

GSA Connects 2022 meeting in Denver, Colorado

Paper No. 124-7
Presentation Time: 2:00 PM-6:00 PM

**CHEMICAL HETEROGENEITY IN PHENGITE FROM THE ULTRAHIGH-PRESSURE
GNEISS, TSO MORARI TERRANE, INDIA**

MCDOWELL, Paige¹, MENOLD, Carrie¹, MACRIS, Catherine² and CHILDERS, Sidney¹, (1)Earth & Environment, Albion College, 611 East Porter St, Albion, MI 49224, (2)Department of Earth Sciences, Indiana University – Purdue University Indianapolis, 723 W Michigan Street, SL118, Indianapolis, IN 46202

The white mica, phengite, is a hydrous, high-pressure mineral that can preserve the chemical signatures of the fluids present during its growth in high pressure environments. The Tso Morari Ultrahigh Pressure (UHP) Terrane in NW India contains a large compositional range of phengite. It is also well suited for researching the importance and origin of fluids within subduction zones because it preserves early and deeply subducted rocks. The samples are primarily white-mica-bearing, quartz-feldspathic gneiss. Six gneiss samples collected along a 10 m traverse. Mica within each sample were analyzed for mineral chemistry and size ratio of grains. Sample numbering increases with closeness to an eclogite block with TM1 furthest away and TM11 closest. Phengite samples > 5 m from the contact with the eclogite preserved the highest silicon concentrations (6.98 Si p.f.u.) while samples at the contact (TM11) and 2-3 m away preserve intermediate compositions between muscovite and phengite (6.45 Si p.f.u.). The grains in TM2 all have Si averages of 6.88 p.f.u., suggesting most crystals grew in the UHP event. The compositions of mica grains in TM3 and TM11 have similar Si concentrations of 6.42 Si p.f.u. Suggesting a recrystallization event during exhumation. Fe/T/Mg data shows increasing values from TM2 to TM11, from 2.67 to 6.1 with TM3 at an intermediate value of 4.05. The ~10 traverse preserves heterogeneous phengite compositions. If we consider the Si and Fe/T/Mg values as markers of pressure and temperature respectively we have grains that grew at both at near peak conditions and during exhumation. In this preliminary part of the study white mica (phengite) is the primary mineral used because it is a hydrous, high pressure phase that characteristically contains boron when tourmaline is absent. Initial electron probe data has confirmed both high pressure phengite and retrograde lower pressure phengite in the samples. The next steps will be to determine if the micas have distinct *in situ* $\delta^{11}\text{B}$ concentrations. Previous studies suggest that the phengite would have low boron concentrations and highly negative $\delta^{11}\text{B}$ values that are below the range of values expected by MORB basalts and the mantle.

Session No. 124--Booth# 7

[T68_Sigma Gamma Epsilon Student Research Exhibition \(Posters\)](#)

Monday, 10 October 2022: 2:00 PM-6:00 PM

Exhibit Hall F (Colorado Convention Center)

Geological Society of America *Abstracts with Programs*. Vol 54, No. 5
doi: 10.1130/abs/2022AM-383435

© Copyright 2022 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

[Back to: T68_Sigma Gamma Epsilon Student Research Exhibition \(Posters\)](#)

[<< Previous Abstract](#) | [Next Abstract >>](#)