement mechanisms,
but our framework could be easily extended to accom-
modate others. To add another event handler enforcement
mechanism, the local storage and output conditions would
need to be defined. Rules for interacting with the local
storage and any other special rules (for instance, for
switching executions in SME or branching on faceted
values in MF) would also need to be added. For global
variable storage, only the storage syntax and rules for
accessing the store would be necessary. The event handler
storage is by far the most involved, likely requiring both
new structures and rules.

The other reactive systems mentioned above typi-
cally have less sophisticated storage than the DOM and
more complex scheduling compared to JavaScript’s single-
threaded execution. We would need to modify the seman-
tics to accommodate different schedulers and ensure they
do not become a source of information leakage.

NSU semantics in reactive systems. Traditional taint
tracking upgrades the pc when branching on a tainted
value, whereas our semantics do not. We made this choice
for two reasons: First, this choice is consistent with prior
work on weak secrecy [66], [71]. Second, upgrading the
pc on tainted branches adds complexity to the semantics,
but still leaks information. No sensitive upgrade (NSU)
semantics that halt the execution of the entire page are
problematic, as discussed in Section 3. More flexible
variants of NSU, like permissive upgrades [9], or termi-
nating the execution of individual event handlers [61], or
simply skipping problematic assignments, can be adapted

to the reactive setting. Adapting these mechanisms for our
framework is straightforward: low-level rules for com-
mands need to be defined. Variants of NSU techniques
may achieve a stronger security guarantee, but run the
risk of altering the behavior of non-leaky programs if they
prevent upgrades to variables which never affect outputs
to public channels. The focus of our work is on the effect
of composition on security and we leave the investigation
of additional mechanisms to future work.

Compositional security. So far, we developed a composi-
tional framework to combine multi-execution techniques
(strong security guarantees) with taint tracking (weaker
security guarantees). One question that remains is whether
we can use a compositional definition and proof infrastruc-
ture of the form, “If A is secure and B is secure, then their
composition is secure”. This is challenging in our setting
because the security of event handlers often depends on
the security of the global store. Instead, we define com-
positional security based on the interfaces between event
handlers and global storage in a rely-guarantee style using
“requirements” on execution traces, variable storage, and
event handler storage.

Selecting desired composition. Decisions about which
enforcement mechanisms to use depend on the desired
trade-offs between security, accuracy, and performance:
the main factors considered for IFC. Our evaluation shows
that different compositions can guarantee different secu-
rity properties with varying overheads and accuracy. SMS
and FS provide the same security guarantees but because
SMS is complex and difficult to maintain in systems with
multiple security levels, FS might be a better choice. More
specifically, SME with FS could be used when accuracy is
important, while MF with FS/SMS can be used to balance
security, accuracy and performance. TT approaches are
useful in systems where accuracy is not as important; TT
could be composed with FS or SMS without incurring
high runtime overheads or sacrificing security but could
double the storage needed for shared structures.

8. Related Work

Information flow security has been explored exten-
sively for reactive systems. Prior work in this area, to the
best of our knowledge, has focused on the formalization
and enforcement of either IFC in scripts, IFC in DOM
or only one of the compositions described before. We
discuss three classes of closely related work: formalization
of information flow security properties in reactive settings,
enforcement of IFC in reactive systems, and composition
of security properties in (reactive) systems.

Austin and Flanagan proposed purely dynamic IFC for
dynamically-typed languages based on TT [8], [9] and,
later, using MF [10]. Subsequent work [11], [72] discusses
its extension to applications where the policy is specified
separately from the code. Ngo et al. [57] generalize MF to
multi-level lattices. Stefan et al. [68] present a dynamic
IFC approach for functional languages and propose the
LIO monad. Secure multi-execution [31] is another ap-
proach to enforce IFC in dynamic and reactive systems
at runtime. Our formalism uses these three approaches to
protect event handler execution.

Bielova and Rezk [22] point out the similarities and
differences between SME and MF enforcement, while
Zanarini et al. [74] have extended SME to be more precise.
Bohannon et al. [24] present a formalization of a reactive
system and introduce several definitions of reactive nonin-
terference, some of which we have used in our formalism.
Ngo et al. [58] study a different runtime enforcement for
reactive programs by treating the program as a black-
box and monitoring only the input and output events.
Recently, Algehed and Flanagan [1] proved the impos-
sibility of building a transparent and efficient black-box
runtime monitor. Our framework is quite different from
theirs because we are in the reactive setting. Moreover, we
handle declassification and do not treat the enforcement
mechanisms as black-boxes.

Schmitz et al. [65] combine MF with SME to pro-
vide better guarantees and performance and develop a
framework that is parametric and can provide MF, SME,
or MF � SME enforcement based on whether a program
may diverge to guarantee termination-sensitive noninter-
ference. Later, Algehed et al. [2] presented an approach
to optimize the data and performance overheads in the
earlier technique by joining or shrinking facets whenever
possible. Our work includes more diverse and general
composition of different enforcement mechanisms with
different shared states. It would be an interesting direction
for future research to incorporate into our framework the
option to switch enforcement mechanisms within an event
handler’s execution.

Declassification [64] in reactive systems is an inter-
esting problem. Various approaches have been proposed
for declassifying information in reactive systems that em-
ploy SME [25], [49], [60], [70] and TT with NSU [20].
Our declassification module in the Appendix uses some
of these formalisms to release information about secret
events to public scripts. While our current formalism does
not account for integrity and robust declassification [27],
[55], it is an interesting area of future work.

Our knowledge-based security definitions are based on
the gradual release property [7], which ensures that the
knowledge of the adversary stays unchanged outside of re-
leased events. Banerjee et al. [13] proposed a type system
for enforcing knowledge-based declassification defined as
conditioned gradual release. Askarov and Chong [5] fur-
ther define progress knowledge to reason about initial con-
figurations. Balliu [12] defines abstract knowledge-based
security, and studies the relationship between knowledge
and trace-based definitions.

Volpano [71] originally defined weak secrecy as a
means to formalize data-dependent flows as opposed to the
stronger property of noninterference. Schoepe et al. [66]
generalize this property as a knowledge-based property,
explicit secrecy, to adapt to different semantics used by
different languages. Our definition of weak secrecy is a
specific instance of the explicit secrecy and control-flow
gradual release property for the imperative language, and
is defined on traces of input and output events instead
of the complete state. Later work by Schoepe et al. [67]
improves the precision of TT by using faceted values in
the memory, which is similar in flavor to the composition
of TT with FS in this paper.

Many projects have developed IFC enforcement in
JavaScript and browsers. Most of the prior work on IFC in

JavaScript [10], [19], [28], [29], [32], [36]–[38], [40] use
dynamic or hybrid enforcements because of its dynamic
features. Several IFC approaches for browsers have been
proposed that build on top of these mechanisms [17],
[20], [30], [42], [44], [69] and allow information to be
declassified. The focus of that work is on composing
mechanisms and our composition includes TT and MF
from those works.

Prior work has also developed IFC enforcement mech-
anisms in the DOM and event-handling logic of the
browser [3], [21], [61], [62]. We reason about simpler
DOMs with essential functionality but consider multiple
enforcements that are reasoned about individually by prior
work. We additionally show how they compose with dif-
ferent IFC enforcement mechanisms of script executions.

Composition of information flow properties has been
studied in the setting of event-based systems [45], [50].
McCullough, further, defined the property of restrictive-
ness for security of systems [52] based on what a user
can infer about sensitive data, which is composable. Za-
kinthinos and Lee [73] showed important results about the
composition of generalized noninterference, which was
earlier proven to be not fully compositional [51]. Man-
tel [45] designed the modular assembly kit for security
properties (MAKS) framework for composing information
flow properties to reason about complex properties. Com-
positional methods for proving information flow proper-
ties of concurrent programs have also been extensively
studied [14], [26], [41], [46], [47], [53], [54], [63] given
the complexity that concurrency introduces. Bauereiss et
al. [18] verify the security of a distributed social media
platform by composition. Rafnsson and Sabelfeld [59]
explore the composition of PINI and progress-sensitive
noninterference in the context of interactive programs.
Similar to existing work, we explore the composition of
information flow security properties across various types
of mechanisms for event handlers and shared storage.
Because event handling and accesses to shared storage are
not symmetric, we stipulate requirements on each compo-
nent, but cannot directly compose them as homogeneously
defined secure components.

9. Conclusion

We develop a framework to enable the flexible compo-
sition of dynamic IFC enforcement mechanisms for reac-
tive programs with provable security guarantees. We use
a knowledge-based security condition to compare the rel-
ative security of different compositions. We extend weak
secrecy to reason about implicit flows of information due
to control flow decisions within as well as between event
handlers. Finally, we implement the framework in OCaml
to validate the semantic rules and show the tradeoffs of
different compositions.

Acknowledgement

This work was supported in part by the National
Science Foundation via grant CNS1704542, the CyLab
Presidential Fellowship at Carnegie Mellon University,
and the DST-INSPIRE Faculty grant. We would like to
thank our shepherd and the anonymous reviewers for their
feedback on our paper.

References

[1] M. Algehed and C. Flanagan. Transparent IFC enforcement:
Possibility and (in)efficiency results. In IEEE CSF, 2020.

[2] M. Algehed, A. Russo, and C. Flanagan. Optimising faceted secure
multi-execution. In IEEE CSF, 2019.

[3] A. Almeida-Matos, J. Fragoso Santos, and T. Rezk. An information
flow monitor for a core of DOM. In TGC, 2014.

[4] K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv,
T. Schmitz, and K. Winstein. Secure serverless computing using
dynamic information flow control. In ACM OOPSLA, 2018.

[5] A. Askarov and S. Chong. Learning is change in knowledge:
Knowledge-based security for dynamic policies. In IEEE CSF,
2012.

[6] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-
insensitive noninterference leaks more than just a bit. In ESORICS,
2008.

[7] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassi-
fication, encryption and key release policies. In IEEE SP, 2007.

[8] T. H. Austin and C. Flanagan. Efficient purely-dynamic informa-
tion flow analysis. In ACM PLAS, 2009.

[9] T. H. Austin and C. Flanagan. Permissive dynamic information
flow analysis. In ACM PLAS, 2010.

[10] T. H. Austin and C. Flanagan. Multiple facets for dynamic
information flow. In ACM POPL, 2012.

[11] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama. Faceted
execution of policy-agnostic programs. In ACM PLAS, 2013.

[12] M. Balliu. A logic for information flow analysis of distributed
programs. In NordSec, 2013.

[13] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In IEEE
SP, 2008.

[14] G. Barthe and L. P. Nieto. Formally verifying information flow
type systems for concurrent and thread systems. In ACM FMSE,
2004.

[15] I. Bastys, M. Balliu, and A. Sabelfeld. If this then what? controlling
flows in IoT apps. In ACM CCS, 2018.

[16] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking information flow
via delayed output. In NordSec, 2018.

[17] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian.
Run-time monitoring and formal analysis of information flows in
Chromium. In NDSS, 2015.

[18] T. Bauereiss, A. P. Gritti, A. Popescu, and F. Raimondi. CoSMeDis:
A distributed social media platform with formally verified confi-
dentiality guarantees. In IEEE SP, 2017.

[19] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information
flow control in WebKit’s JavaScript bytecode. In POST, 2014.

[20] A. Bichhawat, V. Rajani, J. Jain, D. Garg, and C. Hammer. WebPol:
Fine-grained information flow policies for web browsers. In
ESORICS, 2017.

[21] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive
non-interference for a browser model. In NSS, 2011.

[22] N. Bielova and T. Rezk. Spot the difference: Secure multi-
execution and multiple facets. In ESORICS, 2016.

[23] A. Bohannon and B. C. Pierce. Featherweight Firefox: Formalizing
the core of a web browser. In USENIX WebApps, 2010.

[24] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and
S. Zdancewic. Reactive noninterference. In ACM CCS, 2009.

[25] I. Bolosteanu and D. Garg. Asymmetric secure multi-execution
with declassification. In POST, 2016.

[26] A. Bossi, C. Piazza, and S. Rossi. Compositional information flow
security for concurrent programs. Journal of Computer Security,
15(3), 2007.

[27] E. Cecchetti, A. Myers, and O. Arden. Nonmalleable information
flow control. In ACM CCS, 2017.

[28] A. Chudnov and D. A. Naumann. Inlined information flow moni-
toring for JavaScript. In ACM CCS, 2015.

[29] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged informa-
tion flow for JavaScript. In ACM PLDI, 2009.

[30] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flow-
Fox: a web browser with flexible and precise information flow
control. In ACM CCS, 2012.

[31] D. Devriese and F. Piessens. Noninterference through secure multi-
execution. In IEEE SP, 2010.

[32] M. Dhawan and V. Ganapathy. Analyzing information flow in
JavaScript-based browser extensions. In ACSAC, 2009.

[33] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In USENIX OSDI,
2010.

[34] J. A. Goguen and J. Meseguer. Security policies and security
models. In IEEE Symposium on Security and Privacy, pages 11–
20, 1982.

[35] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Secure
multi-execution of web scripts: Theory and practice. Journal of
Computer Security, 22(4), 2014.

[36] D. Hedin, L. Bello, and A. Sabelfeld. Information-flow security
for JavaScript and its APIs. Journal of Computer Security, 24(2),
2016.

[37] D. Hedin and A. Sabelfeld. Information-flow security for a core
of JavaScript. In IEEE CSF, 2012.

[38] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical
study of privacy-violating information flows in JavaScript web
applications. In ACM CCS, 2010.

[39] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken,
K. Fukushima, S. Kiyomoto, and Y. Miyake. Run-time enforcement
of information-flow properties on android (extended abstract). In
ESORICS, 2013.

[40] S. Just, A. Cleary, B. Shirley, and C. Hammer. Information flow
analysis for JavaScript. In PLASTIC, 2011.

[41] A. Karbyshev, K. Svendsen, A. Askarov, and L. Birkedal. Com-
positional non-interference for concurrent programs via separation
and framing. In POST, 2018.

[42] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and
M. Franz. Towards precise and efficient information flow control
in web browsers. In TRUST, 2013.

[43] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In ACM SOSP, 2007.

[44] Z. Li, K. Zhang, and X. Wang. Mash-IF: Practical information-flow
control within client-side mashups. In IEEE/IFIP DSN, 2010.

[45] H. Mantel. On the composition of secure systems. In IEEE SP,
2002.

[46] H. Mantel and A. Sabelfeld. A unifying approach to the security
of distributed and multi-threaded programs. Journal of Computer
Security, 11(4), 2003.

[47] H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guaran-
tees for compositional noninterference. In CSF, 2011.

[48] M. McCall, A. Bichhawat, and L. Jia. Compositional information
flow monitoring for reactive programs. Technical report, Carnegie
Mellon University, 2022.

[49] M. McCall, H. Zhang, and L. Jia. Knowledge-based security of
dynamic secrets for reactive programs. In 2018 IEEE CSF, 2018.

[50] D. McCullough. Specifications for multi-level security and a hook-
up. In IEEE SP, 1987.

[51] D. McCullough. Noninterference and the composability of security
properties. In IEEE SP, 1988.

[52] D. McCullough. A hookup theorem for multilevel security. IEEE
Transactions on Software Engineering, 16(6), 1990.

[53] T. Murray, R. Sison, and K. Engelhardt. COVERN: A logic for
compositional verification of information flow control. In IEEE
EuroSP, 2018.

Execution
Mechanisms

Shared State
SMS FS TS

SME 0.184 ms 0.185 ms 0.179 ms
MF 0.142 ms 0.135 ms 0.140 ms
TT 0.135 ms 0.139 ms 0.130 ms

TABLE 4: Time taken for different compositions for the
example shown in Figure 12, measured in ms

[54] T. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah. Compo-
sitional verification and refinement of concurrent value-dependent
noninterference. In IEEE CSF, 2016.

[55] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust
declassification. In IEEE CSFW, 2004.

[56] A. Nadkarni, B. Andow, W. Enck, and S. Jha. Practical DIFC
enforcement on android. In USENIX Security, 2016.

[57] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo, and
T. Schmitz. A better facet of dynamic information flow control.
In WWW, 2018.

[58] M. Ngo, F. Massacci, D. Milushev, and F. Piessens. Runtime
enforcement of security policies on black box reactive programs.
In ACM POPL, 2015.

[59] W. Rafnsson and A. Sabelfeld. Compositional information-flow
security for interactive systems. In IEEE CSF, 2014.

[60] W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-
grained, declassification-aware, and transparent. Journal of Com-
puter Security, 24(1), 2016.

[61] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer. Information
flow control for event handling and the DOM in web browsers. In
IEEE CSF, 2015.

[62] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information
flow in dynamic tree structures. In ESORICS, 2009.

[63] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-
threaded programs. In IEEE CSFW, 2000.

[64] A. Sabelfeld and D. Sands. Declassification: Dimensions and
principles. Journal of Computer Security, 17(5), 2009.

[65] T. Schmitz, M. Algehed, C. Flanagan, and A. Russo. Faceted secure
multi execution. In ACM CCS, 2018.

[66] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit
secrecy: A policy for taint tracking. In IEEE EuroSP, 2016.

[67] D. Schoepe, M. Balliu, F. Piessens, and A. Sabelfeld. Let’s face
it: Faceted values for taint tracking. In ESORICS, 2016.

[68] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible
dynamic information flow control in Haskell. In Haskell, 2011.

[69] D. Stefan, E. Z. Yang, B. Karp, P. Marchenko, A. Russo, and
D. Mazières. Protecting users by confining JavaScript with COWL.
In USENIX OSDI, 2014.

[70] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk.
Stateful declassification policies for event-driven programs. In
IEEE CSF, 2014.

[71] D. M. Volpano. Safety versus secrecy. In SAS, 1999.

[72] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and
S. Chong. Precise, dynamic information flow for database-backed
applications. In ACM PLDI, 2016.

[73] A. Zakinthinos and E. S. Lee. The composability of non-
interference [system security]. In IEEE CSFW, 1995.

[74] D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of
confidentiality for reactive systems. In IEEE CSF, 2013.

[75] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In OSDI, 2006.

Appendix A.
Weak Secrecy Semantics

The weak secrecy semantics are mostly straightfor-
ward: we modify the existing semantics so that upgrades
to L global variables or L attributes in L DOM nodes emit
a gw() action and branches in the L context result in
br() actions. Note that our trace equivalence definitions
already account for these actions.

Appendix B.
Composing Shared Storage

We can allow shared storage techniques to differ be-
tween shared variables and event handler storage. Instead
of tracking a single enforcement, G 2 {SMS,TS,FS}, G
is a pair G = (Gg,GEH) where Gg is the shared variable en-
forcement mechanism and GEH is the event handler storage
enforcement mechanism with Gg,GEH 2 {SMS,TS,FS}.
The changes to the semantics to support this composition
are straightforward. Values may be converted between
mechanisms using the same conversion rules discussed
in Section 4.3. The security guarantees follow from Sec-
tion 5: compositions involving SMS and/or FS for either
shared variable or event handler storage satisfy progress-
insensitive noninterference, while those involving TS sat-
isfy progress-insensitive weak secrecy.

Appendix C.
Declassification

The additional syntax for the framework to support
declassification is based on prior work [49], shown below:

Release R ::= (⇢,D)
Released value r ::= none | some(◆, v)

Release Channel d ::= · | d, (◆, v)
We add a release channel R which maintains the

state (⇢) and a declassification function (D). D takes an
input event and the current state, ⇢, and returns a tuple
containing the value to be released (r), a parameter to
the event to be released (v or emp if the event is not
released), and the new state. We also add a declassify
command which reads from the declassification channel
d, where ◆ is the identifier of the declassification (e.g., a
unique location in the code). The values on d are updated
to value r by update(d, r) and read by read(d, ◆).

The complete rules for processing inputs and outputs,
with support for declassifying secret inputs, is shown in
Figure 16. Note that these rules emit ↵l which are labeled
actions. The label tells us the context the action was gener-
ated in, which is helpful for proofs. Rule IN-NR1 handles
secret input events which are not declassified (i.e., no
public event handlers will be triggered). D(⇢, id .Ev(v))
returns (r, emp, ⇢0) which is the value to update on the
declassification channel (using update(d, r)), emp to in-
dicate that the event should not be declassified to a public
event handler, and the new state ⇢

0. Like IN-H from Sec-
tion 4.2, event handlers are looked up using lookupEHAll
in the H context to return all of the event handlers visible
from H , configured to run in the H context. IN-NR1
is similar, except that it processes events associated with

Global Stores SMS FS TS

Initial State �L[l 7! 0; o 7! 2]
�H [l 7! 0; o 7! 2] �[l 7! 0; o 7! 2] �[l 7! 0L; o 7! 2L]

keypress k = 42 and no release to L; click; mouseover
L H L H L H

onKeyPress(k):
if k = 42 then l := k �H [l 7! 42] �[l 7! h42|0i] �[l 7! 42H]

onClick(c):
if l = 42 then o := 1; - �H [o 7! 1] - �[o 7! h1|2i] - �[o 7! 1H]
output (L, o); output (H, o) 2; • •; 1 2; • •; 1 2; • •; 1

onMouseOver(): output (L, o) 2 • 2 • dv •
keypress k 6= 42 and no release to L; click; mouseover

Execution Context L H L H L H
onKeyPress(k):

if k = 42 then l := k - - -
onClick(c):

if l = 42 then o := 1; - - - - - -
output (L, o); output (H, o) 2; • •; 2 2; • •; 2 2; • •; 2

onMouseOver(): output (L, o) 2 • 2 • 2 •

Figure 13: Execution of SME with different global shared states (Figure 12). L execution runs first; H execution second. The
keypress events are secret while click and mouseover events are public. Default values are indicated as dv in the outputs while •
indicates that the output is suppressed. The L outputs and public events are shown in the blue color while H outputs and events

are shown in red.

Global Stores SMS FS TS

Initial State �L[l 7! 0; o 7! 2]
�H [l 7! 0; o 7! 2] �[l 7! 0; o 7! 2] �[l 7! 0L; o 7! 2L]

keypress k = 42 and no release to L; click; mouseover
onKeyPress(k):

if k = 42 then l := k �H [l 7! 42] �[l 7! h42|0i] �[l 7! 42H]
onClick(c):

if l = 42 then o := 1; �H [o 7! 1] �[o 7! h1|2i] �[o 7! 1H]
output (L, o); output (H, o) 2; 1 2; 1 dv; 1

onMouseOver(): output (L, o) 2 2 dv
keypress k 6= 42 and no release to L; click; mouseover

onKeyPress(k):
if k = 42 then l := k - - -

onClick(c):
if l = 42 then o := 1; - - -
output (L, o); output (H, o) 2; 2 2; 2 2; 2

onMouseOver(): output (L, o) 2 2 2

Figure 14: Execution of MF with global shared states and events (Figure 12). The keypress events are secret while click and
mouseover events are public. Default values are indicated as dv in the outputs. The L outputs are shown in the blue color while H

outputs are shown in red.

Global Stores SMS FS TS

Initial State �L[l 7! 0; o 7! 2]
�H [l 7! 0; o 7! 2] �[l 7! 0; o 7! 2] �[l 7! 0L; o 7! 2L]

keypress k = 42 and no release to L; click; mouseover
onKeyPress(k):

if k = 42 then l := k �H [l 7! 42] �[l 7! h42|0i] �[l 7! 42H]
onClick(c):

if l = 42 then o := 1; �[o 7! 1L]
output (L, o); output (H, o) 2; 2 2; 2 1; 1

onMouseOver(): output (L, o) 2 2 1
keypress k 6= 42 and no release to L; click; mouseover

onKeyPress(k):
if k = 42 then l := k - - -

onClick(c):
if l = 42 then o := 1; - - -
output (L, o); output (H, o) 2; 2 2; 2 2; 2

onMouseOver(): output (L, o) 2 2 2

Figure 15: Execution of TT with global shared states and events (Figure 12). The keypress events are secret while click and
mouseover events are public. The L outputs are shown in the blue color while H outputs are shown in red.

G,P ` K
G

1
↵l=) K

G

2

P(id .Ev(v)) = H

D(⇢, id .Ev(v)) = (r, emp, ⇢0) d
0 = update(d, r) G,P,� ` ·; lookupEHAll(id .ev(v)) ;H ks

G,P ` (⇢,D), d;�; · id.Ev(v)
=) (⇢0,D), d0;�; ks

IN-NR1

P(id .Ev(v)) = H� G,P,� ` ·; lookupEHAll(id .ev(v)) ;H ks

G,P ` R, d;�; · id.Ev(v)
=) R, d;�; ks

IN-NR2

P(id .Ev(v)) = H D(⇢, id .Ev(v)) = (r, v0, ⇢0) v
0 6= v d

0 = update(d, r)
G,P,� ` ·; lookupEHAt(id .ev(v0)) ;L ks G,P,� ` ks; lookupEHAt(id .ev(v)) ;H ks 0

G,P ` (⇢,D), d;�; · id.Ev(v)
=) (⇢0,D), d0;�; ks 0

IN-R-DIFF

P(id .Ev(v)) = H

D(⇢, id .Ev(v)) = (r, v, ⇢0) d
0 = update(d, r) G,P,� ` ·; lookupEHAll(id .ev(v)) ;· ks

G,P ` (⇢,D), d;�; · id.Ev(v)
=) (⇢0,D), d0;�; ks

IN-R-SAME

P(id .Ev(v)) = L G,P,� ` ·; lookupEHAll(id .ev(v)) ;· ks

G,P ` R, d;�; · id.Ev(v)
=) R, d;�; ks

IN-L

Figure 16: Input rules with declassification

dynamically-generated elements. From prior work [49],
these events should never influence declassification so
they do not result in a public event, nor do they result
in changes to the declassification channel or the state.

IN-R-DIFF and IN-R-SAME are for secret events that
are declassified to a public event. Here, D(⇢, id .Ev(v))
returns (r, v0, ⇢0) where v

0 (instead of emp) indicates that
the event will be declassified. If v

0 is the same as the
original argument to the event, v, then IN-R-SAME applies
and otherwise, IN-R-DIFF applies. If the released event is
different (IN-R-DIFF) then lookupEHAt in the L context
returns event handlers labeled L (or ·) to run in the L

context, and lookupEHAt in the H context returns event
handlers labeled H (or ·) to run in the H context. If the re-
leased event is the same (IN-R-SAME) then lookupEHAll
in the · context returns all of the event handlers to run in
whatever context they are visible in.

IN-L processes public events. Like for IN-R-SAME,
it runs all event handlers associated with the event in
whatever context they are visible in.

Appendix D.
EH Queue Semantics

The rules for processing the event handler queue are
shown in Figure 17. LC (“local consumer”) processes sim-
ulated events, which were generated by an event handler
rather than a user. This rule is triggered when an event
handler has finished running (the current command is skip)
and the local event queue is not empty (E 6= ·). Event
handlers are looked up using lookupEHs which returns
the event handlers with label matching the current pc (or
·) and runs them at the current pc, or in the case of TT,
returns all event handlers and runs them at the current
pc if the event being triggered is public, or runs them

G,P,V, d ` �
G

1 ,
↵

=) �
G

2 , ks

E 6= · G,P,V ,�G ` ; lookupEHs(E) ;pc ks
 = (V; (�, skip, C, ·); pc)

G,P,V, d ` �
G
,�, skip, P, E

•�!pc �
G
, ks

LC

 = (V; (�, skip,C , ·); pc)
G,P,V, d ` �

G
,�, skip, P, · •�!pc �

G
,

PTOC

G,V, d � �
G

1 ,�1, c1
↵�!pc �

G

2 ,�2, c2, E2

 = (V; (�2, c2, P, (E1, E2)); pc)

G,P,V, d ` �
G

1 ,�1, c1, P, E1
↵�!pc �

G

2 ,
P

Figure 17: Rules for managing the event handler queue

at H if the event being triggered is secret. The resulting
configuration stack ks includes the current event handler
(now in consumer state) on top of all of the event handlers
triggered by lookupEHs.

PTOC switches the execution state from producer to
consumer when the current event handler finishes running
(i.e., the command is skip) and there are no simulated
events triggered by the event handler to process (E = ·).
P runs the current event handler for one step using the
event handler semantics.

Appendix E.
Enforcement-Specific Semantics

Figure 18 contains expression semantics and conver-
sion rules. Note that pc

l
denotes a pc which cannot be ·

(i.e. it must be L or H). In favor of simplicity, we show
only the rules for SME, SMS,TT, and TS.

i 2 {SME, SMS,MF,FS}
toDst(vstd, pc, i) = v

std

i 2 {TT,TS} pc v L

toDst(vstd, pc, i) = (vstd, L)

i 2 {TT,TS} pc 6v L

toDst(vstd, pc, i) = (vstd, pc)

i 2 {TT,TS}
toDst((vstd, l), pc

l
, i) = (vstd, l t pc

l
)

i 62 {TT,TS} l v pc
l

toDst((vstd, l), pc
l
, i) = v

std

i 62 {TT,TS} l 6v pc
l

toDst((vstd, l), pc
l
, i) = dv

toDst((vstd, L), ·, i) = v
std toDst((vstd, H), ·, i) = hvstd|dvi

v = h | i
toDst(v, ·, i) = v

Figure 18: Conversion rules

Variable lookup and assignment. The rules for
SME, SMS variable lookup and assignment are shown
below. Note that for SME, the appropriate copy of the
store is passed to these functions, so accesses and updates
can be done directly. For SMS, a helper getStore(�, pc

l
)

function would need to be used to retrieve the appropriate
copy of the store from � (see an example below).

varSME(�
std
, pc

l
, x) = �

std(x)
VAR

x 62 �
std

varSME(�
std
, pc

l
, x) = dv

VAR-DV

assignSME(�
std
, H, x, v) = �

std[x 7! v]
ASSIGN-H

assignSME(�
std
, L, x, v) = �

std[x 7! v]
ASSIGN-L

The rules for TT,TS variable lookup and assignment
are shown below. If the variable is not in the store as
in VAR-DV, a tainted default value is returned. This is
important since an attacker would not know the difference
between x 62 � and �(x) = (v,H). To satisfy noninterfer-
ence, we should return a tainted default value even when
pc = L. ASSIGN joins the label of the value with the pc to
reflect the context in which the assignment was performed.

varTT(�, pcl, x) = �(x)
VAR

x 62 �

varTT(�, pcl, x) = (dv, H)
VAR-DV

assignTT(�, pc, x, (v, l)) = �[x 7! (v, l t pc)]
ASSIGN

Unstructured DOM. The enforcement-specific functions
for unstructured event handler storage includes:

• DOM attribute lookup and assignment
• DOM node lookup
• Simulating (i.e. script-triggered) event
• Creating a DOM node
• Registering a new event handler
The rules for DOM attribute lookups and assignments

are shown in Figure 19.
getStore(�, pc

l
) is used for SMS to return from �

the copy of the store with label matching pc
l
. Similarly,

setStoreVar(�G
, pc

l
,�) updates the pc

l
copy of the global

variable store in �
G to be � and setStore(�G

, pc
l
,�) does

the same for the event handler store in �
G.

Similar to the TT store, looking up uninitialized vari-
ables from the TS store with VAR-DV and looking up the
attribute of a node which doesn’t exist with GETVALG-
S returns a tainted dv. The global variable assignment
ASSIGN joins the label of the value with the pc to reflect
the context in which the value was assigned. The attribute
assignment ASSIGNDOM joins the label of the value with
the pc and label of the node to ensure that if the attribute
is looked up, the result does not leak anything about the
existence of the node (which may be secret).

The rules for the other DOM functionality and the
tree-structured DOM may be found in the TR [48].

Appendix F.
Proof Sketches for Security Theorems

We include the proof sketches for the top-level theo-
rems here to give some intuition for how the requirements
from Section 5 map to the proofs. Complete proofs and
supporting definitions (like well-formedness and equiva-
lence definitions) may be found in the TR [48].
Theorem 2 (Soundness) If 8id .Ev(v), eh, pc.
P(id .Ev(v), eh, pc) 2 {SME,MF} and Gg,GEH 2
{SMS,FS} and G = (Gg,GEH), then
8R,P,�0, T,K,↵l s.t. T ↵l=) K 2 runs(�G

0 ,R,P, I), �0

is well-formed,
• If rlsAction(last(T) ↵l=) K):
K(T

↵l=) K,�
G

0 ,R,P) ◆� Krp(T,�G

0 ,R,P,↵l)
• Otherwise:
K(T

↵l=) K,�
G

0 ,R,P) ◆� Kp(T,�G

0 ,R,P)

Proof (sketch): The proof is split between two cases,
depending on whether the most recent action was a re-
lease event or not. In either case, we want to show
that 9⌧ 0 2 K(T

↵l=) K,�
G

0 ,R,P) s.t. ⌧ � ⌧
0 for ⌧

in Krp(T,�G

0 ,R,P,↵l) (when ↵l is a release event) or
Kp(T,�G

0 ,R,P) (when ↵l is not a release event). The
second case relies on Requirements T1 and T4 The first
case follows from the definitions of Krp() and K().

In general, the structure of the weak secrecy proofs is
similar to the proofs for PI Security, except that it uses
the “weak” versions of the requirements.
Theorem 4 (Soundness-Weak Secrecy) If
8id .Ev(v), eh, pc. P(id .Ev(v), eh, pc) 2
{SME,MF,TT} and Gg,GEH 2 {SMS,FS,TS} and
G = (Gg,GEH), then
8R,P,�0, T,K,↵l s.t. T

↵l=) K 2 runs(�G

0 ,R,P, I),
�0 is well-formed,

�
0 = getStore(� #EH, pcl) �

0(id) = �

getValSMS(�, pcl, id) = �.v
GETVAL

�
0 = getStore(� #EH, pcl) id 62 �

0

getValSMS(�, pcl, id) = dv
GETVAL-S

�
0 = getStore(� #EH, pcl) (v0,M) = �

0(id) �
00 = �

0[id 7! (v,M)]

assignSMS(�, pcl, id , v) = setStore(�, pc
l
,�

00)
ASSIGN-DOM

�
0 = getStore(� #EH, pcl) id 62 �

0

assignSMS(�, pcl, id , v) = �
ASSIGN-DOM-S

(a) Unstructured SMS DOM attribute lookups and assignments

lookupTS(�, pcl, id) = � valOf(�) 6= NULL l� = labOf(�, pc
l
) (v, lv) = �.v

getValGTS(�, pcl, id) = (v, l� t lv)
GETVALG

lookupTS(�, pcl, id) = � valOf(�) = NULL

getValGTS(�, pcl, id) = (dv, H)
GETVALG-S

�(id) = (v0,M, l
0)

assignTS(�, pc, id , (v, l)) = �[id 7! ((v, l t pc t l
0),M, l

0)]
ASSIGNDOM

id 62 �

assignTS(�, pc, id , (v, l)) = �
ASSIGNDOM-S

(b) Unstructured TS DOM attribute lookups and assignments

Figure 19: Enforcement-specific EH lookups and assignments for the unstructured DOM

Attacker Knowledge K(T,�G

0 ,R,S) {⌧i | 9T 0 2 runs(�G

0 ,R,S), T ⇡S
L
T

0 ^ ⌧i = in(T 0)}
Progress-insensitive Knowledge Kp(T,�G

0 ,R,S) {⌧i | 9T 0 2 runs(�G

0 ,R,S), T ⇡S
L
T

0 ^ ⌧i = in(T 0) ^ prog(T 0
,S)}

Progress-insensitive Knowledge with Release Krp(T,�G

0 ,R,S,↵) {⌧i | 9T 0 2 runs(�G

0 ,R,S), T ⇡S
L
T

0 ^ ⌧i = in(T 0) ^ prog(T 0
,S)

^↵0 = (last(T)
↵

=) K)) #S
L
, rlsTrace(T 0

,↵
0))}

Weak Progress-insensitive Knowledge Kwp(T,�G

0 ,R,S,↵) {⌧i | 9T 0 2 runs(�G

0 ,R,S), T ⇡S
L
T

0 ^ ⌧i = in(T 0) ^ prog(T 0
,S)

^↵0 = (last(T)
↵

=) K)) #S
L
,wkTrace(T 0

,↵
0))}

prog(T,S) i↵ T = G,S ` K0 =)⇤
K and 9KC s.t. G,S ` K =)⇤

KC and consumer(KC)

rlsAction(G,S ` K
↵

=) K
0) i↵ (G,S ` K

↵
=) K

0) #S
L
= rls(↵0) or (G,S ` K

↵
=) K

0) #S
L
= declassify(◆, v)

rlsTrace(T,↵) =

(
T = G,S ` K0 =)⇤

K ^ 9↵0
,K

0
s.t.,K

↵
0

=) K
0 ^ (K

↵
0

=) K
0) #S

L
= ↵ ↵ = rls()

T = G,S ` K0 =)⇤
K ^ 9K0

s.t.,K
↵

=) K
0

↵ = declassify(◆, v)

wkAction(G,S ` K
↵

=) K
0) i↵ (G,S ` K

↵
=) K

0) #S
L,w

= br(b) or (G,S ` K
↵

=) K
0) #S

L,w
= gw(x) or

↵ 2 in(G,S ` K
↵

=) K
0) ^ S(↵) = L or (G,S ` K

↵
=) K

0) #S
L
2 {•, ch(v)}

wkTrace(T,↵) =

8
>>><

>>>:

T = G,S ` K0 =)⇤
K ^ 9K0 s.t. K =) K

0 ^ (K =) K
0) #S

L
= ↵ ↵ = br(b)

T = G,S ` K0 =)⇤
K ^ 9K0

, T
0 s.t. T 0 = K =)⇤

K
0 ^ T

0 #S
L
= · ^ 9K00 s.t. (K0 =)⇤

K
00) #S

L
= ↵ ↵ = gw(x)

T = G,S ` K0 =)⇤
K ^ 9T 0

,K
0 s.t. T 0 = K =)⇤

KC ^ T
0 #S

L
= · ^ consumer(KC) ↵ = id .Ev(v)

T = G,S ` K0 =)⇤
K ^ 9T 0

,K
0 s.t. T 0 = K =)⇤

Klp ^ T
0 #S

L
= · ^ lowProducer(Klp) ↵ 2 {•, ch(v)}

Figure 20: Definitions for attacker knowledge and its invariants

• If rlsAction(last(T) ↵l=) K):
K(T

↵l=) K,�
G

0 ,R,P) ◆� Krp(T,�G

0 ,R,P,↵l)
• If wkAction(last(T) ↵l=) K):
K(T

↵l=) K,�
G

0 ,R,P) ◆� Kwp(T,�G

0 ,R,P,↵l)
• Otherwise:
K(T

↵l=) K,�
G

0 ,R,P) ◆� Kp(T,�G

0 ,R,P)

Proof (sketch): The proof is split between three cases,
depending on whether the most recent action was a release
event, weak action, or neither. In either case, we want
to show that K(T

↵l=) K,�
G

0 ,R,P) s.t. ⌧ � ⌧
0 for

⌧ in Krp(T,�G

0 ,R,P,↵l) (when ↵l is a release event)
Kwp(T,�G

0 ,R,P,↵l) (when ↵l is a weak action) or
Kp(T,�G

0 ,R,P) (otherwise). The first case follows from
the definitions of Krp() and K(). The second case relies
on the definitions of Kwp(), K(), and Requirements WT1
and WT4 The third case follows from the definitions of
Kp().
Theorem 5 (PI Security implies PI Weak Secrecy) If
script enforcement V and global storage enforcement

G are progress-insensitive secure for some well-formed
initial global store, �

G

0 , then V and G are also weakly
progress-insensitive secure. Proof (sketch): We want to
show that the conditions for weak secrecy hold for any
trace from a system that is progress-insensitive secure.
Considering a trace from a system that satisfies progress-
insensitive security, this proof looks at three cases: one
where the last step was a release, one where it was a “weak
action”, and one where it was neither. If the last step
was a release, then the trace trivially satisfies progress-
insensitive weak secrecy since the condition for release
events is the same for both types of security. If the last
step was a “weak action”, then the conclusion follows
from the definitions of Kp() and Kwp(). Finally, if the
action was neither a release nor a “weak action”, then the
proof is straightforward since the “other” condition for
both types of security is the same.

	Introduction
	Background
	Reactive programming
	Noninterference and Weak secrecy
	Standard IFC Enforcement Mechanisms

	Motivating Example
	Compositional Enforcement Framework
	Syntax
	Framework Semantics
	Shared storage

	Security and Weak Secrecy
	Attacker Observation
	Progress-Insensitive Security
	Weak Secrecy
	Securing TT

	Prototype Implementation and Evaluation
	Prototype Implementation
	Evaluation Setup
	Performance Evaluation
	Composing shared storage and script enforcement
	Composing script enforcement

	Security and Accuracy Evaluation

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Weak Secrecy Semantics
	Appendix B: Composing Shared Storage
	Appendix C: Declassification
	Appendix D: EH Queue Semantics
	Appendix E: Enforcement-Specific Semantics
	Appendix F: Proof Sketches for Security Theorems

